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Abstract

We devise schemes for producing, in the least possible time, p identical objects with
n agents that work at differing speeds. This involves halting the process to transfer
production across agent types. For the case of two types of agent, we construct schemes
based on the Euclidean algorithm that seeks to minimize the number of pauses in
production.

2020 Mathematics subject classification: primary 90B35; secondary 11A05.
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1. Introduction and context of the problem

In [1], the author introduced the Biker-hiker problem, which entails finding optimal
schemes for transporting n travellers, who collectively have k bicycles, to their
common destination in the minimum possible time. Optimal schemes were those in
which each traveller rode k/n of their journey by bicycle. Schemes were represented
by n × n binary matrices and an algorithm was devised to determine when a matrix
represented an optimal scheme, based on the Dyck language [4] of well-formed strings
of parentheses. A pair of mutually transpose matrices provided two optimal scheme
types, the first of which minimized the number of cycle handovers while the transpose
scheme kept the number and separation of the travelling cohorts to a minimum.

Here we re-interpret this as a problem of n objects manufactured by n agents who
have access to k machines that work faster than the agents. A modified version of the
problem in which the machines are more versatile in nature is the basis of this paper.
We re-imagine the scenario by saying that each of the n agents has an identical task
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2 P. M. Higgins [2]

to complete. For convenience of description, we take this task to be the manufacture
of an object. There are k ≤ n identical machines available that can execute the task
faster than an unsupported agent. If a machine is not in use, an agent may continue to
manufacture the object they are constructing by passing it to that machine, but only
if the machine is configured to continue the build from this point. This constraint
corresponds to the fact that in the Biker-hiker problem, a traveller may only mount a
bicycle if they and a bicycle are at the same point in the journey. In contrast, if an agent
takes over the manufacture of an object, they are capable of recognizing what point in
the build has been reached for this object and continue its construction from that point.
This corresponds to the ability of a traveller in the Biker-hiker context to continue at
any point of the journey on foot.

To formulate the subject of this paper, we alter the nature of the machines by
allowing them to share with agents the capacity to continue the build of an object
from any given point in its construction. In the original travelling setting, this would
correspond to bicycles that could instantaneously move from their current position to
any other to be used by a traveller.

Since the machines are faster than the agents, in any optimal scheme (one that
minimizes the total production time of the order), no machine will ever be idle. In
view of this, there is no loss in adjusting the setting of the problem to view the k
machines as agents in their own right, and at all times, some set of k objects will be
undergoing construction by the machines. There is then no need to have any more than
n − k other agents available to contribute to the building of the n objects.

Taken all together, these observations allow us to settle on the final make-up of
the problem. There are two types of agent, identical in all respects except that one
type works faster than the other. Let us say they number k1 and k2, with k1 + k2 = n,
the total number of objects to be made.

Indeed, we shall widen the setting by allowing for an arbitrary number m of agent
types and for any number p ≥ n objects to be manufactured. This general problem
is formally stated in Section 2, where we present one optimal scheme type under
the assumption that any time lost in halting the process to pass partially made
objects between agents is negligible compared with the overall manufacturing time.
In Section 3, however, we return to the m = 2 case and introduce methods that, in
general, greatly reduce the number of stoppages involved in executing an optimal
scheme.

2. The general problem

2.1. Definition and principal features of an optimal scheme We have an order
to manufacture p ≥ n identical objects using n agents, and we wish to do this in the
minimum possible time. We shall refer to this challenge as a p-object problem. Each
of the n agents at our disposal produce one object at a time, but with varying speeds.
There are ki agents of type i and m types are available, so that k1 + k2 + · · · + km = n.
Agent type i takes ti time units (which we shall call hours) to complete the manufacture
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[3] Optimization for agents of differing rates 3

of one object. A stipulated process for completing the order will be known as a
p-scheme, or simply a scheme. At any point during the process, an agent may be halted
and its partially constructed object replaced by another partially built object. This
second object may be at a different stage of construction, but all agents are capable of
recognizing this and can continue the build from the current state. Our initial analysis
will assume that the time to pass a partially built object from one agent to another is
negligible compared with the overall build time.

Observe that if a scheme S has the property that no agent is ever idle and all of
them simultaneously complete the build of the object in hand (in time H say), then
S is optimal, for such a scheme is working at maximum capacity all throughout the
execution of the order. We exhibit the existence of such a scheme S in the general case
in Section 2.2. Since it is not possible to exceed the production of the equivalent of
n objects in time H (even allowing for partially completed builds), it follows that in
any optimal scheme, all agents must complete their build at time H for there to be n
completed objects at this minimum time. We illustrate this principle through a simple
example.

EXAMPLE 2.1. Take k1 = k2 = 1 (so that n = m = 2), and let t1 = 1, t2 = 2. For both
agents to work continuously until the order is completed, we exchange objects at just
the right moment, which in this case is the 40 minute mark, and then both objects are
fully built after 80 minutes.

PROPOSITION 2.2. Given the existence of an optimal solution scheme S for the
n-object problem (featuring n agents), an optimal solution exists for the p-object
problem for any p ≥ n.

PROOF. Write p = an + b for a positive integer a and a nonnegative integer b, with b
satisfying 0 ≤ b ≤ n − 1. Act the given optimal scheme S for the n-object problem to
produce the first set of n manufactured objects. Then repeat S a further a − 1 times,
yielding an output of an objects, which have been manufactured in the least possible
time as no agent has had an idle moment. There remain b objects still to be produced,
and so we act the given optimal b-object scheme on a set of b of our fastest agents to
complete the process in minimum time, thereby solving our optimization problem. �

It follows that to find examples of optimal schemes, we may henceforth restrict
attention to the case where p = n, and so the numbers of agents and objects match.

PROPOSITION 2.3

(a) In any optimal scheme S for the n-object problem:

(i) the time H required to complete the scheme is the harmonic mean of the
completion times of the individual agents,

H = n
( m∑

i=1

kit−1
i

)−1
; (2.1)
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(ii) the proportion pj of the build constructed by the set of type j agents is

pj =
kj

tj

( m∑
i=1

kit−1
i

)−1
. (2.2)

(b) Conversely, if all agents of a scheme begin simultaneously and work for duration
H as specified by (2.1), then in doing so, they have completed an optimal scheme.

PROOF. (a) (i) In an optimal solution, all agents work at full capacity for some
common time length, H. Since an agent of type i takes ti hours to make an object,
its production rate is t−1

i objects/hour. The combined rate of production, R, of all the
agents in objects/hour is therefore given by the sum

R =
m∑

i=1

kit−1
i .

The time taken for the agents to produce the equivalent of 1 object is therefore R−1,
and so the total time H to manufacture the order of n objects is given by nR−1, which
is the harmonic mean of the individual times, as stated in (2.1).

(ii) The production rate of any agent of type j is t−1
j objects/hour. Collectively, while

executing an optimal scheme, the kj agents of type j produce

kjH
tj
=

kjn
tj

( m∑
i=1

kit−1
i

)−1

objects, and so the proportion pj of the n objects produced by the type j agents is as
stated in (2.2),

pj =
kj

tj

( m∑
i=1

kit−1
i

)−1
=

kj

tjR
.

(b) The combined work rate of the set of agents is R, and since H = nR−1, it follows
that after time H, the agents have produced the equivalent of HR = n objects, none of
which could have been completed before time H as that would leave some agent idle.
Therefore, their action represents an optimal scheme. �

The partition P of the time interval I of duration H into n equal intervals is the basis
of the fundamental optimal scheme we shall introduce, as it is the length of time for
agents of an optimal scheme to collectively build the equivalent of one object.

DEFINITION 2.4

(a) We shall refer to H as defined in (2.1) as the harmonic optimum time for an
optimal n-object scheme.

(b) The partition P divides I into n intervals each of length H/n = R−1. We call R−1

the atomic time unit (a.u.) for an optimal scheme.
(c) A scheme is uniform if, for all i(1 ≤ i ≤ m), each object is worked on continu-

ously and is worked on by type i agents for exactly ki a.u. We shall refer to ki as
the type i quota for objects in a uniform scheme.
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[5] Optimization for agents of differing rates 5

PROPOSITION 2.5

(a) Let S be an optimal scheme for the n-object problem. If, for all i, the time each
object is worked on by type i agents is the same for all objects, then S is a uniform
scheme.

(b) All uniform schemes are optimal.
(c) For m = 2, a scheme S is optimal if and only if S is uniform.

PROOF. (a) Since S is optimal, all agents work for H hours, which equals n a.u., and
so the sum of the total times worked by type i agents is nki a.u. If each of the n objects
were worked on by type i agents for Ki a.u., then the sum total work time by the type i
agents would also equal nKi, whence Ki = ki, and so S is uniform.

(b) Suppose that S is a uniform scheme for the n-object problem. Then each object
is worked on for

∑m
i=1 ki = n a.u. Since all objects work continuously for H hours with

identical numbers of hours assigned to each agent type, they have all reached the same
point in their build, which must be full completion as all agents have worked to full
capacity throughout. Therefore, S is optimal.

(c) If S is uniform, then S is optimal by item (b), so it only remains to check that
if m = 2 and S is an optimal scheme, then S is uniform. For any pair of objects O
and O′, let K1 and K′1 be the respective times, measured in hours, that each object is
worked on by type-1 agents. Then, since any two objects O and O′ have equal times of
manufacture in an optimal scheme,

K1t−1
1 + (H − K1)t−1

2 = K′1t−1
1 + (H − K′1)t−1

2

⇐⇒ K1(t−1
1 − t−1

2 ) = K′1(t−1
1 − t−1

2 ).

Since t1 � t2, we get K1 = K′1, whence it follows from item (a) that S is uniform. �

EXAMPLE 2.6. For m ≥ 3, it is not necessarily the case that all optimal schemes are
uniform. To see this, take k1 = k2 = k3 = 1, so that n = m = 3. Let the completion times
of agents A1, A2 and A3 be respectively 3, 6 and 4.

H = 3
( 3∑

i=1

kit−1
i

)−1
= 3
(1
3
+

1
6
+

1
4

)−1
= 3
(4 + 2 + 3

12

)−1
= 4.

There is a nonuniform optimal scheme S constructed as follows. Agents 1 and 2
exchange objects O1 and O2 after 2 hours, while agent 3 works O3 for 4 hours until
completion. After 4 hours, the proportion of objects 1 and 2 that have been completed
will be, in both cases, 2(1/3 + 1/6) = 1, and so all three objects are completed in H = 4
hours. Therefore, S is optimal but S is not uniform as it is not the case that each object
is worked on by each type of agent for the same length of time. We shall expand on
this in Section 2.2.

2.2. Optimal scheme construction

DEFINITION 2.7 (The n-cyclic scheme). We label the n agents A1, A2, . . . , An, a freely
chosen order. We label the n objects O1, O2, . . . , On, where Oi is the object that begins
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6 P. M. Higgins [6]

to be made by agent Ai in the first interval I1. The objects are then cycled around
through the agents: picture all the agents arranged in a circle. At the end of each time
interval Ij, a whistle blows. Each agent then takes the object it is currently working on
and passes it to the agent on its right to continue the build. In symbols, at the end of
interval Ij, the object currently being worked on by Ai is handed to Ai+1, where we take
n + 1 = 1.

THEOREM 2.8. The n-cyclic scheme, Cn, is optimal.

PROOF. By examining the evolution of Oi in Cn, we see that in the successive intervals
I1, I2, . . . , Ij, . . . , In, object Oi is worked on by the respective agents,

Ai, Ai+1, . . . , Ai+j−1, . . . , Ai+n−1 = Ai−1.

Therefore, Oi is worked on by each of the n agents exactly once, and for the same
length of time, which is 1 a.u. Since H = n a.u., it follows from Proposition 2.3(b) that
S is optimal. �

EXAMPLE 2.9. Let us take k1 = 3, k2 = 4 and k3 = 1, (so that n = 8), with t1 = 1, t2 = 2
and t3 = 4. Then, in objects/hour,

R =
3∑

i=1

kit−1
i =

3
1
+

4
2
+

1
4
=

21
4

, H =
n
R
=

32
21
= 1

11
21

.

Each of the 8 intervals equals

H
n
=

1
R
=

4
21

hours =
4
21
× 60 =

80
7
= 11

3
7

minutes.

The proportion of the objects built by each agent type is

p1 =
k1

Rt1
=

3 × 4
21 × 1

=
12
21
=

4
7

, p2 =
4 × 4
21 × 2

=
8
21

, p3 =
1 × 4
21 × 4

=
1
21

.

Let us choose to order the agents in increasing execution time. We may track the build
of any of the objects. For instance, at the end of the sixth stage, O5 will have been
worked on by type-2 agents for the first three stages, (A5, A6 and A7, representing 3/4
of the type-2 quota); for the fourth stage, by the type-3 agent A8; and for the fifth and
sixth stages, by the type-1 agents, A1 and A2 (representing 2/3 of the type-1 quota).
Hence, the proportion of the build of O5 completed at the end of Stage 6 is

3
4 p2 + p3 +

2
3 p1 =

3
4 ×

8
21 +

1
21 +

2
3 ×

12
21 =

15
21 =

5
7 ≈ 71.4%.

2.3. Schemes that run uniform sub-schemes in parallel Example 2.6 was a
simple instance of two uniform schemes running in parallel. We explore this idea
further using properties of harmonic means.
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[7] Optimization for agents of differing rates 7

LEMMA 2.10

(a) Let T be a finite list of positive numbers (so that repeats are allowed) with
harmonic mean H(T) = H. Let U be a sub-list of T strictly contained in T.
If H(U) = H, then H(T \ U) = H(U) = H.

(b) If U, V are finite lists of positive numbers with H(U) = H(V) = h, then
H(U ∪ V) = h, where U ∪ V denotes the union of U and V as lists, so there
is a distinct element of U ∪ V for each member of U and of V.

PROOF. (a) By re-indexing as necessary, we may write U = {a1, a2, . . . , am} and
T \ U = {am+1, am+2, . . . , am+n} for some m, n ≥ 1. Let

S1 =

m∑
i=1

a−1
i , S2 =

m+n∑
i=m+1

a−1
i , S = S1 + S2.

We are given that

S
m + n

=
S1

m
=

1
H

⇒ S2 = S − S1 =
m + n

H
− m

H
=

n
H

⇒ H(T \ U) =
n
S2
= n · H

n
= H.

(b) We may take U = {a1, a2, . . . , am} and V = {am+1, am+2, . . . , am+k} for some
k ≥ 1, and let S1 and S2 denote the respective sums of the reciprocals of the members
of U and of V. We are given

S1

m
=

S2

k
=

1
h

⇒ S1 + S2 =
m + k

h

⇒ H(U ∪ V) =
m + k

S1 + S2
= (m + k) · h

m + k
= h. �

REMARK 2.11. The conclusion of Lemma 2.10(b) is not true if we take the set
union of U and V when they have elements in common. For example, take
U = {1, 5, 20}, V = {1, 6, 12} so that, as sets, U ∪ V = {1, 5, 6, 12, 20}. Then H(U) =
H(V) = 12/5, but H(U ∪ V) = 10/3. However, if we treat the collections as lists,
allowing repeated members when taking the union (in this example this would yield
the list (1, 1, 5, 6, 12, 20)), then the argument of Lemma 2.10 applies and all three
harmonic means coincide.

Let T = {t1, t2, . . . , tn}, a list of job completion times of our n agents in the n-object
problem, and let H be the harmonic mean of T. If T contains a proper sub-list U with
H(U) = H, then by Lemma 2.10(a), we have H(T \ U) = H also, allowing us to split T
into two complementary sub-lists U, V with H(U) = H(V) = H. This process may be
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repeated on the lists U and V until we have partitioned T into a disjoint union of r lists
say, which we write as

T = T1

⊕
T2

⊕
· · ·
⊕

Tr (r ≥ 1),

where each sub-list Ti is irreducible, meaning that Ti has no proper sub-list U with
H(U) = H. We call this an irreducible representation of T.

Given an irreducible representation of T, we may construct an optimal scheme S
for the n-object problem from any collection of optimal schemes {Si}1≤i≤r, where Si is
an optimal scheme for the ni-object problem, with ni defined by ni =

∑si
j=1 ti,j, where

ti,1, ti,2, . . . , ti,si are the members of the list T that belong to Ti. Since the harmonic
means of all these r sub-problems equal H, we may run these r schemes Si in parallel
to provide an optimal solution S of the original n-object problem. In recognition, we
denote this scheme as

S = S1

⊕
S2

⊕
· · ·
⊕

Sr.

In our Example 2.6, we have T = {3, 6, 4}, so that T1 = {3, 6}, T2 = {4} and H = 4.
The sub-schemes S1 and S2 are respectively the 2-cyclic and 1-cyclic schemes. The
overall optimal scheme S is then the sum of two irreducible uniform schemes, S =
S1
⊕

S2, but S is not itself uniform.
A given finite list T of positive numbers may always be presented as a sum of

irreducible harmonic components. However, as our next example shows, T may have
more than one irreducible representation1.

EXAMPLE 2.12. The set T = {2, 3, 4, 5, 6, 7, 9, 10, 12, 14, 15} can be split into two
subset pairs preserving the harmonic mean either as U1 = {2, 7, 9, 10, 15} and U2 = T \
U1 = {3, 4, 5, 6, 12, 14}, or as V1 = {2, 5, 6, 10, 14, 15} and V2 = T \ V1 = {3, 4, 7, 9, 12},
but not in any other ways. All five harmonic means come to 315/58 ≈ 5.4310.

We would expect that the problem of determining whether a given list admits a
harmonic partition is hard, as the simpler problem of determining whether such a list
has an additive partition is NP-complete [8]. However, we show below how to generate
any number of such examples of lists with multiple harmonic partitions. This allows
us to construct an optimal nonuniform scheme that is not a parallel sum of irreducible
schemes.

PROPOSITION 2.13. The harmonic mean H = H(x, y) of two positive real numbers x
and y satisfies H(x, y) = 2m if and only if (x − m)(y − m) = m2.

PROOF. Since

(H(x, y) = 2m)⇔
( 2xy
x + y

= 2m
)
⇔ (xy − m(x + y) = 0)

⇔ (xy − mx − my + m2 = m2)⇔ ((x − m)(y − m) = m2),

the proof is complete. �

1This example was devised by Alexei Vernitski.
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[9] Optimization for agents of differing rates 9

This result lets us produce any number of distinct pairs of integers, x and y, with a
common harmonic mean through choosing m so that m2 has the requisite number of
pairs of distinct factors. The structure of our next example requires three such pairs, so
we take m = 6 and employ the factorizations 36 = 2 × 18 = 3 × 12 = 4 × 9.

EXAMPLE 2.14. We construct a scheme S with n = 6 agents and objects, and with
respective job completion times of these agents A1, . . . , A6 given by t1 = 2 + 6,
t2 = 18 + 6, so that t1 = 8, t2 = 24; similarly, t3 = 9, t4 = 18, and t5 = 10, t6 = 15. By
Proposition 2.13, each of these pairs share a harmonic mean of H = 2 × 6 = 12. Next,
it follows by Lemma 2.10(b) that the harmonic mean of the union of any two of the
pairs of agent times, (8, 24), (9, 18) and (10, 15), is also 12, whence it follows again
by Lemma 2.10(b) that 12 is likewise the harmonic mean of the full set of six agent
production times. Consider the scheme S represented by Table 1.

Each object Oi is worked on successively by the agents in its column when passing
from top to bottom. For example, O4 is worked on in turn by agents A4, A3, A6 and A5.
Since each object is worked on by the agents of two pairs, each with the harmonic mean
of 12 hours, it follows that the duration of the common interval between exchanges is
12/4 = 3 hours. Each agent appears exactly once in each of the 3-hour windows, which
are represented by the rows. It follows that S is indeed an optimal scheme. However,
each pair of objects share common agents and so S is not a sum of irreducible schemes,
and nor is S uniform as each object is worked on by only 4 of the 6 agents.

As a bonus, we note that since it consists of three pairs with an equal harmonic
mean of 12, the set {8, 9, 10, 15, 18, 24} can be split into three harmonic partitions, one
for each pair. We can indeed create an example of order five by taking the set consisting
of two of these pairs and their common harmonic mean of 12: T = {8, 9, 12, 18, 24}, the
two partitions being

U = {8, 24}, T \ U = {9, 12, 18} and V = {9, 18}, T \ V = {8, 12, 24}.

2.4. Removing unnecessary exchanges It is always the case that we may take
m ≤ n. Indeed, in most real world examples, we will have m << n for typically n
might be of the order of hundreds or thousands, while m, the number of different

TABLE 1. Table for an optimal nonuniform scheme.

O1 O2 O3 O4 O5 O6

1 2 3 4 5 6
2 1 4 3 6 5
3 4 5 6 1 2
4 3 6 5 2 1
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10 P. M. Higgins [10]

manufacturing speeds of our agents, might be in single digits. Therefore, even though
we were operating only a handful of different agent types, the cyclic scheme algorithm
could involve thousands of stoppages of the manufacturing process. We then look to
see if we can adjust our scheme to lower the number of stoppages. For a given scheme
of production S, we shall call the number of times the whistle blows to halt production
the halting number, and denote it by h = h(S). For the n-cyclic scheme Cn, we have
h(Cn) = n − 1.

REMARK 2.15. Let n′ = n/d, where d is the greatest common divisor (gcd) of the list
of integers k1, k2, . . . , km. Note that d is also a divisor of n. Collect the n objects into
n′ groups of d objects, regarding each such d-set as a single object. In a similar way,
group the ki agents of type i into k′i = ki/d sets of d agents, with each set regarded as
a single agent. We may now view this n-object problem as an n′-object problem with
a list of k′1, k′2, . . . , k′m agents. In particular, this procedure would allow replacement
of a Cn-scheme by a Cn′-scheme, thereby reducing the halt number by a factor of d.
A typical object of the reduced scheme will consist of d objects, all worked on to the
same point in their manufacture, which is then acted on in parallel by a collection of d
agents of the same type to continue the scheme.

Henceforth, we will assume that the reduction process described has been carried
out so that the gcd d of k1, k2, . . . , km is 1.

3. The m = 2 case: the Euclidean scheme

The first interesting value for m is therefore m = 2, which is the focus of the
remainder of the paper. By Proposition 2.5(c), the only optimal schemes are uniform.
For n = 2, C2 is the unique optimal scheme with the fewest halts, as h(C2) = 1
represents the least halt number as both objects must be worked on by both agents;
moreover, the exchange must occur at the halfway point of the execution of the scheme
for the scheme to be optimal. We may continue then under the assumption that n ≥ 3.
Due to the role they will play as remainders in the Euclidean algorithm, we shall denote
the number of type-1 and type-2 agents by r1 and r2, respectively, and without loss,
we take r1 > r2 with r1 = ar2 + r for positive integers a and r (1 ≤ r ≤ r2 − 1). (We
assume that the speeds of the two agent types differ, but do not specify which is the
faster.) An optimal (uniform) scheme is characterized by the condition that each object
is worked on by agents of type 1 and type 2 respectively for r1 = ar2 + r a.u. and r2
a.u. It follows that n = (a + 1)r2 + r.

DEFINITION 3.1 (The Euclidean scheme). We consider the following refined algo-
rithm, which has stages corresponding to the lines of the Euclidean algorithm
applied to the pair (r1, r2). The associated optimal scheme will be known as the
Euclidean(r1, r2)-scheme, denoted by E = E(r1, r2).

Let the opening line of the Euclidean algorithm be r1 = a1r2 + r3. We suppress
subscripts and write a and r for a1 and r3, respectively. Partition the objects into a + 2

https://doi.org/10.1017/S1446181124000142 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181124000142


[11] Optimization for agents of differing rates 11

sets as follows. There are a + 1 sets S0, S1, . . . , Sa, each of order r2, and a remainder
set, Sa+1, of order r. Denote by S(p) the union

S(p) := S0 ∪ S1 ∪ · · · ∪ Sp (0 ≤ p ≤ a + 1).

At the beginning of Stage 1, each object of S0 is assigned to an agent of type 2,
while all other objects are assigned to type-1 agents.

In Stage 1, all agents first work on their initial object for a time of r2 a.u.
The objects of S0 are then exchanged by their current agents with the objects of S1

so that each agent that was working on an object of S0 changes to an object from S1
and vice versa.

After a further r2 a.u., the objects of S1 exchange agents with those of S2. This
action of object exchange between agents is carried out in this fashion so that after
the (i + 1)st halt, the objects of Si are exchanged with those of Si+1, until on the ath
exchange, the objects of Sa−1 and Sa are exchanged between the corresponding agent
sets. This entails a halts in all. Stage 1 ends with the ath exchange.

At this transition point between Stages 1 and 2, all objects in S(a−1) have been
worked on by type-2 agents for r2 a.u. and by type 1 agents for (a − 1)r2 a.u. In the
subsequent stages, which collectively represent a time interval of

n − ar2 = (a + 1)r2 + r3 − ar2 = r2 + r3 a.u.,

each of the members of S(a−1) will continue to be worked on by their current type-1
agent. This in effect removes these ar2 type-1 agents from further consideration,
leaving an (r2 + r3)-problem with the type-2 agents now in the majority. Since the
objects in S(a−1) undergo no further agent exchange, we shall say they have become
passive objects, while the other objects, which now enter the second stage, are labelled
active. Similarly, an agent is described as passive or active according to whether the
agent is working on a passive or active object.

We now repeat the preceding process recursively, mirroring the action of the
Euclidean algorithm itself. Stage 2 acts the process of Stage 1 for the objects of
Sa ∪ Sa+1 using the second line of the Euclidean algorithm for (r1, r2), but with the
roles of the type-1 and type-2 agents reversed. This role alternation of the two types is
a feature that persists as the process is acted throughout subsequent stages.

Acting the Euclidean algorithm on (r1, r2), where r1 and r2 have no common factor,
yields for some t ≥ 2,

r1 = a1r2 + r3,
r2 = a2r3 + r4,

...
ri = airi+1 + ri+2,

...
rt−1 = at−1rt + 1,
rt = rt × 1 + 0.

https://doi.org/10.1017/S1446181124000142 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181124000142


12 P. M. Higgins [12]

Stage i will correspond to line i of the Euclidean algorithm. In particular, we have
(rt, at, rt+1, rt+2) = (rt, rt, 1, 0). Stage t then has at = rt exchanges, at the end of which
all objects are worked on by their current agent for the final a.u., taking all builds to
completion and marking the conclusion of what we deem to be Stage t. This concludes
the specifications of the Euclidean scheme.

The sets Si and the coefficient a change as we pass from one stage of the algorithm
to the next. To compare these sets between stages calls for notation with double
subscripts.

To compare the sets of objects in question, consider Stage i(1 ≤ i ≤ t) of E(r1, r2).
Let Si,j denote the set Sj at the ith stage of the scheme (0 ≤ j ≤ ai + 1). By construction,
the active objects of Stage i all begin with identical work records with respect to both
agent types. Moreover, during the ith stage, each object in Si,j has been worked on by
each type of agent for the same length of time as each other member of Si,j; indeed, we
say something more precise.

DEFINITION 3.2. The work record for the objects in Si,j is (t1, t2)i,j, where tp(p = 1, 2)
denotes the number of a.u. for which the members of Si,j have been worked on by
agents of type p at the completion of Stage i.

REMARK 3.3. It follows from the recursive construction of the stages that for any i, for
all active objects, there are only two distinct work record pairs determined by whether,
at the end of Stage i, Si,j represents a set of passive objects (0 ≤ j ≤ ai − 1) or active
objects (ai ≤ j ≤ ai + 1). We therefore simplify notation by denoting the two respective
pairs by (t1, t2)i and (T1, T2)i. In particular, all objects active in Stage i + 1 begin that
stage having been worked on for T1 a.u. by type-1 agents and T2 a.u. by type-2 agents.

In the following theorem, proof of optimality of E(r1, r2) includes the precise work
record of all objects that become passive at the conclusion of each stage.

THEOREM 3.4. The Euclidean scheme E(r1, r2) is optimal.

PROOF. We show that in E(r1, r2), each object is worked on continuously and
uniformly for a total of r1 + r2 = n a.u., from which the result follows from
Proposition 2.3(b). The proof is by induction on the stage number i.

An object that becomes passive at the end of Stage 1 has the work record:

(t1, t2)1 = ((a1 − 1)r2, r2) = (a1r2 − r2, r2) = (r1 − r2 − r3, r2). (3.1)

Similarly, for active objects, at the close of Stage 1,

(T1, T2)1 = (a1r2, 0) = (r1 − r3, r2 − r2). (3.2)

The length of Stage 1 is a1r2 = r1 − r3. The remaining number of a.u. before H expires
matches the number of active objects and agents as all three are equal to

n − (r1 − r3) = r1 + r2 − r1 + r3 = r2 + r3.
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Therefore, in moving from Stage 1 to Stage 2, the framework for the scheme is repeated
with (r1, r2) replaced by (r2, r3), where r2 = a2r3 + r4 (so that r2 > r3). However, the
roles of type-1 and type-2 agents are reversed, as it is type 2 that now form the majority.

An object that becomes passive at the end of Stage 2 has the work record:

(t1, t2)2 = (r1 − r3, 0) + (r3, (a2 − 1)r3)

= (r1 − r3, 0) + (r3, r2 − r3 − r4)

= (r1, r2 − r3 − r4). (3.3)

Similarly, at the close of Stage 2, we have for the active objects,

(T1, T2)2 = (r1 − r3, 0) + (0, a2r3)

= (r1 − r3, r2 − r4). (3.4)

The length of Stage 2 is a2r3 = r2 − r4 a.u., and hence the number of a.u. before H
expires is

r2 + r3 − (r2 − r4) = r3 + r4,

which matches the number of active objects and active agents in Stage 3.
We next show by induction on i that for the objects that become passive at the end

of Stage i, if i is odd, then

(t1, t2)i = (r1 − ri+1 − ri+2, r2), (3.5)

while for the active objects,

(T1, T2)i = (r1 − ri+2, r2 − ri+1). (3.6)

If i is even, then

(t1, t2)i = (r1, r2 − ri+1 − ri+2), (3.7)

(T1, T2)i = (r1 − ri+1, r2 − ri+2). (3.8)

Moreover, at the conclusion of Stage i, the number of active objects matches both the
number of active agents and the time remaining until the harmonic optimum expires,
which is ri + ri+1. The induction is anchored on the i = 1 and i = 2 cases given in
(3.1)–(3.4).

Let i + 1 ≥ 3 be odd. Stage i + 1 is based on

ri+1 = ai+1ri+2 + ri+3.

Since i is even, we apply (3.8) to give (T1, T2)i = (r1 − ri+1, r2 − ri+2) for the first term
in the next sum. For the second term, we apply the form of (t1, t2)1 given in (3.1), but
increment the subscripts by i. This yields

(t1, t2)i+1 = (r1 − ri+1, r2 − ri+2) + (ri+1 − ri+2 − ri+3, ri+2)

= (r1 − ri+2 − ri+3, r2)
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in accord with (3.5) for i + 1; similarly, adjusting (3.2) for line i + 1 yields

(T1, T2)i+1 = (r1 − ri+1, r2 − ri+2) + (ri+1 − ri+3, 0) = (r1 − ri+3, r2 − ri+2)

in accord with (3.6) for i + 1.
Now let i + 1 ≥ 4 be even. Since i is odd, we apply (3.6) to give the first term of

the next sum, which is (T1, T2)i = (r1 − ri+2, r2 − ri+1), while for the second term, we
apply the form of (t1, t2)2 in (3.3), but increment the subscripts of (r3, r2 − r3 − r4) by
i − 1 (as 2 + (i − 1) = i + 1). This yields

(t1, t2)i+1 = (r1 − ri+2, r2 − ri+1) + (ri+2, ri+1 − ri+2 − ri+3)

= (r1, r2 − ri+2 − ri+3)

in accord with (3.7) for i + 1; similarly, by incrementing the second term in (3.4), we
infer that

(T1, T2)i+1 = (r1 − ri+2, r2 − ri+1) + (0, ri+1 − ri+3)

= (r1 − ri+2, r2 − ri+3)

in accord with (3.8) for i + 1, and so the induction continues in both cases.
At the transition from Stage i + 1 to Stage i + 2, for both the odd and even case, the

common number of active objects and agents is

ri+1 + ri+2 − ai+1ri+2 = ri+1 + ri+2 − (ri+1 − ri+3)

= ri+2 + ri+3,

which equals the remaining time in the harmonic optimum: ri+1 + ri+2 − ai+2ri+2, and
so the induction continues.

If t is odd, putting i = t in (3.5) gives that at the conclusion of the final stage,

(t1, t2)t = (r1 − rt+1 − rt+2, r2)

= (r1 − 1 − 0, r2)

= (r1 − 1, r2).

The final a.u. then adds (1, 0) to this pair for all passive objects, giving the required
final pair of (r1, r2) representing the numbers of a.u. worked by type-1 and type-2
agents, respectively. On the other hand, by (3.6),

(T1, T2)t = (r1 − rt+2, r2 − rt+1) = (r1, r2 − 1),

and this time it is (0, 1) added to the work record of the final active object, giving the
required pair, (r1, r2).

If t is even, then by (3.7),

(t1, t2)t = (r1, r2 − rt+1 − rt+2)

= (r1, r2 − 1 − 0)

= (r1, r2 − 1).
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The final a.u. adds (0, 1) to this pair for all passive objects, giving the required final
pair of (r1, r2). On the other hand, by (3.8),

(T1, T2)t = (r1 − rt+1, r2 − rt+2) = (r1 − 1, r2).

The single active object this applies to then has (1, 0) added to complete the scheme
with the required pair of (r1, r2).

In all cases then, each object is worked on for r1 + r2 = n a.u. = H, and so E(r1, r2)
is optimal, and this completes the proof. �

We record some useful observations that emerged in the proof of Theorem 3.4.

COROLLARY 3.5. For the Euclidean scheme E = E(r1, r2):

(a) there are t stages in E. The halt number h = h(E) is h =
∑t

i=1 ai;
(b) the length of Stage i is airi+1 = ri − ri+2 a.u. (1 ≤ i ≤ t − 1), and Stage t has length

at + 1 a.u.;
(c) in any stage, the members of S0 ∪ Sa undergo a single exchange, those of

⋃a−1
i=1 Si

undergo two exchanges, while those of Sa+1 are not exchanged.

PROOF. (a) For Stage i of the t stages, there are ai halts including for Stage t. Summing
the ai thus gives h(E).

(b) For 1 ≤ i ≤ t, for Stage i, prior to each of the ai halts, all agents work
continuously for ri+1 a.u. Hence, the length of Stage i is airi+1 a.u. (1 ≤ i ≤ t − 1) and
Stage t has atrt+1 + 1 = at + 1 a.u.

(c) These are observations of the exchange process. �

EXAMPLE 3.6. For r1 = 180, r2 = 53, n = r1 + r2 = 233,

180 = 3 × 53 + 21,
53 = 2 × 21 + 11,
21 = 1 × 11 + 10,
11 = 1 × 10 + 1,
10 = 10 × 1 + 0.

We shall initially label our parameters r1, r2, a, r where r1 = ar2 + r, updating values
for these parameters in accord with our scheme as we pass from one stage to the next.

Set the parameters for Stage 1 based on the first line of the Euclidean algorithm for
(r1, r2):

r1 = 180, r2 = 53, a = 3, r = 21, n = r1 + r2 = 233.

Since a = 3, we partition the objects into a + 2 = 5 sets:

S(a−1) = S(2) = S0 ∪ S1 ∪ S2, |Si| = r2 = 53 (0 ≤ i ≤ 3), |S4| = r = 21.

All agents now work on their objects for r2 = 53 a.u. and then halt to allow the first
exchange. There are a = 3 such halts and exchanges in Stage 1.
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At the end of Stage 1,

(t1, t2)1 = ((a − 1)r2, r2) = (106, 53),

(T1, T2)1 = (ar2, 0) = (159, 0).

Each object in S(a−1) = S(2) will next be worked on to completion by the type-1 agent
that now possesses it, making ar2 = 3r2 type-1 agents unavailable for the objects of
S3 ∪ S4. The number of a.u. until completion is given by r2 + r. Therefore, at the
end of the entire process, the members of the sets in S(2) will have the required final
assignment pair:

((a − 1)r2 + r2 + r, r2) = (ar2 + r, r2) = (r1, r2),

which in this case gives

(106 + 53 + 21, 53) = (180, 53) = (r1, r2).

There remain r type-1 and r2 type-2 agents available to S3 ∪ S4 at the beginning of the
second stage.

We now analyse Stage 2 for the objects in S3 ∪ S4. As we pass from one stage to
the next, the roles of the agent types are reversed. Our parameters have their values
updated. Note that the entries of (T1, T2)1 are the respective inherited starting values
of type 1 a.u. and type 2 a.u. for the remaining r2 + r active objects of Stage 2.

Stage 2:

r1 = 53 r2 = 21, a = 2, r = 11, n = r1 + r2 = 74.

S(a−1) = S(1) = S0 ∪ S1, |Si| = r2 = 21, (0 ≤ i ≤ 2), |S3| = r = 11.

(t1, t2)2 = (159, 0) + (r2, (a − 1)r2) = (159, 0) + (21, 21) = (180, 21),

(T1, T2)2 = (159, 0) + (0, ar2) = (159, 0) + (0, 42) = (159, 42).

Note that the form of the pair ((a − 1)r2, r2) of Stage 1 is reversed in Stage 2 to
become (r2, (a − 1)r2); this is due to the exchange of roles of type-1 and type-2 agents,
a feature of each passage to a new stage.

Since r2 + r = 21 + 11 = 32, at the end of the entire process, the objects in the
current S(a−1) = S(1) will have final assignment pair (180, 21 + 32) = (180, 53), as
required.

Stage 3:

r1 = 21, r2 = 11, a = 1, r = 10, n = r1 + r2 = 32.

S(a−1) = S0, |Si| = r2 = 11 (0 ≤ i ≤ 1), |S2| = r = 10.

(t1, t2)3 = (159, 42) + ((a − 1)r2, r2) = (159, 42) + (0, 11) = (159, 53),

(T1, T2)3 = (159, 42) + (ar2, 0) = (159, 42) + (11, 0) = (170, 42).
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Since r2 + r = 11 + 10 = 21, at the end of the entire process, the objects in
the current S(a−1) = S0 will have final assignment pair (159 + 21, 53) = (180, 53), as
required.

Stage 4:

r1 = 11, r2 = 10, a = 1, r = 1, n = r1 + r2 = 21.

S(a−1) = S0, |Si| = r2 = 10, (0 ≤ i ≤ 1), |S2| = r = 1.

(t1, t2)4 = (170, 42) + (r2, (a − 1)r2) = (170, 42) + (10, 0) = (180, 42),

(T1, T2)4 = (170, 42) + (0, ar2) = (170, 42) + (0, 10) = (170, 52).

Since r2 + r = 10 + 1 = 11, at the end of the entire process, the objects in the current
S(0) will have final assignment pair (180, 42 + 11) = (180, 53), as required.

Stage 5 (final stage):

r1 = 10, r2 = 1, a = 10, r = 0, n = r1 + r2 = 11.

S(a−1) = S0 ∪ S1 ∪ · · · ∪ S9, |Si| = r2 = 1, (0 ≤ i ≤ 10), |S11| = r = 0.

(t1, t2)5 = (170, 52) + ((a − 1)r2 + 1, r2) = (170, 52) + (9 + 1, 1) = (180, 53),

(T1, T2)5 = (170, 52) + (ar2, 1) = (170, 52) + (10, 1) = (180, 53).

By Corollary 3.5(a), the total number of halts h of the agents is the sum of values
of the parameter a over the five stages:

h(180, 53) = 3 + 2 + 1 + 1 + 10 = 17.

This compares with the simple cyclic method C233, which has n − 1 = 232 such pauses
in production.

Corollary 3.5(b) gives the list of lengths of the five stages as 159, 42, 11, 10 and 11,
which sum to n = 233. This completes the illustration of our example.

4. Euclidean schemes and their halt numbers

4.1. Matrix of an optimal scheme With each optimal n-scheme S of the m = 2
problem, we may associate an n × n binary matrix M = M(S) whereby the (i, j)th entry
of M is 1 or 0 according to whether object Oi in the jth time interval Ij is worked on by
a type-1 or a type-2 agent.

The labelling of the set of objects is arbitrary: a permutation π of the rows of M
gives a new matrix Mπ that corresponds to a permutation of the object set O, which
is to say a re-numbering of the members of O (by π−1). Hence, the corresponding
schemes, S(M) and S(Mπ), are equivalent up to the labelling of the objects.

At the beginning of each interval in the execution of an optimal scheme S, the
type-1 and type-2 agents are re-assigned their objects, forming two sets K1 and K2 of
objects, respectively. For a given ordering of O, these sets are equal for all stages for a
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pair of schemes S and S′ exactly when M(S) = M(S′). Therefore, we may declare that
two schemes S and S′ are equivalent if M(S) = M(S′), and then extend this notion of
equivalence to the case where M(S) = Mπ(S′) for some row permutation π of the rows
of M(S′).

Clearly, the columns of M(S) will contain k = r1 entries of 1 and r2 entries of 0.
Proposition 2.5(c) is equivalent to the statement that S is optimal if and only if each
row also contains exactly k instances of 1.

In summary, S is optimal if and only if M(S) is k-uniform, meaning that each
row and column of M has exactly k ones. Up to equivalence, there is a one-to-one
correspondence between optimal n-schemes S with k type-1 agents and k-uniform
n × n binary matrices.

4.2. Successive Fibonacci numbers The number of halts in a Euclidean scheme is
determined by the sum of the coefficients ai, which corresponds to the interpretation
of the Euclidean algorithm whereby each step involves simply subtracting the smaller
of the two integers in hand from the larger. In the case of a pair of successive Fibonacci
integers, fp+1, fp say, all the ai are equal to 1 (apart from the final coefficient where the
remainder is 0). This leads to a halt number of order log n, where n = fp+1 + fp = fp+2.

To see this, put r1 = fp+1, r2 = fp, two consecutive and distinct Fibonacci numbers
(so that p ≥ 2), whence n = fp+1 + fp = fp+2. There are then p − 1 lines in the Euclidean
algorithm:

fp+1 = fp + fp−1,

fp = fp−1 + fp−2,

...

f4 = f3 + f2 ⇔ 3 = 2 + 1,

f3 = 2f2 + 0⇔ 2 = 2 · 1 + 0.

Now, ai = 1 for all but the final line, where the coefficient of f2 equals 2. By
Corollary 3.5(a), h(E(fp+1, fp)) = (p − 1 − 1) + 2 = p. The respective lengths of the
p − 1 stages are fp, fp−1, . . . , f3 = 2, 2f2 + 1 = 3. Since f2 = f1, the sum of these lengths
is equal to

(fp + fp−1 + · · · + f2 + f1) + 1 = (fp+2 − 1) + 1 = fp+2 = n,

all in accord with Corollary 3.5(b). Since fn = �φn/
√

5, the nearest integer to φn/
√

5,
where φ denotes the Golden ratio (1 +

√
5)/2, (see, for example, [6]), it follows that for

all sufficiently large p,

n = fp+2 =

⌊
φp+2

√
5

⌉
≥ φp.
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Hence, since h = p,

n ≥ φh ⇒ h ≤ logφ n =
ln n
ln φ
≈ 2.078 ln n

⇒ h(E(fp, fp+1)) = O(log fp+2) = O(log n).

EXAMPLE 4.1. We represent the Euclidean Fibonacci scheme Fp for p = 5 in matrix
form. Since f5 = 5 and f6 = 8, there are 5 agents labelled type 2 (A1–A5) and 8 of type
1 (A6–A13), with p = 5 stages and f7 = 13 objects in all. By Corollary 3.5(b), the halts,
which number p = 5, occur at the end of the intervals f5 = 5, 5 + f4 = 8, 8 + f3 = 10,
10 + f2 = 11 and 11 + f1 = 12.

The matrix M(F5) of the Euclidean Fibonacci 5-scheme is shown in Table 2. In all
but the final stage, the active objects form three sets, S0, S1 and S2, which feature only
one set of exchanges, which occur between S0 and S1. Initially, object Oi is worked on
by agent Ai. The columns within each stage are identical. As we pass from one stage to
the next, the objects of S0 become passive, the “old” S2 becomes the “new” S0, while
the “old” S1 splits to form the “new” S1, S2 pair. The subscript on the (i, j)th entry of
M(F5) gives the number of the agent that is working on object Oi in the jth a.u. of the
scheme F5 (and so, in respect to M(F5), the objects label the rows while the agents,
recorded as subscripts, may “move” from one column to the next).

Stage 1:

r1 = 8, r2 = 5, a = 1, r = 3, n = r1 + r2 = 13.

S(a−1) = S0, |Si| = r2 = 5, (0 ≤ i ≤ 1), |S2| = r = 3.

S0 = {O1, O2, . . . , O5}, S1 = {O6, O7, . . . , O10}, S2 = {O11,O12, O13}.

At the conclusion of Stage 1, the objects in S0 are with their set of final agents,
{A6, A7, A8, A9, A10} (see Table 2).

Stage 2:

r1 = 5, r2 = 3, a = 1, r = 2, n = r1 + r2 = 8.

S(a−1) = S0, |Si| = r2 = 3, (0 ≤ i ≤ 1), |S2| = r = 2.

S0 = {O11, O12, O13}, S1 = {O8, O9, O10}, S2 = {O6, O7}.

At the end of Stage 2, the objects in S0 are with their final agents, {A3, A4, A5} (see
Table 2).

Stage 3:

r1 = 3, r2 = 2, a = 1, r = 1, n = r1 + r2 = 5.

S(a−1) = S0, |Si| = r2 = 2, (0 ≤ i ≤ 1), |S2| = r = 1.

S0 = {O6, O7}, S1 = {O8, O9}, S2 = {O10}.

At the end of Stage 3, the objects in S0 are with their final agents, {A11, A12}.
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TABLE 2. Matrix for the Fibonacci scheme F5.

5 8 10 11 12

O1 01 01 01 01 01 16 16 16 16 16 16 16 16
O2 02 02 02 02 02 17 17 17 17 17 17 17 17
O3 03 03 03 03 03 18 18 18 18 18 18 18 18
O4 04 04 04 04 04 19 19 19 19 19 19 19 19
O5 05 05 05 05 05 110 110 110 110 110 110 110 110
O6 16 16 16 16 16 01 01 01 01 01 111 111 111
O7 17 17 17 17 17 02 02 02 02 02 112 112 112
O8 18 18 18 18 18 03 03 03 111 111 01 01 113
O9 19 19 19 19 19 04 04 04 112 112 02 113 01
O10 110 110 110 110 110 05 05 05 113 113 113 02 02
O11 111 111 111 111 111 111 111 111 03 03 03 03 03
O12 112 112 112 112 112 112 112 112 04 04 04 04 04
O13 113 113 113 113 113 113 113 113 05 05 05 05 05

Stage 4:

r1 = 2, r2 = 1, a = 2, r = 0, n = r1 + r2 = 3.

S(a−1) = S0 ∪ S1, |Si| = r2 = 1, (0 ≤ i ≤ 2).

S0 = {O10}, S1 = {O9}, S2 = {O8}.

At the end of Stage 4, the object in S0 is with its final agent, A2.

Stage 5:

r2 = r1 = 1, a = 1, r = 0, n = r1 + r2 = 2.

S(a−1) = S0, |Si| = r2 = 1, (0 ≤ i ≤ 1).

S0 = {O8}, S1 = {O9}.

After the final exchange of Stage 5, the objects in S0 and S1 are with their respective
final agents, A13 and A1. This completes the example.

REMARK 4.2 (Halting number of generic Euclidean examples). The halting number
of the Euclidean scheme based on two successive Fibonacci numbers that sum to n is
of order O(ln n), while at the other extreme, the only optimal scheme S when r1 = n
and r2 = 1 has a halting number of h(S) = n − 1.

For a given positive integer n, the expected halting number is the mean number
of subtractions in the Euclidean algorithm for two relatively prime integers r2 < r1
such that r1 + r2 = n. The mean number of lines in the Euclidean algorithm in this
case is certainly of order O(ln n), and indeed much more precise statements are known
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(see [5], which cites [3]). General considerations suggest that the mean halt number
for such a pair (r1, r2) is then O((ln n)2) [2], but this has not been proved.

The question may be formulated as asking for the expected sum of the coefficients
of the continued fraction expansion of a/(n − a) for a drawn at random from 1, . . . , n/2
(and restricted to be coprime to n). From the Gauss–Kuzmin distribution [7] and the
St Petersburg paradox analysis, Tao comments in [2] that it is reasonable to expect the
answer to be O((ln n)2), though rigorous analysis may be difficult.

4.3. Production times with allowance for handovers Consider again the m = 2
case with timings t1 = 1 for a set of r1 agents, and t2 = T � 1 for a set of r2 agents. The
optimal production time is

H = n
(
r1 +

r2

T

)−1
=

nT
r1T + r2

. (4.1)

We now make allowance for a time interval, the halting time, of length ε > 0 for each
halt during a scheme and an initial loading time of ε also. For Cn, the total production
time C is then

C =
nT

r1T + r2
+ nε. (4.2)

Applying (4.2) to Example 4.1, taking T = 2 and ε = 0.005, we have to five
significant figures that the harmonic optimum time is

H =
13 × 2

8 × 2 + 5
=

26
21
= 1.2381.

This compares with the production times C of C13 and E of the Euclidean scheme:

C = H + 13ε = 1.3031, E = H + 6ε = 1.2681.

The excess percentages over the harmonic optimum are respectively 5.3% and 2.4%.
Applying (4.2) to Example 3.6, however, again taking T = 2 and ε = 0.005, to five

significant figures,

H =
233 × 2

180 × 2 + 53
= 1.1283; C = H + 233ε = 2.2933.

Hence, with an exchange period ε equal to 18 seconds, we have for C233 an increase in
production time above the harmonic optimum of 103%. In contrast, with the Euclidean
scheme, we calculated h(E(53, 180)) = 17, so that the build time E of E(53, 180) is

E = H + 18ε = H + 0.09 = 1.2183,

which represents an increase of only 8% above the harmonic optimum. This suggests
that with a generic example involving nonzero exchange times, the Euclidean scheme
is much more efficient that the n-cyclic scheme.

4.4. Comparison with the Biker-hiker problem As mentioned in Section 1, in
the m = 2 case, the n-object problem with k machines corresponds to the Biker-hiker
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problem with k bicycles and n travellers where the bicycles may move instantaneously
from their current staging post to any other. It follows that the time of an optimal
scheme where this superpower may be exploited must be less than the least time
possible in the original setting.

It transpires that for the Biker-hiker problem, in any optimal solution, each traveller
covers exactly k/n of the distance of the journey on the faster mode of transport (the
bicycle), while in our n-object problem with k faster agents, each object spends exactly
k/n of the total journey time with faster agents (remembering that when m = 2, all
optimal schemes are uniform). In the Biker-hiker case, the time taken cycling will be
less than k/n of the total scheme time just because cycling beats walking, and so will
cover the k/n distance in less than that proportion of the total time.

This is confirmed by comparing the formulae for the optimal times. From (4.1), we
see that if there are r1 agents of one completion time, which we take to be 1, and r2 of
another time T, then the optimal time is

nT
r1T + r2

.

This holds whether or not the first agent type is the faster of the two. The time required
to execute an optimal scheme for the Biker-hiker problem is

r1 + r2T
n

.

(It may be noted that the lesser time of 1 and T must apply to bicycle travel.
The opposite scenario corresponds to broken bicycles that impede the progress of
a traveller obliged to walk them along. In this case, the optimal completion time is
simply the time taken to complete the journey with a broken bicycle, and this is the
same for any positive value of k, the number of bikes.)

We then expect the first of these two expressions to be less than the second.
Simplifying this inequality shows it to be equivalent to (T − 1)2 > 0, which is true
as T � 1.

4.5. Euclidean scheme is greedy The Euclidean scheme represents a greedy
algorithm in that the process is never halted unless continuation would result in some
object exceeding its quota of agent type for an (optimal) uniform scheme.

We show that if the greedy principle is adopted to give a scheme S, we are
effectively forced into the Euclidean scheme. After r2 a.u., the set S0 of objects being
worked on by the members of the set of type-2 agents reach their type-2 quota, and
so the process must halt. The members of S0 are then exchanged with a subset T0 of
objects being worked on by type-1 agents. The Euclidean directive, however, is not the
only possible continuation of our greedy scheme S.

Let O denote the n-set of objects. In general, an exchange of a greedy scheme S
acts a permutation π : O → O subject to the constraint that S0π ∩ S0 = ∅. For E(r1, r2),
this permutation π has the additional property that S0π

2 = S0, while leaving all other
objects fixed. However, in both E(r1, r2) and S, there is a set of r2 objects that have
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completed their type-2 quota and which are now assigned to type-1 agents, there is a
set of r2 objects that have been worked on for r2 a.u. by type-1 agents and which now
are assigned to type-2 agents, while the remainder of the objects have been worked on
by type-1 agents for r2 a.u. and remain assigned to type-1 agents. The outcome from
both schemes is therefore identical up to the numbering of the agents in that there is
a permutation ′ of O such that for each O ∈ O, at any time point in the execution of
the schemes E and S, O in scheme E and O′ in scheme S have been worked on for
the same length of time by type-2 agents (and hence also by type-1 agents). Moreover,
this equivalence will persist as we pass to subsequent exchanges and stages provided
we adhere to the greedy principle of never halting until forced to so as not to exceed
type quotas of objects. Therefore, we may identify any scheme based on the greedy
principle with the Euclidean scheme E(r1, r2).

It remains to be determined however if an approach based on the greedy principle
is effective for the general n-object problem when m ≥ 3.
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