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Abstract
We study a rumour propagation model along the lines of Lebensztayn and Rodriguez (Stat
Probab Lett 78(14):2130–2136, 2008) as a long-range percolation model on Z. We begin
by showing a sharp phase transition-type behaviour in the sense of exponential decay of the
survival time of the rumour cluster in the sub-critical phase. In the super-critical phase, under
the assumption that radius of influence r.v. has 2 + ε moment finite (for some ε > 0), we
show that the rightmost vertex in the rumour cluster has a deterministic speed in the sense that
after appropriate scaling, the location of the rightmost vertex converges a.s. to a deterministic
positive constant. Under the assumption that radius of influence r.v. has 4+ ε moment finite,
we obtain a central limit theorem for appropriately scaled and centered rightmost vertex.
Later, we introduce a rumour propagation model with reactivation. For this section, we work
with a family of exponentially decaying i.i.d. radius of influence r.v.’s, and we obtain the
speed result for the scaled rightmost position of the rumour cluster. Each of these results is
novel, in the sense that such properties have never been established before in the context of
the rumour propagation model on Z, to the best of our knowledge.

Keywords Rumour percolation · Renewal process · Speed of rightmost vertex ·
Re-activated Rumour process

1 Introduction

Interacting particle systems have been an area of interest for a long time. There have been
numerous works related to varied forms of it. We are particularly interested in the spread
of rumours within networks. We work with the rumour propagation model having rumours
propagating on an infinite graph, which is within the class of long-range percolation models.
We study rumour percolation models and we are interested sharp phase transition (in terms of
the survival time of the rumour cluster) and speed of the scaled boundary points of the rumour
cluster. We want to highlight here that extinction probabilities and phase transitions results
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have been studied on rumourmodels for some time. Still, to our knowledge, there has not been
any previous work on the speed of propagation of rumours, which is our novelty. In addition,
we also obtain a CLT result for the rightmost particle of the rumour cluster. In our work, we
further generalise the rumour model to allow for reactivations, which basically means that a
particle who heard the rumour in the past may spread it again at a future reactivation time
point. To the best of our knowledge, this model has never been studied before. The concept
of reactivation is influenced by the idea of recurring public opinion and its dissemination,
considered for example in [14]. It is further motivated by the concept of reinfection in case
of disease spread models, which have been studied in works such as [28].

There are close resemblances between rumour propagation and epidemic models as
observed in [2]. However, they have their differences also, as stated in [4] that the frac-
tion of the population who ultimately hears a rumour is independent of the population size.
Both of them consider a finite population. Daley in [3] discussed stochastic and determin-
istic versions of the rumour process within a finite population. Dunstan in [6] extended the
work on these models. There have been other works too on the spread of rumours in a finite
population, for example, in [10]. They consider a complete graph with n nodes, and the main
object of interest is the time required for the rumour to spread to the entire network. This
model assumes that the ones hearing the rumour will always spread it to other vertices that
have never heard it before. Pittel in [22] extends results on this model.

Lebensztayn et al. in [19] consider a long-range percolation model, which they call a
disk-percolation model, for the spread of infection. The model can be invariably used for
rumour propagation as well. They have random variables termed radii of infection linked to
each vertex v in a locally finite and connected graph G, which follow geometric distributions.
Initially, only the root is infected, and with time, the infection grows. They study the question
of the indefinite spread of infection with positive probability and critical probability based
on the parameter of the geometric distribution for the same. Junior et al. in [16] consider a
similar model onN, which is called the Firework process. There, the propagation of rumours
is uni-directional. They also consider a similar process called the reverse firework process,
where instead of the propagation of rumours by an active vertex, the rumour is collected by
the inactive vertices based on the random variables associated with inactive vertices. Their
results consider generalisations over the distributions of the random variables associated
with the vertices. Gallo et al. in [11] use the same models and construct a renewal process
associated with the rumours to arrive at their results. Alsadat et al. in [26] consider a variant
of the firework process, where rumours are spread to a new vertex only if it receives them
from at least two sources. Junior et al. in a survey in [15] consider various variants of the
rumour model and the major works done on them. Some recent works on the rumour model
include [21], [9]. For a long range percolation model the question of eventual coverage of
[0,∞)d for d ≥ 1 has been studied in [1]. However the question of rumour percolation on
Z (which essentially means complete coverage) is different than the question of eventual
coverage.

The shape of percolation clusters has also been studied for a long period. On Z, the study
of the shape of the percolation cluster is equivalent to the study of the speed of propagation
of the cluster. In the case of contact processes on Z, another closely related stochastic growth
model, it has been shown in [7] that the rightmost particle grows at a linear rate, starting
from one active particle at time zero at the origin. In the case of oriented percolation on Z2,
a similar result has been shown in [8]. For generalised oriented site percolation on Z2, it has
been shown that the rightmost infinite open path has a linear speed in [13]. Co-existence in
interacting particle systems is another question of interest in the literature. Kostka et al. in
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[17] study competing rumours in social networks. Co-existence in another related percolation
model, the frog model, is studied in [5, 24].

Below, we describe our initial rumour propagation model. On the infinite graph Z we
consider an i.i.d. family of non-negative randomvariables such that these randomvariables are
linked to every vertex z ∈ Z. We term these variables as radius of influence random variable.
A rumour is initiated in one of these vertices, and we are interested in the phenomenon of
the indefinite spread of the rumour. In the beginning, we assume that the radius of influence
random variable attached to a vertex, does not change over time. As a result, after hearing the
rumour, a vertex can spread the rumour only once and that too only at the time of hearing.
Under the assumption that the 1+εmoment of radius of influence randomvariable is finite (for
some ε > 0), we establish a sharp phase transition behaviour in rumour percolation in terms
of sharp decay of the survival time of the subcritical rumour cluster (see Proposition 3.2). Our
methods can be successfully extended to analyze some rumour propagation models where
individuals are randomly placed on Z (see Remark 3.2 for more details).

The next aspect we study is the speed of growth of the rumour cluster in the supercritical
phase. In Theorem 4.1, we show that in the supercritical phase, under the assumption that
the 2 + ε moment of the radius of influence random variable is finite for some ε > 0,
the appropriately scaled rightmost vertex in the rumour cluster converges to a deterministic
positive constant almost surely. This result can be interpreted as the ‘speed’ of the growth of
the rumour cluster in the supercritical phase. In Theorem 4.2 under the assumption that the
4 + ε moment is finite, we obtain the central limit theorem for the appropriately scaled and
centred rightmost vertex in the rumour cluster.

Later, we generalise our model and allow vertices that heard the rumour in the past to
spread it at multiple re-activation time points using independent copies of radii of influence
random variables. Even though re-activation is a phenomenon that has been considered in
different interacting particle systems, to the best of our knowledge, it has not been considered
in the rumour propagation model so far. This provides a greater flexibility to individual
vertices to spread the rumour. As a result, the question of phase transition in terms of rumour
percolation becomes trivial. For this re-activation model, we deal with an i.i.d. family of
radius of influence random variables with exponentially decaying tails and we show that
the appropriately scaled rightmost vertex in the rumour cluster almost surely converges to a
deterministic positive constant as well (see Theorem 5.1).

For both models, our proof techniques rely heavily on a renewal construction (see
Sect. 4.1). Later, in Sect. 5.1 we modify this renewal construction in a non-trivial manner for
the model with re-activation. The differences between the rightmost vertices of rumour clus-
ters between successive renewals, together with the time gaps between successive renewal
steps are shown to be i.i.d.

The paper is organised as follows. The model we work with initially, is formally defined
in Sect. 2. We exhibit sharpness of phase transition regarding rumour percolation in Sect. 3.
The result related to the ‘speed’ of growth of the rumour cluster in the supercritical phase is
proved in Sect. 4. In the same section we obtain a central limit theorem for suitably centred
and scaled position of the right-most vertex of the rumour cluster. In Sect. 5 as a generalisation
of the usual rumour model, we introduce a rumour propagation model with independent re-
activation clocks attached to each vertex and we obtain a deterministic speed for the growth
of the rumour cluster in this set-up. The renewal constructions, especially in the case of the
re-activated rumour model, are non-trivial.

We shall make use of the following lemma in our proofs. This lemma is a standard result
of analysis, and as such, the proof is left to the readers.
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Lemma 1.1 For a sequence of real numbers qn, where 0 � qn < 1, the infinite product∏∞
n=1(1 − qn) converges to a non-zero number iff

∑∞
n=1 qn converges.

2 RumourModel

Wedefine ourmodel of rumour percolation following the lines of [19], which is also discussed
in [15, Sect. 3]. We consider the one-dimensional integer lattice Z as our intended network
on which we wish to study the percolation of a rumour. We denote the set Z ∩ [0,∞) by
Z

+ and Z ∩ (−∞, 0] by Z
−. We consider {Iz : z ∈ Z}, a collection of independent and

identically distributed (i.i.d.) non-negative random variables, where Iz represents the radius
of influence for rumour propagation at the vertex z ∈ Z. Let p1 := P(Iz ∈ [0, 1)) and we
assume that E(I 1+ε

z ) < ∞ for some ε > 0. Using this collection {Iz : z ∈ Z}, we define the
rumour percolation process as follows:

1. At time n = 0, only a vertex x ∈ Z hears a rumour, becomes active and spreads the
rumour to all vertices within Ix distance from it. The rest of the vertices remain inactive
(in terms of propagating the rumour). Without loss of generality, we can assume x to be
0. Set A0 = {0}, which denotes the set of vertices that have heard a rumour at 0.

2. The set of vertices that have heard the rumour by time n = 1 is given by

A1 := {z : |z| � I0}.
Vertices in A1 spread the rumour to new vertices which have not heard the rumour till
then, according to their respective radii of influences. Precisely, z ∈ A1 spreads rumour
to an inactive vertex u in the set Z \ A1 at time 2 if and only if |u − z| � Iz .
We note that the vertex 0 ∈ A1, that has heard the rumour in the past, fails to spread
the rumour to any new vertex after time 1. The set of newly activated vertices at time 1,
denoted by Ã1 := A1\A0 may spread the rumour to other inactive vertices that have not
heard the rumour till then, and make them active for the next time point. Keeping this in
mind, the vertex 0 becomes effectively inactive from time 1 onward as it cannot spread
the rumour to any new vertex after time 1 and Ã1 := A1 \ A0 = A1 \ {0} denotes the
set of (effectively) active vertices at time 1.
Similarly, the set of active vertices at time 2, which have heard the rumour at time 2 and
can propagate the rumour to new inactive vertices at time 3, is given by

Ã2 := {z ∈ Z\A1 : |z − u| � Iu for some u ∈ Ã1}.
The set of vertices that have heard the rumour by time 2 is given by

A2 := A1 ∪ Ã2.

3. More generally, at time n � 1, let Ãn denote the set of active vertices at time n and the
set of vertices that have heard the rumour by time n, is given by An := An−1 ∪ Ãn .
An active vertex u ∈ Ãn spreads rumour to all inactive vertices within Iu distance that
never heard the rumour in the past and makes them active at time n + 1. We observe that
vertices in the set An−1 can not spread the rumour to any new inactive vertex at time n
or later. Consequently, the set of active vertices at time n + 1 is given by

Ãn+1 := {z ∈ Z\An : |z − u| � Iu for some u ∈ Ãn},
and An+1 := An ∪ Ãn+1 denotes the set of vertices which have heard the rumour by
time n + 1.
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Fig. 1 Rumour percolation at time n = 0, with rumour starting at x ∈ Z

Fig. 2 Rumour percolation at time n = 1, with rumour starting at x ∈ Z at time n = 0

Figures 1 and 2 together give a pictorial representation of the rumour process, starting
from x ∈ Z. Grey dots denote the inactive vertices which have never heard a rumour. Black
dots represent vertices that have heard the rumour so far, and black dots with red boundaries
denote vertices that have heard the rumour newly, i.e., the set of currently active vertices.
In the figure, we can see that Ã0 = {x} and Ix = 3. Hence, A1 = {x − 3, . . . , x + 3} and
Ã1 = A1\{0}, as is shown in Fig. 2. Assuming Ix+1 = 2, Ix+2 = 3, Ix+3 = 1, Ix−1 = 3,
Ix−2 = 2 and Ix−3 = 4, we haveA2 = {x −7, . . . , x +5} and Ã2 = {x −7, . . . , x +5}\A1.
In this way, the rumour process evolves.

The setAn represents the rumour cluster at time n, i.e., the collection of vertices that have
heard the rumour by time n. We observe that for our model and for all n � 1 the rumour
cluster An is a finite set of the form [a, b] ∩ Z for some a, b ∈ Z with a � 0 � b. In what
follows, for any set A, the notation #A denotes the cardinality of the set.

Definition 2.1 The rumour percolation event is defined as #An → ∞ as n → ∞.

Clearly, for this rumour propagation model, we have rumour percolation iff Ãn �=
∅ for all n. In other words, rumour percolates if the set of active vertices never becomes
an empty set. Otherwise, rumour stops percolating. It is also easy to observe that if Ãn0 = ∅
for some n0 ∈ N, then Ãn = ∅ for all n � n0. This, however does not necessarily hold for
the rumour propagation model with re-activation, introduced in Sect. 5. In the next section,
we present a sharp phase transition result for rumour percolation.

3 Sharp Phase Transition for Rumour Process

In this section, we show that the rumour percolation process exhibits a sharp phase transition.
For n ∈ N we define the event Bn as

Bn := {either n ∈ Am or − n ∈ Am for some m ≥ 1}.
Starting with the set A0 = {0} the rumour percolation event is defined as the event ∩∞

n=1Bn .
The rumour percolation probability is denoted by γ . We observe that for the present model
γ can be simply expressed as

γ = P(∩∞
n=1

(Ãn �= ∅)
)
.

However, for a rumour propagation model with re-activation, the above expression of γ does
not hold.
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Let τ denote the random time when the rumour stops to percolate, i.e.,

τ := inf{n � 1 : Ãm = ∅ for all m ≥ n},
and for this model we have τ = inf{n � 1 : Ãn = ∅}. The rumour percolates if the r.v. τ

takes the value +∞. The next proposition gives us a necessary and sufficient condition for
positive probability of rumour percolation.

Proposition 3.1 For n ≥ 1 we define an := ∏n
i=0 P(I0 ≤ i). Then

γ = 0 if and only if
∞∑

n=1

an = ∞.

Proposition 3.1 is an extension of Theorem 2.1 of [16] where uni-directional rumour perco-
lation process on N was studied.

Proof For n ≥ 1 we define the events

B+
n := {u + Iu < n + 1 for all u ∈ [0, n] ∩ Z} and

B−
n := {u − Iu > −n − 1 for all u ∈ [−n, 0] ∩ Z}.

From the translation invariance nature of our model it follows that P(B+
n ) = P(B−

n ) =∏n
i=0 P(I0 ≤ i) = an . We define the random variables J+, J− respectively as

J+ := sup{n ≥ 1 : the event B+
n occurs} and

J− := sup{n ≥ 1 : the event B−
n occurs}.

If
∑∞

n=1 an < ∞, then by Borel–Cantelli lemma we have that P(J+ < ∞) = P(J− <

∞) = 1 which gives us P(J+ ∨ J− < ∞) = 1 as well. Choose M ∈ N such that
P(J+ ∨ J− ≤ M) > 0, where ′∨′ denotes the maximum of two numbers. We observe that
the event {J+∨ J− ≤ M} depends only on the family {Iu : u ∈ Z, u /∈ [−M, M]} and on this
event this collection {Iu : u ∈ Z, u /∈ [−M, M]} is such that if the rumour starts propagating
from the vertex M+1 (-M+1) towards the right (left) then it never stops. Because if it stops,
that would indicate presence of M ′ > M such that the event B+

M ′ ∪ B−
M ′ occurs. This gives

a contradiction as such a M ′ should not exist on the event {J+ ∨ J− ≤ M}. Now we choose
the collection {Iu : u ∈ Z, u ∈ [−M, M]} such that the rumour started from 0 reaches the
vertex M + 1 and we can always do that with positive probability. This gives us that γ > 0
if

∑∞
n=1 an < ∞.

To complete the proof of Proposition 3.1 we need to show that γ = 0 if
∑∞

n=1 an = ∞.
To do that we define an auxiliary construction of the rumour propagation process using i.i.d.
collection {I (n)

z : z ∈ Z, n ∈ N} such that for each n ≥ 1, a vertex u ∈ Ãn uses the r.v.
I (n+1)
u to propagate the rumour. We observe that the process obtained through this auxiliary
construction has the same distribution as the original one. Based this auxiliary construction
we define the corresponding versions of the events B+

n , B−
n respectively as

B+
n := {u + I (n+1)

u < n + 1 for all u ∈ [0, n] ∩ Z} and

B−
n := {u − I (n+1)

u > −n − 1 for all u ∈ [−n, 0] ∩ Z}.
Clearly we have P(B+

n ) = P(B−
n ) = an and we also have that the events B+

n for n ≥ 1
are mutually independent. Therefore, the converse part of Proposition 3.1 also follows from
Borel–Cantelli lemma. This completes the proof. 
�
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In addition, if we assume that E(I 1+ε
0 ) < ∞ for some ε > 0 then Proposition 3.2 shows

that there is a sharp phase transition for rumour percolation probability.

Proposition 3.2 If E(I 1+ε
0 ) < ∞ for some ε > 0 then we have

γ =
{
0 if p1 > 0

1 if p1 = 0.

Further, for p1 > 0 there exists C0,C1 > 0 depending only on p1 such that for all n ∈ N

we have

P(τ > n) � C0e
(−C1n). (3.1)

Wemention here that [19, Remark 5] showed that rumour percolation onZ doesn’t happen
when p1 > 0. The authors of [19] considered rumour percolation model only for geometri-
cally distributed radii of influence random variables but on more general networks likeZd for
d ≥ 2 and on regular trees. A proof of this can be found from [20, Theorem 2.1]. It is impor-
tant to observe that in addition to the phase transition result for rumour percolation, as in [20,
Theorem 2.1], Proposition 3.2 gives a sharp phase transition result in the sense of exponential
decay of the amount of time the sub-critical rumour cluster survives. In Remark 3.2 we will
further, apply our method for some other variants of rumour propagation model on Z where
individuals are randomly placed over sites of Z. These models were earlier proposed in [11,
Sect. 5] as possible extensions to be explored. Later we will show that, under the assumption
of exponentially decaying i.i.d. radius of influence random variables, this means that the
size of the sub-critical rumour cluster decays exponentially. Before we proceed further, we
mention that several qualitative results of this paper involve constants. For more clarity, we
will use C0 and C1 to denote two positive constants whose exact values may change from
one line to another. The important thing is that both C0 and C1 are universal constants whose
values depend only on the parameters of the process.

In order to prove Proposition 3.2, we define an ‘overshoot’ r.v. based on the collection
{Ii : i ∈ Z

−} as follows:
O := sup{i + Ii : i ∈ Z

−}. (3.2)

Clearly, the overshoot r.v. O is non-negative a.s. and it represents the amount of overshoot
on Z

+, the positive part of the integer line, caused due to the family of r.v.’s {Ii : i ∈ Z
−}.

Simple application of Borel Cantelli lemma shows that under the assumption of (1+ε) finite
moment assumption, the overshoot r.v. is finite a.s. Lemma 3.1 analyzes some properties of
this overshoot r.v.

Lemma 3.1 (i) For any p1 > 0 we have P(O = 0) > p′, where p′ > 0;
(ii) If P(I0 � 1) > 0 then we have P(O � 1) > 0;
(iii) (a) If E(I0)2+ε < ∞ for some ε > 0 then we have E(O) < ∞.

(b) If E(I0)4+ε < ∞ for some ε > 0 then we have E(O2) < ∞.
(c) If I0 has exponentially decaying tails then there exist constants C0,C1 > 0 such that

P(O > n) � C0e
−C1n for all n ∈ N.

Proof For (i), using Markov inequality we obtain

P(O = 0) = P(∩∞
i=0(I−i ≤ i))

= p1

∞∏

i=1

P(I−i ≤ i)
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= p1

∞∏

i=1

(1 − P(I−i > i))

≥ p1

i0∏

i=1

(1 − P(I−i > i))
∞∏

i=i0+1

(1 − E(I 1+ε
−i )/i1+ε)

= p1

i0∏

i=1

(1 − P(I−i > i))
∞∏

i=i0+1

(1 − E(I 1+ε
0 )/i1+ε) > 0,

where i0 ∈ N is chosen such that E(I 1+ε
0 )/i1+ε < 1 for all i > i0.

For (ii), the argument is exactly the same. The only difference is that we no longer require
positivity of p1, and instead, we use P(I0 ≤ 1), which is positive by assumption.

We now consider part (a) of item (iii). The event {O = j} implies I−i = i + j for some
i ≥ 0. Recall that for this part we have assumed E(I 2+ε

0 ) < ∞ for some ε > 0. As O is a
non-negative integer valued r.v., using Markov inequality we obtain

E(O) =
∞∑

n=1

P(O ≥ n)

=
∞∑

n=1

P(∪i∈Z+ I−i ≥ n + i)

�
∞∑

n=1

∞∑

i=0

P(I−i ≥ n + i)

�
∞∑

n=1

∞∑

i=0

E(I 2+ε
−i )/(n + i)2+ε

=E(I 2+ε
0 )

∞∑

n=1

∞∑

i=0

1/(n + i)2+ε

=E(I 2+ε
0 )

∞∑

m=1

(m + 1)/m2+ε < ∞.

The rearrangement in the last step is justified as we are dealing with non-negative terms only.
Part (b) of item (iii) follows from similar argument. SinceE(I 4+ε

0 ) < ∞, Markov inequal-
ity gives us

E(O2) =
∞∑

n=1

P(O2 ≥ n)

=
∞∑

n=1

P(∪i∈Z+ I 2−i ≥ n + i)

�
∞∑

n=1

∞∑

i=0

P(I−i ≥ √
n + i)

�
∞∑

n=1

∞∑

i=0

E(I 4+ε
−i )/(n + i)(4+ε)/2

123



How Fast do Rumours Spread? Page 9 of 28   130 

=E(I 4+ε
0 )

∞∑

n=1

∞∑

i=0

1/(n + i)(4+ε)/2

=E(I 4+ε
0 )

∞∑

m=1

(m + 1)/m(4+ε)/2 < ∞.

This completes the proof.
Finally, for part (c) of item (iii) we have assumed that there exist C0,C1 > 0 such that

P(I0 > n) ≤ C0e
(−C1n) for all n.

Under this assumption, we obtain

P(O > n) = P(∪i∈Z+ I−i > n + i) �
∞∑

i=0

P(I−i > n + i) �
∞∑

i=0

C0e
−C1(n+i) � C2e

−C3n,

(3.3)

for some C2,C3 > 0. 
�
Remark 3.1 We comment here that item (iii) of Lemma 3.1 does not require the collection
{Ii : i ∈ Z

−} to be i.i.d. An uniform moment bound or an uniform tail bound is enough to
conclude item (iii), e.g., part (a) of item (iii) holds for a collection {Ii : i ∈ Z

−} satisfying
E(I 2+ε

i ) ≤ M < ∞ for all i .

For any subsetA ⊂ Z we consider the family of r.v.’s {Ii : i ∈ A∩Z} and corresponding
to this family, we define the ‘right overshoot’ r.v. and ‘left overshoot’ r.v. towards the right
side and left side of A respectively as below:

OA,+ := max{(i + Ii ) − sup(A) : i ∈ A ∩ Z} and OA,− := max{inf(A) − (i − Ii ) : i ∈ A ∩ Z}.
Clearly, the r.v. OA,+ (OA,−) makes sense only if A ⊆ (−∞, b] (A ⊆ [a,+∞)) for some
b ∈ Z (a ∈ Z). On the other hand, for any bounded set A ⊂ Z, both these two r.v.s are a.s.
finite. We are now ready to prove Proposition 3.2.

Proof of Proposition 3.2 It is immediate that for the choice p1 = 0, rumour must percolate.
Hence, to complete the proof of Proposition 3.2, it suffices to showEq. (3.1). SetF0 = {∅,�}
and for n ≥ 1 we define Fn := σ(Iz : z ∈ An−1). It is not difficult to see that the rumour
propagation process {An : n ≥ 0} is adapted to the filtration {Fn : n ∈ N}.

For n ∈ N let Ã+
n := Ãn ∩ Z

+ denote the set of active vertices at time point n on the
positive side. Similarly, the set Ã−

n is defined. Both the random sets Ã+
n and Ã−

n are Fn

measurable. Given the σ -field Fn , we consider the overshoot r.v.’s OÃ+
n ,+ and OÃ−

n ,−. By
construction, for all n � 1 we have Ã+

n ∩ Ã−
n = ∅ a.s. Therefore, given the σ -field Fn , the

overshoot r.v.’s OÃ+
n ,+ and OÃ−

n ,− are supported on disjoint sets of influence r.v.’s, and for
any two Borel sets B1, B2 we have

P
(
OÃ+

n ,+ ∈ B1, O
Ã−

n ,− ∈ B2 | Fn
) = P

(
OÃ+

n ,+ ∈ B1 | Fn
)
P

(
OÃ−

n ,− ∈ B2 | Fn
)
.

(3.4)

Further, givenFn the conditional distributions of both the overshoot r.v.’s,OÃ+
n ,+ andOÃ−

n ,−,
are stochastically dominated by the overshoot r.v. O as defined in Eq. (3.2) in the following
sense:
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  130 Page 10 of 28 R. Roy, K. Saha

P
(
OÃ+

n ,+ = 0 | Fn
) ∧ P

(
OÃ−

n ,− = 0 | Fn
)

� P(O = 0) and

P
(
OÃ+

n ,+ > m | Fn
) ∨ P

(
OÃ−

n ,− > m | Fn
)

� P(O > m) for any m ∈ N, (3.5)

where ′∧′ and ′∨′ denotes the minimum and maximum respectively.
Given τ > n, the r.v. τ takes the value n+1 if and only if the event {OÃ+

n ,+ = OÃ−
n ,− = 0}

occurs. Therefore, using Eqs. (3.4) and (3.5) we obtain

P(τ = n + 1 | τ > n,Fn) = P(OÃ+
n ,+ = 0, OÃ−

n ,− = 0 | τ > n,Fn)

= P(OÃ+
n ,+ = 0 | τ > n,Fn)P(OÃ−

n ,− = 0 | τ > n,Fn)

� P(O = 0)2 > 0.

This gives us

P(τ > n) � (1 − P(O = 0)2)n,

and completes the proof. 
�
The above result allows us to obtain moment bounds for the size of the sub-critical rumour

cluster. Let M = #Aτ denote the size of the rumour cluster. Under the assumption that
E(I 1+ε

0 ) < ∞ for some ε > 0, we proved that M is finite a.s. if p1 > 0.

Proposition 3.3 (i) If p1 > 0 and E(I 2+ε
0 ) < ∞ for some ε > 0, then M has finite

expectation.
(ii) If p1 > 0 and E(I 4+ε

0 ) < ∞ for some ε > 0, then E(M2) < ∞.
(iii) If p1 > 0 and there exist C0,C1 > 0 such that P(I0 > n) < C0e(−C1n) for all n ∈ N,

then M also has exponentially decaying tail.

Proof Set p1 > 0. Let #A+
τ = M+ and #A−

τ = M−. Clearly M ≤ M+ + M−. From the
translation invariance nature of our model it follows that both these two r.v.’s, M+ and M−
are identically distributed. Therefore, it is enough to prove Proposition 3.3 in terms of M+.

Next, we observe that for any n ≥ 0 given Fn , the increment #Ã+
n+1 is stochastically

dominated by the overshoot r.v. O . Therefore, the r.v. M+ is stochastically dominated by the
random sum

∑τ
m=1 Om where {Om : m ∈ N} gives a family of i.i.d. copies of O . With the

help of item (iii) of Lemma 3.1, the proof of Proposition 3.3 for M+ readily follows from
the following corollary. 
�
Corollary 3.1 Consider a collection of i.i.d. r.v.’s {Xi : i ≥ 1} and let η be a non-negative
integer valued r.v. Consider the random sum Z := ∑η

i=1 Xi

(i) If X1 and η both have finite expectation then Z has finite expectation.
(ii) If E(X2

1) < ∞ and η is of finite expectation, then Z has finite second moment.
(iii) If there exist C0,C1 > 0 such that P(X1 > n) ∨ P(η > n) ≤ C0e(−C1n) for all n ≥ 1,

then Z has exponentially decaying tail.

The first and the second parts of the Corollary follow from the Wald’s equation and the
Blackwell–Girshick equation. The third part is also a well known result, e.g., we refer the
reader to Lemma 2.7 of [25].

Before ending this section below application of our methods for some related models.

Remark 3.2 (a) Consider an i.i.d. collection of Bernoulli random variables {Xu : u ∈ Z} and
assume that there is an individual at u, who can participate for rumour propagation, if
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and only it Xu = 1. This model was introduced in [1] where the question of complete
coverage has been studied. This problem was also mentioned in Section 5 of [11] as
a possible direction for extension. For this model under the assumption that E(I 1+ε

0 ) is
finite, our method applies as well and gives us that irrespective of the value of p1 ∈ [0, 1],
percolation won’t happen. Further, the survival time of the subcritical rumour cluster
decays exponentially too. This follows from the observation that if P(I0 ≤ m) > 0 for
some m ∈ N then the same argument as in Lemma 3.1 gives us P(O ≤ m) > 0 as well.
We note that for any n ≥ 1, the occurrence of the event

En := {Iu < m for all m ∈ Ãn} ∩ {Xv = 0 for all v /∈ An with |v − w|
≤ m for some w ∈ An}

implies rumour percolation stops, and at each step probability of this event is uniformly
bounded below.

(b) Authors of [1] analysed a more general model compared to the previous one where
individuals are placed on Z as a {0, 1}-valued time-homogeneous Markov chain. This
model was mentioned in Section 5 of [11] as a future question to explore. As long as we
have P(X1 = 0 | X0 = 0) ∧ P(X1 = 0 | X0 = 1) > 0, our method applies in this set
up also (under the assumption E(I 1+ε

0 ) is finite) and gives the same set of conclusions.

4 Speed of the Rightmost Vertex in Rumour Cluster in the Supercritical
Phase

In what follows, we will continue to work in the supercritical phase, i.e., we assume that
p1 = 0. In addition, for the next result we assume that

E(I 2+ε
0 ) < ∞ for some ε > 0. (4.1)

Let rn = maxAn and ln = minAn respectively denote the rightmost and the leftmost
vertex in the set An . Clearly, for any n � 1, both rn and ln are a.s. finite r.v.’s and the
rumour cluster is represented by the set [ln, rn] ∩ Z. Under the assumption p1 = 0, we have
[−n, n] ⊆ [ln, rn] for all n � 1 a.s. The main result of this section is the following:

Theorem 4.1 Fix any ε > 0. Under the assumption that the radius of influence r.v. has 2+ ε

moment finite, there exists a deterministic constant μ � 1 such that we have

lim
n→∞

rn
n

= μ a.s.

To prove Theorem 4.1 in the following section we introduce a renewal construction for
the rumour propagation process.

4.1 A Renewal Process

In this section, we describe a renewal construction for the rumour propagation process. In
[11] the authors observed a renewal process based on the firework process on N. For rumour
propagation onZour renewal process construction is alongdifferent lines. Themain challenge
here lies in the fact that the rumour can spread on the positive side as well as on the negative
side of the integer line Z here, making it more complicated than the firework process.
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We define a random time σ as

σ = inf{n � 1 : O(−∞,−n],+ ≤ n}. (4.2)

Firstly, from the model description, it follows that ln ≤ −n for all n ≥ 1. Next corollary
shows that the r.v. σ is finite a.s.

Corollary 4.1 The r.v. σ defined as in (4.2) is finite a.s.

Proof For n ≥ 1 we consider the event An := {I−n ≥ 2n for all u ∈ Ã−
m} and observe the

following event inclusion relation

{σ = +∞} ⊂ lim sup
n→∞

An .

Under the assumption that E(I 1+ε
0 ) < ∞ for some ε > 0, using Markov inequality we

obtain
∞∑

n=1

P(An) =
∞∑

n=1

P(I0 ≥ 2n) ≤ E(I 1+ε
0 )

∞∑

n=1

1

(2n)1+ε
< ∞.

Therefore, the proof follows from Borel Cantelli lemma. 
�
After the σ -th step, active vertices on the negative side, i.e., vertices in the set Ã−

n for any
n > σ , cannot spread the rumour to inactive vertices on the positive side and vertices in the
set Ã+

n only can spread the rumour to the positive side. We observe that the distribution of σ

depends only on radii of influences r.v.’s on the negative part of the integer line and hence,
for any z ∈ N the r.v. Iz is independent of σ .

We now define the following sequence of random steps:

τ0 = σ and for j � 1

τ j = inf{n > τ j−1 : #Ã+
n = 1} = inf{n > τ j−1 : rn − rn−1 = 1}. (4.3)

We need to show that for any j � 1, the r.v. τ j is a.s. finite. This is done in part (i) of
Proposition 4.1. We recall that the notation rn denotes the location of the rightmost vertex of
the rumour cluster at time n.

Proposition 4.1 (i) There exist C0,C1 > 0 such that for all n ≥ 1 we have

P(τ j+1 − τ j > n | τ1, . . . , τ j−1) � C0e
(−C1n);

(ii) Under the assumption (4.1) the increment r.v. (rτ j+1 − rτ j ) has finite expectation.

Proof Note that for the rumour propagation process starting from the origin, the process
{(Ã+

n , Ã−
n ) : n ≥ 1} is Markov. By definition of the random step σ , for any n > σ vertices

in Ã−
n cannot spread the rumour to the positive side. Therefore, for any n > σ = τ0 we have

P
(
#Ã+

n+1 = 1 | (Ã−
n , Ã+

n ), (σ < n)
)

� P(O = 1) > 0, (4.4)

where O is defined as in (3.2).
This implies that after the σ -th step at every step, there is a fixed positive lower bound for

the probability of occurrence of a τ step. Hence, (4.4) proves part (i) of Proposition 4.1.
Regarding (ii), we observe that

rτ j+1 − rτ j =
τ j+1∑

m=τ j+1

#Ã+
m . (4.5)
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Consider a collection of i.i.d. copies of the overshoot r.v. O given as {Oi : i ≥ 1} and
let τ := inf{i ≥ 1 : Oi = 1}. It follows that the increment r.v. rτ j+1 − rτ j is stochastically

dominated by the random sum
∑τ

i=1 Oi . Finally, Corollary 3.1 ensures under the assumption

(4.1), i.e., E(I (2+ε)
0 ) < ∞ for some ε > 0, the random sum

∑τ
i=1 Oi has finite expectation

and therefore, the increment r.v. (rτ j+1 − rτ j ) has finite mean too. 
�
The next result shows that the above sequence of random steps gives a sequence of renewal

steps with i.i.d. increments for the rumour propagation process.

Proposition 4.2 {(τ j+1 − τ j , rτ j+1 − rτ j ) : j � 1} gives a collection of i.i.d. random vectors
taking values in N × N.

Proof Independence of increment vectors between successive renewals follows as they are
supported on disjoint sets of radius of influence random variables. We present a brief descrip-
tion of the identical distribution of the increment random vector below.

Consider a rumour propagation process only on Z
+ starting with the origin as the only

active vertex at time point 0. Let A+
n and Ã+

n denote the corresponding analog of sets An

and Ãn when the setsAn and Ãn are now restricted to Z+ only. We consider the evolution of
this process till the random time γ such that we have #Ã+

γ = 1. Let r+
γ denote the position

of the rightmost active vertex at time γ . The increment random vectors between successive
renewals have the same distribution as (γ, r+

γ ), i.e., for all j � 1 we have

(τ j+1 − τ j , rτ j+1 − rτ j )
L= (γ, r+

γ ),

where the notation
L= denotes equality in distribution. This completes the proof. 
�

4.2 Proof of Theorem 4.1

In this section we complete the proof of Theorem 4.1. In the next corollary, using our renewal
construction, we prove Theorem 4.1 and provide a precise understanding of the limit too.

Corollary 4.2 We have

lim
n→∞ rn/n = μ = E(rτ2 − rτ1)

E(τ2 − τ1)
a.s. (4.6)

Proof From Proposition 4.2, we can write the right hand side of Eq. (4.6) as:

lim
k→∞

1
k

(∑k
j=1 rτ j+1 − rτ j

)

1
k

(∑k
j=1 τ j+1 − τ j

) .

This reduces to give,

E(rτ2 − rτ1)

E(τ2 − τ1)
= lim

k→∞
rτk+1 − rτ1
τk+1 − τ1

. (4.7)

Let n be large enough such that τ1 < n. Let k(n) ∈ N be such that τk(n) � n < τk(n)+1. From
now on we shall just use k to denote k(n). Then, rτk − rτ1 � rn − rτ1 < rτk+1 − rτ1 . Since
we have

lim
k→∞

rτk+1 − rτ1
τk+1 − τ1

= lim
k→∞

rτk − rτ1
τk − τ1

,
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hence,

lim
n→∞

rn − rτ1
n − τ1

= lim
k→∞

rτk+1 − rτ1
τk+1 − τ1

. (4.8)

So, from Eqs. (4.7) and (4.8) we get,

E(rτ2 − rτ1)

E(τ2 − τ1)
= lim

n→∞
rn − rτ1
n − τ1

= lim
n→∞

rn
n

.


�

4.3 A Central Limit Theorem for the Position of Rightmost Vertex

In this section, we prove a central limit theorem for the position of the rightmost vertex in a
super-critical rumour percolation cluster, motivated by similar work by [18] on the right edge
of super-critical oriented percolation. For this part of the result we assume thatE(I0)4+ε < ∞
for some ε > 0. Under this assumption by item (iii) of Lemma 3.1 we have that the overshoot
r.v. O has finite second order moment. Further, Corollary 3.1 and the same argument as in
part (ii) of Proposition 4.1 together give us that the increment r.v. (rτ j+1 − rτ j ) has finite
second order moment as well.

The main result of the section is the following:

Theorem 4.2 Under the assumption that E(I0)4+ε < ∞ for some ε > 0 and p1 = 0, we
have

rn − nμ√
n

L−→ N (0, ψ2), (4.9)

where the notation
L−→ denotes convergence in distribution.

Proof Choose n large enough such that τ1 < n. Let k(n) ∈ N be such that τk(n) � n <

τk(n)+1. From now on we shall just use k to denote k(n). Then, rτk � rn < rτk+1 . So we also
have,

rτk − nμ√
n

� rn − nμ√
n

<
rτk+1 − nμ√

n
.

From Proposition 4.2 we know that
τ j+1−τ j√

n
converges in probability to 0 as n → ∞, for

all j � 1, also that
rτk+1−rτk√

n

P−→ 0. Hence, we shall have
rτk+1−rn√

n

P−→ 0. So, it remains to
show that,

rτk+1 − nμ√
n

L−→ N (0, ψ2).

From [27, Lemma 2] as stated in [18, Corollary 1], we know that in our notation

rτk+1 − nμ√
n

L−→ N (0, ψ2).

Here, ψ is a positive real number. On incorporating Corollary 4.2, we have Eq. (4.9). 
�
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5 A Rumour Model with a ReactivationMechanism

In this section, we will introduce and analyse a rumour model with a reactivation mechanism
where, due to reactivation, a vertexwhich received the rumour at a past time point, may spread
it again in future using an independent radius of influence random variable. The motivation
is that, on the event of spreading a gossip over a network, an enthusiastic individual may
contribute at multiple time points. As we have mentioned before, this concept of reactivation
is influenced by the idea of recurring public opinion and its dissemination, considered for
example in [14]. It is further motivated by the concept of reinfection in case of disease spread
models. Below, we describe our model.

We start with a family of i.i.d. radii of influence r.v.’s. {I nv : v ∈ Z, n ∈ Z
+} and a family

of i.i.d. Bernoulli r.v.’s {Bn
v : v ∈ Z, n ∈ Z

+} with parameter p2 ∈ (0, 1). A vertex u ∈ Z,
which has newly heard the rumour at time n, uses the r.v. I nu to spread the rumour. In addition
to it, a vertex u′ ∈ Z which heard it at some time before n, becomes active again and spreads
the rumour using I nu′ at time n if and only if Bn

u′ = 1. In other words, for a vertex u ∈ Z,
which heard the rumour at a previous time point, the Bernoulli r.v. Bn

u indicates whether n
is an activation time or not. For this section, we would assume that the radius of influence
r.v. I 00 has exponentially decaying tail. Our results, however, would still hold true without
assuming this, but with assumptions on higher moments only. We are now ready to define
this rumour propagation with the reactivation model formally.

For any interval I with I ∩ Z �= ∅, we denote the rumour percolation process with
reactivation starting from an initial active set I ∩ Z as {(AR,I

n , ÃR,I
n ) : n � 0} where AR,I

n

denotes the set of vertices that have heard the rumour by time n and ÃR,I
n denotes the set of

vertices that are ready to spread the rumour at time n. The random set ÃR,I
n definitely contains

vertices that have newly heard the rumour at time n. More importantly, it may contain an
additional set of reactivated vertices that heard the rumour in the past. We define this model
inductively as follows:

AR,I
0 := ÃR,I

0 = I ∩ Z and

ÃR,I
1 := {u ∈ Z \ AR,I

0 : |u − w| � I 0w for some w ∈ ÃR,I
0 } ∪ {u ∈ AR,I

0 : B1
u = 1}.

AR,I
1 := AR,I

0 ∪ ÃR,I
1 .

The set AR,I
1 represents the rumour cluster at time 1, i.e., the set of vertices that have heard

the rumour by time 1. We recall that for the conventional rumour percolation model, there is
no reactivation, and we have Ãm ∩ Ãn = ∅ for all m, n ∈ Z

+ with m �= n. This no longer
holds for the reactivation model. In fact, a vertex u ∈ ÃR,I

0 belongs to ÃR,I
1 as well iff we

have B1
u = 1. The set of vertices ready to spread the rumour at time 2 is given by

ÃR,I
2 := {u ∈ Z \ AR,I

1 : |u − w| � I 1w for some w ∈ ÃR,I
1 } ∪ {u ∈ AR,I

1 : B2
u = 1}.

AR,I
2 := AR,I

1 ∪ ÃR,I
2 .

The set AR,I
2 represents the rumour cluster at time 2, i.e., the set of vertices that have heard

the rumour by time 2. More generally, for n � 2 given (AR,I
n−1, ÃR,I

n−1), we define the sets

ÃR,I
n and AR,I

n respectively as:

ÃR,I
n := {u ∈ Z \ AR,I

n−1 : |u − w| � I n−1
w for some w ∈ ÃR,I

n−1} ∪ {u ∈ AR,I
n−1 : Bn

u = 1}.
AR,I

n := AR,I
n−1 ∪ ÃR,I

n .
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AR
n represents the random set of vertices that have heard the rumour by time n and therefore,

it represents the rumour cluster at time n. It follows that for any vertex which heard the
rumour in the past, the time gaps between successive reactivations follow i.i.d. geometric
distributions with parameter p2, which represents the laziness parameter of the reactivation
clock.

With a slight abuse of notations, for an interval I of the form I ∩ Z = {u}, we denote the
corresponding rumour propagation process simply as {(AR,u

n , ÃR,u
n ) : n ≥ 0}. In particular,

for simplicity of notation the process {(AR,0
n , ÃR,0

n ) : n ≥ 0} is simply denoted as {(AR
n , ÃR

n ) :
n ≥ 0}. It is not difficult to see that, similar to the earlier model, for any u ∈ Z and n � 1,
the random set AR,u

n is a.s. finite and of the form [a, b] ∩ Z, for some −∞ < a < b < ∞.
The rumour percolation event for this model is defined as in Definition 2.1. We observe

that, unlike the earlier model, the event

AR
n = AR

n+1 for some n � 1,

no longer implies non-occurrence of percolation. In fact, even if the radius r.v. I 00 takes the
value zero with positive probability, it is not hard to see that for all p2 > 0 this reactivation
model percolates. In this section we will assume that the i.i.d. family of radius of influence
r.v.’s is such that the following two conditions are satisfied:

(a) There exist C0,C1 > 0 such that P(I 00 > n) ≤ C0e(−C1n) for all n ≥ 1 and
(b) P(I 00 = 0) = p1 > 0.

Let lRn and rRn denote the leftmost and rightmost vertex in the set AR
n respectively. Under

the above mentioned assumptions on the i.i.d. family {I nz : n ∈ Z
+, z ∈ Z} we show that

almost surely the random quantity r Rn /n has a deterministic limit. We comment that one can
proceed along the same line of arguments as in the previous section and under the assumption
of existence of sufficient higher order moments of radius of influence r.v. Theorem 5.1 can
be proved. However, in this article we chose to work with the exponentially decaying radii
of influence r.v.’s.

Theorem 5.1 There exists some deterministic constant μ′ > 0 such that almost surely we
have

lim
n→∞ r Rn /n = μ′.

The next section and the rest of the paper is dedicated to the proof of Theorem 4.1. Though
the proof technique is the same, because of the re-activation the renewal construction requires
non-trivial modification.

5.1 Renewal Process for Reactivation Rumour Process

We need to modify our renewal construction in Sect. 4.1 in a non-trivial manner such that it
takes care of the re-activation mechanism. Recall that we have started with two independent
collections {I nz : n ∈ Z

+, z ∈ Z} and {Bn
z : n ∈ Z

+, z ∈ Z} of i.i.d. random variables.
Before proceeding further, we define an one-sided version of our rumour propagation model,
which we will use in our renewal event construction.

For u ∈ Z we define an one-sided version of rumour propagation such that starting from
u the rumour propagates towards the right side of u only, i.e., on the set [u,∞) ∩ Z. Set
AR,+,u

0 = ÃR,+,u
0 = {u} and define

ÃR,+,u
1 := {v ∈ Z : v > u : |v − u| ≤ I 0u } ∪ {v ∈ AR,+,u

0 : B1
v = 1} and
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AR,+,u
1 := AR,+,u

0 ∪ ÃR,+,u
1 .

Given (AR,+,u
n , ÃR,+,u

n ) we define

ÃR,+,u
n+1 := {v ∈ Z : v > max(AR,+,u

n ) : |v − w|
≤ I nw for some w ∈ ÃR,+,u

n } ∪ {v ∈ AR,+,u
n : Bn+1

v = 1},
AR,+,u

n+1 := AR,+,u
n ∪ ÃR,+,u

n+1 .

As earlier, the set AR,+,u
n+1 represents the set of vertices that have heard the rumour by time

n + 1 of this one-sided rumour propagation with re-activation model. On the other hand, the
set ÃR,+,u

n+1 represents the set of vertices that are ready to spread the rumour at time n+1. For

any interval I with I ∩Z �= ∅, we define the processes {(AR,+,I
n+1 , ÃR,+,I

n+1 ) : n ≥ 1} similarly.
We observe that for any two intervals I1 and I2, the two independent families {I nz : n ∈

Z
+, z ∈ Z} and {Bn

z : n ∈ Z
+, z ∈ Z} allow us to couple together all the processesmentioned

below:

{(AR,I1
n , ÃR,I1

n ) : n ≥ 0}, {(AR,I2
n , ÃR,I2

n ) : n ≥ 0} and

{(AR,+,I1
n , ÃR,+,I1

n ) : n ≥ 0}, {(AR,+,I2
n , ÃR,+,I2

n ) : n ≥ 0}. (5.1)

Next, for u ∈ Z we consider the two processes {(AR,(−∞,u)
n , ÃR,(−∞,u)

n ) : n ≥ 0} and
{(AR,+,u

n , ÃR,+,u
n ) : n ≥ 0} coupled together. For u ∈ Z, the event ‘Dom(u)’ means that

propagation of the rumour towards the right side of u starting from an initial set of active
vertices (−∞, u) ∩ Z = (−∞, u − 1] ∩ Z remains dominated throughout by the one-sided
rumour propagation process starting from a singleton active set {u}. Mathematically, we
define this event as

Dom(u) := {max(AR,+,(−∞,u)
n ) ≤ max(AR,+,u

n ) for all n ≥ 1}. (5.2)

It is not difficult to observe that for every n ≥ 1 we have AR,+,(−∞,u)
n = AR,(−∞,u)

n a.s.
We are now ready to define our renewal steps for the process {(AR

n , ÃR
n ) : n ≥ 0}. Given

(AR
n , ÃR

n ) we say that the renewal event occurs at the n-th step if the event Dom(r Rn ) ≡
Dom(max(AR

n )) occurs. The sequence of successive renewal steps is defined below:
Set τ R

0 = −1. For j ≥ 1, the j-th renewal step for this rumour propagation with reacti-
vation is defined as

τ R
j := inf{n ∈ Z

+, n > τ R
j−1 : Dom(r Rn ) occurs}. (5.3)

We need to show that the above definition makes sense in the sense that for any j � 1, the
r.v. τ R

j is a.s. finite. This is done in Proposition 5.1. We define two filtrations {F R
n : n ≥ 0}

and {GR
n : n ≥ 0} such that F R

0 = GR
0 = ∅ and for n ≥ 1

F R
n := σ

(
(Imz , Bm+1

z ) : z ∈ (−∞, r Rn−1] ∩ Z, 0 ≤ m ≤ n − 1
)

and

GR
n := σ

(
(Imz , Bm+1

z , 1Dom(r Rm )) : z ∈ (−∞, r Rn−1] ∩ Z, 0 ≤ m ≤ n − 1
)
. (5.4)

We observe that both the processes, {(AR,(−∞,0)
n , ÃR,(−∞,0)

n ) : n ≥ 0} and {(ÃR
n , ÃR

n ) :
n ≥ 0}, are adapted to the filtration {F R

n : n ≥ 0}. Further, for any j ≥ 1 the random
step τ R

j is a stopping time w.r.t. the filtration {GR
n : n ≥ 0}. This gives us another filtration

{SR
j := GR

τ R
j

: j ≥ 0} to work with such that the random variable τ R
j is SR

j measurable for

all j ≥ 0.
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Proposition 5.1 There exist C0,C1 > 0 which do not depend on j such that for any j � 0
we have

P(τ R
j+1 − τ R

j > n | SR
j ) � C0e

(−C1n) for all n ∈ N.

We first prove Proposition 5.1 for j = 0 and we will it prove for general j > 0 later. In order
to do that, we need the following lemma which proves that given F R

n , the probability that the
n-th step is a renewal step or a τ R step has a strictly positive uniform lower bound.

Lemma 5.1 For any n ≥ 0 there exists p̃ > 0 not depending on n such that

P(n − th step is a renewal step | F R
n ) = P(Dom(r Rn ) | F R

n ) ≥ p̃.

To prove Lemma 5.1 we need the following corollary involving a family of random variables
with uniformly bounded 2 + ε moments for some ε > 0.

Corollary 5.1 Consider a family of i.i.d. random variables {Yn : n ∈ N} with finite 2 + ε

moment for some ε > 0. In addition, we assume that P(Y1 = 0) > 0. Then for any γ > 0,
we have

P(Yn ≤ nγ for all n ≥ 1) > 0.

Proof We have assumed that E(Y1)2+ε = M < ∞. Define the event

An := {Yn+ j > (n + j)γ for some j ≥ 1}
and we obtain

P(An) =P(∪∞
j=1(Yn+ j > (n + j)γ ))

≤
∞∑

j=1

P(Yn+ j > (n + j)γ )

≤
∞∑

j=1

E(Yn+ j )
2+ε/((n + j)γ )2+ε

≤
∞∑

j=1

E(Yn+ j )
2+ε/((n + j)γ )2+ε

=Mγ −(2+ε)
∞∑

j=1

1/(n + j)(2+ε). (5.5)

We define N := sup{n ≥ 1 : An occurs}, i.e., the last time the event An has occurred.
Equation (5.5) gives us

∞∑

n=1

P(An) ≤ M
∞∑

n=1

∞∑

j=1

1/((n + j)γ )2+ε = M
∞∑

m=1

(m − 1)/(mγ )2+ε < ∞,

implying that the r.v. N is finite a.s. Choose K ∈ N such that P(N ≤ K ) ≥ 1/2. On the
other hand, we obtain

P(∩K
n=1(Yn ≤ nγ )) ≥ P(∩K

n=1(Yn = 0)) = P(Y1 = 0)K > 0,
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by our assumption. Further, the event {N ≤ K } depends only on the collection
{YK+1, YK+2, . . .} and therefore, independent of the event ∩K

n=1(Yn ≤ nγ ). Finally, our
proof follows from the event inclusion relation given below:

{Yn ≤ nγ for all n} ⊇ (∩K
n=1(Yn = 0)) ∩ (N ≤ K ).

This completes the proof. 
�

It is important to observe that in Corollary 5.1 we don’t require {Yn : n ∈ N} to be an i.i.d.
collection. We are ready to prove Lemma 5.1 now.

Proof of Lemma 5.1: We prove Lemma 5.1 for n = 0. For general n ≥ 0 the argument is
exactly the same. We couple a positive drift random walk with the evolution of the rightmost
vertex of the rumour cluster as follows. Set X0 = 0 and for n ≥ 1 let

Xn :=
{
Xn−1 + 1 if Bn

r Rn−1
= 1, I n

r Rn−1
≥ 1

Xn−1 otherwise.

By construction {Xn : n ≥ 0} is a positive drift random walk with i.i.d. increments such that
we have limn→∞ Xn/n = θ almost surely where

θ = P(B0
0 = 1, I 00 ≥ 1) > 0. (5.6)

Therefore, there exists η1 > 0 such that

P(Xn ≥ 3

4
nθ for all n ∈ Z

+) = η1.

Our construction ensures that Xn ≤ r Rn for all n ≥ 0 a.s.
Next, we consider the sequence of ‘right’ overshoot random variables given by

{O(−∞,−1],+
n : n ∈ Z

+}, where O(−∞,−1],+
n represents the amount of overshoot towards

on Z
+ due to the family {I nz : z ∈ (−∞,−1] ∩ Z}. The translation invariance nature of our

model ensures that the collection {O(−∞,−1],+
n : n ∈ Z

+} gives a sequence of i.i.d. copies of
the overshoot r.v. O , where O is defined as in Eq. (3.2). Define the event E as

E := {O(−∞,−1],+
n ≤ 1

4
nθ for all n ∈ Z

+}.

Lemma 3.1 together with Corollary 5.1 ensure that P(E) ≥ η2 for some η2 > 0.
The occurrence of the event {Xn ≥ 3

4nθ for all n ∈ Z
+} ∩ E implies the occurrence of

the renewal step at the very first step. Further, these two events are supported on disjoint sets
of random variables and they are therefore independent. This gives us

P(0 − th step is a renewal step | F R
0 ) ≥ η1η2 > 0,

and completes the proof. 
�

Additionally to prove Proposition 5.1 we need [23, Corollary 2.7], which is a general
result giving a sufficient condition for exponential tail decay of a random sum of random
variables which need not be i.i.d. We will use this condition repeatedly in this section. For
completeness, wementioned the details below.We start with a notion of ‘uniform exponential
decay’ and ‘strong exponential decay’ for a family of r.v.’s.
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Definition 5.1 We say that a family of r.v.’s {Xi : i � 1} has uniform exponential tail decay
if uniformly for all i � 1 there exist constants C0,C1 > 0 such that

P
(|Xi | > n)

)
� C0e

(−C1n) for all n ∈ N, (5.7)

where C0,C1 do not depend on i .
We say that a family of r.v.’s {Xi : i � 1} has strong exponential tail decay if uniformly

for all i � 1 there exist constants C0,C1 > 0 such that

P
(
Xi > n | (Xi−1, . . . , X1)

)
� C0e

(−C1n) for all n ∈ N. (5.8)

Lemma 5.2 Consider a family of r.v.’s {Xi : i � 1} with strong exponential tail decay and a
positive integer-valued r.v. Y with an exponentially decaying tail. Then there exist C0,C1 > 0
such that for all n ∈ N we have

P(

Y∑

i=1

|Xi | > n) � C0e
−C1n .

For a proof of Lemma 5.2 we refer the reader to Corollary 2.7 of [23]. It is important to
observe that Lemma 5.2 does not assume independence between the r.v. σ and the family
{Xn : n ∈ N} too. Now we use Lemmas 5.1, 5.2 and proceed to prove Proposition 5.1 for
j = 0.
Proof of Proposition 5.1 for j = 0: It is important to observe that the occurrence of a renewal
event affects the distribution of radius of influence r.v.’s and Bernoulli activation r.v.’s till the
infinite future. Therefore, the argument is much more involved here than that of Proposition
4.1. We first check for the occurrence of the renewal event at the very first step and Lemma 5.1
ensures that we have a strictly positive uniform lower bound for probability of the occurrence
of the renewal event. But given the renewal step has not occurred at the first step gives us
certain information about the future evolution of the process and prohibits us to apply the
same bound (for probability of occurrence of renewal event) at the next step. We need to wait
for some random amount of time to take care of this information.

For u ∈ Z we define the random variable βR(u) as

βR(u) := inf{n ≥ 1 : max(AR,(−∞,u)
n ) > max(AR,+,u

n )}. (5.9)

We observe that max
(
AR,(−∞,u)

n

)
= max

(
AR,(−∞,u−1]

n

)
for all n a.s. and the r.v. βR(u)

can take the value infinity with positive probability. For the rumour propagation process
{(AR

n , ÃR
n ) : n ≥ 0} starting from the origin, we consider the r.v. βR

1 = βR(0) and observe
that the event {βR

1 = ∞} is exactly same as the event that the 0-th step is a renewal step.
Given the event that renewal has not occurred at the 0-th step, which is same as the event
{βR

1 < ∞}, we have some information till the next βR
1 many steps and we can again test for

the occurrence of the renewal event post that. On the event {βR
1 < ∞} we run the rumour

propagation process for the next βR
1 + 1 many steps and thereafter we consider the r.v.

βR
2 := βR(r R

βR
1 +1

) and so on. It suffices to show that the family {βR
k : k ≥ 1} exhibits a

strong exponential tail decay type behaviour as defined in Definition 5.1. We prove it for
k = 1 and for general k ≥ 1 the argument is the same.

For showing the exponential tail for P(n < βR
1 < ∞), we write it as,

P(n < βR
1 < ∞) ≤

∞∑

l=1

P(βR
1 = n + l, r Rn+l ≥ 3

4
(n + l)θ) +

∞∑

l=1

P(r Rn+l <
3

4
(n + l)θ),

(5.10)
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where θ is as in Eq. (5.6). The second term in Eq. (5.10) will be dealt with later using a
concentration bound. We now consider the first term in Eq. (5.10). We observe that on the
event

{r Rn+l ≥ 3

4
(n + l)θ, βR

1 = n + l}
we must have

max(AR,(−∞,−1]
m ) ≤ max(AR,+,0

m ) for all 0 ≤ m ≤ n + l − 1 as well as

max(AR,(−∞,−1]
n+l ) > max(AR,+,0

n+l ) ≥ 3

4
(n + l)θ.

In order to have max(AR,(−∞,−1]
n+l ) > 3

4 (n + l)θ , there must exist a random variable I n+l
z for

some z ∈ (−∞,−1] ∩ Z with

I n+l
z + z >

3

4
(n + l)θ.

This implies that the first term inside the sum in the r.h.s of (5.10), viz., P(βR
1 = n+l, r Rn+l ≥

3
4 (n + l)θ) for every l ≥ 1 is bounded by P(O(−∞,−1],+

n+l > 3
4 (n + l)θ). Hence, we have

∞∑

l=1

P(βR
1 = n + l, r Rn+l ≥ 3

4
(n + l)θ) �

∞∑

l=1

P(O(−∞,−1],+
n+l >

3

4
(n + l)θ) � C̃ ′

0e
−C̃ ′

1n,

(5.11)

for some C̃ ′
0, C̃

′
1 > 0. The last inequality Eq. (5.11) follows from Lemma 3.1.

We now consider the second term in Eq. 5.10. Recall that limn→∞ Xn/n = θ almost
surely. From [12, Eq. (7)], and the fact that Xn ≤ r Rn almost surely for all n ≥ 0, we have

P(r Rn+l <
3

4
(n + l)θ) � P(Xn+l <

3

4
(n + l)θ) � B ′

0e
−B′

1(n+l), (5.12)

for some B ′
0, B

′
1 > 0. Plugging Eqs. (5.11) and (5.12) into Eq. (5.10) and taking the sum in

the second term, we get

P(n < βR
1 < ∞) ≤ C ′

0e
−C ′

1n,

for some C ′
0,C

′
1 > 0. A similar argument shows that the probability P(n < βR

j < ∞ |
βR
j−1, . . . , β

R
1 ) decays exponentially with uniform decay constants. This ensures that the

family {βk : k ≥ 1} exhibits a strong exponential tail decay. The total number of steps
required for the occurrence of the first renewal event is dominated by geometric sum of βR

j ’s
with success probability p̃ where p̃ is as in Lemma 5.1. Therefore, Corollary 3.1 completes
the proof for j = 0. 
�

We will prove Proposition 5.1 for general j ≥ 1 through a sequence of lemmas. We need
to be more careful as given that a renewal step has occurred affects distribution of radius of
influence r.v.’s and Bernoulli activation r.v.s till the infinite future. To deal with that for u ∈ Z

and n ≥ 1 we define a truncated version of the domination event as follows:

Dom(n)(u) := {max(AR,(−∞,u)
m ) ≤ max(AR+,u

m ) for all 1 ≤ m ≤ n}, (5.13)

which means that domination of the rumour propagation continues till the next n steps only.
Next lemma allows us to decouple a renewal event as joint occurrence of two independent
events.
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Lemma 5.3 For any w ∈ N we have the following equality of events:

{τ R
1 = l, r Rl = w} =

[
{r Rl = w} ∩ [∩l−1

j=0

({βR(r Rj ) ≤ l − j})]
]⋂

(Dom(w)), (5.14)

where the two events on the r.h.s. are independent of each other.

Proof By definition of the step τ1, we have

{τ R
1 = l, r Rl = w} ={r Rl = w,Dom(w)}

⋂[∩l−1
j=0(renewal does not occur at r

R
j )

]

={r Rl = w,Dom(w)}
⋂[∩l−1

j=0(β
R(r Rj ) < ∞)

]
.

In order to complete the proof, for any 0 ≤ j ≤ l − 1 we need to show that

{r Rl = w,Dom(w), βR(r Rj ) < ∞} = {r Rl = w,Dom(w), βR(r Rj ) ≤ l − j}. (5.15)

We prove it for j = 0 and the argument is exactly the same for general j ≥ 1. On the
event

{r Rl = w,Dom(w), βR(r R0 ) = β(0) > l},
the truncated event Doml(0) must have occurred. Otherwise, βR(0) must be smaller than l.
Further, the event Dom(r Rl ) ∩Doml(0) implies the occurrence of the event Dom(0). Hence,
on the event {r Rl = w,Dom(w), βR(0) > l}, the r.v. βR(0) must take the value +∞. This
implies that {r Rl = w,Dom(w), l < βR(0) < +∞} = ∅ and completes the proof of
Eq. (5.15) for j = 0. Finally, we observe that the two events in the r.h.s. of Eq. (5.14) depend
on disjoint sets of r.v.s as the event

{r Rl = w} ∩ [∩l−1
j=0

({βR(r Rj ) ≤ l − j})]

is F R
l measurable where F R

l is defined as in Eq. (5.4). Therefore, they are independent and
this completes the proof. 
�
We would like to have a similar result for the τ j -th step for j ≥ 2. For m1,m2 ∈ N with
m1 < m2 we consider the event

{τ R
1 = m1, r

R
m1

= w1, τ
R
2 = m2, r

R
m2

= w2}.
The main difficulty is that, both the events Dom(w1) and Dom(w2) depend on the infinite
future. To deal with this, we observe the following equality of events

{r Rm1
= w1,Dom(w1), r

R
m2

= w2,Dom(w2)}
= {r Rm1

= w1,Dom
(m2−m1)(w1), r

R
m2

= w2,Dom(w2)}.
Using the above decomposition, the same argument as in Lemma 5.3 allows us to express
the event {τ R

1 = m1, τ
R
2 = j2, r Rm1

= w1, r Rm2
= w2} as

[
{r Rj is not a τ R step for all 1 ≤ j < m1, rm1 = w1,Dom

(m2−m1)(w1)}∩
{r Rj is not a τ R step for any m1 < j < m2, r

R
m2

= w2}
]⋂

Dom(w2). (5.16)

As observed earlier, other than the event Dom(w2) in Eq. (5.16), rest of the events are F R
m2

measurable. In fact, Eq. (5.16) can be further strengthened for any j ≥ 1 as described in the
following corollary.
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Corollary 5.2 For any j ≥ 1 we obtain the following equality of events

j⋂

l=1

{τ R
l = ml , r

R
ml

= wl}

=
[ j⋂

l=1

{r Rml
= wl} ∩ {∩ml−1

n=ml−1+1(β
R(r Rn ) ≤ ml − n)

} ⋂
(∩ j−1

l=1Dom
(m(l+1)−ml )(wl))

]

⋂
Dom(w j ), (5.17)

and other than the event Dom(w j ), rest of the other events in the r.h.s. of Eq. (5.17) are F R
ml

measurable.

Theargument is sameas that ofLemma5.3 and therefore,we skip thedetails. For simplicity
of notation, we denote the F R

ml
measurable part of the event in the r.h.s. of Eq. (5.17) as

E(w1,m1, . . . , w j ,m j )

:=
[ j⋂

l=1

{r Rml
= wl} ∩ {∩ml−1

n=ml−1+1(β
R(rn) ≤ ml − n)

} ⋂
(∩ j−1

l=1 Dom
(ml+1−ml )(wl))

]
.

It is also important to observe that the event Dom(w j ) is actually independent of the event
E(w1,m1, . . . , w j ,m j ). We need one more lemma before we proceed to prove Proposi-
tion 5.1 for j ≥ 1.

Lemma 5.4 Fix any j ≥ 1. Given (r R
τ R
1
, τ R

1 , . . . , r R
τ R
j
, τ R

j ) = (w1,m1, . . . , w j ,m j ), for any

l ≥ 1 and z ∈ Z there exist C0,C1 > 0, which do not depend on j, l, z such that

P
(
I
τ j+l
z > n | (r R

τ R
1
, τ R

1 , . . . , r R
τ R
j
, τ R

j ) = (w1,m1, . . . , w j ,m j )
) ≤ C0e

(−C1n).

Proof Using the event equality in (5.17), and from conditional probability we obtain

P
(
I
τ Rj +l
z > n | (r

τ R1
, τ R

1 , . . . , r R
τ Rj

, τ R
j ) = (w1,m1, . . . , w j ,m j )

)

= P
(
I
τ Rj +l
z > n ∩ E(w1,m1, . . . , w j ,m j ) ∩ Dom(w j )

)
/P(E(w1,m1, . . . , w j ,m j ) ∩ Dom(w j )).

(5.18)

The event (I
τ R
j +l

z > n)∩Dom(w j ) is independent of the event E(w1,m1, . . . , w j ,m j ). Ear-
lier we observed that the event Dom(w j ) is independent of the event E(w1,m1, . . . , w j ,m j )

as well. Hence, Eq. (5.18) reduces to

P
(
I
τ j+l
z > n | (r R

τ R
1
, τ R

1 , . . . , r R
τ R
j
, τ R

j ) = (w1,m1, . . . , w j ,m j )
)

=P
(
(I

τ R
j +l

z > n) ∩ Dom(w j )
)
/P(Dom(w j ))

�P
(
I
τ R
j +l

z > n
)
P(Dom(0))−1

≤C0e
(−C1n),

for some C0,C1 > 0. The penultimate inequality uses the translation invariant nature of our
model. 
�
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Now we are ready to prove Proposition 5.1 for j ≥ 1.
Proof of Proposition 5.1 for j ≥ 1 We begin our proof by first fixing j ≥ 1. Then, given the
value of

(r R
τ R
1
, τ R

1 , . . . , r R
τ R
j
, τ R

j ) = (w1,m1, . . . , w j ,m j ),

for any l ≥ 1 we can write the conditional probability as:

P
(
Dom(r R

τ R
j +l

) | (r R
τ R
1
, τ R

1 , . . . , r R
τ R
j
, τ R

j )

= (w1,m1, . . . , w j ,m j )
)

= P
(
Dom(r Rm j+l) ∩ (E(w1,m1, . . . , w j ,m j ) ∩ Dom(w j ))

)

/P(E(w1,m1, . . . , w j ,m j ) ∩ Dom(w j )). (5.19)

From Corollary 5.2, the RHS of Eq. (5.19) is equal to:

P
(
Dom(r Rm j+l)

∩ (E(w1,m1, . . . , w j ,m j ) ∩ Dom(l)(w j ))
)
/P(E(w1,m1, . . . , w j ,m j ) ∩ Dom(w j )).

(5.20)

Further, as commented earlier, occurrence of the event Dom(r Rm j+l) depends on the collection

{(I nw, Bn
w) : w ∈ Z, n ≥ m j + l} and it is independent of every F R

m j+l measurable event.
Therefore, we can simplify the expression in (5.20) as,

P(Dom(r Rm j+l))
(
P

(
E(w1,m1, . . . , w j ,m j ) ∩ Dom(l)(w j )

)
/P(E(w1,m1, . . . , w j ,m j ) ∩ Dom(w j ))

)
.

(5.21)

From the definition of a renewal step it follows that rumour propagation through vertices in
the set (−∞, r R

τ R
j
) ∩ Z has to be dominated and therefore, the translation invariance nature

of our model ensures that P(Dom(r Rm j+l)) in (5.21) is at least as large as P(Dom(0)). On
using the fact that

(
E(w1,m1, . . . , w j ,m j ) ∩ Dom(w j )

) ⊂ (
E(w1,m1, . . . , w j ,m j ) ∩ Dom(l)(w j )

)
,

the expression in (5.21) is lower bounded by P(Dom(0)).
This shows that given (r R

τ R
1
, τ R

1 , . . . , r R
τ R
j
, τ R

j ) = (w1,m1, . . . , w j ,m j ), for any l ≥ 1 the

probability of the event Dom(r R
τ R
j +l

) has a strictly positive uniform lower bound.

The same argument of Proposition 5.1 for j = 0 together with Corollary 5.1 give us that,
given (r R

τ R
1
, τ R

1 , . . . , r R
τ R
j
, τ R

j ) = (w1,m1, . . . , w j ,m j ), it suffices to show that the collection

{O
(−∞,r R

τ Rj +l
−1],+

τ R
j +l+n

: l ≥ 1} forms an uniform exponentially decaying family in the sense of

Definition 5.1.
We recall that for each n ≥ 1 part (iii) of Lemma 3.1 holds as long as the collection {I nz :

z ∈ Z} forms an uniform exponentially decaying family. In the present set up, Lemma 5.4
ensures that given (r R

τ R
1
, τ R

1 , . . . , r Rτ j , τ
R
j ) = (w1,m1, . . . , w j ,m j ) for any n ∈ N, the family

{I τ R
j +n

z : z ∈ Z} forms an uniform exponentially decaying family. As a result, for each l ≥ 1
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the overshoot r.v. O
(−∞,r R

τ Rj +l
),+

τ R
j +l+n

has exponentially decaying tail such that decay constants

do not depend on l. This completes the proof. 
�
Next,we show that increments of the rightmost process observedbetween successive renewals
form a strong uniform exponentially decaying family. Togetherwith the translation invariance
nature of our model, Corollary 5.1 and Lemma 5.4 give us the following remark.

Remark 5.1 (i) For any z ∈ Z and for any m ∈ N we consider the conditional overshoot
r.v. O(−∞,z],+

m | Dom(0) and it is not difficult to see that there exist positive constants
C0,C1 not depending on z,m such that we have

P
(
O(−∞,z],+
m > n | Dom(0)

) ≤ C0e
(−C1n) for all n.

This follows from the observation that

P
(
O(−∞,z],+
m > n | Dom(0)

) ≤ P(O(−∞,z],+
m > n)/P(Dom(0))

= P(O(−∞,0],+ > n)/P(Dom(0)),

where the last equality follows from the translation invariance nature of our model.
(ii) Repeated applications of the above argument gives us that, given that the event Dom(0)

has occurred, for any Z-valued sequence {zn : n ∈ N} the collection {O(−∞,zn ],+
n |: n ≥

1} forms an uniform exponentially decaying family. In fact, the same argument actually
gives us that {O(−∞,zn ],+

n : n ≥ 1} forms a strong exponentially decaying family.

Lemma 5.5 There exist C0,C1 > 0 which do not depend on j ≥ 0 such that for any j � 0
we have

P(r R
τ R
j+1

− r R
τ R
j

> n | SR
j ) � C0e

(−C1n) for all n ∈ N.

Proof We have used similar arguments in this paper. Therefore, we only provide a sketch
here. We observe that

(r R
τ R
j+1

− r R
τ R
j
) =

τ R
j+1−τ R

j∑

m=1

(r R
τ R
j +m

− r R
τ R
j +m−1

). (5.22)

Note that given SR
j , the increment r.v. (r R

τ R
j +m

− r R
τ R
j +m−1

) is stochastically dominated by

the overshoot r.v. O
(−∞,r R

τ Rj +m−1
],+

τ R
j +m

. Because of Remark 5.1, Proposition 5.1 together with

Corollary 3.1 give us that the random sum in (5.22) decays exponentially and this completes
the proof. 
�
Proposition 5.2 {(r R

τ R
j+1

−r R
τ R
j
, τ R

j+1−τ R
j ) : j � 1} gives a collection of i.i.d. random vectors

taking values inN×Nwhose distribution does not depend on the starting point of the rumour
propagation process.

Proof Unlike the proof of Proposition 4.2, we need to be careful to argue about the inde-
pendence of increment vectors between successive renewals as given that the renewal event
has occurred affects the distribution of the rumour propagation process till infinite time. We
first argue that the increment random vectors are identically distributed and present a brief
description of the identical distribution.
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The one-sided rumour propagation process on Z+ starting from the origin is denoted by

{(AR,+,0
n , ÃR,+,0

n ) : n ≥ 0}.
Given that the event Dom(0) has occurred, we consider the evolution of the conditional
process

{(AR,+,0
n , ÃR,+,0

n ) : n ≥ 0} | Dom(0)

till the time that the event Dom(r R,+,0
n ) occurs. Let ν denote the first time that the event

Dom(r R,+,0
n ) has occurred. The definition of our renewal event ensures that

(τ R
j+1 − τ R

j , r R
τ R
j+1

− r R
τ R
j
)

d= (ν,max(AR,+,0
ν )) for all j � 1.

Next, we use the fact that the increment random vectors between successive renewals
are identically distributed to show that the increments are independently distributed as well.
Recall that the random vector (τ R

j , r R
τ R
j
) is SR

j measurable where SR
j is defined as in Eq. (5.4).

Fixm ≥ 1 andBorel subsets B2, . . . , Bm+1 ofN×N. Let I j+1(Bj+1) be the indicator random
variable of the event

(τ R
j+1 − τ R

j , r R
τ R
j+1

− r R
τ R
j
) ∈ Bj+1.

Then, we have

P
(
(τ R

j+1 − τ R
j , r R

τ R
j+1

− r R
τ R
j
) ∈ Bj+1 for j = 1, . . . ,m

)

= E

⎛

⎝
m∏

j=1

I j+1(Bj+1)

⎞

⎠

= E

(
E

( m∏

j=1

I j+1(Bj+1) | SR
m

))
= E

(m−1∏

j=1

I j+1(Bj+1)E
(
Im+1(Bm+1) | SR

m

))

as the random variables I j+1(Bj+1) are measurable w.r.t. SR
m for j = 1, . . . ,m − 1.

By the earlier discussion, we have that the conditional distribution of (τ R
m+1 − τ R

m , r R
τ R
m+1

− r R
τ R
m
) given SR

m is given by (ν,max(AR,+,0
ν )). Therefore, we have

P((τ R
j+1 − τ R

j , r R
τ R
j+1

− r R
τ R
j
) ∈ Bj+1 for j = 1, . . . ,m)

= E

(m−1∏

j=1

I j+1(Bj+1)E
(
Im+1(Bm+1) | SR

m

))

= P
(
(ν,max(AR,+,0

ν )) ∈ Bm+1
)
E

(m−1∏

j=1

I j+1(Bj+1)
)
.

Now, induction on m completes the proof. 
�

5.2 Proof of Theorem 5.1

The same argument as in Theorem 4.1 gives us that

lim
n→∞ r Rn /n = lim

j→∞ r R
τ R
j
/τ R

j = μ′ almost surely.
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