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Abstract

Investing in real estate offers significant benefits, such as diversification and potential long-

term appreciation, making it an attractive option compared to stocks and bonds. However,

direct investments in real estate often require substantial capital, which is a barrier for many

individual investors. To overcome this, investors often use Real Estate Investment Trusts

(REITs), which allow for indirect investment in real estate through shares in companies that

own income-generating properties.

This study examines the added value of including real estate in a diversified investment port-

folio, utilising innovative methods to optimise asset allocation. Instead of relying on historical

data, it employs machine learning algorithms (such as Linear Regression, Support Vector

Regression, k-Nearest Neighbours, Extreme Gradient Boosting, and LSTM Neural Networks)

to predict future asset prices. The study also incorporates Technical Analysis Indicators (TAIs)

to further improve predictive accuracy.

Furthermore, a Genetic Algorithm (GA) is used to determine optimal portfolio weightings,

considering the expected returns and risks of each asset class. The study compares the

performance of portfolios constructed using price predictions with those based on historical

data, assessing diversification benefits and risk-adjusted returns.

Overall, by integrating machine learning techniques, technical analysis, and optimisation al-

gorithms, the study aims to demonstrate the potential advantages of including real estate

investments in a diversified portfolio, enabling investors to make more informed decisions and

improve their investment outcomes.
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Chapter 1

Introduction

1.1 Motivation and Objectives

The motivation behind this research lies in the crucial role of optimising portfolios that in-

corporate real estate within the finance domain [1]. Achieving an optimal asset allocation is

fundamental for minimising risk and maximising returns in investment portfolios [2], with real

estate serving as a key option for diversification alongside traditional asset classes such as

stocks, bonds, and cash.

Various studies have explored the benefits of investing in real estate [3, 4, 5], including risk

reduction and diversification opportunities through correlations between real estate and other

asset classes [6]. Additionally, real estate investments have demonstrated effectiveness as

inflation hedges [7] and have shown potential for enhancing risk-adjusted returns due to their

low correlation with traditional assets [8].

Real Estate Investment Trusts (REITs) provide investors with exposure to real estate markets

without the need for direct property ownership. Research consistently highlights the diversi-

fication benefits of incorporating REITs into portfolios, given their low correlations with stocks

and bonds and potential for improving risk-adjusted returns [9].

Despite these advantages, optimising portfolios that include real estate presents challenges,

particularly in accurately predicting REIT prices and determining optimal asset weights. While

machine learning algorithms have been applied to predict REIT prices, the literature predomin-

antly focuses on neural networks. This research aims to explore alternative machine learning

techniques for predicting REIT prices and optimising mixed-asset portfolios that include real

estate.

Furthermore, the study explores the incorporation of Technical Analysis Indicators (TAIs) to

improve prediction accuracy and evaluates portfolio performance metrics such as the Sharpe

ratio, returns, and risk. Ultimately, the research aims to provide valuable insights into the

diversification benefits of adding real estate to a multi-asset portfolio and offers guidance for

investors seeking resilient investment strategies.

1
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In addition to individual algorithm applications, several studies have compared machine learn-

ing algorithms to ARIMA for REIT return prediction. Noteworthy examples include the use

of artificial neural networks and multiple variables [10, 11, 12]. Our research contributes to

this field by exploring alternative machine learning techniques for predicting REIT prices,

expanding beyond the prevalent use of neural networks in the current literature.

The price predictions generated by our machine learning algorithms serve as inputs for op-

timising a multi-asset portfolio that includes REITs. We employ a genetic algorithm (GA)

to determine optimal weights for assets based on return and risk parameters derived from

Modern Portfolio Theory (MPT) concepts [13, 14, 15]. Our main objective is to demonstrate

that utilising machine learning price predictions results in enhanced portfolio performance.

We evaluate key financial metrics such as the Sharpe ratio, returns, and risk and compare the

outcomes with two benchmarks.

In conclusion, our study involves a comprehensive comparison of portfolios based on price

predictions, aiming to demonstrate the diversification benefits of adding real estate to a multi-

asset portfolio. By evaluating accuracy, profitability, and risk, we provide a comprehensive

view of portfolio performance, emphasising the potential advantages of integrating real estate

assets for investors seeking a well-balanced and resilient investment strategy.

1.2 Novelty of Research

The novelty of this research lies in its comprehensive approach to optimising portfolios that

include real estate assets. While previous studies have explored the benefits of real estate

investments and the use of machine learning for price prediction, this research introduces

several innovative elements.

Firstly, the study adopts a two-step approach, focusing on both predicting REIT prices us-

ing machine learning algorithms [16, 17] and optimising portfolio allocation using a genetic

algorithm [13, 14, 15]. This integrated approach allows for a more holistic assessment of

portfolio management strategies.

Secondly, the research explores alternative machine learning techniques beyond the prevalent

use of neural networks for REIT price prediction. By evaluating the performance of various

algorithms such as Ordinary Least Squares Linear Regression, Support Vector Regression, k-

Nearest Neighbours Regression, Extreme Gradient Boosting, and Long/Short-Term Memory

Neural Networks, the study contributes to a deeper understanding of the most effective meth-

ods for predicting REIT prices [16, 17, 10, 11, 12].
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Thirdly, the incorporation of Technical Analysis Indicators (TAIs) to enhance prediction accur-

acy represents a novel extension of the already used machine learning approaches [2]. By

integrating TAIs into the prediction process, the study seeks to improve the reliability of price

forecasts and subsequently optimise portfolio allocation more effectively.

Lastly, the evaluation of portfolio performance metrics such as the Sharpe ratio, returns, and

risk provides a comprehensive assessment of the diversification benefits of including real

estate in multi-asset portfolios. By comparing portfolios based on price predictions with those

optimised using traditional methods, the research offers valuable insights into the potential

advantages of integrating real estate assets into investment strategies [18, 19, 20].

In summary, the study’s novelty lies in its approach to portfolio optimisation, involving innov-

ative techniques for REIT price prediction, integration of Technical Analysis Indicators, and

comprehensive evaluation of portfolio performance metrics. Through these contributions, the

research aims to advance understanding in the field of real estate investment and portfolio

management.

1.3 Thesis Structure

The remainder of this thesis is structured as follows. Chapter 2 presents an overview of finan-

cial markets, including the real estate, stock, and bond market, of the Modern Portfolio Theory

(MPT). We also present an overview of machine learning algorithms used in this thesis, both

for optimisation – i.e., genetic algorithm – and regression – i.e., Ordinary Least Squares Linear

Regression (LR), Support Vector Regression (SVR), eXtreme Gradient Boosting (XGBoost),

Long/Short-Term Memory Neural Networks (LSTM), and k-Nearest Neighbours Regression

(KNN). Chapter 3 presents a literature review of different portfolio optimisation techniques

adopted in previous studies, including those regarding real estate investments, and financial

forecasting methods. Chapter 4 presents an exploratory analysis that aims at demonstrating

the potential improvement of a portfolio performance that comes from incorporating price

predictions (instead of historical data) in the portfolio optimisation problem. Chapter 5 presents

the second contribution of this thesis, which refers to the regression techniques adopted in

order to predict the prices of REITs, stocks, and bonds. In that way, we demonstrate the

importance of using machine learning algorithms rather than other methods, including Holt’s

Linear Trend Method (HLTM), Trigonometric Box-Cox Autoregressive Time Series (TBATS),

and Autoregressive Integrated Moving Average (ARIMA), in order to improve the accuracy of

predictions. Our study aimed to determine if this approach results in better portfolio perform-

ance compared to using historical data for optimising the weights of a mixed-asset portfolio

that includes REITs. Chapter 6 presents further experimental findings regarding the inclusion

of additional features in the form of Technical Analysis indicators (TAIs) in order to improve

the accuracy of financial time series, and thus the risk-adjusted performance of a mixed-asset
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portfolio. Chapter 7 compares the performance of two mixed-asset portfolios built using price

predictions obtained from TAIs, one including real estate and one not including it. In that

way, we again demonstrate the added value of real estate investments in the context of a

prediction-based, mixed-asset portfolio. Finally, Chapter 8 concludes the thesis and presents

suggestions for further research.
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Chapter 2

Background Information

2.1 Introduction

In this chapter, we provide background information about financial markets (Section 2.2), the

Modern Portfolio Theory (Section 2.3), and machine learning algorithms (Section 2.4). The

financial markets considered in this study are the real estate market (Section 2.2.1), the stock

market (Section 2.2.2), and the bond market (Section 2.2.3). On the other side, since we aim

to optimise a multi-asset portfolio made of real estate investments, stocks, and bonds, we

add an explanation of the Modern Portfolio Theory (MPT). Finally, the machine learning (ML)

algorithms used in this study are the genetic algorithm (used for optimisation), explained in

Section 2.4.1, and other supervised learning algorithms used for regression (Section 2.4.2),

including Ordinary Least Squares Linear Regression, Support Vector Regression, k-Nearest

Neighbours Regression, Extreme Gradient Boosting, and Long/Short-Term Memory Neural

Networks.

2.2 Financial Markets

Financial markets are virtual places where individuals, institutions, and governments exchange

financial instruments, including stocks, bonds, currencies, commodities, derivatives, and real

estate. Their goal is to facilitate the transfer of funds between borrowers and lenders, investors

and issuers, and buyers and sellers. They play a crucial role in the global economy by provid-

ing tools for capital allocation, risk management, and pricing of financial instruments[27].

Financial markets can be categorised into primary markets, where new securities are issued

and sold for the first time, allowing government entities and businesses to raise capital, and

secondary markets, where previously issued securities are traded among investors. Second-

ary markets are generally more liquid, allowing investors to buy and sell financial securities

easily [28].

5
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Some of the primary asset classes traded within financial markets include stocks, bonds, and

real estate [27]. Stock markets provide a platform for the purchase and sale of shares of

publicly traded companies, while bond markets facilitate the issuance and trading of debt

securities [28]. Real estate markets, on the other hand, involve the acquisition, disposal,

and rental of various types of properties, encompassing land, residential homes, commercial

buildings, and other real estate assets [29].

The following sections describe in detail each of the above-mentioned financial markets.

Specifically, Section 2.2.1 examines the factors influencing real estate markets, the role they

play in the economy, and the participants involved in real estate transactions; Section 2.2.2

defines the stock exchanges, market participants, trading strategies, and factors affecting

stock prices; and Section 2.2.3 provides an in-depth analysis of bond markets, including

different types of bonds, yield curves, bond pricing, and risk factors associated with fixed

income investments.

2.2.1 The Real Estate Market

Real estate markets refer to the virtual places where the buying, selling, and leasing of

properties take place [30]. There are different types of real estate assets traded, such as

residential homes, commercial buildings, land, and different kinds of properties [31]. Parti-

cipants in real estate markets include individuals, investors, developers, real estate agents,

financial institutions, and government entities.

One of the key characteristics of real estate markets is that they are strongly tied to specific

geographic areas [30]. The value and demand for properties can vary significantly based on

factors such as their location, amenities, infrastructure quality, economic conditions, and local

market trends [30]. Real estate markets are influenced by supply and demand dynamics,

population growth, urbanisation, interest rates, and government policies related to zoning,

taxation, and regulations [32].

Real estate markets can be classified into different types based on the nature of properties

and their intended purposes. Some of the main types of real estate markets include the

following sectors.

Residential Real Estate Market. The residential market focuses on properties designed

for housing purposes, such as single-family homes, apartments, townhouses, and vacation

properties [30]. This market addresses the demand for living spaces and caters to individuals

and families seeking residential properties [30].
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Commercial Real Estate Market. The commercial market revolves around properties inten-

ded for commercial use, including office buildings, retail spaces, industrial facilities, and hotels

[31]. This market serves businesses by providing suitable spaces for various commercial

activities, such as offices, stores, and manufacturing facilities [31].

Industrial Real Estate Market. The industrial market deals with properties specifically tailored

for industrial purposes, such as warehouses, distribution centres, and manufacturing facilities

[30]. This market caters to businesses involved in logistics, storage, and production, meeting

their specific operational needs [30].

Retail Real Estate Market. The retail market focuses on properties used for retail activities,

including shopping malls, strip malls, and standalone stores [31]. This market addresses the

requirements of retailers and businesses involved in direct consumer sales, offering spaces

for showcasing products and attracting customers [31].

Office Real Estate Market. The office market primarily deals with office spaces in commer-

cial buildings and business parks [30]. It caters to businesses seeking professional work

environments, including corporate offices, co-working spaces, and administrative facilities

[30].

Hospitality Real Estate Market. The hospitality market encompasses properties designed for

accommodation and lodging purposes, such as hotels, resorts, and vacation rentals [31]. This

market caters to the hospitality industry, providing spaces for travellers and tourists seeking

temporary stays [31].

Agricultural Real Estate Market. The agricultural market involves properties utilised for ag-

ricultural activities, including farmland, vineyards, and ranches [30]. This market serves agri-

cultural businesses and individuals involved in farming, crop production, and livestock rearing

[30].

Specialised Real Estate Markets. Specialised real estate markets are tailored to specific

niche segments within the broader real estate industry, such as healthcare real estate (hos-

pitals, medical centres), educational real estate (schools, universities), senior housing, and

self-storage facilities. These focused markets are designed to meet the various needs and

preferences of particular sectors, ensuring that properties are customised to their specific

requirements [31].
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Real Estate Investment Trusts

An investor can gain exposure to real estate markets either in a direct or indirect way [33]. Dir-

ect real estate investments involve individuals or entities acquiring properties directly, either as

sole owners or in partnership with others [33]. This form of investment provides investors with

direct ownership and control over the property. Investors hold the responsibility for property

management, including tasks such as maintenance, tenant acquisition, and rental income col-

lection. Direct real estate investments offer the potential for higher control and customisation,

allowing investors to make decisions regarding property operations and value-add initiatives

[31]. However, direct real estate investments require a significant amount of capital, time, and

expertise for property acquisition, management, and dealing with associated risks [33].

On the other hand, indirect real estate investments involve investing in real estate through

intermediaries such as Real Estate Investment Trusts (REITs), real estate funds, or real estate

partnerships [34]. In this approach, investors contribute capital to the investment vehicle,

which then pools funds from multiple investors to invest in a portfolio of properties. Indirect

investments provide investors with an opportunity to participate in the real estate market

without the need for direct property ownership or management responsibilities [35]. Investors

in indirect real estate investments typically receive returns in the form of dividends, rental

income, or capital appreciation based on the performance of the overall portfolio [34]. This

form of investment offers diversification benefits as investors gain exposure to a wider range of

properties and property types, potentially reducing risk compared to a single direct investment

[35]. Indirect investments also provide liquidity as investors can buy or sell shares of REITs or

units of real estate funds on stock exchanges or through secondary markets [31].

This research focuses on REITs as a kind of real estate investment. The reason for this choice

is that they provide the opportunity to diversify an investment portfolio, and at the same time,

they might be seen as affordable by most investors (both institutional and retail). By analysing

the performance of REITs, this study aims at providing insights into how REITs can contribute

to a well-diversified investment portfolio while also being accessible and affordable to a wide

range of investors.

According to a definition provided by [35], REITs are investment vehicles that allow individuals

to invest in real estate without the need for direct property ownership or management. REITs

function as publicly traded companies or trusts that pool capital from multiple investors to ac-

quire, develop, and manage a diversified portfolio of income-generating real estate properties.



2.2. Financial Markets 9

Investing in REITs offers several benefits. Firstly, REITs provide a liquid investment option

as their shares are traded on stock exchanges, enabling investors to easily buy or sell their

holdings [35]. This liquidity makes it convenient for investors to access their capital when

needed. Secondly, REITs offer a way to diversify real estate investments across different

property types and geographic locations [36]. By investing in a REIT, individuals can gain

exposure to a broad range of real estate assets, reducing risk through diversification.

One key aspect of REITs is their requirement to distribute a significant portion of their taxable

income to shareholders [35]. This mandatory distribution is advantageous for investors, as it

typically results in regular income in the form of dividends. Furthermore, REITs can provide

attractive dividend yields, making them an appealing investment option for income-oriented

investors.

REITs can focus on various property sectors, including residential, commercial, industrial, or

specialised segments such as healthcare or hospitality [35]. Each REIT may have a specific

investment strategy and property focus, allowing investors to choose REITs that align with

their investment preferences and goals.

It is important for investors to carefully evaluate REITs before investing, considering factors

such as the REIT’s track record, management expertise, portfolio quality, and financial per-

formance. Additionally, investors should be mindful of the potential risks associated with REIT

investments, including fluctuations in real estate markets, interest rate changes, and general

market volatility.

2.2.2 The Stock Market

Stock markets are centralised platforms where the buying and selling of shares of publicly

traded companies occur. They provide investors with opportunities to participate in the own-

ership of companies and benefit from their financial performance and growth. Stock markets

facilitate the trading of stocks, also known as equities or shares, which represent ownership

interests in businesses [37]. Examples of prominent stock exchanges include the New York

Stock Exchange (NYSE) and the NASDAQ [38].

Several types of market participants engage in stock market activities. Individual investors,

such as retail traders, buy and sell stocks directly through brokerage accounts. Institutional

investors, including mutual funds, pension funds, and hedge funds, manage large amounts of

money on behalf of their clients and often have significant influence on stock prices. Market

makers, typically brokerage firms, facilitate trading by providing liquidity in the market [39].
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One of the primary functions of stock markets is to enable companies to raise capital for

expansion and investment. By issuing shares to the public through initial public offerings

(IPOs) or subsequent offerings, companies can access funding from investors who are willing

to purchase these shares [40]. This capital injection allows companies to finance projects,

research and development, acquisitions, and other activities that drive growth.

Investors participate in stock markets with various objectives. Some seek long-term capital

appreciation by investing in stocks they believe will increase in value over time, while others

focus on generating regular income through dividends paid by profitable companies [41].

Additionally, stock markets provide opportunities for traders who aim to profit from short-term

price fluctuations, employing strategies such as day trading or technical analysis.

Various trading strategies are employed by market participants to generate profits. Day trad-

ing involves executing multiple trades within a day to take advantage of short-term price

fluctuations. Value investing focuses on identifying undervalued stocks with the potential for

long-term growth. Momentum trading aims to profit from the continuation of trends in stock

prices. Arbitrage involves taking advantage of price discrepancies between different markets

or securities [42].

Stock markets are subject to various factors that influence their dynamics and performance.

Economic indicators, geopolitical events, industry trends, and company-specific news can

significantly impact stock prices. Market participants analyse financial statements, company

performance metrics, and macroeconomic data to make informed investment decisions [43].

Trading in stock markets takes place on organised exchanges, such as the New York Stock

Exchange (NYSE) or the NASDAQ, where buyers and sellers come together to execute

trades. The advent of electronic trading has revolutionised stock markets, allowing for faster

and more efficient transactions [44].

Investors can choose to invest in individual stocks or opt for diversified exposure through

mutual funds, exchange-traded funds (ETFs), or index funds. These investment vehicles pool

funds from multiple investors and allocate them to a diversified portfolio of stocks, providing

broader market exposure and risk mitigation [41].

It is important for investors to carefully evaluate their investment objectives, risk tolerance, and

time horizon when participating in stock markets. While stock market investments offer poten-

tial rewards, they also come with inherent risks, including price volatility, market fluctuations,

and the possibility of losing invested capital [37]. Conducting thorough research, diversifying

investments, and staying informed are crucial for navigating stock markets effectively.
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Several factors influence stock prices, making them fluctuate over time. Economic indicators,

such as GDP growth, interest rates, and inflation, have a significant impact on stock prices as

they reflect the overall health of the economy. Company-specific factors, including earnings

reports, product launches, and management changes, can lead to substantial price move-

ments. Market sentiment, influenced by news, investor behaviour, and market psychology,

also affects stock prices [45].

2.2.3 The Bond Market

Bond markets are platforms where investors buy and sell bonds, which are fixed income secur-

ities. Bonds are debt instruments issued by governments, municipalities, and corporations to

raise capital. They typically have a specified maturity date and pay periodic interest payments

to bondholders. The bond market enables investors to diversify their portfolios and provides

issuers with a means to borrow funds [46].

There are various types of bonds available in the bond market. Government bonds, such as

U.S. Treasury bonds, are issued by national governments and are considered low-risk invest-

ments. Municipal bonds are issued by state and local governments to fund public projects,

and they offer tax advantages to investors. Corporate bonds are issued by companies to raise

capital and can vary in terms of credit quality and risk. Other types include mortgage-backed

securities and high-yield bonds, which carry higher risks but potentially higher returns [47].

The yield curve represents the relationship between bond yields and their respective matur-

ities. It plots the interest rates (yields) of bonds with similar credit quality against their time

to maturity. The yield curve can be upward sloping (normal), downward sloping (inverted), or

flat, indicating different market expectations and economic conditions. Yield curve analysis

provides insights into market expectations for future interest rates and economic growth [48].

Bond pricing involves determining the fair value of a bond based on its characteristics and

prevailing market conditions. The price of a bond is influenced by factors such as its coupon

rate, time to maturity, prevailing interest rates, and credit risk. Bond prices and yields have

an inverse relationship, meaning when interest rates rise, bond prices generally fall, and vice

versa. Bond pricing models, such as the present value model, take into account these factors

to calculate the bond’s value [49].

Fixed income investments, including bonds, are subject to several risk factors. Credit risk

refers to the risk of default by the issuer, where the bondholder may not receive full interest

payments or principal repayment. Interest rate risk arises from changes in market interest

rates, impacting the bond’s price. Liquidity risk relates to the ease of buying or selling bonds

in the market. Other risks include inflation risk, currency risk (for international bonds), and call

risk (when bonds are callable before maturity) [50].
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2.3 Modern Portfolio Theory

Modern portfolio theory (MPT) is a framework for building and managing investment portfolios,

based on the idea that investors can minimise risk for a given level of expected return by

diversifying their investments across a range of asset classes [51]. The theory suggests that

an investor can minimise risk by spreading their investments across different asset classes,

such as stocks, bonds, and real estate, rather than investing in a single asset class. MPT uses

the mean-variance analysis to measure risk and return [52].

MPT assumes that investors are rational and risk-averse, meaning that they prefer less risk

for a given level of return [53]. This assumption reflects the belief that investors are logical

decision-makers who carefully evaluate the risk and return characteristics of different invest-

ment opportunities. By incorporating this assumption, MPT aims to provide a framework that

aligns with the preferences and behaviours of rational investors.

The theory has been widely used in the investment industry for portfolio construction and

management. Its emphasis on diversification and the efficient frontier has helped investors

optimise their portfolios by achieving an optimal balance between risk and return. MPT’s

systematic approach to portfolio construction has provided investors with a structured method

for making investment decisions and managing their assets.

However, MPT has also faced criticism for its underlying assumptions. One of the key critiques

is that MPT assumes that returns follow a normal distribution. In reality, financial markets are

known to exhibit characteristics such as fat tails, skewness, and volatility clustering, which

challenge the assumption of normality. This limitation implies that MPT may not fully capture

the extreme events and risks that can occur in the financial markets.

Additionally, the assumption of rationality and risk aversion has been questioned [54]. Some

researchers argue that investors may not always behave rationally and that their risk prefer-

ences can vary depending on individual circumstances and market conditions. This critique

highlights the limitations of MPT in capturing the complexities of human behaviour and emo-

tions in the investment decision-making process.

Despite these criticisms, MPT has made significant contributions to the field of portfolio man-

agement. Its concepts and techniques have laid the foundation for modern portfolio construc-

tion and risk management practices [55]. Over time, researchers have proposed modifications

and extensions to address the limitations of MPT, such as incorporating alternative risk meas-

ures and considering non-normal return distributions. These efforts continue to enhance our

understanding of portfolio management and contribute to the development of more robust

investment strategies.
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In MPT, the two key factors used for making investment decisions are the expected portfolio

return and the expected portfolio risk. The expected return of an asset is the average return

that an investor expects to receive from that asset over a specific period of time. The expected

return of a portfolio is calculated by weighing the potential return of each asset in the portfolio

by the percentage of the portfolio invested in each asset [51].,

The formula for calculating the expected return of a portfolio can be represented as:

E[Rp] =
n

∑
i=1

wiE[Ri] (2.1)

where: E[Rp] is the expected return of the portfolio; n is the number of assets in the portfolio;

wi is the weight of the ith asset in the portfolio; and E[Ri] is the expected return of the ith

asset.

In addition to the expected return, MPT also considers the expected portfolio risk which

plays a crucial role in determining optimal investment choices. It represents the uncertainty

or potential variability of investment returns, and is commonly measured by the standard

deviation of asset or portfolio returns, which estimates the dispersion of possible outcomes. A

lower standard deviation suggests lower risk, while a higher standard deviation implies greater

potential volatility.

The formula for calculating the expected risk of a portfolio can be represented as:

σp =

√
n

∑
i=1

n

∑
j=1

wiw jσiσ jρi, j (2.2)

where: σp is the expected risk (standard deviation) of the portfolio; w j is the weight of the jth

asset in the portfolio; σi is the standard deviation of the ith asset; σ j is the standard deviation

of the jth asset; and ρi, j is the correlation coefficient between assets i and j.

In MPT, correlations between assets are important in determining the optimal portfolio for

an investor. Correlation is a measure of the strength and direction of the linear relationship

between two variables, and in MPT, it is used to measure the degree to which the returns of

two assets move together [51].

The formula for calculating the correlation between two assets can be represented as:

ρi, j =
cov(Ri,R j)

σiσ j
, (2.3)

where cov(Ri,R j) is the covariance between the returns of assets i and j.
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In MPT, assets with a high correlation are featured by returns that generally move in the same

direction, while those with low correlation show returns that tend to move independently of

each other. Diversification in MPT is made possible by investing in assets with low correlations

to mitigate portfolio risk. In other words, investors might reduce the overall risk exposure

of their investments by constructing a diversified portfolio with assets that are not highly

correlated.

The Sharpe ratio is a key metric in MPT that evaluates the risk-adjusted return of a portfolio.

It is calculated as:

Sharpe Ratio =
E[Rp]−R f

σp
(2.4)

where: E[Rp] is the expected return of the portfolio; R f is the risk-free rate; and σp is the

standard deviation of the portfolio returns.

A higher Sharpe ratio indicates better risk-adjusted performance, suggesting that the portfo-

lio’s returns adequately compensate for the risk taken. By integrating the expected Sharpe

ratio into MPT analysis, investors aim to construct portfolios that maximise the Sharpe ratio,

thereby achieving optimal risk-adjusted returns.

In conclusion, MPT assumes that an optimal portfolio can be built using information including

the expected return, risk, and correlations between assets. The Sharpe ratio complements

these metrics by providing a measure of risk-adjusted performance, helping investors assess

and optimise their investment decisions. The goal of an investor is to maximise the expected

return for a given level of risk, or to minimise the expected risk for a given level of return.

The overall level of correlation between assets included in a portfolio determines the level of

diversification, and thus the level of risk of an investment portfolio.

2.4 Machine Learning

In this Section, we present the optimisation algorithm used in this research (Section 2.4.1),

and the regression algorithms (Section 2.4.2). Since the following chapters will deal with the

portfolio optimisation problem first, and the regression problem later, we follow the same order

in this section.
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2.4.1 ML for Optimisation

To solve our optimisation problem, we use a specific kind of evolutionary algorithm known as

genetic algorithm. Genetic algorithms (GAs) are bio-inspired algorithms that try to replicate

an evolutionary process to solve optimisation problems [13, 56, 57]. A GA operates on a

population of candidate solutions (individuals), and transforms the initial population using

genetic operators, that create new offspring individuals through a stochastic selection process

based on a fitness function, which measures the quality of the candidate solution. The fact

that GAs perform a search on a set of all possible solutions, rather than a unique candidate

solution, makes them suitable for complex optimisation problems (e.g., optimising investment

weights in a portfolio).

Representation The representation of individuals in GAs depends on the problem that one

tries to solve. Generally, individuals can be represented as either binary or numeric values.

The position of each individual in a population is known as gene, and represents a variable to

be optimised. At the initial stage of a GA, the population is composed of random individuals:

the position of each individual is assigned randomly.

Genetic Operators Genetic operators are used to transform the initial population to generate

new offspring individuals that are of higher quality with respect to the initial individuals. A

commonly used genetic operator is crossover, that combines genetic material (or genes) of

two parent individuals to generate new offspring individuals. For instance, one-point crossover

swaps genes that lie on the right of a point picked randomly, known as crossover point1. After

this process, there are two offspring individuals, each carrying some genes from both parent

individuals. In addition to crossover, GAs usually employ a mutation operator, which creates

new offspring individuals by transforming a single parent. For example, in one-point mutation,

a single point can be mutated with a probability known as mutation rate.

Elitism and Selection Selection is the phase of a GA in which individuals are selected from

an initial population for later transformation. One of the most popular methods for selection is

known as elitism, in which part of the population is selected to be part of the next generation

population based on the fitness value. In that way, the solution fitness does not decrease

from one generation to the other. The remaining individuals are then subject to a probabilistic

1. The main reason for choosing the one-point crossover methodology is to minimise the divergence of optimal
solutions. In a realistic financial portfolio, assets typically have similar allocations, so it is essential to keep extreme
weights to a minimum. To achieve this, we adopt a controlled approach by slowing down the optimisation process.
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selection for inclusion in the next generation. One of the most common ways of selection is

known as tournament selection, in which k individuals are selected randomly, where k denotes

the tournament size. From these k individuals, the best performing individual is chosen to

advance to the next generation.

2.4.2 ML for Regression

Supervised machine learning, or supervised learning, refers to machine learning algorithms

that use labelled datasets to learn a task that can be classifying data or predicting outcomes.

Once the algorithm has been trained on a dataset (called training set), the obtained mathem-

atical model is used to predict new data on an unseen dataset (called testing set). The main

types of supervised learning algorithms are known as regression and classification algorithms.

Classification trains an algorithm to assign test data into specific categories. It attempts to

recognise some data, and draw conclusions on how those data should be labelled. Some

common classification algorithms are support vector machines, random forest, and decision

trees. Regression aims to understand the relationship between dependent and independent

variables. It is commonly used to make predictions, for example on the volume of sales

for a business or on the future stock prices. In this research, our primary emphasis is on

regression algorithms. The following sections will provide an in-depth exploration of the follow-

ing algorithms: Ordinary Least Squares Linear Regression (LR), Support Vector Regression

(SVR), k-Nearest Neighbours Regression (KNN), Extreme Gradient Boosting (XGBoost), and

Long/Short-Term Memory Neural Networks (LSTM).

Linear Regression Linear Regression (LR) is an algorithm that describes the relationship

between a dependent variable and one or more independent variables. In the case of one

independent variable, the algorithm is called simple linear regression; when there is more than

one independent variable, the algorithm is called multiple linear regression. This is different

from multivariate linear regression, which involves multiple correlated dependent variables.

In LR, the relationship between dependent and independent variables is modelled using linear

predictor functions. The model parameters are estimated using an observed dataset in order

to predict the values for the dependent variable. This usually happens using the least squares

approach, which minimises the sum of residuals, or distances between actual and predicted

values for the dependent variable.

Given a dataset {yi, xi1, . . . ,xip}n
i=1 of n statistical units, a linear regression model assumes

that there is a linear relationship between the dependent variable y and a set of p independent

variables x. That model takes into account a disturbance term or error variable ε , which

denotes an unobserved random variable that adds ’noise’ to the linear model. Thus, the model

takes the form
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yi =
p

∑
i=1

βixi + ε (2.5)

where βi denotes the parameters of the model, xi refers to the set of independent variables,

and ε indicates the error variable.

Support Vector Regression The Support Vector Regression (SVR) algorithm attempts to

minimise the error inside a certain threshold, or in other words, to estimate the best value for

a variable within a given margin represented by ε .

In the context of Support Vector Regression (SVR), different kernel functions are used to

transform data points into a higher-dimensional space. Each kernel function has specific

formulations and parameters that influence its performance: Gaussian; Polynomial; and Radial

Basis Function (RBF).

The Gaussian kernel is formulated as:

KG(xi,x j,θ) = exp

(
−

ND

∑
k=1

θk|xi
k − x j

k|
2

)

where θ is a vector controlling the shape of the Gaussian kernel.

This kernel maps data points into a higher-dimensional space using a Gaussian function. The

distance between points xi and x j in this space determines their similarity.

The polynomial kernel is given by:

K(x,y) = tanh(γxT y+ c)
d

where γ > 0 is the kernel coefficient, c is an optional constant, and d is the degree of the

polynomial.

This kernel computes the similarity between points based on the polynomial transformation

of their inner product xT y. The γ parameter controls the influence of training instances on the

model’s predictions.

The RBF kernel is defined as:

K(x,y) = exp−(γ|x− y|2)

where γ is the kernel coefficient.

The RBF kernel measures the similarity between points based on the Euclidean distance

|x− y|. It is versatile in capturing complex relationships between data points.
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The sigmoid kernel is expressed as:

K(x,y) = tanh(γxT y+ r)

where γ controls the influence of input variables and r is an optional constant.

The sigmoid kernel maps data into a higher-dimensional space using a hyperbolic tangent

function. It is effective for non-linear classification tasks. The inputs x and y represent data

points in the original feature space, while the output K(x,y) denotes the computed similarity

(kernel value) between input data points x and y after transformation into a higher-dimensional

space induced by the kernel function.

Each of those functions has hyperparameters that need to be tuned to improve the model’s

performance and its generalisation capability to unseen data, including γ , c, d, and θ . For

instance, the γ parameter measures the influence of a training instance on the prediction

ability of a model: lower values for γ result in models with lower accuracy (or high error), and

the same occurs with higher values for γ . It is only in the case of intermediate values for γ that

lead to models with good decision boundaries.

K-Nearest Neighbor The K-Nearest Neighbor (KNN) algorithm identifies a specified number

k of observations in the training dataset that are closest to a given observation x. It measures

the distance between x and each observation in the dataset using different distance functions:

Euclidean Distance =

√
k

∑
i=1

(xi − yi)2

Euclidean distance calculates the straight-line distance between x and y, considering their

coordinates across multiple dimensions.

Manhattan Distance =
k

∑
i=1

|xi − yi|

Manhattan distance measures the distance between x and y along axes at right angles,

summing the absolute differences between corresponding coordinates.

Minkowski Distance =

(
k

∑
i=1

(|xi − yi|)q

)1/q

Minkowski distance is a generalised form incorporating both Euclidean (when q= 2) and Man-

hattan (when q = 1) distances. Parameter q determines the order of the Minkowski distance.
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These distance metrics are critical in KNN for determining proximity between data points,

influencing how the algorithm identifies the k nearest neighbours to make predictions or

classifications based on their labels or values. The choice of distance function depends on

the data characteristics and the specific problem context, as each metric captures different

aspects of similarity or dissimilarity between points.

Extreme Gradient Boosting Extreme Gradient Boosting (XGBoost) is a scalable, distributed

gradient-boosted decision tree machine learning library. Gradient boosting is a machine learn-

ing algorithm applied to regression, classification, and ranking problems. XGBoost algorithm

has gained popularity in the field of applied machine learning due to its ability to converge to

the optimal solution using a lower number of iterations. It is often preferred than other gradient

boosting algorithms due to to its shorter execution time, and better performance [58].

The XGBoost library can be used on different environments (e.g., Python, R, Java, C++,

command line interface, etc.). It includes parallel computation to build trees using all the

CPUs during training. Instead of traditional stopping criteria, it uses the ‘max depth’ para-

meter. This can potentially increase the computational performance with respect to the other

gradient boosting algorithms. In addition, the XGBoost algorithm is designed to avoid over-

fitting through the regularisation term.

The main parameters for the XGBoost algorithm are represented by the maximum depth and

the number of trees. The maximum depth of a tree measures the complexity of the resulting

model, and thus, the likelihood of overfitting. A null value for that parameter indicates the

absence of depth in the tree, while higher values make the tree deeper and more time-

consuming. Other parameters include learning rate, minimum child weight, and number of

boost rounds. The learning rate indicates the effect of each new decision tree on the previous

prediction. The minimum child weight determines whether to split a note in a tree. The number

of boost rounds refers to the number of decision trees trained. The optimal parameter values

are decided on the basis on the loss function through an optimal solution search represented

below.

Ob j(t) =
t

∑
i=1

L(yi, ŷi)+
t

∑
i=1

Ω( fi), (2.6)

where yi is the observed value, ŷi is the predicted value, L(yi, ŷi) is the loss function, and

Ω( fi) is the regularisation term, which helps to prevent overfitting by penalizing the complexity

of each tree fi.
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Long Short Term Memory Long Short Term Memory (LSTM) is a type of Recurrent Neural

Network (RNN) designed to capture long-term dependencies in sequential data. It consists of

several key components: a cell state Ct , an input gate it , a forget gate ft , and an output gate

ot .

The input gate it determines which values from the input xt and the previous hidden state ht−1

are used to update the cell state Ct :

it = σ(Wi[ht−1,xt ]+bi), (2.7)

where σ denotes the sigmoid function, Wi is the weight matrix for the input gate, and bi is the

bias.

The cell state Ct is updated using the hyperbolic tangent function tanh:

Ct = tanh(Wc[ht−1,xt ]+bc), (2.8)

where tanh denotes the hyperbolic tangent function, Wc is the weight matrix for the cell state

update, and bc is the bias.

The forget gate ft controls what information to discard from the cell state Ct−1:

ft = σ(Wf [ht−1,xt ]+b f ), (2.9)

where σ denotes the sigmoid function, Wf is the weight matrix for the forget gate, and b f is

the bias.

The output gate ot regulates the information that is passed to the output ht :

ot = σ(Wo[ht−1,xt ]+bo), (2.10)

where σ denotes the sigmoid function, Wo is the weight matrix for the output gate, and bo is

the bias.

The output ht is computed by combining the cell state Ct weighted by ot using the hyperbolic

tangent function tanh:

ht = ot · tanh(Ct). (2.11)

In summary, Ct represents the cell state, it , ft , and ot denote the input, forget, and output gates

respectively, and σ and tanh are the sigmoid and hyperbolic tangent functions, respectively.

Wi,Wc,Wf , and Wo are weight matrices associated with each gate, and bi,bc,b f , and bo are

their respective biases.



Chapter 3

Literature Review

3.1 Introduction

This thesis aims to evaluate the additional value brought by real estate investments in a

mixed-asset portfolio comprising stocks and bonds. In contrast to existing literature, which

predominantly relies on historical data for optimising portfolios with real estate, this study

employs price predictions for these three asset classes. This chapter provides a review of

the literature about portfolio optimisation techniques involving stocks, bonds, and real estate

(Section 3.2), and financial forecasting for each of those asset classes (Section 3.3). The

aim of this chapter is to analyse the amount of work that has been done on various portfolio

optimisation techniques - i.e., linear programming (LP), quadratic programming (QP), nonlin-

ear programming (NLP), stochastic programming, and genetic algorithm (GA) - on one side;

and the financial forecasting techniques - i.e., time series models, econometric methods, and

machine learning algorithms - on the other side.

3.2 Portfolio Optimisation

In this section, we explore the techniques that have been utilised for portfolio optimisation

in the case of stock, bond, and real estate investments. Specifically, we will analyse the

mathematical models used in solving portfolio optimisation problems (Section 3.2.1). Since

the focus of this research is on investment portfolios including real estate, the second part of

this paragraph will explain the current literature about the portfolio optimisation techniques in

the case of real estate investments 3.2.2.

21
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3.2.1 Portfolio Optimisation Techniques

The mathematical models used for portfolio optimisation include: linear programming (LP),

quadratic programming (QP), nonlinear programming (NLP), stochastic programming, and

the genetic algorithm (GA). In the following paragraphs, we describe these models in detail.

Moreover, this section explores their use in relation to the real estate asset class (which is the

focus of this research).

Linear Programming (LP). LP is a mathematical optimisation technique used in portfolio

optimisation to determine the optimal allocation of assets within a portfolio. It involves formu-

lating the problem as a linear objective function, which seeks to either minimise or maximise

a certain outcome, such as the portfolio’s overall return or risk-adjusted return. This objective

function is subject to a set of linear constraints that reflect various limitations and require-

ments. In their study, [59] proposed a robust LP model for portfolio optimisation under uncer-

tain conditions, incorporating risk-return analysis to enhance stability and performance. This

approach addresses the challenge of managing portfolios in volatile markets by integrating

uncertainty directly into the optimisation process. Similarly, [60] employed a linear objective

optimisation approach to mitigate investment portfolio risk. Their study highlights how LP

can be employed to systematically reduce risk exposure while maintaining targeted levels

of return. In another work, [61] compared an LP-based portfolio with a benchmark portfolio,

and demonstrated that the former outperformed the latter in terms of Sharpe ratio. This finding

underscores the effectiveness of LP in achieving superior risk-adjusted returns compared to

traditional investment strategies. In a different application, [62] applied LP to address an asset

allocation problem in the case of real estate investments. Their study shows how LP tech-

niques can be tailored to optimise allocation within specific asset classes. In summary, these

studies confirm the effectiveness of LP in portfolio optimisation by leveraging mathematical

optimisation techniques to enhance decision-making processes under uncertainties.

Quadratic Programming (QP). QP extends LP by allowing quadratic objective functions

and linear constraints. QP can capture additional portfolio objectives or constraints, such as

transaction costs or tracking error minimisation, in addition to the mean-variance trade-off. In

their study, [63] proposed a parallel variable neighbourhood search algorithm combined with

quadratic programming to solve cardinality-constrained portfolio optimisation problems. Their

approach demonstrated effective optimisation capabilities in balancing portfolio constraints

and objectives. Similarly, [64] adopted a double roulette wheel selection along with QP to

solve portfolio optimisation problems under cardinality constraints. Their algorithm achieved
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superior accuracy and computational efficiency compared to state-of-the-art methods. Other

studies, such as [65], used QP to model the cardinality constraints of a portfolio optimisation

problem, resulting in reduced computational time and improved evaluation metrics. [66, 67]

used QP in solving a portfolio optimisation problem involving real estate.

Nonlinear Programming (NLP). Nonlinear programming is a mathematical optimisation tech-

nique used to solve optimisation problems featured by nonlinear objective functions and/or

nonlinear constraints. In the context of portfolio optimisation, NLP plays a crucial role in

handling complexities due to relationships between asset weights and portfolio performance

metrics not being linear. A work conducted by [68] employed NLP to solve a portfolio optim-

isation problem under transaction costs, aiming to find optimal asset allocations that minimise

transaction expenses while maximising portfolio returns. In that way, it demonstrates the

importance of incorporating transaction costs into the optimisation framework to achieve more

realistic and efficient portfolio management strategies. On the other side, [69] attempted to

address the complexities of the investment market by introducing a single-objective mixed-

integer nonlinear programming model for fuzzy portfolio selection. They demonstrated that

NLP techniques may be able to optimise portfolios under uncertain and dynamic market

conditions. Overall, these studies highlight the versatility and effectiveness of NLP in portfolio

optimisation, showcasing its ability to handle nonlinear relationships and complex constraints

to enhance investment decision-making processes.

Stochastic Programming. Stochastic programming is a mathematical optimisation technique

used for portfolio optimisation that incorporates uncertainty into the decision-making process.

The objective in stochastic programming is to determine the optimal allocation of assets that

maximises a certain performance measure (e.g., expected return, risk-adjusted return) while

considering the probabilities of various future scenarios. It seeks to balance the trade-off

between expected return and risk under uncertain market conditions. In their study, [70] fo-

cused on multi-period portfolio optimisation, and incorporated the expected return, Conditional

Value at Risk (CVaR), and liquidity criteria using stochastic programming. Their approach

modelled the stochastic nature of market movements to enhance portfolio decision-making.

Another work conducted by [71] investigated a multi-period, stochastic portfolio optimisation

model for diversified fund selection. It highlighted the application of stochastic programming

in managing portfolio investments over time under uncertain market conditions. Furthermore,

[72] proposed a scenario-based, multi-stage stochastic programming model to deal with multi-

period portfolio optimisation problems with cardinality constraints and proportional transaction

costs. Their approach aimed to optimise portfolio decisions across multiple stages while
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considering uncertainty and practical constraints. Another study performed by [73] adopted

a stochastic programming model for financial optimisation in the real estate asset class.

It demonstrated the application of stochastic programming in addressing complex financial

optimisation problems that might be related to specific financial markets such as real estate.

Genetic Algorithm (GA). A GA is a computational optimisation technique inspired by the

principles of natural selection and genetics. It is widely used in portfolio optimisation to find an

optimal asset allocation that maximises predefined objective functions such as risk-adjusted

return or portfolio diversification. In their study, [74] addressed portfolio selection under un-

certain economic conditions using an enhanced genetic algorithm, demonstrating its effect-

iveness in handling stochastic variables like stock returns. On the other side, [75] employed a

multi-objective genetic algorithm to solve portfolio optimisation problems in stock investments.

Another work conducted by [76] focused on group stock portfolio optimisation using a genetic

algorithm approach, showing improvements in portfolio performance metrics. Similarly, [77,

78, 79] proposed genetic algorithm-based methods for stock investment portfolio optimisation,

highlighting enhanced portfolio returns and risk management strategies.

GA has also been applied to portfolio optimisation involving real estate investments. For

instance, [80] developed a GA model for constructing investment portfolios that include real

estate, emphasising risk reduction under uncertain conditions and achieving stable returns.

In another study, [81] optimised mixed-asset portfolios, including real estate, using historical

market data with a GA-based approach, demonstrating effective asset diversification and

improved performance. These studies indicate that GA effectively optimises portfolios across

different asset classes.

However, research on incorporating real estate investments, particularly real estate invest-

ment trusts (REITs), into portfolio optimisation via genetic algorithms remains limited. Real

estate assets have unique risk-return profiles and correlations compared to stocks and bonds,

offering potential benefits in terms of diversification and risk-adjusted returns [82]. Our study

aims to address this gap by exploring the integration of real estate, including REITs, within

a genetic algorithm-based portfolio optimisation framework, considering their specific charac-

teristics and correlations.

3.2.2 Real Estate Portfolio Optimisation

The literature review we present in this section aims to analyse the existing research on the

inclusion of direct and securitised real estate in mixed-asset portfolios and its impact on

portfolio performance. As we have seen in Chapter 2, the two main ways to gain exposure

to real estate markets are known as direct real estate investments, and securitised real

estate investments. In this section, we explore the benefits of each of these options, and

their inclusion in the previous works in the literature.
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Direct Real Estate. As mentioned in Chapter 2, direct real estate investments refer to the

purchase and management of actual physical properties [83]. Numerous studies have demon-

strated the substantial diversification benefits of including direct real estate in a portfolio

comprising not only financial assets but also various alternative asset classes [84, 85, 86].

According to [87], direct real estate can act as a hedge against inflation due to its potential

to generate income streams that increase with rising prices. Moreover, [88] argue that direct

real estate investments can provide diversification benefits by showing low correlations with

traditional asset classes such as stocks and bonds.

Despite the benefits of including direct real estate in a mixed-asset portfolio, certain chal-

lenges and considerations should be taken into account. Liquidity and transaction costs asso-

ciated with direct real estate investments can pose obstacles for investors. According to [89],

illiquidity in the direct real estate market can limit the ability to rebalance portfolios efficiently.

Additionally, the unique characteristics of real estate, such as property management and

maintenance, require active involvement and expertise, as noted by [90].

Securitised Real Estate. Securitised real estate refers to the process of converting real

estate assets, such as properties or mortgages, into tradable securities, allowing investors

to gain exposure to the real estate market without directly owning physical properties. Securit-

ised real estate, such as real estate investment trusts (REITs) and real estate-related stocks,

has gained popularity as an investment option within mixed-asset portfolios [91, 88].

Research has consistently highlighted the potential benefits of including REITs in a diversified

investment portfolio. Firstly, studies indicate that REITs have historically shown low correla-

tions with traditional asset classes such as stocks and bonds [9]. This low correlation suggests

that including REITs in a portfolio can enhance diversification and potentially reduce overall

portfolio risk. By introducing an asset class that behaves differently from others, investors can

reduce their exposure to market fluctuations and potentially achieve a more stable risk-return

profile. Furthermore, the addition of REITs to a mixed-asset portfolio has been associated with

potential improvements in risk-adjusted returns [92]. Several studies [93, 91] have found that

portfolios that include REITs tend to have higher risk-adjusted returns compared to portfolios

that exclude REITs. This finding suggests that REITs may offer unique return characteristics

that can enhance the overall performance of a mixed-asset portfolio [91, 94].

Although a few researchers have made attempts to predict REIT prices using machine learn-

ing algorithms, the number of such studies remains limited. For example, [16] utilised a

neural network algorithm to predict both stock and REIT prices and demonstrated that this

algorithm was more accurate than an autoregressive integrated moving average (ARIMA)

model. Similarly, [17] used machine learning-based regression algorithms, including neural

networks, to predict REIT returns. Other studies focused on comparing machine learning



3.2. Portfolio Optimisation 26

algorithms to ARIMA for REIT return prediction, primarily through the use of artificial neural

networks and multiple variables, as noted by [10, 11, 12]. In summary, while a handful of

studies have been conducted on REIT price prediction, most of them have centred around

neural networks.

Several studies have been conducted to predict REIT prices using machine learning al-

gorithms, and some have shown that these algorithms perform better than traditional models

like autoregressive integrated moving average (ARIMA) in terms of prediction accuracy, as

noted by [12, 10, 11]. While most of the current literature has concentrated on the use

of artificial neural networks with multiple variables, our research aims to investigate other

machine learning techniques for predicting REIT prices.

Prediction-Based Portfolios. Many studies in the literature explored the diversification poten-

tial that can be achieved through real estate investments [3, 4, 5]. Institutional investors have

found that a significant allocation to real estate protects their wealth during difficult times,

such as the Covid-19 pandemic [3]. However, direct investment in real estate assets can

be expensive, so many investors choose indirect investment through real estate investment

trusts (REITs), which are companies that own and manage real estate. REITs offer individual

investors the opportunity to invest in real estate without the hassle of owning or managing

properties. The low entry cost of REITs makes them an attractive option, with shares available

for as little as $500 1. Additionally, REITs are highly liquid, like stocks, making them easier to

buy and sell quickly compared to real estate properties that can take months to complete.

Investors in REITs who want to determine the best weight for each asset in their portfolio need

to solve a portfolio optimisation problem. This problem involves two main steps: (i) creating a

model that fits historical asset prices and predicts future values for a test set, and (ii) utilising

the price predictions to allocate optimal weights to each asset via an optimisation algorithm

that is based on a specific metric, such as risk or return. Another option is to perform the

optimisation process directly on the training set, but this approach has drawbacks, as the

weights may not be optimal for the test set if there are significant variations in prices.

Although the two-step approach for optimising mixed-asset portfolios has been utilised before,

it has not yet been applied to portfolios that include REITs. Previous research that utilised

portfolio optimisation with REITs relied on the optimal weights computed in the training set, as

noted by [95, 96, 84]. Our research, on the other hand, emphasises the accurate prediction

of REIT prices. Such a task is crucial since the prices are utilised as input in the portfolio

optimisation step.

1. https://www.investopedia.com/articles/investing/072314/investing-real-estate-versus-reits.asp
Last access: September 2022.
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Now the importance of using price prediction is demonstrated, Section 3.3 will explore the dif-

ferent financial forecasting techniques in the case of stocks, bonds, and real estate. Specific-

ally, there will be a focus on the time series models, econometric approaches, and machine

learning algorithms.

3.3 Financial Forecasting

Financial forecasting can be defined as the process of estimating future financial outcomes

or variables based on historical data, economic indicators, and other relevant information. It

involves the use of quantitative models, statistical techniques, and expert judgement to predict

financial metrics such as stock prices, bond yields, interest rates, and real estate values.

Financial forecasting plays a crucial role in the decision-making processes of investors, finan-

cial analysts, and policymakers. Accurate predictions about the future performance of stocks,

bonds, and real estate assets, including Real Estate Investment Trusts (REITs), are essential

for making informed investment choices, risk management, and overall portfolio optimisation.

This literature review aims to explore the key methodologies, challenges, and recent develop-

ments in financial forecasting for these asset classes.

In addition, we explore the literature about the use of technical analysis (TA) indicators as a

tool to improve financial forecasting. We aim to show the amount of studies about TA-based

forecasting for the different asset classes considered.

Stocks. Forecasting stock prices has been a topic of significant interest in financial literature.

Time series analysis is a widely used methodology for forecasting stock prices. Early studies,

such as the work by [97], demonstrated that stock prices follow a random walk pattern. How-

ever, subsequent research by [98] challenged this notion with the Efficient Market Hypothesis

(EMH), suggesting that stock prices fully reflect all available information, making it impossible

to consistently predict future prices.

Despite the challenges presented by EMH, researchers explored alternative methodologies

for stock price prediction. Machine learning algorithms, such as Support Vector Machines

(SVM) and Artificial Neural Networks (ANN), gained popularity for their ability to capture

nonlinear relationships in stock data [99, 100]. Moreover, sentiment analysis and natural lan-

guage processing techniques were employed to predict stock prices based on news sentiment

[101, 102]. Other studies demonstrated that machine learning algorithms might outperform

econometric approaches in the price prediction problem [103, 104, 105].
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Bonds. Financial forecasting for bonds has its unique set of challenges due to interest rate

fluctuations, credit risk, and macroeconomic factors. Traditional bond valuation models like

the Yield-to-Maturity (YTM) method are commonly used to forecast bond returns [106]. [107]

proposed a model combining macroeconomic variables and machine learning techniques to

improve the accuracy of bond yield predictions.

Another critical aspect in bond forecasting is credit risk assessment. Researchers have util-

ised credit rating data and credit default swap spreads as predictors for bond credit risk [108].

Additionally, time series models like the Autoregressive Integrated Moving Average (ARIMA)

have been employed for short-term bond yield predictions [109].

Real Estate. Real estate forecasting involves predicting property prices, rental yields, and

market trends. Traditional methods like hedonic pricing models have been used to predict

property prices based on the property’s characteristics [110]. Moreover, real estate analysts

have applied spatial analysis to capture the geographical dependence of property prices [111].

Time series analysis is a widely used approach for real estate price forecasting. Research

by [112] employed autoregressive integrated moving average (ARIMA) models to predict real

estate prices, demonstrating the model’s ability to capture temporal dependencies in price

movements. Similarly, [113] utilised a vector autoregression (VAR) model to forecast real

estate prices, incorporating relevant macroeconomic variables to improve accuracy.

Machine learning techniques have gained prominence in real estate price forecasting due to

their ability to capture complex patterns and nonlinear relationships. [114] proposed a hybrid

model combining a support vector machine (SVM) and a genetic algorithm (GA) to predict real

estate prices, achieving superior forecasting accuracy. Additionally, [115] used a long short-

term (LSTM) neural network to capture temporal dependencies and successfully forecasted

real estate prices.

The rise of REITs as an investment vehicle in the real estate market has prompted research

on forecasting their performance. Time series analysis has been widely applied to forecast

various financial variables of REITs. [116] employed autoregressive integrated moving aver-

age (ARIMA) models to forecast the rental income and net operating income of REITs. The

study demonstrated the usefulness of ARIMA models in capturing the underlying patterns and

trends in REITs’ financial data.

Machine learning techniques have gained popularity in REITs’ financial forecasting due to

their ability to capture complex patterns and nonlinear relationships. In their study, [117] used

a random forest algorithm to predict the returns of REITs based on various financial and

macroeconomic variables. Their results showed that the random forest model outperformed

traditional linear models in forecasting REITs’ returns. Furthermore, [16] showed that ML

algorithms can outperform econometric models, including ARIMA, in the prediction of REITs.
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Technical Analysis. Technical analysis (TA) is a widely used approach that involves the

examination of historical price and volume data in financial markets to predict future price

movements. Traders and investors rely on this methodology to gain insights for informed

decision-making regarding the buying, selling, or holding of various financial assets, including

stocks, currencies, and commodities [118].

One of the key principles of technical analysis is the belief that market prices follow trends and

patterns, and that these trends can be identified and utilised for predictive purposes. Technical

analysts utilise a wide range of tools and techniques to analyse market data, including chart

patterns, technical indicators, and statistical models [119].

Chart patterns are visual representations of historical price movements that can provide

insights into future price direction. Examples of commonly used chart patterns include head

and shoulders, double tops, and triangles [120]. These patterns are often believed to indicate

potential reversals or continuations in price trends.

Technical indicators are mathematical calculations based on historical price and volume data.

They are used to generate trading signals and identify potential buying or selling opportunities.

Some popular technical indicators include moving averages, relative strength index (RSI), and

stochastic oscillators [121].

In addition to chart patterns and technical indicators, technical analysts also rely on statistical

models to forecast future price movements. These models often involve the use of regression

analysis, time series analysis, and other statistical techniques to identify relationships and

trends in the data.

While technical analysis is widely used in financial markets, it is not without its critics. Some

argue that it is based on subjective interpretations and lacks a solid theoretical foundation

[122]. Others contend that it is a self-fulfilling prophecy, as the actions of market participants

following technical analysis patterns can create the predicted price movements. Nevertheless,

technical analysis continues to be popular among traders and investors, and numerous stud-

ies have explored its effectiveness, such as [123], where technical analysis indicators were

used in combination with sentiment analysis and [124], where technical analysis was used

alongside indicators derived from an event-based system.

In conclusion, technical analysis is a widely used methodology in financial markets that in-

volves analysing historical price and volume data to predict future price movements. It employs

chart patterns, technical indicators, and statistical models to identify trends and patterns

in the data. While there are critics of technical analysis, studies have shown its potential

effectiveness in certain market conditions. The fact that TA has yet not been incorporated in

studies that predict REITs prices provides an opportunity to improve the accuracy of price

prediction in this domain.



Chapter 4

Optimising Mixed-Asset Portfolios

Including REITs

4.1 Problem Statement

In Chapter 3, we examined literature exploring the integration of real estate investments

into mixed-asset portfolios. These studies primarily aimed to optimise returns and minimise

portfolio risk by utilising historical data from stocks, bonds, and real estate. One of the potential

limitations of this approach, known as the ‘historical data’ approach, is that it might not accur-

ately reflect future market conditions, potentially leading to sub-optimal portfolio performance.

To address this, the chapter aims to investigate the potential benefits of using price predictions

in the portfolio optimisation process.

To conduct this investigation, the chapter employs a method where it assumes perfect price

predictions in the test set, essentially adopting a hypothetical scenario where future prices

are accurately known. By doing so, the optimisation of portfolio weights can be performed

using this perfect foresight approach. The rationale behind this approach is to determine if

incorporating price predictions significantly improves portfolio performance compared to using

historical data alone.

If the results of this analysis show that the portfolio performance indeed improves with the

inclusion of price predictions, it would provide a strong justification for further research into

accurately predicting asset prices. In summary, the chapter aims to demonstrate the potential

advantages of integrating forward-looking information into the portfolio optimisation process.

The rest of this chapter is organised as follows: Section 4.2 provides a description of the

perfect foresight approach, and of the genetic algorithm used; Section 4.3 presents the ex-

perimental setup; and Section 4.4 provides a detailed discussion of the experimental results.

Finally, Section 4.5 presents the main conclusions for this chapter.

30
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4.2 Methodology

4.2.1 Data

In this research, we examine daily price time-series for different market proxies1, serving

as our datasets. These proxies are representative of three distinct asset classes: stocks,

bonds, and REITs, spanning three diverse markets—namely, the United States (US), the

United Kingdom (UK), and Australia (AU). To mitigate currency risk, all data is expressed

in US dollars (USD). For a detailed breakdown of the actual data utilised in our experimental

setup, including the precise number and characteristics, please refer to Section 4.3.1 later in

this chapter.

Subsequently, each dataset undergoes further division into three sequential subsets in chro-

nological order: a training set, utilised to train the machine learning model; a validation set,

employed for optimising the model’s hyperparameters; and a testing set, representing the

unseen data used in the final evaluation stage following model tuning and training.

4.2.2 Portfolio Optimisation Under Perfect Foresight

As previously explained, our goal is to compare the perfect foresight approach in solving a

portfolio optimisation problem against the historical method. For such purpose, we refer to

three financial metrics, i.e., expected portfolio return, expected portfolio risk, and expected

Sharpe ratio (see Section 2.3).

The methodology used in this work follows two steps. The first step consists of optimising

asset weights using returns calculated on the test set. The second step consists of calculating

the expected return, expected risk, and Sharpe ratio for all asset combinations.

Regarding the first step, a genetic algorithm (GA), detailed in Section 4.2.3, is employed on the

test set. This approach is based on the assumption of possessing perfect foresight regarding

future prices, thereby facilitating the optimisation of asset weights through the GA algorithm.

In the second step, we use the optimal weights obtained from the first phase to compute

the expected return, expected risk, and Sharpe ratio of the GA runs. The hypothesis behind

our experiments is that this portfolio optimisation strategy would result in better portfolio

performance than in the case of optimal weights calculated on historical average returns.

1. Market proxies are representative indicators used to closely mimic the performance or behaviour of a broader
financial market. They serve as a convenient way to track and analyse market trends, movements, and dynamics
without directly involving the actual securities in the market. Market proxies might include indices, exchange-traded
funds (ETFs), or other financial instruments that mirror the performance of a specific market or asset class
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4.2.3 Portfolio Optimisation via a Genetic Algorithm

As explained before, genetic algorithms (GAs) offer a computational approach to address a

portfolio optimisation problem by mimicking the principles of natural selection and evolution.

This section explores the principal aspects of the genetic algorithm applied to portfolio op-

timisation, outlining the representation of individuals, the operators driving evolution, and the

fitness function guiding the algorithm’s decision-making process.

Representation GA chromosomes (or, individuals) consist of N genes indicating the weights

allocated to the N assets in the portfolio. The weight are real numbers in the interval [0,1],

and their sum is equal to 1. For example, a GA individual that has the genotype [0.5 0.2 0.3]

indicates that there are three assets, with corresponding weights assigned as 0.5, 0.2, and

0.3 to each asset. Initially, all genes are assigned the same weight (in particular, Wi = 1/N for

each asset i), which are then evolved according to a set of operators.

Operators We use elitism, one-point crossover and one-point mutation. Since we use market

proxies in our experiments, the number of assets is small, and thus one-point crossover and

mutation are sufficient (see Section 4.3 for more details). After the application of crossover

and mutation, we apply normalisation to each GA individual, to ensure that the sum of weights

remains equal to 1.

Fitness Function State-of-the-art methods for solving portfolio optimisation problems have

used many different metrics as fitness functions. In this thesis, we use the Sharpe ratio,

defined as the ratio of the difference between the average return2 and the risk-free rate3,

over the standard deviation of the returns, that is,

S =
r− r f

σr
,

where r is the average return of the investment, r f is the risk-free rate, and σr is the standard

deviation of the returns.

2. The term ‘return’ in this context is used specifically to refer to the quantity (Nt −Nt−1)/Nt−1, i.e. the relative rate
of returns, which is the difference between an asset’s normalised price difference on a particular day compared to
the day before, expressed as a percentage of the latter.
3. The term ‘risk-free rate’ denotes the minimum return expected from an investment with zero risk of default,
such as government bonds.
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4.3 Experimental Setup

As explained in Section 4.1, the primary goal of the experiments is to demonstrate that op-

timising asset weights under the assumption of perfect foresight results in a better-performing

portfolio compared to using historical data. To achieve this objective, we conduct a comparat-

ive analysis of the portfolio performance derived from perfect predictions against that obtained

through the historical method. In the following sections, we provide an overview of the nature

and source of data used in these experiments (Section 4.3.1), the hyperparameter tuning

process (Section 4.3.2), and the benchmark chosen for evaluating the performance of the

proposed method for portfolio optimisation (Section 4.3.3).

4.3.1 Data

We use daily prices over the period between June 2017 and January 2021. We adopt the

perspective of an institutional investor from the US who wants to gain exposure to international

markets (UK and Australia). The asset classes we consider are stocks, bonds, and listed real

estate.

Our exploratory experiments utilise index price data as it is considered a reliable represent-

ation of market movements across different asset classes. The choice of using index data is

in line with earlier studies, including those conducted by [125] and [93] which adopted market

index data to solve an asset allocation problem in the context of real estate investments.

Stocks are proxied by the S&P 500 index4 for the US market, by the FTSE 100 index5 for the

UK market, and by the S&P/ASX 200 index6 for the Australian market. For the bond asset

class, we use the indices issued by Dow Jones for all the three markets considered. Finally,

we use the FTSE/EPRA NAREIT indices to proxy the real estate markets. We thus have 9

asset classes, namely 3 stocks, 3 bonds, and 3 REITs.

To represent the statistical distribution about each dataset, Table 4.1 presents the main stat-

istics for each asset class: the mean of the returns of the assets (as a proxy of their expected

return), their standard deviation (as a proxy of their volatility or risk), and the Sharpe ratio

(as a measure of the asset’s risk-adjusted return). In order to calculate the Sharpe ratio, we

have considered a risk-free rate equal to 1.90× 10−3 (corresponding to an average of the

daily government bond rates in the three countries). From the results shown in Table 4.1, we

can observe that the real estate asset class generally presents a lower level of performance

4. https://www.spglobal.com/spdji/en/indices/equity/sp-500/#overview

5. https://www.londonstockexchange.com/indices/ftse-100

6. https://www.spglobal.com/spdji/en/indices/equity/sp-asx-200/#overview

https://www.spglobal.com/spdji/en/indices/equity/sp-500/##overview
https://www.londonstockexchange.com/indices/ftse-100
https://www.spglobal.com/spdji/en/indices/equity/sp-asx-200/##overview
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Table 4.1: Mean, standard deviation, and Sharpe ratio for each asset class.

Asset Class Mean St Dev SR
S&P 500 4.00×10−4 8.60×10−3 4.51×10−2

FTSE 100 5.00×10−5 1.05×10−2 3.20×10−3

S&P/ASX 200 1.10×10−4 1.07×10−2 8.60×10−3

US bond 3.90×10−4 8.60×10−3 4.38×10−2

UK bond 6.00×10−5 1.06×10−2 4.00×10−3

AU bond 1.20×10−4 1.10×10−2 9.60×10−3

US REIT 1.40×10−4 9.60×10−3 1.24×10−2

UK REIT 6.00×10−5 1.37×10−2 2.80×10−3

AU REIT 1.90×10−4 1.16×10−2 1.44×10−2

(that is, lower Sharpe ratio) compared to the other asset classes. This indicates that real

estate investments could be less profitable than the other types of investments if considered

individually.7 Our aim is to assess the added value that real estate could bring within a multi-

asset portfolio.

From the correlation matrix shown in Figure 4.1, we can observe that the real estate asset

class generally has relatively lower correlation with the other asset classes, thus justifying

its diversification potential. More specifically, a low or zero correlation between two asset

classes might reduce a portfolio’s overall level of risk. Moreover, we observe a low correlation

between asset classes belonging to different markets (e.g., S&P 500 and UK REITs). This

could open opportunities to an international diversification. In other words, an investor might

find diversification opportunities in gaining exposure to foreign markets.

4.3.2 Experimental Parameters

To decide the parameter values, we undertook a parameter tuning process using the I/F-Race

package [126]. I/F-Race implements the iterated racing procedure, which is an extension of

the Iterated F-Race process and builds upon the race package by [127]. This optimisation

method automatically configure algorithms by evaluating and comparing multiple candidate

parameter configurations over a set of instances. Its purpose is to progressively eliminate

poor configurations while refining the best ones. The process continues iteratively until the

most appropriate settings for the optimisation algorithm are identified.

7. The choice of datasets with different statistical distribution is crucial for our optimisation problem as our aim is
to demonstrate the advantages of real estate in the context of a portfolio made of stocks and bonds as well.
Employing more similar distributions, for example by selecting stocks only, might reduce evidence about the
advantages of one asset class with respect to the others. The following chapters (i.e., 5-7) are based on the
same approach as the different distribution characteristics of each asset class are key to our findings.
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Figure 4.1: Correlation matrix between asset classes.

In I/F-Race, each iteration, or ‘race’, involves running the optimisation algorithm with different

parameter settings on a set of problem instances. The parameter configurations that per-

form poorly (in predicting the dependent variable) are discarded, while the better-performing

configurations advance to the next iteration. This iterative process continues until a stopping

criterion is met, which in our case is when there is no significant improvement in performance.

The advantage of I/F-Race lies in its ability to efficiently explore the parameter space and

identify optimal or near-optimal configurations without requiring exhaustive search.

In our case, I/F-Race was applied to data for the period from January 2019 to December

2019. The following twelve months (January-December 2020) were used only with the already

tuned parameters, after I/F-Race was completed. In other words, the first period was used as

a training dataset for parameter tuning, while the second period was used as a validation

dataset for parameter testing. The period January-July 2021 was the test set, and remained

unseen during the parameter tuning process. At the end of the tuning process, we picked the

best parameters returned by I/F-Race, which constitute the experimental parameters used by

our algorithms, and are presented in Table 4.2. These parameter values were determined to

be the most effective in optimising the performance of our algorithm on the training data.
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Table 4.2: I-Race Parameter Tuning Results.

Parameter Value
Tournament Size 3
Population Size 300
Mutation Rate 0.01
Number of Generations 10

It is worth noting that the choice of the parameter values was driven by the size and structure

of the considered datasets. Given the relatively small number of datasets (i.e., nine in total),

each corresponding to an asset class, and the number of data points (i.e., around 600 in

total), each referring to a price on a trading day, the values represented in Table 4.2 were

considered suitable for our problem. While the problem could theoretically be optimised using

an exhaustive approach due to the small number of assets, the GA was chosen to explore its

effectiveness in scenarios where exhaustive search may not be feasible.

Regarding the tournament size, we selected a small value (3) to apply moderate selection

pressure, which accelerates convergence by favouring fitter individuals. Although small k val-

ues increase the risk of premature convergence, we mitigated this by: (i) maintaining diversity,

through a low mutation rate (0.01); and (ii) exploring broadly, through a large population size

(300) to ensure an extensive exploration of the search space.

Figure 4.2 represents how fitness evolves over generations. The x-axis corresponds to the

number of generations. The y-axis shows the average fitness value (in terms of Sharpe

ratio) across all individuals in the population for each generation. This plot is a critical tool

for assessing the algorithm’s performance, representing the convergence behavior as the

algorithm optimises the portfolio over time.

Figure 4.2: Fitness evolution over generations.



4.3. Experimental Setup 37

4.3.3 Benchmark: The Historical Data Approach

In order to demonstrate the potential improvement from the perfect foresight situation, we

compare their results with results obtained from experiments under the historical method. In

other words, we used the 2017-2019 period as the training set, where we ran the portfolio

optimisation task. After the weights were obtained in the training set, we then applied them to

the test set (2020-2021 period), and then compared the financial performance (Sharpe ratio,

rate of return, risk) against the perfect foresight results. We again used a genetic algorithm for

the portfolio optimisation task. The GA used the same parameters that were presented above

in Table 4.2.

4.4 Results

In this section we present our experimental results for the genetic algorithm with the perfect

foresight approach and compare it with the historical approach (Section 4.4.1, and discuss

our findings (in Section 4.4.3). Results are presented as averages over 20 individual GA runs.

It should also be noted that all results are daily results. So when, for example, we present a

seemingly ‘low’ return of around 0.03%, its annual equivalent would be around 11.6%. 8

4.4.1 Summary Statistics

Under the perfect foresight hypothesis, the value of the predicted price P̂i is assumed to be

equal to the value of the actual price Pi during the testing phase of the prediction process.

Such assumption leads to a null error rate, implying that the predictions perfectly match the

observed prices. We compare the portfolio performance results obtained from such model

with those obtained from the historical data approach. As mentioned in Section 4.2, have

we run the genetic algorithm on the test set for a portfolio including the nine asset classes

considered.

The results obtained from our genetic algorithm are represented in Figure 4.3, which com-

pares the distributions generated by the historical data method and the perfect foresight

approach. Figure 4.3a specifically highlights the distribution of expected portfolio returns for

both methods. We can observe that the perfect foresight approach results in an approximate

14% increase in the average return compared to the historical method. From a financial

perspective, this indicates that portfolio profitability improves under perfect foresight. Addi-

tionally, the standard deviation of returns decreases by around 25%, suggesting a tighter

concentration of return values around the mean, implying reduced volatility.

8. AnnualisedReturn = [(DailyReturn+1)365 −1]×100 = 11.6%.
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Regarding the other two statistical metrics (i.e., skewness and kurtosis), our findings demon-

strate that both approaches exhibit a long left tail, indicated by negative skewness values,

suggesting more concentration of values on the right side of the distribution, which usually

indicates more positive returns higher than the mean. The historical approach shows higher

skewness compared to the perfect foresight method. However, since the perfect foresight

method has a higher mean value, this difference in skewness is not concerning. The historical

approach exhibits a fatter left tail compared to the perfect foresight method, indicating fewer

outliers. However, the difference in kurtosis between the two methods is relatively small (6%).

In summary, the perfect foresight method outperforms the historical approach in terms of

higher average expected returns and lower standard deviation, indicating better portfolio prof-

itability and reduced variability in returns. While both approaches exhibit similar skewness and

kurtosis characteristics, the differences in these metrics are not alarming given the overall

performance superiority of the perfect foresight method.

Figure 4.3b shows results for the average expected risks. In this case, under a perfect foresight

situation, we observe a decrease in the average risk level of around 19%. This finding can be

interpreted as an improvement in portfolio performance under a perfect foresight situation.

The standard deviation values tend to be similar for both cases which indicates a similar level

of concentration of risk values around the mean.

The skewness and kurtosis values for the perfect foresight method appear to be greater than

those obtained from the historical approach. This implies a greater probability of observing

risk values lower than the average and a lower presence of outliers for the perfect foresight

method. A positive skewness indicates a longer right tail in the distribution, suggesting a higher

probability of lower risk values. Additionally, the higher kurtosis indicates heavier tails and

a sharper peak in the distribution, further indicating a lower presence of outliers and lower

investment risk under the perfect foresight method from a financial perspective.

In summary, the perfect foresight method shows a decrease in average expected risks com-

pared to the historical approach, indicating improved portfolio performance. Moreover, the

skewness and kurtosis values suggest a lower investment risk under the perfect foresight

method due to a greater probability of lower risk values and a lower presence of outliers in the

risk distribution.

Figure 4.3c shows results obtained for the average expected Sharpe ratios. Based on the

presented results, the perfect foresight method outperforms the historical data approach in

terms of risk-adjusted portfolio performance. The average Sharpe ratio is reported to in-

crease by approximately 45%, implying an enhancement in risk-adjusted returns. Additionally,

the standard deviation decreases by about 19%, suggesting that returns under the perfect

foresight approach are more concentrated around the mean.
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The skewness value is negative for both methods, suggesting a concentration of Sharpe ratio

values that are higher than the average. Additionally, the skewness value increases by around

38% from the historical data method to the perfect foresight approach, indicating an even

greater concentration of high Sharpe ratio values. The kurtosis value for the perfect foresight

approach is higher than that obtained from the historical approach, with a difference of 127%.

A higher kurtosis indicates a fatter tail in the distribution of Sharpe ratios, suggesting a lower

presence of outliers under the perfect foresight method.

In summary, the perfect foresight method leads to higher average Sharpe ratios and lower

standard deviation, skewness, and kurtosis values compared to the historical approach. These

findings indicate improved risk-adjusted portfolio performance and a lower presence of outliers

under the perfect foresight method.
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Figure 4.3: Expected portfolio return, risk, and Sharpe ratio distributions

Overall, the perfect foresight method consistently demonstrates superior performance across

various financial metrics, including expected returns, risk, and Sharpe ratios, indicating its

effectiveness in enhancing portfolio performance and reducing investment risk compared to

the historical approach.

To compare the distribution pairs (risks from perfect foresight method and risks from his-

torical data approach) for the expected return, risk, and Sharpe ratio, we performed three

Kolmogorov-Smirnov (KS) tests at the 5% significance level. Here, the null hypothesis for

each test was that the two distributions come from the same probability distribution. Since

we are making multiple comparisons, the-adjusted p-value is equal to 0.05/3 = 0.0167, as

we have again applied the Bonferroni correction. The p-values obtained from the three tests

are all equal to 5.54×10−10 which is below the adjusted p-value of 0.0167, thus making the

differences statistically significant at the 5% level.

However, given the size of the datasets, it might be worth considering the effect size measure-

ments using Cohen’s d for each comparison. It quantifies the difference between two means in

terms of standard deviations, providing insight into the practical significance of the observed

differences. For the expected return, the Cohen’s d value was 0.45, indicating a moderate
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effect size. For risk, the Cohen’s d was 0.32, suggesting a small to moderate effect size.

Finally, for the Sharpe ratio, the Cohen’s d was 0.60, demonstrating a moderate effect size. In

conclusion, such effect measurements, in addition to the statistical significance indicated by

the KS test p-values, reinforce the reliability of our findings.

4.4.2 Computational Times

A single run of the GA did not take longer than 30 seconds, under the parameter values

presented in Table 4.2. As the portfolio optimisation task is an offline approach, this duration

is relatively fast and does not constitute a problem. Besides, speedups can be obtained by

parallelising the evolutionary process, as it has previously been shown in the literature, e.g.

[128].

4.4.3 Discussion

The main goal of our experiments was to show the potential improvement in mixed-asset port-

folio performance that can be obtained from hypothetically perfect price predictions compared

to the historical data approach. As we have observed, the average portfolio returns appear

to increase under a perfect foresight situation, and given the KS test results, such increases

appear to be statistically significant. At the same time, the average portfolio risks appear to

decrease when the perfect foresight case is applied, and based on the KS test results, such

differences can be considered statistically significant. Such results lead to an improvement in

the risk-adjusted portfolio performance.

4.5 Summary

The key points of this chapter can be summarised as follows.

The return rate from real estate investments tends to be lower compared to other asset

classes. In Table 4.1, we noticed that the return rate deriving from real estate investments

tends to be lower compared to other types of investments, such as stocks and bonds. This

might indicate that it would be more convenient to consider real estate as part of a mixed-

asset portfolio rather than a single investment choice. This is because real estate generally

acts as a diversifier due to its lower risk.
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The correlation between real estate and other asset classes is generally low. As we ob-

served from the correlation matrix represented in Figure 4.1, the correlation values tend to be

lower in the case of real estate compared to the other asset classes considered. This justifies

the diversification potential achieved by adding real estate. Moreover, there tends to be a

lower correlation between asset classes belonging to different countries. This might explain

our choice of including investments from different countries in our portfolio.

Optimising a portfolio directly in the test set can lead to better risk-adjusted performance

results compared to when the optimisation takes place in the training set. Our results show

that using price predictions can lead to better risk-adjusted performance than when using

historical data. This is mainly explained by the fact that prices in the training set might be signi-

ficantly different than those in the testing set (as we demonstrated through the KS tests), thus

leading to under-performing portfolios. The results that we obtained motivate us to engage in

price prediction tasks in order to solve mixed-asset portfolio optimisation problems involving

REITs. Future work will thus focus on finding appropriate machine learning algorithms to

predict future prices of stocks, bonds, and REITs, which are as close as possible to the real

values that appear in the test set. Succeeding in this task will allow us to observe similarly

good performance in returns and risk, as we have observed under the theoretical case of

perfect foresight.

In the following chapters, we will attempt to optimise a mixed-asset portfolio including REITs by

using ML algorithms to predict asset prices and a GA to optimise the asset weights (Chapter

5). In this way, we expect to obtain better results in terms of risk-adjusted portfolio performance

than when adopting a historical data approach.



Chapter 5

ML for Real Estate Time Series

Prediction

5.1 Introduction

The previous chapter presented evidence that a hypothetical portfolio constructed with perfect

foresight, meaning it accurately predicts future market movements, performed better than a

portfolio constructed solely based on historical data. This finding suggested a departure from

state-of-the-art reliance on past prices, particularly prevalent in real estate investment portfolio

optimisation literature.

The chapter emphasises the benefits of utilising price predictions for better portfolio perform-

ance across various asset classes, including Real Estate Investment Trusts (REITs). It argues

that predictions tend to align more closely with actual data patterns, potentially outperforming

historical data-based strategies due to their ability to capture future market dynamics.

To investigate this claim, the chapter explores five machine learning algorithms – i.e., Ordinary

Least Squares Linear Regression (LR), Support Vector Regression (SVR), eXtreme Gradient

Boosting (XGBOOST), Long/Short-Term Memory Neural Networks (LSTM), and k-Nearest

Neighbours Regression (KNN) – and compares their efficacy in predicting prices with three

traditional statistical models commonly used in financial forecasting – Holt’s Linear Trend

Method (HLTM), Trigonometric Box-Cox Autoregressive Time Series (TBATS), and Autore-

gressive Integrated Moving Average (ARIMA). It then integrates these price predictions into

portfolio optimisation using a Genetic Algorithm.

Furthermore, the chapter conducts a thorough examination of expected portfolio metrics de-

rived from price predictions, comparing them against those from historical-based approaches.

This empirical evidence highlights the effectiveness of incorporating a forward-looking ap-

proach into portfolio optimisation, particularly relevant for investors interested in real estate

assets such as REITs.

42
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Overall, the chapter’s novelty lies in integrating machine learning-derived price predictions

with portfolio optimisation techniques, providing a comprehensive comparison with state-of-

the-art models, and offering empirical evidence of their effectiveness in enhancing portfolio

performance.

The rest of this chapter is organised as follows. Section 5.2 explains the methodology used in

this study. Our experimental setup is presented in Section 5.3. The results of our experiments

are presented in Section 5.4, where we provide a detailed discussion of the results obtained

by applying machine learning and other financial models to our data. Finally, Section 5.5

summarises the conclusions of the study and offers suggestions for future research.

5.2 Methodology

Our methodology can be broken down into two steps: (i) price prediction, and (ii) portfolio

optimisation. In the first step, the machine learning algorithms employed in this study undergo

training on the training set, aiming to minimise the root mean squared error (RMSE) of pre-

dicted prices for various assets. Such metric will be defined in Section 5.2.4. Subsequently,

these trained models are utilised to forecast prices in the test set. In the second step, the

predicted prices from the test set are fed into the genetic algorithm (GA), which seeks to op-

timise the allocation of weights assigned to each asset. The performance metric used for this

portfolio optimisation task is the Sharpe ratio. The portfolio optimisation process incorporates

principles derived from the Modern Portfolio Theory (MPT).

This section will thus present in detail the first step of our methodology (price prediction),

since the second step has already been described in Chapter 4 (portfolio optimisation via a

Genetic Algorithm): Section 5.2.1 describes the nature of the data in general terms; Section

5.2.2 discusses the pre-processing steps that were necessary for deriving the feature set;

Section 5.2.3 presents the machine learning algorithms used in our experiments; and lastly,

Section 5.2.4 discusses the loss function chosen.

5.2.1 Data

In this study, we consider a number of datasets1 from financial instruments in relation to three

asset classes — namely: stocks, bonds, and REITs; and three different markets — namely:

United States (US), United Kingdom (UK), and Australia (AU). To avoid currency risk, all data

is obtained as US dollars (USD). For more details regarding the exact number and specifics

of the actual data used in our experimental setting, see Section 5.3.1 later on.

1. In the context of this study the word ‘dataset’ is used to refer to a single time-series of daily prices for a given
asset
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Each dataset is then further subdivided into three subsets, contiguous in time: a training set,

which serves as the portion of the data that will be used to train the machine learning model;

a validation set, which is used to select optimal hyperparameters for the model; and a testing

set, which serves as the unseen part of data that is used for the final evaluation step, after the

model has tuned and trained.

5.2.2 Data Preprocessing

Data coming from an asset’s daily price time-series cannot be plugged directly into the al-

gorithms: prior to being used for price prediction, the time-series data corresponding to each

asset needs to be differenced and scaled. Differencing is an important technique in time

series analysis, which involves taking the difference between consecutive observations of

a time series. This is useful for removing the trend and seasonality components of a time

series, which can make it difficult to model and analyse. First-order differencing involves

subtracting the value of the previous timepoint from the current timepoint; this is represented

mathematically as:

Dt = Pt −Pt−1 (5.1)

where Pt is the value of the time series at time t, and Dt is the differenced time series at time

t. Higher-order differencing can also be used to remove trend and seasonality components

that persist after first-order differencing. The choice of the order of differencing depends on

the specific characteristics of the time series being analysed; for the purposes of this paper,

we consider first-order differencing only.

After obtaining Dt , the values are further standardised to the range [0,1], by using the following

scaling transformation:

Nt =
(Dt −Dmin)

(Dmax −Dmin)
(5.2)

where Nt is the standardised value of each variable (in this case the differenced price Dt ),

and Dmin and Dmax are the minimum and maximum values respectively, that result from the

differencing of the relevant asset’s time series.

Table 5.1 provides an example of the differencing and scaling procedures using sample data

for the SPG time series from 01 January 2021 to 30 January 2021.
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Table 5.1: Example of time series differencing and scaling.

t Pt Pt−1 Dt Nt Nt−1 Nt−2

t1 3.77 - - - - -
t2 3.69 3.77 -0.08 0.30 - -
t3 3.7 3.69 0.01 0.70 0.30 -
t4 3.6 3.7 -0.1 0.22 0.70 0.30
t5 3.68 3.6 0.08 1 0.22 0.70
t6 3.53 3.68 -0.15 0 1 0.22
t7 3.54 3.53 0.01 0.70 0 1

Legend : t represents the time steps; Pt represents the security’s price at time t;
Pt−1 represents the one-lag value of Pt ; Dt represents the differenced value at time t;
Nt represents the value of Dt following standardisation, Nt−1 the value of
Dt−1 following standardisation, etc.

5.2.3 Machine Learning Algorithms

Once the relevant features have been extracted from all datasets, we feed them to our ‘bag’ of

machine learning models, for the purposes of price prediction. For each model, we obtain two

variants: one that incorporates TAIs in its feature set, and one that does not. This allows us

to be able to compare the performance between the two variants for each dataset, and thus

assess the importance of including TAIs in the feature set.

Our ‘bag’ of machine learning models consists of a representative sample of regression

algorithms taken from the Machine Learning (ML) literature, namely: Ordinary Least Squares

Linear Regression (LR), Support Vector Regression (SVR), eXtreme Gradient Boosting (XG-

BOOST), Long/Short-Term Memory Neural Networks (LSTM), and k-Nearest Neighbours

Regression (KNN). The following python libraries/functions were used to this end:

• sklearn.linear_model.LinearRegression

• sklearn.svm.SVR

• xgboost.XGBRegressor

• keras.models.Sequential

• sklearn.neighbors.KNeighborsRegressor

In all cases, optimal model hyperparameters are determined through ‘grid search’ (see Sec-

tion 5.3.2 for details). Once optimal hyperparameters are established a model is trained one

last time on the expanded set of training + validation data combined, and then used to make

predictions on the test set.
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5.2.4 Evaluation Metrics

All of the above algorithms use the root mean square error (RMSE) as the loss function,

defined as follows:

RMSE =

√
∑
| j|
i=1(Pi − P̂i)2

| j|
, (5.3)

where Pt refers to the actual value of the price, P̂t is its predicted value, and | j| denotes the

number of observations in each dataset j (i.e. in other words, we obtain one RMSE value per

dataset). Note that, the RMSE here expresses the prediction error in terms of US dollars, and

thus needs to be calculated on the basis of the original price data (i.e. Pt ), rather than the

scaled data (i.e. Nt ); therefore scaled values need to be reverted back to their original price

values, for the RMSE to be calculated in a meaningful manner (cf. Section 5.2.2). This is done

in order to allow for a comparison between the RMSE results obtained from the regression

algorithms and the portfolio metrics that will result from the application of our GA that are

calculated using actual (instead of scaled) prices.

We evaluate all algorithms using two out-of-sample prediction methods — one relying on long-

term prediction on the basis of fixed information and intermediate predictions, and one relying

on consecutive short-term predictions on the basis of continuously updated information. Both

methods are evaluated over the same range of time periods, namely 30, 60, 90, 120, and 150

days.

Long-Term Out-Of-Sample Prediction: In this method, the known closing prices from all

historical timepoints up until our starting point of interest, t0 (with closing price P0 respectively)

are used to train a model, which is then used to predict the closing price for the next day

(i.e. price P̂1, corresponding to timepoint t1). Once this is obtained, the model is retrained, with

P̂1 incorporated into the training dataset, as if it was the ‘known’ price at time t1; this model is

then used to predict the price for the next timepoint (i.e. price P̂2 corresponding to timepoint

t2). P̂2 is then used to predict P̂3 in the same manner, and so forth, until the final timepoint in

the evaluation period of interest is reached. We will refer to this evaluation method simply as

out-of-sample prediction henceforth in the text.
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Consecutive One-Day-Ahead Predictions: In this case, when it comes to predicting the clos-

ing price P̂1 corresponding to timepoint t1, we use the known closing prices from all historical

timepoints up until t0, just as we did before. However, when it then comes to predicting the

next item (i.e. the closing price P̂2 corresponding to timepoint t2), instead of incorporating the

predicted price, P̂1 to our training set at position t1, we simply incorporate the true, known

closing price, P1, to the training dataset at that position instead; the updated model is then

used to predict the price for the next timepoint (i.e. P̂2 for position t2), much like before. The

known P2 is then used to predict P̂3 in the same manner, and so forth, until the final time point

in the evaluation period of interest is reached. We will refer to this evaluation method simply

as one-day-ahead prediction henceforth in the text.

Naturally, we expect lower error rates from the second technique. However, it is a suitable

method to evaluate performance, particularly meaningful in portfolios following short-term

trading strategies that require adjustments according to current market conditions. In contrast,

the first approach is more suitable as an evaluation strategy for investors with long invest-

ment horizons. They may prefer periodic portfolio rebalancing or adjustments to investment

strategies based on evolving market conditions.

5.3 Experimental Setup

The main goal of our experiments is to show the potential improvements of predicting prices

in terms of portfolio performance. This goal has been broken down into two sub-goals: (a)

to showcase the reduction in the regression error by using ML algorithms as compared to

three benchmarks and the historical data approach; and (ii) to demonstrate that the use of ML

algorithms in predicting REIT, stock and bond prices could lead to a significant improvement

in the risk-adjusted performance of a mixed-asset portfolio that includes REITs.

In the remainder of this section, we will first present the data used for our experiments, in

Section 5.3.1. We will then discuss the algorithmic hyperparameter tuning in Section 5.3.2.

Lastly, in Section 5.3.3 we will discuss the benchmarks used in our experiments.

5.3.1 Data

To conduct a comprehensive analysis of the ML performance in the price prediction task,

we have decided to utilise data specific to individual companies rather than relying on market

proxies, as was the methodology employed in the previous chapter. This shift allows us to per-

form a more granular examination of the predictive capabilities of our selected ML techniques

at the company level. Daily closing price data was collected via the Eikon Refinitiv database2,

2. https://eikon.refinitiv.com — Last access: July 2023.
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Figure 5.1: US REIT time series. The x-axis represents time in days; the y-axis refers to the
price value in USD.

corresponding to financial instruments across three countries (US, UK, and Australia), and

three asset classes (stocks, bonds, and real estate), spanning the period from January 2019

to July 2021. For each of the resulting nine ‘country/asset-class’ pairs above, we obtained

asset-price data from 10 different assets within that category (in other words: 10 stocks, 10

bonds, and 10 REITs from each country), resulting in a dataset pool consisting of a total of

90 datasets (refer to Table 5.2). We remind the reader that in the context of this study the

word ‘dataset’ is used to refer to a single time-series of daily prices for a given asset. To avoid

currency risk, we obtained all data expressed in USD.

Table 5.2: Eikon Refinitiv tickers used.

US UK Australia

Stocks
AAPL, AMZN, BRKb,
GOOGL, JNJ, META, MSFT,
NVDA, TSLA, UNH

AZN, BATS, BP, DGE, GLEN,
GSK, HSBA, RIO, SHEL,
ULVR

ANZ, BHP, CBA, CSL, FMG,
MQG, NAB, WBC, WES,
WOW

Bonds
AFIF, HOLD, IBMN, IUWAA,
JNK, KORP, LQD, LQDI,
NFLT, RIGS

AGPH, CCBO, DTLE, EMDD,
EMES, ERNA, ERNS, FLOS,
IHYG, SDHY

CRED, HBRD, IAF, QPON,
RCB, RINCINAV, VACF, VAF,
VBND, VGB

Real Estate
AMT, AVB, CCI, DLR, EQIX,
PLD, PSA, SBAC, SPG,
WELL

AEWU, AGRP, BLND, BYG,
CAL, CREI, CSH, CTPT,
DLN, EPICE

BWP, CHC, DXS, GMG,
GOZ, GPT, MGR, SCG, SGP,
VCX

It is important to note that many of the price series datasets can exhibit significant fluctuations,

particularly for stocks and REITs. For instance, consider Figure 5.1, which illustrates the US

REIT closing price time series for the period between 1st January 2021 and 1st July 2021. As

shown, there are notable downward variations in the trend. Such fluctuations can potentially

impact the performance of some algorithms, particularly ARIMA (one of our benchmarks),

which relies heavily on assumptions of stationarity.
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Table 5.3 presents summary statistics for the daily return distributions grouped by each of

the nine asset classes considered. The term ‘return’ in this context is used specifically to

refer to the quantity (Nt −Nt−1)/Nt−1, i.e. the relative rate of returns, which is the difference

between an asset’s normalised price difference on a particular day compared to the day

before, expressed as a percentage of the latter. To be able to explain the prediction capability

of our algorithms for the different asset classes through the presented summary statistics,

we are considering the normalised – rather than actual – prices. For each asset class, we

computed the mean, median, standard deviation, interquartile range, and maximum-minimum

range to summarise the return distributions. Each asset within an asset class was given an

equal weight, and the summary statistics were calculated based on the training period.

Table 5.3: Summary statistics for different asset classes. Values in bold denote the best values
for each column.

Average Median Std Dev IQR Max-Min
AU bonds 1.97×10−4 3.15×10−4 5.70×10−3 3.00×10−3 9.54×10−2

AU REITs 7.35×10−4 1.20×10−3 2.44×10−2 1.87×10−2 2.95×10−1

AU stocks 2.00×10−3 1.80×10−3 2.44×10−2 2.14×10−2 2.59×10−1

UK bonds 2.38×10−4 3.86×10−4 7.90×10−3 5.70×10−3 1.12×10−1

UK REITs 7.11×10−5 4.35×10−4 2.56×10−2 2.14×10−2 3.51×10−1

UK stocks 1.88×10−4 3.83×10−5 2.14×10−2 1.93×10−2 2.61×10−1

US bonds 3.11×10−4 2.74×10−4 8.50×10−3 7.70×10−3 1.07×10−1

US REITs 6.99×10−4 7.25×10−4 2.59×10−2 1.95×10−2 3.49×10−1

US stocks 1.10×10−3 1.20×10−3 2.25×10−2 1.86×10−2 2.40×10−1

The first column shows the average daily return for each asset class. Australian stocks present

the highest daily average return at 2.00× 10−3, followed by US stocks at 1.10× 10−3, and

Australian REITs at 7.35×10−4. The highest median value is observed for Australian stocks

at 1.80×10−3, followed by Australian REITs and US stocks at 1.20×10−3, and US REITs at

7.25×10−4. Stocks tend to have higher rates of return compared to other asset classes such

as REITs and bonds.

As for the standard deviation of returns, Australian bonds exhibit the lowest volatility value at

5.70× 10−3, followed by UK bonds at 7.90× 10−3, and US bonds at 8.50× 10−3. Similarly,

the lowest interquartile range is observed for Australian bonds at 3.00×10−3, followed by UK

bonds at 5.70× 10−3, and US bonds at 7.70× 10−3. The maximum-minimum ranges show

the lowest value for Australian bonds at 9.54× 10−2, followed by US bonds at 1.07× 10−1,

and UK bonds at 1.12× 10−1. This is expected since bond rates of return tend to be less

volatile than those of other asset classes.
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Figure 5.2: Correlation matrix between asset classes.

In summary, we observed that bond rates of return present less volatility compared to other

asset classes, and also lower average values. On the other hand, stock markets are typically

more volatile, but also more profitable than other asset classes. Real estate returns fall some-

where in between in terms of expected return and volatility. This clarifies why portfolios that

include real estate exhibit higher returns and lower risks in comparison to portfolios that only

include stocks and bonds [129].

Moreover, it is important to highlight that the correlation between real estate asset classes

and the other asset classes tends to be low, particularly when investing internationally, which

provides diversification benefits and consequently reduces the overall risk level of a mixed-

asset portfolio (refer to Figure 5.2). For example, the correlation between UK REITs and Aus-

tralian stocks is -0.23, the correlation between UK REITs and US bonds is 6.66× 10−4, and

the correlation between US REITs and Australian stocks is 0.12. In contrast, the correlation

between US stocks and Australian bonds is 0.89, the correlation between UK stocks and UK

bonds is 0.81, and the correlation between Australian stocks and US stocks is 0.78. These

values illustrate why adding international REIT investments to a portfolio can help to mitigate

risk, as per the MPT.
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5.3.2 Experimental Tuning of Hyperparameters

In order to solve the price prediction problem using machine learning algorithms, we tailored

the experimental hyperparameters of each ML algorithm to each dataset by performing tuning,

resulting in each dataset having its own set of unique hyperparameters. The Grid Search

method in Python was employed to determine the optimal hyperparameters, with the ranges

for hyperparameter values being established based on the types of datasets utilised (see

Table 5.4. It is worth noting that hyperparameter tuning was not performed for the LR model,

as it lacks hyperparameters that require tuning.

GA hyperparameter values were tuned on the same validation set. The resulting tuned values

are presented in Table 5.5.

Table 5.4: ML algorithms and parameters.

Algorithm Parameter Value range
SVR Kernel function ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’

Degree of the kernel function 1, 2, 3
Kernel coefficient (gamma) ‘scale’, ‘auto’
Tolerance for stopping criterion 0.001, 0.01, 0.1
Epsilon 0.1, 0.5, 0.8
Regularisation parameter (C) 1.0, 1.5, 2

XGBOOST Number of estimators 10, 20, 30
Maximum depth of a tree 3, 4, 5
Minimum child weight 1, 5, 10
Learning rate 0.001, 0.01, 0.1

LSTM Number of epochs Early stopping criterion
Batch size 4, 8, 16
Number of hidden layers 1, 2
Number of neurons 5, 10, 25, 50

KNN Number of neighbours 5, 10, 20
Weights ‘uniform’, ‘distance’
Algorithm ‘auto’, ‘ball_tree’, ‘kd_tree’

Table 5.5: GA parameters.

Parameter Values
Population size 500
Tournament size 3
Mutation rate 0.01
Number of generations 25
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5.3.3 Benchmarks

As mentioned in the beginning of Section 5.3, our two sub-goals are to demonstrate the added

value of implementing ML algorithms in the regression task and asset allocation. For this

purpose, we also explore the performance of three common financial benchmarks, which are

presented next, in Section 5.3.3. Furthermore, for the problem of portfolio optimisation, we are

also interested in comparing the algorithms’ performance across different portfolio techniques.

We thus introduce two further benchmarks, which are presented in Section 5.3.3.

Regression Benchmarks

HLTM Holt’s Linear Trend Method (HLTM; also known as ‘Double-Exponential Smoothing’

due to the involvement of two exponentially weighted moving average processes in its formu-

lation) is a forecasting method that makes a prediction on the basis of a predicted baseline at

the last known data point, and a linear trend extending from that point into the future. It is an

extension of Simple Exponential Smoothing that adds a trend component to the model, and

where that trend itself is also the result of a Simple Exponential Smoothing process over past

trends.

HLTM has two smoothing parameters, α and β , which control the weight given to the most

recent observation and the trend, respectively. The forecast equation for HLTM is as follows:

N̂t+h|t = ℓt +hbt , (5.4)

where ℓt is the level estimate at time t, bt is the trend estimate at time t, and h is the number

of periods ahead to forecast. The level and trend estimates are updated at each time step as

follows:

ℓt = αNt +(1−α)(ℓt−1 +bt−1) (5.5)

bt = β (ℓt − ℓt−1)+(1−β )bt−1, (5.6)

where Nt is the observed value at time t, and 0 < α < 1 and 0 < β < 1.

The HLTM method has been widely used in forecasting and has been shown to perform well in

many different applications [130]. Given that it uses a weighted average of past observations

to make its predictions, it is not able to also use TAIs in its feature set. Nevertheless, it forms

a valuable benchmark, as it allows us to compare the performance of our proposed approach

with a well-known time series prediction benchmark.
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TBATS Trigonometric Box-Cox Autoregressive Time Series (TBATS) is a state-of-the-art

forecasting model that extends the traditional exponential smoothing framework to handle

complex time series with multiple seasonal patterns and non-linear trends. TBATS was pro-

posed by [131].

The TBATS model involves the decomposition of a time series into multiple components:

a non-seasonal component, seasonal components, and an autoregressive component. The

non-seasonal component captures the overall trend of the time series and is modelled using

a Box-Cox transformation and an exponential smoothing model. The seasonal components

capture the periodic patterns in the time series and are modelled using a set of trigonometric

functions. Finally, the autoregressive component captures the temporal dependencies in the

time series and is modelled using an Autoregressive Moving Average (ARMA) model.

The TBATS model can be written as:

Nt = µt +
J

∑
j=1

γ jst, j +
p

∑
i=1

φiNt−i +
q

∑
i=1

θiet−i + et (5.7)

where Nt is the observed value of the time series at time t, µt is the non-seasonal component

at time t, st, j is the seasonal component for season j at time t, γ j is the coefficient for season

j, p and q are the orders of the autoregressive and moving average components, respectively,

φi and θi are the corresponding coefficients, et is the error term at time t, and J is the number

of seasonal patterns in the data.

TBATS has been shown to outperform traditional forecasting models such as ARIMA and

exponential smoothing on time series with multiple seasonal patterns and non-linear trends

[130]. Similarly to HLTM, TBATS is not able to use TAIs in its feature set; however, it also

serves as a valuable benchmark, as yet another well-known and widely-used time series

prediction benchmark.

ARIMA Autoregressive Integrated Moving Average (ARIMA) is a commonly used time series

model for forecasting. It is a statistical model that uses past values and errors to make

predictions. ARIMA models can capture both trend and seasonality in the data and are widely

used in many fields, including economics, finance, and engineering.

The ARIMA model is denoted by ARIMA(p, d, q), where p is the order of the autoregressive

term, d is the degree of differencing required to make the series stationary, and q is the order

of the moving average term. The model assumes that the time series is stationary, which

means that its mean and variance are constant over time.

The ARIMA model can be represented mathematically as:
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Nt = c+
p

∑
i=1

φiNt−i + εt +
q

∑
i=0

θiεt−1 (5.8)

where φ denotes the autoregression coefficient, θ refers to the moving average coefficient,

and ε refers to the error rate of the autoregression model at each time point.

In order to identify the suitable ARIMA model for each training dataset, Akaike Information

Criterion was used, and the values of p, d, and q corresponding to the minimum AIC value

were selected.

It is worth noting that ARIMA models are only applicable to stationary time series, which

implies that the statistical properties of the series remain constant over time. Since many fin-

ancial time series are not stationary, several transformations such as differencing, logarithmic

transformation, and Box-Cox transformation are required to be applied.

ARIMA has been widely applied in various fields. For example, it has been used to forecast

stock prices [132], electricity demand [133], and weather variables [134]. As with HLTM and

TBATS, it is not able to also use TAIs in its feature set, but again enjoys wide use in the

financial forecasting literature, and therefore forms a valuable benchmark.

Portfolio Optimisation Benchmarks

Portfolio optimisation involves running a Genetic Algorithm on the price data predicted by our

ML algorithms, in order to obtain appropriate weights for the different asset classes for each of

the 90 assets that make up a portfolio. The quality of the resulting portfolios is then assessed

on the basis of financial metrics calculated from the observed prices for that period. In order

to assess the added value of ML-based price predictions, we compare the performance of a

portfolio built using the above against a portfolio obtained by adopting a historical data and

perfect foresight approach.

Historical Data Portfolio Optimising weights on the training set (i.e. on historical data), rather

than the test set which is our proposed methodology, is a common approach in the literature

[20, 18, 19]. However, a drawback of this method is that the trained weights might be ‘obsolete’

if the test set price series significantly varies to the price series of the training set. Neverthe-

less, given that this is still a common approach, we are motivated in using it as a benchmark

to demonstrate the benefits of our proposed approach.
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Perfect Foresight Portfolio This is a theoretical benchmark, as it assumes perfect price

predictions in the test set. The reason for including this benchmark is to be able to see how

closely or how far away is the ML-based portfolio performance to the performance of the

theoretical portfolio of perfect price predictions. This will assist us in understanding the quality

of the performance of our proposed portfolio, and is thus a useful real-world benchmark.

5.4 Results

In Section 5.4.1, we evaluate and compare the performance of the five ML algorithms as

introduced in Section 5.2.3, in contrast to the three traditional techniques detailed in Section

5.3.3, specifically, HLTM, TBATS, and ARIMA. In Section 5.4.2, we investigate the implications

of utilising the algorithmic predictions to optimise a multi-asset portfolio through a Genetic

Algorithm approach, and how this impacts the expected return, risk, and Sharpe Ratio values

within the resulting portfolios. Finally, in Section 5.4.3, we analyse the computational times

associated with the utilised algorithms, and Section 5.4.4 provides a concise discussion of

the insights derived from the experimental results.

5.4.1 ML Prediction

The purpose of this experimental set is to investigate and compare the performance of differ-

ent ML algorithms and financial benchmarks on the task of predicting asset prices, which are

subsequently going to be used as inputs in a portfolio optimisation task (Section 5.4.2). In the

following sections, we explore the predictive capability of the five ML algorithms compared to

the three financial benchmarks considered and the historical data method. For this purpose,

we present the mean and standard deviation of Root Mean Square Error (RMSE) for each

asset class and algorithm used.

Figure 5.3 presents the RMSE results for the three asset classes, over the 8 algorithms

and the 5 different horizons, both for out-of-sample (top) and one-day-ahead (bottom) meth-

ods. With regards to the out-of-sample results, we can observe that all machine learning

algorithms experience considerably lower RMSE values than the econometric benchmarks

(HLTM, TBATS, ARIMA), with improvements often being more than 50%. This is an important

finding, which demonstrates the strengths of ML algorithms compared to the econometric

approaches. Furthermore, we can also observe a tendency of increased RMSE values as the

horizon increases, across all algorithms. Lastly, it is worth noting that bonds tend to experience

the lowest error (RMSE values up to around 2), followed by REITs (RMSE value up to around

20), and then by stocks (RMSE values around 70).
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(a) Out-of-sample RMSE results for REITs, stocks, and bonds for 8 algorithms and 5 horizons.

(b) One-day-ahead RMSE results for REITs, stocks, and bonds for 8 algorithms and 5 horizons.

Figure 5.3: Comparison of RMSE results

With regards to the one-day-ahead results, we can make similar observations: ML errors are

again considerably lower than the benchmarks, and bonds experience the lowest error, fol-

lowed by REITs, and then by stocks. One important difference to the previous (out-of-sample)

results is that one-day-ahead consistently experiences lower errors, which is expected, as it

was explained earlier. As we can observe, the highest error per asset class tends to be at

least 50% lower for the one-day-ahead method (REITs: from 20 to 10; Stocks: from 70 to 30,

Bonds: from 2 to 1). Lastly, we have provided, for reference, detailed distribution statistics for

all RMSE results in the Appendix, Tables B.1 - B.3.

In order to compare the RMSE results among the different algorithms, we run the Friedman

non-parametric test, where we calculated the average rank of each algorithm–the lower the

average rank, the better the algorithm’s performance. The average rank is based on the

comparison in terms of RMSE values for each dataset among the different algorithms. In

addition to the Friedman test, we also performed the Bonferroni post-hoc test. We present

both in Table 5.6. For each algorithm, the table shows the average rank (first column), and the

adjusted p-value of the statistical test when that algorithm’s average rank is compared to the

average rank of the algorithm with the best rank (control algorithm) according to Bonferroni’s
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post-hoc test (second column) [135, 136]. When statistically significant differences between

the average ranks of an algorithm and the control algorithm at the 5% level (p ≤ 0.05) are

observed, the relevant p-value is put in bold face. The statistical tests were conducted for

all different setups, i.e., the combined results of different horizons (30-, 60-, 90-, 120-, and

150-days), over both the one-day-ahead and out-of-sample experiments.

The results indicate that the KNN algorithm is the optimal (control) algorithm, as it statistically

outperforms LSTM, LR, HLTM, TBATS, and ARIMA, with corresponding p-values of 1.86×
10−5, 6.83× 10−8, 5.76× 10−24, 5.76× 10−24, and 3.58× 10−45, respectively. Conversely,

the performance of SVR and XGBOOST algorithms does not exhibit a statistically significant

difference from that of KNN, with p-values of 5.62 and 0.76, respectively.

To ensure the meaningfulness of our results, we calculated effect size measurements using

the Kendall’s W coefficient of concordance. This measure assesses the degree of agreement

among the rankings, with values ranging from 0 (no agreement) to 1 (complete agreement).

For the comparison between KNN and the other algorithms, the effect size was as follows:

KNN vs. LSTM: W = 0.32 (moderate effect); KNN vs. LR: W = 0.45 (moderate effect); KNN

vs. HLTM: W = 0.67 (large effect); KNN vs. TBATS: W = 0.67 (large effect); and KNN vs.

ARIMA: W = 0.89 (large effect). These effect size measurements confirm that the differences

between KNN and the other algorithms are not only statistically significant but also meaningful,

particularly for HLTM, TBATS, and ARIMA, where the effect sizes are large. This provides

enough evidence that KNN consistently outperforms these algorithms across the different

setups.

In conclusion, we observed that the RMSE distributions tend to be lower on average for ML

algorithms than for benchmark algorithms, with better results observed for one-day-ahead

prediction (as expected). We also noticed that the lowest average RMSE values are observed

for bonds, followed by REITs and stocks. This is explained by the lower volatility featuring

bond prices that we have already discussed in Section 5.3.1. In the case of REITs, the RMSE

distributions tend to have higher averages than for bonds but lower than for stocks. This is due

to the financial structure of REIT prices which is between that of bonds and stocks in terms of

risk and return. According to our statistical test results, KNN is the best algorithm in predicting

the prices of REITs, stocks and bonds both one-day-ahead and out-of-sample.

5.4.2 Portfolio Optimisation

In this section, we present the results of the genetic algorithm (GA) applied to portfolio al-

location, considering a transaction cost of 0.02%. After determining the optimal weights, we

obtain the distributions for expected returns, expected risks, and the Sharpe ratio for each

dataset. The machine learning models are compared against benchmarks (HLTM, TBATS,
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Table 5.6: Statistical test results according to the non-parametric Friedman test with Bon-
ferroni’s post-hoc test RMSE distributions. Values in bold represent a statistically significant
difference at the 5% significance level.

Algorithm Avg Rank pBonf
KNN (c) 2.88 -
SVR 2.91 5.62
XGBOOST 3.07 0.76
LSTM 3.42 1.86×10−5

LR 3.54 6.83×10−8

HLTM 6.46 5.76×10−24

TBATS 6.46 5.76×10−24

ARIMA 7.26 3.58×10−45

and ARIMA), the historical data method, and the theoretical perfect foresight approach. For

the historical data method, portfolio optimisation is carried out on the training set, while the

expected portfolio metrics are obtained from the testing set. In the perfect foresight approach,

portfolio optimisation is conducted on the testing set.

Figure 5.4 presents the expected return distributions (left), expected portfolio risk (middle),

and expected Sharpe ratio (right) obtained from the GA portfolio optimisation task for 30-

, 60-, 90-, 120-, and 150-day holding periods, for out-of-sample (top) and one-day-ahead

(bottom). With regards to the portfolio returns, we observe that for the out-of-sample method,

the machine learning algorithms yield higher returns across all holding periods when com-

pared to the benchmark methods and the historical data approach. The highest average

daily return for the 30-day period is achieved by LSTM and SVR (1.44× 10−3), followed by

KNN (1.43× 10−3). In the case of one-day-ahead predictions for the same holding period,

the expected daily return is higher for all the algorithms, with the highest value achieved

by LSTM (2.72× 10−3). For reference, the average return for the theoretical benchmark of

perfect foresight is 4.16 × 10−3. It is also worth noting that all algorithms (except TBATS

in the case of out-of-sample prediction) outperform the historical method, highlighting the

importance of making price predictions in the test set, rather than simply applying the weights

obtained in the training set directly to the test set. There is, of course, room for even greater

improvements, given that the ‘ceiling’ of perfect foresight is around 57% higher than LSTM’s

average daily return of 2.72× 10−3 (for the one-day-ahead method), showing that there is

significant research potential in this area. Lastly, as the horizon period increases to 60 days

and beyond, we observe similar improvements in the performance of the ML algorithms with

respect to the benchmarks. For reference, detailed tables for returns, as well as risk and

Sharpe ratio distributions, are provided in the Appendix, in Tables B.4 - B.6.
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(a) Out-of-sample portfolio results for REITs, stocks, and bonds for 8 algorithms and 5 horizons.

(b) One-day-ahead portfolio results for REITs, stocks, and bonds for 8 algorithms and 5 horizons.

Figure 5.4: Comparison of portfolio results. For reference, the perfect foresight values for
returns are 4.16×10−3 (30 days), 4.07×10−3 (60 days), 4.56×10−3 (90 days), 3.85×10−3

(120 days), and 3.78×10−3 (150 days). The perfect foresight values for risk are 1.14×10−3

(30 days), 2.42×10−3 (60 days), 2.51×10−3 (90 days), 2.58×10−3 (120 days), and 2.34×
10−3 (150 days). The perfect foresight values for Sharpe ratio are 4.04× 10−2 (30 days),
3.72×10−2 (60 days), 3.72×10−2 (90 days), 3.29×10−2 (120 days), and 3.23×10−2 (150
days).

To investigate if the above results are statistically significant, we again performed a Friedman

test at the 5% significance level, along with the Bonferroni post-hoc test. We present these

results in Table 5.7 for returns (left), risk (middle), and Sharpe ratio (right). With regards to

returns, LSTM has the best rank (2.97), followed by SVR (2.99), and KNN (3.30). Given a 5%

significance level, LSTM statistically outperforms XGBOOST (p-value equal to 1.40× 10−4),

LR (p-value equal to 2.14 × 10−18), ARIMA (p-value equal to 1.98 × 10−54), the historical

method (p-value equal to 3.25× 10−280), HLTM (p-value equal to 0), and TBATS (p-value

equal to 0). On the other side, there is no statistical difference between LSTM and SVR (p-

value equal to 6.71×10−2) and KNN (5.00×10−2).
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To further validate the practical significance of these findings, we calculated effect sizes

using Kendall’s W coefficient of concordance. For the comparison of LSTM with the other

algorithms, the effect sizes were as follows: LSTM vs. XGBOOST: W = 0.35 (moderate effect),

LSTM vs. LR: W = 0.60 (large effect), LSTM vs. ARIMA: W = 0.75 (large effect), LSTM

vs. historical method: W = 0.92 (very large effect), LSTM vs. HLTM: W = 1.00 (very large

effect), and LSTM vs. TBATS: W = 1.00 (very large effect). These effect size measurements

indicate that, in addition to being statistically significant, the differences in performance are

also practically meaningful, particularly in comparisons with ARIMA, the historical method,

HLTM, and TBATS.

With regards to portfolio risks, we can generally observe that it tends to be higher for bench-

marks with respect to the ML algorithms and the historical approach. However, there are some

other cases, particularly in the out-of-sample method, where the econometric benchmarks

and the historical data approach outperform the machine learning algorithms. Nevertheless,

it is worth noting that the majority of these differences is not significant.3 Furthermore, we can

observe that the risk levels achieved by a perfect foresight-based portfolio (presented in the

caption of Figure 5.4) are closely achieved by most of the portfolios built using one-day-ahead

predictions. In the case of out-of-sample predictions, the relative difference between the risk

value achieved by the best algorithm and the perfect foresight case is around 6% (TBATS)

for a 30-day period, 15% (historical data approach) for a 60-day period, 5% (historical data

approach) for a 90-day period, 12% (TBATS) for a 120-day period, and 6% (TBATS) for a

150 day period. This is an important observation, as it demonstrates that the above results

are very close to the best possible risk performance that can be achieved, as shown in the

theoretical case of perfect foresight.

According to the Friedman test results, we can observe that XGBOOST has the best rank

(4.26), followed by KNN (4.32), and SVR (4.42). Given a 5% significance level, LSTM statist-

ically outperforms TBATS (p-value equal to 4.51×10−5), HLTM (p-value equal to 6.80×10−6),

and ARIMA (p-value equal to 0). On the other side, there is no statistical significance in the

results between XGBOOST and KNN (p-value equal to 6.35), SVR (p-value equal to 2.31),

LR (p-value equal to 2.25), LSTM (p-value equal to 1.67), and the historical data approach

(p-value equal to 0.37).

To assess the practical significance of these results, we calculated the effect sizes using Kend-

all’s W coefficient of concordance. The effect sizes for the significant comparisons were as

follows: LSTM vs. TBATS: W = 0.40 (moderate effect), LSTM vs. HLTM: W = 0.50 (moderate

effect), and LSTM vs. ARIMA: W = 0.80 (large effect). These effect size measurements indic-

ate that while the differences are statistically significant, they are also practically meaningful,

particularly in the comparison between LSTM and ARIMA.

3. This becomes evident when we have a look at the Friedman ranking, which is presented in Table 5.7.
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Lastly, when looking at the Sharpe ratio results of Figure 5.4, we can observe that all ML

algorithms outperform the benchmarks for all periods in both cases of out-of-sample and

one-day-ahead predictions. In many cases, the differences in Sharpe ratio values are quite

noticeable, e.g. for both out-of-sample and one-step ahead the econometric benchmarks

(HLTM, TBATS, ARIMA) appear to have at least 50% lower values than the ML algorithms.

This is an important observation, because it demonstrates the importance of using machine

learning for price predictions instead of traditional econometric approaches.

From the Friedman test results, we notice that SVR has the best rank (2.63) followed by LSTM

(2.82) and KNN (2.96). In addition, we observe that KNN statistically outperforms LR (p-value

equal to 9.94×10−10), XGBOOST (p-value equal to 2.21×10−11), ARIMA (p-value equal to

1.05× 10−279), HLTM (p-value equal to 2.84× 10−283), TBATS (p-value equal to 0), and the

historical data approach (p-value equal to 0). Lastly, it is worth noting that all algorithms have

a higher rank compared to the historical method which showcases the importance of including

price predictions in order to improve the risk-adjusted performance of a mixed-asset portfolio.

To further validate the practical significance of these differences, we calculated effect sizes

using Kendall’s W coefficient of concordance. The effect sizes for the significant comparisons

were as follows: KNN vs. LR: W = 0.42 (moderate effect), KNN vs. XGBOOST: W = 0.46

(moderate effect), KNN vs. ARIMA: W = 0.85 (large effect), KNN vs. HLTM: W = 0.88 (large

effect), KNN vs. TBATS: W = 1.00 (very large effect), and KNN vs. historical data approach:

W = 1.00 (very large effect).

(a) Return

Algorithm Avg
Rank

pBonf

LSTM (c) 2.97 -
SVR 2.99 6.71×10−2

KNN 3.30 5.00×10−2

XGBOOST 3.49 1.40×10−4

LR 4.06 2.14×10−18

ARIMA 4.88 1.98×10−54

HistData 7.35 3.25×10−280

HLTM 7.80 0
TBATS 8.15 0

(b) Risk

Algorithm Avg
Rank

pBonf

XGBOOST (c) 4.26 -
KNN 4.32 6.35
SVR 4.42 2.31
LR 4.42 2.25
LSTM 4.44 1.67
HistData 4.53 0.37
TBATS 4.84 4.51×10−5

HLTM 4.89 6.80×10−6

ARIMA 8.87 0

(c) Sharpe ratio

Algorithm Avg
Rank

pBonf

SVR (c) 2.63 -
LSTM 2.82 1.06
KNN 2.96 0.06
LR 3.42 9.94×10−10

XGBOOST 3.49 2.21×10−11

ARIMA 7.02 1.05×10−279

HLTM 7.05 2.84×10−283

TBATS 7.61 0
HistData 8 0

Table 5.7: Statistical test results according to the non-parametric Friedman test with the
Bonferroni post-hoc for expected returns (left), expected risks (middle), and expected Sharpe
ratios (right). Values in bold represent a statistically significant difference.
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5.4.3 Computational Times

The computational times of most algorithms were found to be comparable. On average,

ARIMA took approximately 0.168 minutes to run, while LR, SVR, and KNN took between

0.2 and 0.3 minutes. LSTM was the most computationally expensive algorithm, taking around

1.818 minutes to run. With regards to the genetic algorithm, a single run took around 0.3

minutes to complete. Generally, we can observe that all of the runtimes are relatively fast.

In addition, given that all of them are typically run offline, and only their trained models are

used in real time, these time differences are not considered significant. Besides, parallelisation

techniques can be employed to reduce the computational time of these algorithms [128].

5.4.4 Discussion

Our initial experimental objective was to showcase the enhancement in prediction accuracy

achieved by employing machine learning (ML) algorithms in contrast to the three benchmark

models considered and the historical data-based approach. The observed results revealed

that the Root Mean Square Error (RMSE) distributions from the ML models exhibited lower

average values and reduced volatility compared to the benchmark models. Notably, K-Nearest

Neighbours (KNN), Support Vector Regression (SVR), and Extreme Gradient Boosting (XG-

BOOST) outperformed the other models in both one-step-ahead and out-of-sample prediction

accuracy.

Conversely, our experimental findings illustrated the superior portfolio performance resulting

from the utilisation of ML predictions when compared to a portfolio constructed using price

forecasts from state-of-the-art models (i.e., Holt’s Linear Trend Method, Trigonometric Box-

Cox Autoregressive Time Series, and Autoregressive Integrated Moving Average) and the

historical method. This primarily arises from the poorer prediction accuracy exhibited by the

benchmark models. Furthermore, Long/Short-Term Memory (LSTM), SVR, and KNN out-

performed other algorithms in terms of portfolio returns, while Holt’s Linear Trend Method

(HLTM), Trigonometric Box-Cox Autoregressive Time Series (TBATS), and Autoregressive

Integrated Moving Average (ARIMA) demonstrated inferior performance concerning portfolio

risk. Additionally, SVR, LSTM, and KNN delivered the most favourable Sharpe ratio values

compared to the other algorithms.
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5.5 Summary

In this chapter, we analysed the predictive ability of five machine learning algorithms (LR,

SVR, KNN, LSTM, and XGBOOST), and compared it against three benchmarks (HLTM,

TBATS, and ARIMA).

From the above results, we can summarise our findings as follows.

Machine learning algorithms are able to outperform financial approaches for price prediction.

The initial objective of our experiments was to compare the performance of ML models against

our benchmark models, namely HLTM, TBATS, and ARIMA, in terms of their predictive power

measured by RMSE. The experimental results showed that the RMSE distributions of the ML

models tend to have lower average values and lower volatility than those of the benchmark

models. The Friedman tests further revealed that KNN, SVR, and XGBOOST ranked first,

second, and third, respectively, outperforming the other models, indicating their superior ability

to make one-day-ahead and out-of-sample predictions compared to the statistical tools.

REITs’ low volatility leads to improved price predictions. We observed that volatility affects

price prediction results. More specifically, the predictive ability of the different algorithms tends

to improve for bonds, which can be attributed to the lower price volatility for this asset class.

In the case of REITs, the RMSE distributions show lower averages compared to stocks for all

periods. This is due to a lower volatility that features REITs time series, as we have already

discussed in Section 5.3.1.

Portfolios using prices predicted by ML algorithms lead to better performance. The second

objective of our experiments was to compare the performance of portfolios derived from ML-

based predictions with that of portfolios obtained from HLTM-, TBATS-, and ARIMA-based

predictions (benchmarks), as well as a portfolio obtained from historical data. According to

our findings, ML-based predictions increased the expected Sharpe ratio level compared to

the historical data situation, mostly due to the increase in expected return levels rather than

expected risk levels, which were also low for some of the benchmark algorithms. Having very

good performance in terms of Sharpe ratio is paramount, because it is an aggregate metric

that takes into account both returns and risk. It is also worth noting that practitioners pay

particular attention to such aggregate metrics, thus the ML algorithms’ superior performance

in Sharpe ratio is a very positive result.
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The inclusion of REITs into mixed-asset portfolios leads to better diversification results. Fig-

ure 5.5 displays the optimal weights of a portfolio constructed using SVR (the best ranked

algorithm according to the Friedman test) out-of-sample price predictions. It is evident that

the highest weight is assigned to UK stocks (44.27%), US bonds (24.07%), and UK REITs

(20.78%). Such allocation aids in enhancing the final portfolio’s performance, and is consistent

with the one suggested by previous studies [137, 138, 139]. This underscores the importance

of including REITs in mixed-asset portfolios due to the diversification potential of this asset

class. In other words, the higher accuracy of out-of-sample predictions for REITs time series

contributes to the construction of less risky portfolios and may be a signal of better risk-

adjusted portfolio performance.

Figure 5.5: SVR-GA portfolio weights

The risk-adjusted performance of a portfolio obtained from ML predictions tend to be higher

compared to the portfolio obtained from historical data and benchmark price predictions for

all time horizons. We noticed that the average Sharpe ratio resulting from SVR predictions

is the highest for a 30-day period, while the highest value is observed for XGBOOST for a

60-day period, SVR for a 90-day period, LSTM (in the case of out-of-sample predictions) and

LR (in the case of one-day-ahead predictions) for a 120-day period, and XGBOOST for a

150-day period. As expected, the one-day-ahead predictions lead to better results in terms of

Sharpe ratio compared to the out-of-sample predictions due to generally lower RMSE values

for all time horizons. But as we have noticed, there is still some potential improvement in the

portfolio performance that can be achieved by the ML algorithms.



Chapter 6

Improving REITs Time Series

Prediction Using ML and TA

Indicators

6.1 Introduction

In Chapter 5, we have presented an extensive analysis of incorporating machine learning-

based price predictions for Real Estate Investment Trusts (REITs), stocks, and bonds into

portfolio optimisation. We evaluated the performance of machine learning algorithms in terms

of portfolio average returns, risk, and the Sharpe ratio. Our experiments revealed that machine

learning models outperformed traditional econometric benchmarks such as HLTM, TBATS,

and ARIMA when applied to one-day-ahead and out-of-sample price predictions across vari-

ous time horizons (30, 60, 90, 120, and 150 days). This superiority was evident from the

consistently lower average Root Mean Square Error (RMSE) values observed for machine

learning algorithms.

However, it is worth noting that there is still room for improvement in the accuracy of machine

learning predictions, particularly for out-of-sample predictions. By reducing the error associ-

ated with machine learning predictions, we have the potential to enhance the performance

of multi-asset portfolios, particularly in terms of the average Sharpe ratio. To address this,

we propose the introduction of Technical Analysis Indicators (TAIs) as additional features for

our regression problem. This research’s primary innovation lies in its comprehensive and ex-

perimental comparison of time series prediction for REITs, incorporating TAIs into the feature

set.

Previous works have demonstrated the effectiveness of using TAIs in the price prediction

task. Specifically, [140, 141, 142] have demonstrated that using TAIs as additional features

could improve the accuracy of stock price predictions. However, TAIs have not been utilised

to predict real estate prices, making it crucial to demonstrate their potential advantages in

price predictions, and by extension, in portfolios that incorporate REITs as one of their asset

classes. In this chapter, we explore the performance of the same machine learning algorithms

65



6.1. Introduction 66

used in the previous chapter, namely Ordinary Least Squares (OLS) Linear Regression,

Support Vector Regression, K-Nearest Neighbours, eXtreme Gradient Boosting (XGBoost),

and Long Short Term Memory (LSTM) Neural Networks. In this way, we assess the potential

improvement in prediction accuracy resulting from the incorporation of TAIs in the above-

mentioned machine learning algorithms.

The remainder of this chapter is structured as follows: Section 6.2 outlines the methodology

employed in this study; Section 6.3 details our experimental setup; Section 6.4 offers an

in-depth discussion of the experimental outcomes, highlighting the application of machine

learning and the proposed benchmarks to our dataset; finally, Section 6.5 summarises the

key findings and provides concluding remarks for this research paper.

6.2 Methodology

Our methodology can again be broken down into two main steps: (i) price prediction, where

we use different machine learning algorithms that include Technical Analysis Indicators (TAIs)

in their feature set; and (ii) portfolio optimisation, where the predicted prices from the above

step are used as input to a portfolio, whose weights are optimised by means of a Genetic

Algorithm. The methodology that we follow in this chapter differs from the one explained in the

previous chapter in the introduction of additional features in our regression problem, making

it possible to further improve the performance of the algorithms used.

It is worth noting that the nature of data we used for this study is the same as in Chapter 5,

as well as the data preprocessing steps we took into account (differencing and scaling), the

machine learning algorithms used in our experiments, and the loss function chosen (Section

5.2.4). However, in this work we use additional features in the form of Technical Analysis

indicators (TAIs) that we have not considered in the previous set of experiments. Thus, in this

Section, we will describe the features used in our experiments (Section 6.2.1).

6.2.1 Features

To address our regression problem, we utilise two types of features: (i) past observations (i.e.

‘lags’) of the time series variable Nt ; and (ii) Technical Analysis Indicators (TAIs).
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Table 6.1: Example of feature selection (lagged observations).

t Nt Nt−1 Nt−2 Nt−3 Nt−4 Nt−5

t2 0.30 - - - - -
t3 0.70 0.30 - - - -
t4 0.22 0.70 0.30 - - -
t5 1 0.22 0.70 0.30 - -
t6 0 1 0.22 0.70 0.30 -
t7 0.70 0 1 0.22 0.70 0.30

Past Observations (Lags)

For the first type of features, we incorporate n past observations of Nt , i.e., Nt−1, Nt−2, Nt−3, ...,

Nt−n, where the number of lags n is determined using the Akaike Information Criterion (AIC).

For more detail, see Chapter 5. Table 6.1 provides an illustration of lagged observations for a

selected number of lags (n = 5).

Technical Analysis Indicators (TAIs)

In addition to past observations, we also use five TAIs at each timepoint — Simple Moving Av-

erage (SMA); Exponential Moving Average (EMA); Moving Average Convergence/Divergence

(MACD); Bollinger Bands; and Momentum — as suggested in [143, 141, 144]. These indicat-

ors help identify the short- and long-term trends of a time series, and thus can be effectively

used for price prediction.

Simple Moving Average: The Simple Moving Average (SMA) is often used to predict future

observations by providing an estimate of the level of a time series [145]. Mathematically, the

SMA is the weighted average of the past T prices and can be represented as:

SMA(t) =

t

∑
i=t−(T−1)

[
Ni

]
T

, (6.1)

where Nt is the normalised price at time i, and T is the number of time points considered.

In Python, we calculate the SMA using the rolling method1. It is important to note that the

period of interest T used for window-averaging is independent of the number of lags n, which

determines the number of historical timepoints used for training purposes.

1. https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.rolling.

html Last accessed: June 2023.

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.rolling.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.rolling.html
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Exponential Moving Average: The Exponential Moving Average (EMA) is a similar technique

to the SMA, but with the key difference being that it considers all past observations, with

weights that decay exponentially as a function of the distance in time between each observa-

tion and the current timepoint. More recent observations are given greater weight than older

observations. The EMA is typically expressed through the following difference equation:

EMA(t) = αNt + (1−α) EMA(t −1), (6.2)

where α is a parameter representing the amount of weight decay applied at each timestep. α

is calculated as α = 2/(T + 1), where T is the period of interest. It can take any real value

between 0 and 1, with lower values assigning more importance to past information, and higher

values indicating less importance given to past prices. In Python, we calculate the EMA using

the ewm method2.

Moving Average Convergence/Divergence: The Moving Average Convergence/Divergence

(MACD) indicator is a measure of the difference between a short-term and a long-term Ex-

ponential Moving Average (EMA). It is useful for identifying bullish moments (i.e. periods

characterised by notable market price increase relative to historically lower or more stable

prices), or bearish moments (i.e. periods characterised by notable market price decrease

compared to historically higher or more stable prices). To calculate the MACD, we select an

H-day denoting the start of a longer, ‘historical’ period (lasting until the present day), and an R-

day (closer in time to the present day compared to the H-day), denoting the start of a shorter,

more ‘recent’ period. The ‘recent’ period typically represents a period of interest, whose trend

one wishes to compare against the longer, ‘historical’ period, in order to identify a change in

market trend as compared to historical levels. This is done by first obtaining EMAs for both

periods; the MACD is then obtained as the difference between the ‘recent’ EMA compared to

the ‘historical’ one [146]:

Bollinger Bands: Bollinger Bands (BB) are defined as a price range around the Simple

Moving Average (SMA) price at time t, obtained as follows: first, we compute the standard

deviation of all observations (i.e., with respect to the SMA), within a period of interest T ,

where T is typically the same period used to calculate the SMA. This is then multiplied by

a modifier D, which determines the number of standard deviations away from the mean we

want to set our range to. This is represented mathematically as follows:

2. https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.ewm.html

Last accessed: June 2023.

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.ewm.html
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Table 6.2: Example of feature selection (TAIs).

t SMA EMA MACD
Upper
band

Lower
band

Momentum

t2 - 0.15 - - - -
t3 - 0.43 - - - -
t4 - 0.32 0.19 0.53 0.28 -
t5 0.41 0.66 0.15 0.80 0.48 0.70
t6 0.64 0.33 0.18 0.59 0.23 0.70
t7 0.41 0.52 0 0.78 0.35 0.48

BB(t) = SMA(t)±D

√√√√( 1
T

) t

∑
i=t−(T−1)

[
Ni −SMA(t)

]2

(6.3)

Bollinger Bands can help identify whether the current price level of a security has deviated

significantly (i.e., more than D standard deviations) compared to its recent average and can

also aid in predicting whether it might rise or fall back to that level.

Momentum: The Momentum indicator [147] is calculated as the difference between the price

at time t and the price T periods ago, as shown below.

Momentum = Nt −Nt−T (6.4)

By measuring the strength of a price trend, the Momentum can help predict the future direction

of a time series.

Table 6.2 shows the TAIs computed for the preprocessed data described in Table 5.1. Specific-

ally, we compute the 3-day Simple Moving Average (SMA), the Exponential Moving Average

(EMA) with α = 0.5, the Moving Average Convergence/Divergence (MACD) as the difference

between the 3-day EMA and the 6-day EMA, the upper and lower Bollinger Bands using the

3-day SMA and the standard deviation of the 3-day SMA multiplied by 0.5, and the Momentum

as the difference between the current price Nt and the price Nt−T that was observed T = 5

timepoints before t.

In total, we use these six TA-based features together with the lag-based features, resulting in

n+6 features for our regression task.
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6.3 Experimental Setup

The main goal of this work is to demonstrate the benefits of adding TAIs to the feature set of

ML algorithms that predict REITs prices. To achieve this, we have broken down the above goal

into two sub-goals: (i) to demonstrate that the use of TAIs leads to a significant reduction in the

regression error, and (ii) to demonstrate that the use of TAIs leads to a significant improvement

in the financial performance of a mixed asset portfolio that includes REITs.

The data used for this experiment set and the hyperparameter tuning adopted for the ML

algorithms are the same as in Chapter 5. Thus in the following Section we will discuss the

hyperparameter tuning used for the TAIs (Section 6.3.1) and the benchmarks employed in our

experiments (Section 6.3.2).

6.3.1 Experimental Tuning of Hyperparameters

The hyperparameters of our machine algorithms were selected in the same way as for the

experimental set described in Chapter 5. Specifically, the hyperparameter tuning took place

through the Grid Search method. In that way, each dataset has their specific optimal paramet-

ers.

Regarding the genetic algorithm parameters, we selected the same values as in Chapter 5.

In order to select the optimal hyperparameters for the TAIs described in Section 6.2.1, we

performed Grid Search tuning for each dataset. The best value for α in the EMA calculation

was selected from the set {0.01, 0.05, 0.1} [148]. The other hyperparameter values were

decided on the basis of previous works [149, 150]. The selected values are shown in Table

6.3.

Table 6.3: TA hyperparameters.

Parameter Indicator Values
α EMA 0.01, 0.05, 0.1
Short-day MACD 20
Long-day MACD 50
D Bollinger bands 2

6.3.2 Benchmarks

As mentioned in the beginning of Section 6.3, our two sub-goals are to demonstrate the

effectiveness of the use of TAIs in the price prediction task, and in the portfolio optimisation

task. In order to investigate the benefits of using TAIs in the feature set, we employ and

compare against several benchmarks, in accordance with the above two sub-goals. Section

6.3.2 presents the benchmarks chosen in relation to the regression task (four in total), and

Section 6.3.2 presents the benchmarks chosen for the portfolio optimisation task (four in total).
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Regression Task Benchmarks

Autoregression With ML In Section 6.2.1, we described the various features used in our

regression problem. In order to assess the potential improvement in predictive accuracy from

incorporating TAIs in addition to lagged values for predicting asset prices, we compare the

performance of the five ML algorithms that employ both lagged prices and TAIs (proposed ap-

proach) against the five ML algorithms that use only lagged prices (i.e., without the TAIs), as is

common practice in the REITs literature. The dependent variable is Nt , while the independent

variables are past observations, specifically Nt−1,Nt−2, ...,Nt−T , excluding the TAIs.

HLTM, TBATS, and ARIMA The other regression benchmarks (i.e., HLTM, TBATS, and

ARIMA) are presented in Chapter 5.

Portfolio Optimisation Benchmarks

Portfolio optimisation involves running a Genetic Algorithm on the price data predicted by

our TAI-enhanced ML algorithms, in order to obtain appropriate weights for the different asset

classes for each of the 90 assets that make up a portfolio. The quality of the resulting portfolios

is then assessed on the basis of financial metrics calculated from the observed prices for that

period. Furthermore, in order to assess the usefulness of TAIs in producing better portfolios,

we compare the performance of the above, with portfolios that have been optimised with

respect to price predictions obtained from the non-TAI-enhanced ML algorithm variants, just

as in Section 6.3.2.

For completeness, we also benchmark our proposed approach against portfolios obtained on

the basis of predictions made using the HLTM, TBATS, and ARIMA algorithms respectively, as

these are well-known prediction algorithms, which are widely used in the financial literature.

In all cases we evaluate the results in the test set in terms of three financial metrics, namely

expected returns, expected risk and the Sharpe Ratio.

6.4 Results

In Section 6.4.1, we assess and compare the performance of the five ML algorithms – i.e.,

Ordinary Least Squares (OLS) Linear Regression, Support Vector Regression, K-Nearest

Neighbours, eXtreme Gradient Boosting (XGBoost), and Long Short Term Memory (LSTM)

Neural Networks — when making use of TAIs in their feature-set, against a) the same set

of ML algorithms when using only lagged values but no TAIs as features, and b) the three

conventional techniques outlined in Section 6.3.2 (i.e. HLTM, TBATS, and ARIMA), which also

rely on lagged values exclusively for their function. In Section 6.4.2 we examine the implica-

tions of using TAIs in this manner, in the context of using the obtained algorithmic predictions
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to perform optimisation of a multi-asset portfolio using a Genetic Algorithm approach, and the

extent to which this affects expected return, risk, and Sharpe Ratio values in the resulting

portfolios. In Section 6.4.3, we further analyse the importance of each feature in two distinct

ways, by using the SHAP and SAGE algorithms, which are metrics of feature quality that build

on the concept of Shapley values [151]. Finally, Section 6.4.4 examines the computational

times involved for the algorithms used, and Section 6.4.5 offers a short discussion on the

insights gained from the experimental results.

6.4.1 ML Prediction

We evaluate and compare the performance of the proposed approaches and benchmarks, by

reporting the RMSE mean and standard deviation per asset class, for each algorithm across

all markets, where the RMSE for each dataset is obtained as per Section 5.2.4.

Figure 6.1 shows RMSE descriptive statistics for REITs in the case of out-of-sample (top)

and one-day-ahead prediction (bottom) over a 30-, 60-, 90-, 120-, and 150-day period3. We

note that, in the case of out-of-sample prediction, the average RMSE is consistently lower

for algorithms that use TAIs when compared to the algorithms that use lagged prices only.

This is the case across all periods (30, 60, 90, 120, and 150 days). It is also worth noting

that the improvements in RMSE means tend to be large. E.g. in the 30-day period, we note

a reduction from an ‘RMSE means’ average of around 5.5 (i.e. when averaging the individual

RMSE means of each non-TAI model), to an average of 4.0 when TAIs are added into the

feature set. We also note even larger improvements in other isolated instances; e.g. the 90-day

OLS features a reduction from around 10 to 6 (i.e. an error reduction of ≈39%), and the 120-

day LSTM features a reduction from approximately 11 to 6 (i.e. an error reduction of ≈ 46%).

In addition, it is worth noting that the performance of the conventional time-series benchmarks

(HLTM, TBATS, ARIMA)4 is generally poor by comparison, and consistently outperformed by

the machine learning algorithms, regardless of whether TAIs are included in the feature set or

not.

A similar picture can be observed with the one-day-ahead prediction results. The perform-

ance of the algorithms that use TAIs tends to be better than the ones without TAIs, with the

only exception being the 30-day SVR and XGBOOST, and the 120-day XGBOOST entries.

However, it is worth noting that, while for the out-of-sample results, the introduction of TAIs led

to large reductions in error, this reduction is not as impressive in the case of one-day-ahead

predictions. This is to be expected, since this method predicts the next day’s value using only

3. For reference, we provided Tables C.1 - C.2 with detailed results for REITs, stocks, and bonds in Appendix C
4. As mentioned in Section 6.2, due to the autoregressive elements of HLTM, TBATS, and ARIMA, they cannot
use TAIs in their feature set. Hence the relevant rows under the ‘With TA’ headings in Table C.1, and across all
remaining tables in this paper, are empty.
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real — rather than predicted — values in the test period, and therefore the errors are always

going to be much smaller. In fact, this is the case regardless of whether we use TAIs or not. As

a result, the margin for improvements is also small. Nevertheless, the fact remains that when

using TAIs we still observe consistent average RMSE improvements.

(a) Out-of-sample RMSE results for REITs, stocks, and bonds for 8 algorithms and 5 horizons.

(b) One-day-ahead RMSE results for REITs, stocks, and bonds for 8 algorithms and 5 horizons.

Figure 6.1: Comparison of RMSE results

We can observe a similar picture for stocks results. Machine learning algorithms that use TAIs

in their feature set show consistently lower RMSE average values for both out-of-sample and

one-day-ahead predictions, across all periods (30, 60, 90, 120, and 150 days). It is also worth

noting here that the average RMSE values tend to be higher for stocks than for the other two

asset classes; this can be explained by the more volatile nature of stock data, which makes it

much harder to predict accurately.

Finally, we notice relatively low RMSE average values for bonds. This is due to the nature of

such asset class, featured by low volatility, which makes it much easier to predict. With regards

to the comparison of results when using TAIs, we can again observe that the introduction of

TAIs leads to consistent improvements in the out-of-sample results, whereas in the one-day-

ahead case, due to the very low error values involved, the results are more mixed, with TAI

algorithms occasionally being marginally outperformed by their respective non-TAI ones.
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To determine whether there is a statistically significant difference between the distributions of

RMSE scores resulting from TAI versus non-TAI ML algorithms, we performed a Kolmogorov-

Smirnov (KS) test at the 5% significance level across all asset classes. The null hypothesis

was that the compared RMSE distributions come from the same continuous distribution. Since

we conducted five comparisons (one for each considered period: 30-, 60-, 90-, 120-, and 150-

day periods), we adjusted the α value using the Bonferroni correction, resulting in an adjusted

threshold of 0.01 (0.05/5 = 0.01).

For out-of-sample predictions, we obtained KS test p-values of less than 0.001 in all cases,

which are much lower than the adjusted α threshold of 0.01. Specifically, for the 30-, 60-

, 90-, 120-, and 150-day periods, the p-values were 1.02× 10−9, 7.14× 10−7, 5.66× 10−8,

4.60×10−8, and 2.61×10−7, respectively. These results strongly suggest that the introduction

of TAIs leads to a significant reduction in RMSE. To further quantify the practical significance

of these differences, we calculated effect sizes using Cohen’s d. The effect sizes for the

significant periods were as follows: d = 0.82 (large effect) for the 30-day period, d = 0.76

(large effect) for the 60-day period, d = 0.85 (large effect) for the 90-day period, d = 0.78

(large effect) for the 120-day period, and d = 0.80 (large effect) for the 150-day period. These

large effect sizes confirm that the differences observed are not only statistically significant but

also practically meaningful.

Conversely, in the case of one-day-ahead predictions, the KS test p-values were non-significant

(1.04×10−1, 7.37×10−1, 6.17×10−1, 3.07×10−1, and 1.48×10−1, respectively), indicating

no significant difference in RMSE distributions. As a result, effect sizes were not calculated

for these comparisons. However, as previously mentioned, due to the nature of one-day-

ahead predictions, RMSE values tend to be very small, making it more challenging to achieve

statistically significant results despite the observed small reductions in RMSE.

In conclusion, we observed that the RMSE distributions tend to be lower on average and less

volatile for ML algorithms that use TAIs, than for benchmark algorithms which show larger

and more variable residuals in the case of out-of-sample predictions. In general, we noticed

that the magnitude of the reduction in RMSE mean values from TAIs can be as high as 45%.

We also observed that the lowest average RMSE values were obtained in bonds, followed

by REITs, and stocks. This can be explained by the lower volatility of bond prices as seen in

Section 5.3.1. In the case of REITs, the RMSE distributions tend to have higher averages than

for bonds but lower than for stocks. This is likely due to the properties of REIT prices in terms

of risk and return that are usually placed between that of bonds and stocks in terms of risk

and return. According to the KS test results, there is a significant reduction in RMSE mean

values when adopting an out-of-sample methodology.
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6.4.2 Portfolio Optimisation

This section contains the results of the Genetic Algorithm (GA) applied to portfolio allocation,

which takes into account a transaction cost of 0.02%. The GA was used to generate 100

optimised portfolios per algorithm considered. For each generated portfolio, the optimised

weights were used to calculate the expected return, expected risk, and expected Sharpe

Ratio for the portfolio. These were then pooled over all generated portfolios, to create and

analyse the distributions of expected returns, expected risks, and expected Sharpe Ratios

respectively. In this Section, we compare the performance of our proposed approaches, i.e. of

ML models that utilise TAIs as additional features, to benchmarks, which consist of portfolios

built using ML models, as well as HLTM, TBATS, and ARIMA.

(a) Out-of-sample portfolio results for REITs, stocks, and bonds for 8 algorithms and 5 horizons.

(b) One-day-ahead portfolio results for REITs, stocks, and bonds for 8 algorithms and 5 horizons.

Figure 6.2: Comparison of portfolio results

Figure 6.2 shows descriptive statistics for expected return distributions (left), expected risk dis-

tributions (middle), and expected Sharpe ratio distributions (right) obtained from the GA portfo-

lio optimisation for a 30-, 60-, 90-, 120-, and 150-day holding period, for the out-of-sample (top)

and one-day-ahead (bottom) method. For HLTM, TBATS, and ARIMA models, the average

expected return values appear to be lower compared to the proposed approaches. In the

case of the one-day-ahead predictions, the average values of the expected return distributions
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also improve when introducing TAIs. For instance, the best result is observed for the KNN

algorithm (around 4×10−3) which shows an improvement of almost 175% when adding TAIs.

The HLTM, TBATS, and ARIMA algorithms show lower expected return values with respect to

the ML algorithms that use TAIs. We observe similar findings for out-of-sample and one-day-

ahead methods.

To compare the expected return distributions obtained via TAI models versus non-TAI models

from ML algorithms that use TAIs as additional features and those obtained from algorithms

that use lagged values only, we conducted a Kolmogorov-Smirnov (KS) test at the 5% signi-

ficance level. Here again, the null hypothesis assumes that the compared return distributions

arise from the same continuous distribution. We performed five comparisons (one for each

prediction period, i.e., 30, 60, 90, 120, and 150 days), and to account for multiple comparisons,

we again applied Bonferroni’s correction by adjusting the alpha value to 0.05/5 = 0.01.

For out-of-sample predictions, the KS test produced p-values of 7.17× 10−28, 3.59× 10−27,

8.24× 10−24, 1.12× 10−20, and 3.27× 10−17 for 30-, 60-, 90-, 120-, and 150-day periods,

respectively, which are much lower than the adjusted significance level of 0.01, suggesting

that the use of TAIs leads to a significant improvement in the expected return distributions.

The effect sizes for these periods, calculated using Cohen’s d, were d = 0.85 (large effect)

for the 30-day period, d = 0.78 (large effect) for the 60-day period, d = 0.82 (large effect) for

the 90-day period, d = 0.76 (large effect) for the 120-day period, and d = 0.81 (large effect)

for the 150-day period. These large effect sizes confirm that the observed differences are not

only statistically significant but also practically meaningful.

Similarly, for one-day-ahead predictions, the KS test produced p-values of 5.11×10−33, 3.71×
10−36, 3.97 × 10−25, 3.59 × 10−27, and 5.11 × 10−33 for 30-, 60-, 90-, 120-, and 150-day

periods, respectively, leading to the same conclusion as for the out-of-sample scenario. The

effect sizes for these periods were d = 0.89 (large effect) for the 30-day period, d = 0.87

(large effect) for the 60-day period, d = 0.84 (large effect) for the 90-day period, d = 0.83

(large effect) for the 120-day period, and d = 0.88 (large effect) for the 150-day period, further

supporting the practical significance of the improvements in expected return distributions

when using TAIs.

Regarding the average expected risk we observe improvements in the predictive performance

of all ML algorithms when including TAIs in the regression problem for all periods, both for out-

of-sample and one-day-ahead approaches. As we can observe, in the case of out-of-sample

prediction, there is an average increase of around 187% as we add TAIs for a 30-day prediction

period (with a decrease in the case of LSTM of around 20%), which drops to around 113%

for a 60-day prediction period, to around 70% for a 90-day prediction period, to around 44%

for a 120-day prediction period, and rises to 72% for a 150-day prediction period. Similarly, in
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the case of one-day-ahead predictions, the average expected portfolio risk again tends to be

lower when not using TAIs as features. Lastly, it is worth noting that for the first time in our

study, the HLTM, TBATS, and ARIMA algorithms outperform the ML algorithms, as they show

relatively low average (around 2×10−3).

We compared the expected risk value distributions using a KS test at the 5% significance

level, similar to our comparison of the expected return distributions. As with the expected

return distributions, the null hypothesis was that the compared risk distributions came from

the same continuous distribution. We conducted five comparisons, one for each period, and

accounted for multiple comparisons by adjusting the alpha value to 0.01 using Bonferroni’s

correction.

For the out-of-sample predictions, the KS test produced p-values of 7.17 × 10−28, 1.32 ×
10−38, 7.19 × 10−43, 3.97 × 10−43, and 3.88 × 10−41 for 30-, 60-, 90-, 120-, and 150-day

periods, respectively. These p-values were all below the adjusted significance level of 0.01,

indicating that using TAIs resulted in a significant increase in the expected risk distributions.

The effect sizes for these periods, calculated using Cohen’s d, were d = 0.90 (large effect) for

the 30-day period, d = 0.88 (large effect) for the 60-day period, d = 0.92 (large effect) for the

90-day period, d = 0.91 (large effect) for the 120-day period, and d = 0.93 (large effect) for

the 150-day period. These large effect sizes confirm that the observed increases in expected

risk are both statistically significant and practically meaningful.

Similarly, for one-day-ahead predictions, the KS test produced p-values of 1.23×10−44, 3.88×
10−41, 3.64×10−41, 2.76×10−40, and 3.88×10−41, respectively, also indicating a statistically

significant difference in the expected risk distributions. The effect sizes for these periods were

d = 0.95 (very large effect) for the 30-day period, d = 0.94 (very large effect) for the 60-

day period, d = 0.93 (very large effect) for the 90-day period, d = 0.92 (very large effect) for

the 120-day period, and d = 0.96 (very large effect) for the 150-day period, reinforcing the

significance of the increased expected risk when using TAIs.

From the Sharpe ratio results, we can observe that the proposed algorithms tend to outperform

the benchmarks for all periods in the case of out-of-sample predictions. We can observe an

average increase in the average Sharpe ratio values of approximately 60% when incorporating

TAIs in the ML algorithms. This highlights the effectiveness of adopting TAIs when predicting

financial prices through an out-of-sample, N-day-ahead methodology. In the case of one-day-

ahead predictions, we observe that the Sharpe Ratio values obtained from the proposed

approaches tend to be closer on average with respect to the benchmark approaches.

Similarly to what we have done for the expected return and risk distributions, we conducted

a KS test to compare the expected distributions of Sharpe Ratio values. Since we are mak-

ing multiple comparisons, we again adjusted the significance level according to Bonferroni’s

correction.
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For out-of-sample predictions, the KS test generated p-values of 7.17×10−28, 3.97×10−25,

2.77× 10−21, 1.12× 10−20, and 3.96× 10−16 for 30-, 60-, 90-, 120-, and 150-day periods,

respectively. All of these p-values were below the adjusted significance level of 0.01, indicating

that using TAIs resulted in a significant improvement in the expected Sharpe Ratio distribu-

tions. The effect sizes for these periods, calculated using Cohen’s d, were d = 0.84 (large

effect) for the 30-day period, d = 0.81 (large effect) for the 60-day period, d = 0.78 (large

effect) for the 90-day period, d = 0.76 (large effect) for the 120-day period, and d = 0.80

(large effect) for the 150-day period. These large effect sizes confirm that the improvements

in Sharpe Ratio distributions are both statistically significant and practically meaningful.

For one-day-ahead predictions, the KS test produced p-values of 0.359, 0.364, 0.824, 0.183,

and 0.168 for the 30-, 60-, 90-, 120-, and 150-day periods, respectively. In this case, the

p-values are above the adjusted significance level, indicating that there is no statistically sig-

nificant difference in the Sharpe Ratio distributions. As the p-values suggest non-significance,

effect sizes were not calculated for these comparisons.

In summary, the above results confirm that using TAIs in ML can lead to an improvement in the

risk-adjusted portfolio performance with room for improvement of up to 66.10% in the case of

out-of-sample predictions, and up to 20.07% in the case of one-day-ahead predictions. Such

improvement is mostly explained by the average increase in the average portfolio returns

resulting from the incorporation of TAIs. From the statistical tests performed, we can confirm

that the results obtained from our experiments are statistically significant.

6.4.3 Shapley Values

In the previous section, we observed that incorporating TAIs as additional features in our

regression problem can significantly reduce the error rate and improve portfolio performance.

In this section, we will analyse the relative importance of these features by means of the

SHAP [152] and SAGE [153] algorithms, which produce metrics describing different aspects

of feature quality, and are thus widely used for model explainability in a variety of machine

learning contexts [154, 155].

Both SHAP and SAGE build on the concept of Shapley values [151]; in traditional co-operative

game theory, Shapley values reflect a partitioning of the overall output of a group (or ‘grand-

coalition’), which expresses this output as the sum of the individual contributions of its mem-

bers, obtained by quantifying the average marginal contribution of each member across all

possible member combinations (i.e. ‘sub-coalitions’). In the context of assessing feature qual-

ity in machine learning algorithms, a Shapley value treatment of an algorithm’s features provides

an assessment of how much each feature contributes to a measure of interest in relation to the
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model. However, calculation of true marginal contributions for obtaining classical Shapley val-

ues can be a computationally prohibitive step, and therefore algorithms like SHAP and SAGE

rely on computationally efficient variants, which involve approximating marginal contributions

as deviations of conditional distributions from practical prior baselines.

In the literature, SHAP primarily tends to be used in ‘explainability’ contexts; given a prediction,

it measures the extent to which each feature has contributed to the prediction. However, under

the assumption that important features will be given larger weights in the final models following

training, and that therefore the average influence of a feature over all predictions reflects its

weighting in the model to a large extent, this can then be interpreted as a proxy measure

for evaluating feature importance. Conversely, SAGE measures feature quality more directly;

instead of making assumptions about the model’s internals, it measures the influence of each

feature on the evaluation metric directly5.

In order to have a clear view of the marginal contribution of each feature in each case,

we present them here as percentages. To achieve this, we divided the average SHAP (or

SAGE) value of each feature by the sum of SHAP (or SAGE) values for all features. Figure

6.3 presents the percentage SHAP (on the left side) and SAGE values (on the right side)

calculated on the testing set for each feature, across all TAI-based algorithms using the out-of-

sample method, displayed for each asset class and considered period. Regarding the SHAP

values, we can observe that the relevance of prices lagged by two or more days tends to be

lower compared to the other features. For REITs, TAIs combined account for 82% for a 30-day

testing period, 72% for a 60-day period, 69% for a 90-day period, 73% for a 120-day period,

and 77% for a 150-day period; while N1 +N2 account for a further 14% for a 30-day period;

26% for a 60-day period, 29% for a 90-day period, 23% for a 120-day period, and 15% for

a 150-day period; and then the remaining lags only account for 4% for a 30-day period, 2%

for a 60-day period, 2% for a 90-day period, 4% for a 120-day period, and 8% for a 150-day

period. Similarly for stocks and bonds, TAIs account for 83% for a 30-day period, 66.5% for a

60-day period, 70% for a 90-day period, 75% for a 120-day period, 78% for a 150-day period;

N1 +N2 account for 13% for a 30-day period, 31% for a 60-day period, 28% for a 90-day

period, 21% for a 120-day period, 17% for a 150-day period; and the remaining lags only

account for 3.75% for a 30-day period, 2.25% for a 60-day period, 2% for a 90-day period, 4%

for a 120-day period, and 5% for a 150-day period.

Regarding the SAGE values, for REITs, we can observe that the combined contribution for

TAIs tends to be 80% for a 30-day period, 60% for a 60-day period, 67% for a 90-day period,

71% for a 120-day period, and 78% for a 150-day period; while the combined contribution for

N1 +N2 is 13% for a 30-day period, 18% for a 60-day period, 18% for a 90-day period, 19%

5. Note that, when relying on the RMSE for model evaluation, SAGE actually uses the negative RMSE internally
instead, such that Shapley values denoting important features end up positive (with negative values denoting
harmful features respectively)
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for a 120-day period, and 17% for a 150-day period; and the contribution of the remaining

lags is 7% for a 30-day period, 22% for a 60-day period, 15% for a 90-day period, 10% for

a 120-day period, and 5% for a 150-day period. Regarding stocks and bonds, the combined

contribution for TAIs tends to be 77% for a 30-day period, 63% for a 60-day period, 69.5% for a

90-day period, 73.5% for a 120-day period, and 68% for a 150-day period; while the combined

contribution for N1 +N2 is 13.5% for a 30-day period, 24% for a 60-day period, 20.5% for a

90-day period, 19% for a 120-day period, and 15% for a 150-day period; and the contribution

of the remaining lags is 9.5% for a 30-day period, 13% for a 60-day period, 10% for a 90-day

period, 7.5% for a 120-day period, and 17% for a 150-day period.

The combined SHAP and SAGE findings above may explain the substantial improvement in

terms of RMSE, achieved by employing ML algorithms making use of TAIs in their feature-

set (see Section 6.4.1). It is worth noting that, in the current literature, commonly employed

approaches for financial forecasting currently tend to rely on lagged observations exclusively

[156, 157]. However, the inclusion of TAIs is beneficial because they are specifically designed

to capture patterns and trends in the data that may not be immediately apparent from raw

price data or simple lagged observations. For example, momentum indicators can effectively

identify whether a trend is likely to continue or reverse, which is crucial for financial forecasting.

These indicators incorporate more complex relationships between price movements, provid-

ing richer insights than using lagged prices alone. Although LSTM networks are powerful for

learning from sequential data, they might fail to capture more complex aspects of financial time

series. TAIs, on the other hand, offer domain-specific information that directly targets financial

patterns such as trend continuation or reversal, which may complement the LSTM’s ability to

learn sequential patterns. Therefore, the combination of TAIs with advanced machine learning

models can better capture underlying market dynamics and improve forecasting accuracy,

outperforming models that rely solely on lagged price data.

6.4.4 Computational Times

As we have seen in Chapter 5, most algorithms have comparable computational times. HLTM,

TBATS, and ARIMA typically took 0.168 minutes to execute on average, while LR, SVR, and

KNN took between 0.2 and 0.3 minutes. LSTM had the highest computational cost at 1.818

minutes. However, this runtime difference is not significant since these algorithms are usually

run offline, and only their models are used in real-time applications.

In Chapter 5, it was observed that most algorithms showed comparable computational times.

Specifically, HLTM, TBATS, and ARIMA typically took an average of 0.168 minutes to execute.

On the other hand, LR, SVR, and KNN required between 0.2 and 0.3 minutes. LSTM had

the longest computational time at 1.818 minutes. However, this difference in runtime is not

considered significant, as these algorithms are primarily run offline, and only their models are

utilised in real-time applications.
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Figure 6.3: Shapley average value for each asset class and feature classified by period
considered.

The GA, on average, required approximately 10.92 seconds per run. It was noted in Chapter 5

that GAs are highly parallelisable, meaning their computational times can be further reduced

through parallelisation processes. This suggests that the efficiency of the GA can be improved

by distributing the workload across multiple processing units simultaneously, thereby acceler-

ating the optimisation process[128].

6.4.5 Discussion

Our experiments aimed at demonstrating that the inclusion of Technical Analysis Indicators

(TAIs) as additional features could significantly reduce the error rate in predicting the time

series of REITs, stocks, and bonds. In the previous sections, we observed improvements in

the average error rate for both out-of-sample and one-day-ahead predictions. These tend to be

more noticeable in the case of REITs and stocks, whereas, in the case of bonds, the inclusion

of TAIs appears not to change the RMSE distribution significantly, as shown by the KS test

results. This might be explained by the low variability of the bond time series which leads

to already low error rates in the prediction. On the other hand, we noticed a lower standard

deviation in the RMSE distributions in the case of stocks and bonds for all prediction periods

considered. This indicates a higher chance of observing RMSE values closer to the average.

The second aim of our experiments was to show the improvements in the multi-asset port-

folio performance caused by the use of TAIs in the prediction task. We noticed significant

improvements in the risk-adjusted performance of a portfolio composed of REITs, stocks,

and bonds for all holding periods considered with respect to a portfolio built using predictions

resulting from lagged prices only. As demonstrated by the KS test results, there is statistically
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significant difference in the case of portfolios built using out-of-sample predictions, while the

portfolio performance tends not to differ significantly in the case of one-day-ahead predictions.

We also observed that the use of TAIs tends to increase the expected portfolio return, and at

the same time, to increase the expected portfolio risk. This generates a trade-off between

increased expected return and reduced increased expected risk. However, when investors

make investment decisions, they tend to look at the expected Sharpe Ratio as an aggregate

metric, rather than solely focusing on expected return or risk as isolated metrics.

Finally, we discussed the influence that each feature has on the final prediction, as well as the

contribution of each feature to overall model error, for each of the asset classes and evaluation

periods used. As we observed, in terms of explaining predictions the TAIs tend to overshadow

the lagged prices as features. In other words, this suggests that the future trend of such time

series plays a crucial role in reducing the prediction error rate.

6.5 Summary

In this study, we focused on the problem of predicting out-of-sample and one-day-ahead prices

of REITs, stocks and bonds by using five ML algorithms and Technical Analysis Indicators

(TAIs) for five prediction periods (30-, 60-, 90-, 120-, and 150-day).

From the above findings, we can conclude the following.

The use of TAIs generates a reduction in the average and volatility of RMSE distributions for

the asset classes considered. We observed that the ML algorithms that incorporate TAIs as

additional features tend to perform better than the ML algorithms that used lagged prices as

unique features as well as HLTM, TBATS, and ARIMA. This finding indicates that the accuracy

of REITs predictions tends to be higher when including TAIs which are able to express the

trend of a time-series.

The risk-adjusted portfolio performance of the resulting portfolio tends to improve. From our

experimental findings, we could notice that the inclusion of TAIs leads to an increase in the

Sharpe ratio values as a result of the increase in the expected return values. Such result is

important because the use of TAIs allows investors to make better decisions when combining

REITs with other asset classes in a short-term portfolio.
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TAIs tend to show a greater relevance compared against the lagged prices. When analysing

the SHAP and SAGE average values, TAIs tend to be more influential than lagged prices in

terms of explaining the reduction in the error rate. This finding explains the increase in the

prediction accuracy demonstrated in this study.



Chapter 7

Optimising Mixed-Asset Portfolios

Including REITs Using ML and TA

Indicators

7.1 Introduction

In the previous chapters, we discussed two main points. First, using predictions about future

prices (instead of just looking at past data) improves the performance of a mixed investment

portfolio that includes real estate. Second, including additional features such as Technical

Analysis Indicators (TAIs) makes the predictions more accurate.

In this chapter, our primary motivation is to highlight the additional benefits of having real

estate in a mixed-asset portfolio. Our focus is on predicting the future prices of REITs, stocks,

and bonds. The main idea is to show why using predictions, especially ones improved with

TAIs, is important when dealing with diverse portfolios that include real estate. Previous works

in the literature [158, 159, 160] have explored the role of real estate investments in a mixed-

asset portfolio by relying on past observation, the research presented in this chapter offers a

valuable contribution by incorporating predictions resulting from both past prices and technical

indicators.

The data sets used for our experiments are the same as those used in previous chapters,

namely daily closing prices for the period between January 2017 and January 2022 for the

UK, US, and Australian market. As we have done previously, we consider the REIT, stock, and

bond market for our analysis.

The rest of this chapter is organised as follows. Section 7.2 explains the methodology used

in this study. The results of our experiments are presented in Section 7.3, where we provide

a detailed discussion of the results obtained by predicting asset prices using LSTM, and by

running a GA to optimise our portfolios. Finally, Section 7.4 summarises the conclusions of

the study.
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7.2 Methodology

Our experiments aim to provide evidence that a mixed-asset portfolio including real estate

can significantly outperform a mixed-asset portfolio not including real estate. This aim can be

broken down into two subtasks: (i) use LSTM (which is the algorithm that provided the best

results in Chapter 6) to predict the prices of REITs, bonds, and stocks, and (ii) use these

predictions as an input to a genetic algorithm, which is going to optimise the weights of all

assets in the portfolio.

Before applying the LSTM algorithm, we first needed to take several data pre-processing

steps as previously discussed in Section 5.2.2 (i.e., first-order differencing and scaling). The

features used in these experiments are the same as in Chapter 6 (i.e., lagged values and

technical analysis indicators) and the loss function considered is the same as in Chapter 5

(i.e., root mean squared error). In the same way, the LSTM and GA algorithm used follow the

same implementation as in the previous chapters.

7.3 Results

In this section, we examine the experimental results in the form of RMSE distributional stat-

istics (Section 7.3.1), and summary statistics regarding the GA portfolio optimisation results

(Section 7.3.2). As mentioned in the previous chapters, all results presented in this research

are expressed as daily results. So when, for example, we present a seemingly “low” return of

around 0.03%, its annual equivalent would be around 11.6%. 1

Table 7.1: RMSE and Sharpe ratio distributional statistics. Values in bold represent best
results for each statistic.

RMSE Expected Return
Metric Without REITs With REITs % Difference Without REITs With REITs % Difference
Mean 36.29 19.44 -46.43% 5.41×10−4 8.99×10−4 66.06%
Std Dev 146.15 71.93 -50.79% 6.08×10−5 2.79×10−5 -54.11%

Expected Risk Sharpe Ratio
Metric Without REITs With REITs % Difference Without REITs With REITs % Difference
Mean 5.54×10−3 3.70×10−3 -33.21% 7.26×10−3 1.48×10−2 103.71%
Std Dev 4.04×10−4 1.48×10−4 -63.28% 5.33×10−4 5.55×10−4 4.17%

1. Annualised Return = [(Daily Return+1)365 −1]×100 = 11.6%.
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7.3.1 RMSE

First, we compare the accuracy of predictions between two scenarios, one that includes

REITs, and one that does not include REITs. Table 7.1 shows the summary statistics for

two RMSE distributions, one for each of the two previously mentioned scenarios. For each

of those distributions, we analyse the mean and standard deviation. As we can observe, the

RMSE distribution in the first scenario shows lower RMSE average value compared to the

second scenario, with a percentage difference of -46.43%. This indicates that including REITs

in the analysis improves the accuracy of predictions. Furthermore, the RMSE distribution for

the first scenario shows a noticeably lower standard deviation value compared to the second

scenario, with a reduction of 50.79%. This suggests that incorporating REITs in the analysis

leads to more accurate predictions with reduced variability.

In order to compare the RMSE distributions obtained, we performed a Kolmogorov-Smirnov

(KS) test at the 5% significance level. The null hypothesis is that the compared RMSE distribu-

tions belong to the same continuous distribution. The test results yielded an adjusted p-value

of 1.94×10−45, indicating a statistically significant difference between the two distributions. To

further quantify the magnitude of this difference, we calculated the effect size using Cohen’s

d, which resulted in a value of d = 0.85, indicating a large effect size. This suggests that

the difference in RMSE distributions is not only statistically significant but also practically

meaningful.

In summary, when analysing the RMSE values, it becomes evident that incorporating REITs

in the analysis improves the accuracy of predictions in terms of mean and standard deviation.

The scenario of incorporating REITs consistently outperforms the scenario of not including

REITs, suggesting that including REITs provides more precise predictions. From the KS test

results, we observed that such difference is statistically significant.

7.3.2 GA Portfolio Optimisation

After having analysed the RMSE distributional statistics, we examine the expected portfolio

performance for the above-mentioned scenarios. First, we examine the expected return distri-

butions. From Table 7.1, we can notice an increase in the expected return average of around

66.06%. We also notice a 54.11% reduction in the volatility of the expected return distribution,

which indicates an increased concentration of values around the mean. This implies that

including REITs in a mixed-asset portfolio might improve the overall portfolio return with a

reduced volatility.
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We also observe that the average expected risk tends to decrease when including REITs

with a magnitude of around 33.21%. This implies that investing in REITs allows to reduce

the overall portfolio risk. On the other hand, we notice that the standard deviation of the

expected risk values tends to decrease with a magnitude of around 63.28%, which indicates

an increased concentration of risk values around the mean.

Finally, we observe that the average Sharpe ratio increases when incorporating REITs, with a

percentage difference of 103.71%. We also notice a slight increase in the volatility of 4.17%.

This suggests that including REITs tends to have a marginal impact on the volatility of the

risk-adjusted returns.

In order to compare the Sharpe ratio distributions obtained, we again performed a Kolmogorov-

Smirnov (KS) test at the 5% significance level. Since we are making three comparisons—one

for each metric (i.e., portfolio return, risk, and Sharpe ratio)—we adjusted the p-values accord-

ing to the Bonferroni correction (i.e., 0.05/3 = 0.0167). The test results yielded an adjusted

p-value of 1.55 × 10−45 for all the considered metrics, indicating a statistically significant

difference in the compared distributions. To further assess the practical significance of these

differences, we calculated the effect size using Cohen’s d, which resulted in values of d = 0.82

(large effect) for portfolio return, d = 0.79 (large effect) for risk, and d = 0.85 (large effect) for

the Sharpe ratio. These large effect sizes suggest that the differences in the distributions are

not only statistically significant but also practically meaningful.

In summary, when considering the portfolio return, risk, and Sharpe ratio distributions, we ob-

serve that including REITs in the analysis has a positive impact on the portfolio performance.

It significantly improves the risk-adjusted distributions, as a result of an increased portfolio

return and a reduced portfolio risk. The effect of REITs on risk-adjusted return distributions is

significant, as shown by the KS test results.

7.4 Summary

In our work, we evaluated the performance of a portfolio including REITs by comparing it

against a portfolio that does not include REITs.

From our experimental results, we noticed the following.
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The RMSE average tends to be lower when including REITs in the analysis. We demon-

strated that the predictions of time-series data tend to be more accurate on average when

considering REITs data which is mainly explained by the lower volatility of REITs prices

compared to other data, especially in the case of stock investments.

The inclusion of REITs in a mixed-asset portfolio leads to a greater Sharpe ratio. From our

experimental results, we noticed that the average Sharpe ratio of a portfolio that includes

REITs doubles the average Sharpe ratio of a portfolio that does not include REITs. This

suggests that including REITs in a portfolio including bonds and stocks can mitigate the

greater portfolio risk caused by including stock investments.

While our results show that adding real estates to investment portfolios can have a positive

effect under the diversification perspective, further research can be done on different countries

to further explore the opportunities of investing in real estate. Another opportunity for further

research might be to extend the holding period for real estate portfolios.



Chapter 8

Conclusion

In this thesis, we focused on applications of machine learning to the fields of financial fore-

casting and portfolio optimisation. Specifically, we used five machine learning algorithms

– i.e., Ordinary Least Squares Linear Regression, Support Vector Regression, k-Nearest

Neighbours Regression, Extreme Gradient Boosting, and Long/Short-Term Memory Neural

Networks – to predict the prices of three asset classes – i.e., REITs, stocks, and bonds. We

then used these predictions to optimise weights in a mixed-asset portfolio made of the above-

mentioned asset classes. In this chapter, we present the conclusions from our experiments.

Each of the following sections is structured as follows: (i) first, we explain the motivation behind

each study; (ii) second, we describe the novelty of the presented research; and (iii) third, we

present the conclusions of each work. Finally, we discuss possible opportunities for further

research in Section 8.5.

8.1 Summary of Chapter 4

8.1.1 Motivation of the Presented Research

In Chapter 4, we conducted experiments to explore the potential advantages of using price

predictions instead of historical data in terms of final portfolio performance by optimising the

weights of a mixed-asset portfolio through test set data – rather than training data.

One of the main limitations of the previous works in the literature is that most of them optimise

portfolios including real estate by using historical data. A potential limitation of this approach

is that prices in the training set – i.e., historical data – might differ significantly from prices

in the testing set, thus worsening the overall portfolio performance. In fact, a good portfolio

optimisation strategy mainly depends on the accuracy of the price predictions. Therefore, in

Chapter 4 we evaluated the potential advantage of using price predictions in the portfolio

optimisation task. To simplify this analysis, we assumed perfect price predictions in the test

set, according to a perfect foresight approach. In that way, the optimisation of weights takes
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place in the test set. The main idea behind this approach is that, if the results from these

exploratory experiments show improvements in the portfolio performance compared to a

historical approach, we could justify the next steps in our research that involve the accurate

price prediction of the considered assets.

8.1.2 Novelty of the Presented Research

In order to overcome the limitations of the previous works in the literature which mainly focused

on the global minimum variance strategy to optimise a mixed-asset portfolio and assess the

added value of real estate investments, this work adopts a genetic algorithm that is based on

a fitness function – i.e., Sharpe ratio – which takes both the return and risk of a portfolio into

consideration.

8.1.3 Conclusions

In summary, our study demonstrated that optimising a portfolio directly in the test set leads to

superior risk-adjusted performance compared to optimisation uniquely within the training set.

This insight has motivated us to engage in the task of price prediction in the following chapter,

recognising the importance of predictive analysis in the investment portfolio optimisation. Our

focus on predictive modelling aims to refine investment strategies, contributing to the field of

portfolio optimisation and risk management.

8.2 Summary of Chapter 5

8.2.1 Motivation of the Presented Research

The main goal of this chapter is to demonstrate the effectiveness of ML algorithms in pre-

dicting the price time-series of REITs and other asset classes in comparison with three

financial benchmarks and to show the impact of such predictions on the portfolio optimisation

strategy involving REITs. This work used five machine learning algorithms, i.e., Ordinary

Least Squares Linear Regression (LR), Support Vector Regression (SVR), eXtreme Gradi-

ent Boosting (XGBoost), Long/Short-Term Memory Neural Networks (LSTM), and k-Nearest

Neighbours Regression (KNN), to make both one-day-ahead predictions and out-of-sample

period-ahead predictions. To assess the predictive ability of those algorithms, we considered

three benchmarks, i.e., Holt’s Linear Trend Method (HLTM), Trigonometric Seasonality, Box-

Cox Transformation, ARMA Errors, Trend, and Seasonal Components (TBATS), and Auto-

Regression Integrated Moving Average (ARIMA). Our findings demonstrated that the ML al-

gorithms outperformed the above-mentioned benchmarks in terms of root mean square error
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(RMSE) distributional statistics. Such results allow for a more effective portfolio optimisation

strategy as evidenced by our findings. Indeed, we observed that the portfolio obtained from

ML-based predictions outperformed the portfolio built using historical data and predictions

obtained from the financial benchmarks.

8.2.2 Novelty of the Presented Research

Previous attempts to optimise mixed-asset portfolios, incorporating Real Estate Investment

Trusts (REITs), predominantly relied on historical data for weight optimisation. However, there

exists a noticeable gap in the literature concerning the incorporation of Machine Learning (ML)

algorithms for predicting REITs’ price time-series data. Most notably, past studies predomin-

antly utilised one or two ML algorithms, often Neural Networks, to address regression issues

related to REITs. This study advances the field by employing five distinct ML algorithms to

address the aforementioned problem.

Additionally, this work considers five different holding periods (i.e., 30-, 60-, 90-, 120-, and

150-day periods) and two methodologies for price prediction (i.e., one-day and period-ahead

out-of-sample prediction). In that way, we aim to obtain a more extensive analysis of the

predictive performance of the considered algorithms.

Additionally, a genetic algorithm is applied to optimise the weights of a mixed-asset portfolio

that includes real estate. In contrast to conventional methodologies which rely on one factor

only (i.e., risk), this approach seeks to enhance the precision of portfolio optimisation by

considering two different factors (i.e., risk and return) and selecting the optimal portfolio

through an evolutionary process.

8.2.3 Conclusions

In summary, the study establishes the outperforming predictive ability of machine learning

(ML) algorithms, particularly KNN, SVR, and XGBoost, over traditional econometric models in

predicting asset prices. Notably, the lower volatility of Real Estate Investment Trusts (REITs)

significantly improves prediction accuracy. The application of ML-based predictions in portfolio

construction, especially using SVR, leads to enhanced performance, as evidenced by superior

Sharpe ratios driven by increased expected returns. Optimal portfolio weights, emphasising

the inclusion of REITs, contribute to improved diversification and risk reduction. The risk-

adjusted performance of ML-predicted portfolios consistently outperforms those based on

historical data and benchmark models across various time horizons, suggesting the potential

for continued improvement and optimisation of portfolio outcomes through ML algorithms.
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8.3 Summary of Chapter 6

8.3.1 Motivation of the Presented Research

In Chapter 5, the focus was on analysing the integration of ML-based price predictions for

REITs, stocks, and bonds in portfolio optimisation. The findings highlighted the superiority of

ML predictions over traditional econometric benchmarks like HLTM, TBATS, and ARIMA in

terms of accuracy, particularly in one-day-ahead and out-of-sample forecasts across various

time horizons. In this current chapter, the emphasis shifts to further enhancing ML predictions

by proposing the inclusion of TAIs as additional features. This addition aims to showcase

how ML-based predictions, when improved with the use of TAIs, can impact the financial

performance of a mixed-asset portfolio that includes REITs. Additionally, the chapter explores

the relevance of TAIs concerning lagged prices, which are utilised as unique features in

benchmark algorithms. This evaluation is conducted through the examination of SHAP and

SAGE average values, providing insights into the contribution of TAIs to the overall predictive

performance.

8.3.2 Novelty of the Presented Research

The presented research introduces several novel contributions in the field of predicting REITs

time-series data and optimising mixed-asset portfolios that include real estate. The main

contribution lies in the incorporation of TAIs as features in the prediction process, which

represents a novel and underexplored aspect in predicting REIT prices. The research extends

its impact by utilising the price predictions in a portfolio context, demonstrating the positive

effects of TAIs in portfolio optimisation using a GA. Moreover, the study conducts an in-depth

analysis using Shapley Value-based metrics (SHAP and SAGE), providing valuable insights

into the contribution of TAIs to individual predictions and overall model quality. Lastly, in the

same way as in the previous chapter, it considers five different prediction periods (30-, 60-, 90-

, 120-, and 150-days), providing a more comprehensive evaluation of predictive capabilities.

In addition, it analyses two prediction methods: out-of-sample period-ahead prediction and

one-day-ahead prediction, offering insights into different forecasting scenarios.

8.3.3 Conclusions

In this study, the focus centred on predicting out-of-sample and one-day-ahead prices of

REITs, stocks, and bonds, utilising five machine learning (ML) algorithms and incorporating

Technical Analysis Indicators (TAIs) across varying prediction periods. The results highlight

the significant impact of TAIs, demonstrating a substantial reduction in both average and

volatility of RMSE distributions for the considered asset classes, particularly benefiting the

precision of REITs predictions. This reduction in prediction errors translates into improved
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risk-adjusted portfolio performance, offering investors enhanced decision-making capabilities

when combining REITs with other asset classes in short-term portfolios. Moreover, the study

emphasises the superior relevance of TAIs compared to lagged prices in explaining the re-

duced error rates, as evidenced by Shapley Value-based metrics such as SHAP and SAGE.

8.4 Summary of Chapter 7

8.4.1 Motivation of the Presented Research

Previous chapters demonstrated the following: (i) optimising with price predictions – rather

than historical data – enhances mixed-asset portfolio performance; and (ii) including TAIs

improves ML prediction accuracy. In this chapter, we combine the methodologies used in

previous chapters to assess the added value of real estate in a mixed portfolio using price

predictions for REITs, stocks, and bonds, emphasising the significance of price predictions

enhanced by TAIs. The main motivation behind such a methodology is that combining real

estate with other investment options (e.g., stocks and bonds) could improve the risk-adjusted

performance of a mixed-asset portfolio.

8.4.2 Novelty of the Presented Research

Previous studies typically assessed the benefits of including real estate in a mixed-asset

portfolio based on historical data analysis. In contrast, this research diverges by incorpor-

ating price predictions obtained from machine learning algorithms. By leveraging predictive

analytics, the study aims to capture future market dynamics more accurately, thereby offering

a forward-looking perspective on the role of real estate investments in a portfolio.

Another distinctive aspect of this research is the integration of a genetic algorithm for op-

timising the weights of the considered asset classes. While traditional approaches often rely

on simpler optimisation techniques or manual allocation strategies, the utilisation of a genetic

algorithm introduces a more sophisticated and dynamic method for determining the optimal al-

location of assets within the portfolio. This approach is expected to enhance the effectiveness

of portfolio optimisation, particularly when considering the inclusion of real estate investments

alongside other asset classes.



8.4. Summary of Chapter 7 94

8.4.3 Conclusions

Our study showed that including REITs in a portfolio significantly improved risk-adjusted

performance, doubling the average Sharpe ratio compared to a portfolio without REITs. This

positive effect is attributed to a lower average error in the predictions of REITs, stocks, and

bonds. The findings suggest that incorporating REITs into a portfolio alongside bonds and

stocks can mitigate the increased portfolio risk associated with stock investments.

8.5 Future Work

One avenue for future research involves enhancing REIT price prediction models by incorpor-

ating fundamental analysis indicators. Fundamental analysis involves evaluating a company’s

financial health and performance based on various factors such as revenue, earnings, and

market position. By integrating such indicators into predictive models, researchers can po-

tentially improve the accuracy of REIT price predictions and gain deeper insights into the

underlying factors driving REIT performance.

Another promising direction is to consider longer holding periods, such as 10 or 20 years, in

REIT price prediction analyses. This approach would be particularly relevant for institutional

investors, such as hedge funds, who typically have longer investment horizons and aim to

mitigate risks over extended time frames. By forecasting REIT prices over longer periods,

researchers can provide valuable insights into the long-term performance and stability of REIT

investments, thereby assisting institutional investors in making more informed decisions.

Additionally, future research could explore the inclusion of emerging markets in the analysis

of REIT prices. Emerging markets present unique challenges and opportunities compared to

established markets, and understanding the factors influencing REIT performance in these

markets is essential for investors seeking to diversify their portfolios globally. By examining

the performance of REITs in emerging markets, researchers can uncover valuable insights

into the drivers of REIT price movements in different economic and regulatory environments.
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Appendix A

GA portfolio optimisation results:

historical data vs perfect foresight

Table A.1: Summary statistics for the GA return distributions.

Historical Data Perfect Foresight % Diff.
Average 4.03×10−4 4.60×10−4 14%
Std. Dev. 3.19×10−5 2.39×10−5 -25%
Skewness −1.97 −1.33 32%
Kurtosis 6.34 5.99 -6%

Table A.2: Summary statistics for the GA risk distributions.

Historical Data Perfect Foresight % Diff.
Average 9.98×10−3 8.01×10−3 -19.75%
Std. Dev. 4.22×10−4 4.60×10−4 9%
Skewness −0.22 1.37 -722%
Kurtosis 3.38 5.26 -56%

Table A.3: Summary statistics for the GA Sharpe ratio distributions.

Historical Data Perfect Foresight % Diff.
Average 4.02×10−2 5.82×10−2 44.86%
Std. Dev. 2.06×10−3 1.66×10−3 -19%
Skewness −3.35 −4.62 38%
Kurtosis 14.61 33.23 127%
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Appendix B

Performance of five ML algorithms

Table B.1: RMSE summary statistics for REITs. Values in bold represent the best results for
each row.

Out-of-sample One-day-ahead

30 days Mean SD Skewness Kurtosis Mean SD Skewness Kurtosis

HLTM 21.77 40.15 2.53 6.94 6.47 14.23 3.89 17.45
TBATS 21.77 40.15 2.53 6.94 6.47 14.23 3.89 17.45
ARIMA 21.47 38.98 2.44 6.29 6.69 14.68 3.89 17.46
LR 5.60 12.49 3.98 18.16 1.04 2.10 3.97 18.49
SVR 5.59 12.45 3.97 18.13 1.02 2.01 3.84 17.51
KNN 5.61 12.53 4.00 18.38 1.03 2.04 3.88 17.77
XGBoost 5.60 12.49 3.98 18.19 1.02 2.00 3.82 17.35
LSTM 5.60 12.57 4.00 18.33 1.08 2.16 3.91 18.03

60 days

HLTM 16.87 35.63 3.61 15.17 10.28 24.67 3.74 15.69
TBATS 16.87 35.63 3.61 15.17 10.28 24.67 3.74 15.69
ARIMA 17.08 35.82 3.57 14.89 10.60 25.29 3.71 15.38
LR 7.47 14.79 3.37 13.61 2.40 5.76 3.50 12.44
SVR 7.46 14.75 3.37 13.58 2.40 5.76 3.50 12.44
KNN 7.48 14.82 3.38 13.72 2.39 5.75 3.48 12.23
XGBoost 7.49 14.87 3.39 13.70 2.39 5.75 3.49 12.37
LSTM 7.56 14.50 3.20 12.19 2.40 5.75 3.49 12.37

90 days

HLTM 20.82 35.66 2.05 3.78 9.30 17.45 2.76 8.59
TBATS 21.28 36.75 2.11 4.11 9.30 17.45 2.76 8.59
ARIMA 20.81 35.67 2.06 3.78 9.47 17.78 2.77 8.69
LR 9.70 19.79 3.25 12.28 1.15 2.18 3.53 15.09
SVR 9.69 19.73 3.24 12.25 1.13 2.12 3.48 14.77
KNN 9.70 19.74 3.23 12.18 1.13 2.12 3.48 14.77
XGBoost 9.70 19.78 3.25 12.27 1.13 2.13 3.49 14.83
LSTM 9.72 19.86 3.25 12.30 1.14 2.16 3.50 14.89

120 days

HLTM 22.91 35.97 1.54 1.36 9.83 15.19 1.61 1.82
TBATS 22.91 35.97 1.54 1.36 9.83 15.19 1.61 1.82
ARIMA 22.88 35.95 1.54 1.35 10.01 15.51 1.64 2.00
LR 10.96 16.75 1.58 1.81 1.16 2.22 3.55 15.26
SVR 10.95 16.73 1.58 1.80 1.14 2.16 3.49 14.80
KNN 10.97 16.79 1.59 1.83 1.14 2.16 3.50 14.83
XGBoost 10.95 16.75 1.58 1.82 1.14 2.16 3.50 14.86
LSTM 10.99 16.81 1.58 1.82 1.17 2.23 3.53 15.10

150 days

HLTM 17.32 27.37 1.73 2.14 7.91 12.70 1.97 3.72
TBATS 17.32 27.37 1.73 2.14 7.91 12.70 1.97 3.72
ARIMA 16.91 26.80 1.76 2.30 8.07 13.00 1.99 3.89
LR 8.00 12.91 1.99 3.84 1.16 2.19 3.51 14.98
SVR 8.00 12.91 1.99 3.81 1.15 2.16 3.48 14.77
KNN 8.02 12.96 1.99 3.84 1.15 2.16 3.49 14.78
XGBoost 8.00 12.91 1.99 3.85 1.15 2.17 3.50 14.91
LSTM 8.00 12.92 2.00 3.88 1.16 2.18 3.50 14.87
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Table B.2: RMSE summary statistics for stocks. Values in bold represent the best results for
each row.

Out-of-sample One-day-ahead

30 days Mean SD Skewness Kurtosis Mean SD Skewness Kurtosis

HLTM 41.21 100.20 4.25 20.12 11.36 26.54 3.84 16.04
TBATS 41.21 100.20 4.25 20.12 11.36 26.54 3.84 16.04
ARIMA 41.47 100.15 4.16 19.29 11.72 27.15 3.81 15.80
LR 9.19 20.62 3.76 15.61 2.28 4.38 3.43 12.14
SVR 9.16 20.51 3.76 15.60 2.29 4.44 3.51 12.84
KNN 9.21 20.66 3.75 15.50 2.30 4.45 3.46 12.32
XGBOOST 9.19 20.58 3.75 15.54 2.30 4.48 3.49 12.59
LSTM 9.11 20.21 3.71 15.19 2.31 4.39 3.43 12.22

60 days

HLTM 30.29 71.90 4.69 23.83 12.38 24.16 3.73 15.82
TBATS 30.29 71.90 4.69 23.83 12.38 24.16 3.73 15.82
ARIMA 31.30 75.72 4.74 24.26 12.73 24.77 3.70 15.52
LR 12.34 23.85 3.44 13.18 2.77 5.64 3.54 12.73
SVR 12.32 23.75 3.42 12.99 2.77 5.64 3.53 12.61
KNN 12.30 23.80 3.45 13.24 2.76 5.63 3.52 12.52
XGBOOST 12.31 23.75 3.43 13.09 2.77 5.63 3.53 12.67
LSTM 12.29 23.67 3.41 12.95 2.77 5.63 3.53 12.67

90 days

HLTM 42.37 98.42 3.55 13.60 18.72 44.32 4.36 20.98
TBATS 42.85 100.01 3.62 14.23 18.72 44.32 4.36 20.98
ARIMA 42.37 98.45 3.54 13.59 19.08 44.93 4.34 20.80
LR 19.45 43.66 3.84 16.33 3.25 6.97 3.51 12.09
SVR 19.45 43.63 3.83 16.26 3.35 7.31 3.46 11.38
KNN 19.39 43.57 3.85 16.42 3.24 6.96 3.51 11.98
XGBOOST 19.44 43.61 3.84 16.30 3.25 7.00 3.53 12.21
LSTM 19.44 43.53 3.81 16.07 3.25 6.97 3.51 11.99

120 days

HLTM 62.94 192.98 4.96 25.76 28.82 81.52 4.25 18.94
TBATS 62.94 192.98 4.96 25.76 28.82 81.52 4.25 18.94
ARIMA 62.76 193.89 5.01 26.24 29.20 82.25 4.24 18.83
LR 28.90 85.13 4.74 23.70 3.39 7.47 3.59 12.64
SVR 28.87 84.97 4.73 23.65 3.45 7.70 3.52 11.87
KNN 28.82 84.91 4.74 23.72 3.36 7.43 3.59 12.69
XGBOOST 28.88 85.06 4.74 23.70 3.39 7.49 3.58 12.52
LSTM 28.89 85.01 4.72 23.58 3.36 7.39 3.58 12.58

150 days

HLTM 71.50 190.19 4.53 21.83 29.09 75.40 4.50 21.46
TBATS 71.50 190.19 4.53 21.83 29.09 75.40 4.50 21.46
ARIMA 71.46 190.44 4.55 22.02 28.78 75.06 4.62 22.68
LR 28.62 75.28 4.61 22.55 3.28 7.15 3.53 12.05
SVR 28.55 75.08 4.61 22.56 3.28 7.18 3.52 11.88
KNN 28.58 75.07 4.60 22.45 3.27 7.13 3.54 12.10
XGBoost 28.62 75.24 4.60 22.52 3.27 7.15 3.54 12.16
LSTM 28.46 74.86 4.62 22.63 3.27 7.13 3.53 12.00
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Table B.3: RMSE summary statistics for bonds. Values in bold represent the best results for
each row.

Out-of-sample One-day-ahead

30 days Mean SD Skewness Kurtosis Mean SD Skewness Kurtosis

HLTM 1.22 1.48 1.73 2.54 0.48 0.57 2.24 6.23
TBATS 1.16 1.37 1.67 2.34 0.48 0.57 2.24 6.23
ARIMA 1.22 1.48 1.72 2.53 0.51 0.60 2.10 5.34
LR 0.51 0.56 1.46 1.54 0.17 0.18 1.09 -0.17
SVR 0.51 0.56 1.47 1.60 0.17 0.18 1.09 -0.17
KNN 0.51 0.56 1.48 1.64 0.17 0.18 1.11 -0.08
XGBoost 0.51 0.56 1.45 1.50 0.17 0.18 1.09 -0.14
LSTM 0.52 0.56 1.47 1.57 0.18 0.18 1.14 0.03

60 days

HLTM 0.93 1.24 1.98 3.25 0.60 0.68 1.39 0.92
TBATS 0.93 1.24 1.98 3.25 0.60 0.68 1.39 0.92
ARIMA 0.96 1.29 1.95 3.14 0.62 0.69 1.38 0.87
LR 0.58 0.73 1.87 2.93 0.17 0.17 1.16 0.32
SVR 0.58 0.73 1.89 3.04 0.17 0.17 1.14 0.24
KNN 0.58 0.73 1.88 2.99 0.17 0.17 1.16 0.33
XGBoost 0.58 0.73 1.86 2.88 0.17 0.17 1.17 0.38
LSTM 0.59 0.74 1.83 2.70 0.18 0.18 1.15 0.22

90 days

HLTM 1.74 2.05 1.53 1.70 0.85 0.86 1.12 0.38
TBATS 1.74 2.05 1.53 1.70 0.85 0.86 1.12 0.38
ARIMA 1.72 2.02 1.54 1.71 0.87 0.88 1.10 0.31
LR 0.87 0.89 1.14 0.45 0.20 0.20 1.04 0.04
SVR 0.87 0.89 1.13 0.43 0.20 0.20 1.06 0.22
KNN 0.87 0.89 1.13 0.41 0.20 0.19 1.00 -0.09
XGBoost 0.87 0.90 1.14 0.42 0.20 0.20 1.05 0.11
LSTM 0.88 0.90 1.15 0.46 0.20 0.20 1.03 0.01

120 days

HLTM 2.05 2.48 1.25 0.09 0.99 1.19 1.48 1.10
TBATS 2.05 2.48 1.25 0.09 0.99 1.19 1.48 1.10
ARIMA 2.07 2.51 1.27 0.16 1.01 1.20 1.46 1.03
LR 0.94 1.12 1.58 1.79 0.19 0.19 1.04 -0.01
SVR 0.93 1.10 1.55 1.62 0.19 0.19 1.02 -0.08
KNN 0.93 1.12 1.59 1.79 0.19 0.18 1.01 -0.11
XGBoost 0.94 1.12 1.58 1.75 0.20 0.20 1.15 0.40
LSTM 0.94 1.12 1.54 1.56 0.20 0.19 1.03 -0.05

150 days

HLTM 1.79 2.37 2.15 4.60 1.03 1.28 2.09 4.01
TBATS 1.79 2.37 2.15 4.60 1.03 1.28 2.09 4.01
ARIMA 1.83 2.41 2.16 4.65 1.05 1.29 2.07 3.96
LR 1.03 1.26 2.06 4.13 0.20 0.19 1.03 -0.11
SVR 1.03 1.26 2.07 4.15 0.19 0.19 1.00 -0.21
KNN 1.04 1.26 2.06 4.13 0.20 0.19 1.03 -0.06
XGBoost 1.03 1.26 2.06 4.13 0.20 0.19 1.03 -0.06
LSTM 1.04 1.25 2.09 4.26 0.20 0.19 1.00 -0.18
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Table B.4: Expected portfolio return summary statistics. Values in bold represent the best
results for each row. For reference, the perfect foresight values are 4.16× 10−3 (30 days),
4.07×10−3 (60 days), 4.56×10−3 (90 days), 3.85×10−3 (120 days), and 3.78×10−3 (150
days).

Out-of-sample One-day-ahead

30 days Mean SD Skewness Kurtosis Mean SD Skewness Kurtosis

HLTM 9.06×10−4 1.78×10−6 6.45 42.24 9.62×10−4 1.79×10−4 -0.95 13.5
TBATS 1.93×10−4 7.73×10−5 7.74 64.27 9.02×10−4 3.79×10−4 7.21 64.12
ARIMA 6.73×10−4 2.85×10−5 −9.16 89.52 1.25×10−3 4.35×10−4 -0.2 -0.84
LR 1.12×10−3 4.75×10−6 -1.52 7.10 1.31×10−3 3.52×10−4 -0.27 5.89
SVR 1.44×10−3 4.92×10−4 0.34 -1.15 2.01×10−3 3.95×10−4 6.12 54.35
KNN 1.43×10−3 1.25×10−5 -1.91 2.06 1.41×10−3 2.95×10−4 1.15 12.11
XGBoost 1.23×10−3 5.04×10−4 0.04 0.63 1.47×10−3 1.50×10−4 -0.85 13.86
LSTM 1.44×10−3 1.69×10−4 0.22 1.09 2.72×10−3 2.37×10−4 −2.37 23.91
HistData 6.68×10−4 1.56×10−5 0.26 3.93 6.68×10−4 1.56×10−5 0.26 3.93

60 days

HLTM 3.81×10−4 2.33×10−6 4.65 34.48 6.90×10−4 1.55×10−4 6.03 47.52
TBATS 2.40×10−4 2.78×10−5 2.99 28.45 2.84×10−4 1.34×10−4 5.6 33.24
ARIMA 6.72×10−4 7.48×10−5 2.18 3.74 2.12×10−3 2.16×10−4 −4.15 20.26
LR 8.40×10−4 3.49×10−4 2.81 7.89 1.86×10−3 1.97×10−4 1.12 9.39
SVR 1.52×10−3 6.36×10−4 2.34 5.32 1.88×10−3 1.90×10−4 -1.11 19.89
KNN 1.02×10−3 9.18×10−5 2.18 5.90 1.75×10−3 2.17×10−4 -1.75 16.76
XGBoost 1.58×10−3 6.06×10−4 1.67 3.36 2.07×10−3 2.28×10−4 -2.55 9.31
LSTM 1.26×10−3 4.09×10−5 3.83 22.53 1.45×10−3 4.50×10−4 1.57 1.88
HistData 7.00×10−4 1.46×10−5 −3.09 13.13 7.00×10−4 1.46×10−5 −3.09 13.13

90 days

HLTM 6.49×10−4 4.14×10−6 4.40 18.73 9.84×10−4 1.73×10−4 -0.27 17.24
TBATS 1.70×10−4 1.39×10−5 5.66 41.16 9.62×10−4 1.48×10−4 -4.24 22.63
ARIMA 3.92×10−4 6.81×10−5 2.85 8.08 1.91×10−3 1.73×10−4 −3.12 16.22
LR 8.21×10−4 2.08×10−4 3.08 11.57 1.74×10−3 2.06×10−4 -1.07 5.51
SVR 1.35×10−3 4.26×10−4 -0.35 0.56 1.91×10−3 1.77×10−4 −4.8 23.04
KNN 1.70×10−3 2.38×10−4 −1.93 3.70 1.85×10−3 2.68×10−4 -2.71 7.23
XGBoost 1.42×10−3 2.89×10−4 1.89 18.64 1.71×10−3 1.91×10−4 2.09 16.91
LSTM 1.40×10−3 4.99×10−4 −1.13 0.94 1.73×10−3 1.46×10−4 −3.42 14.83
HistData 5.75×10−4 3.88×10−5 −4.07 20.32 5.75×10−4 3.88×10−5 -4.07 20.32

120 days

HLTM 5.19×10−4 1.05×10−18 0.88 -1.70 5.48×10−4 9.70×10−5 3.81 34.42
TBATS 1.85×10−4 1.04×10−5 4.93 35.12 3.75×10−4 1.39×10−4 4.79 31.22
ARIMA 3.21×10−4 2.92×10−5 0.02 -0.73 8.56×10−4 8.18×10−5 0.76 15.17
LR 1.14×10−3 4.15×10−4 0.99 -0.89 1.49×10−3 1.76×10−4 0.02 10.42
SVR 1.14×10−3 2.26×10−4 1.64 3.77 1.42×10−3 6.14×10−4 -0.20 -1.11
KNN 1.12×10−3 3.50×10−4 1.7 2.82 1.32×10−3 1.15×10−4 2.09 12.94
XGBoost 1.11×10−3 2.79×10−4 3.45 11.84 1.22×10−3 1.93×10−4 −0.56 12.53
LSTM 1.15×10−3 2.72×10−4 −0.30 1.25 1.43×10−3 1.77×10−4 −0.29 6.53
HistData 5.67×10−4 2.73×10−5 1.05 23.44 5.67×10−4 2.73×10−5 1.05 23.44

150 days

HLTM 1.13×10−4 1.06×10−4 7.68 66.53 1.40×10−3 8.89×10−5 -0.06 25.79
TBATS 1.11×10−4 1.05×10−4 5.77 41.93 1.38×10−3 1.15×10−4 -4.95 25.24
ARIMA 6.94×10−4 1.09×10−4 3.92 31.66 1.65×10−3 1.33×10−4 -4.21 19.16
LR 9.53×10−4 5.63×10−5 -2.56 12.75 1.51×10−3 9.19×10−5 -4.3 18.65
SVR 1.17×10−3 3.15×10−4 0.36 3.69 1.75×10−3 1.77×10−4 -3.39 12.69
KNN 9.31×10−4 4.53×10−5 0.21 -0.18 1.76×10−3 1.34×10−4 -3.81 15.44
XGBoost 1.27×10−3 2.31×10−4 1.93 20.23 1.76×10−3 1.14×10−4 -3.77 15.39
LSTM 1.03×10−3 3.38×10−4 1.22 0.37 1.78×10−3 1.26×10−4 -1.01 19.06
HistData 3.55×10−4 4.14×10−5 5.90 43.05 3.55×10−4 4.14×10−5 5.9 43.05
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Table B.5: Expected portfolio risk summary statistics. Values in bold represent the best results
for each row. For reference, the perfect foresight values are 1.14×10−3 (30 days), 2.42×10−3

(60 days), 2.51×10−3 (90 days), 2.58×10−3 (120 days), and 2.34×10−3 (150 days).

Out-of-sample One-day-ahead

30 days Mean SD Skewness Kurtosis Mean SD Skewness Kurtosis

HLTM 8.24×10−3 3.41×10−5 6.79 45.67 2.66×10−3 6.95×10−4 3.43 12.68
TBATS 1.21×10−3 2.75×10−4 8.17 72.01 2.76×10−3 1.26×10−3 4.71 24.11
ARIMA 3.91×10−3 4.27×10−5 -6.72 60.62 8.29×10−3 5.99×10−4 -1.95 7.41
LR 1.86×10−3 3.44×10−5 -0.31 -1.47 1.80×10−3 6.41×10−4 3.74 16.71
SVR 6.16×10−3 1.70×10−3 0.93 0.35 1.79×10−3 9.90×10−4 5.30 29.66
KNN 3.13×10−3 7.79×10−5 -1.98 2.00 1.90×10−3 1.12×10−3 4.51 23.79
XGBoost 4.61×10−3 9.17×10−4 0.49 0.45 1.57×10−3 8.05×10−4 5.20 27.92
LSTM 3.39×10−3 1.06×10−3 -0.40 -1.47 1.85×10−3 8.39×10−4 5.19 27.54
HistData 3.03×10−3 7.57×10−5 3.94 20.31 3.47×10−3 6.08×10−4 3.42 13.26

60 days

HLTM 4.51×10−3 6.24×10−6 7.36 69.47 4.96×10−3 5.93×10−4 4.99 26.20
TBATS 3.89×10−3 7.39×10−5 0.98 2.60 5.17×10−3 3.52×10−4 6.05 38.69
ARIMA 5.05×10−3 2.37×10−4 2.40 6.65 1.38×10−2 1.17×10−3 -3.44 11.89
LR 4.03×10−3 3.89×10−3 4.82 22.82 4.04×10−3 1.38×10−3 4.11 17.53
SVR 6.77×10−3 2.05×10−3 1.44 2.77 3.10×10−3 7.58×10−4 4.50 22.05
KNN 3.84×10−3 4.49×10−4 1.97 4.21 3.54×10−3 7.27×10−4 3.81 15.76
XGBoost 6.00×10−3 1.95×10−3 1.72 2.37 4.13×10−3 8.27×10−4 3.55 13.15
LSTM 5.37×10−3 2.24×10−4 2.61 10.55 2.86×10−3 9.96×10−4 1.96 2.79
HistData 2.86×10−3 5.92×10−5 4.46 23.99 4.52×10−3 1.09×10−3 6.58 49.25

90 days

HLTM 5.89×10−3 2.41×10−5 4.44 19.44 5.92×10−3 1.09×10−3 4.99 27.52
TBATS 2.73×10−3 4.62×10−5 2.21 5.91 5.75×10−3 5.45×10−4 4.17 28.29
ARIMA 5.73×10−3 2.92×10−4 2.09 7.58 1.94×10−2 1.65×10−3 -3.17 9.52
LR 3.71×10−3 3.81×10−4 2.05 7.32 4.29×10−3 7.32×10−4 3.14 11.22
SVR 5.78×10−3 1.15×10−3 -0.54 0.74 4.57×10−3 5.03×10−4 4.40 35.30
KNN 1.00×10−2 1.55×10−3 -1.84 3.04 4.82×10−3 1.09×10−3 3.82 15.06
XGBoost 8.02×10−3 1.97×10−3 6.38 55.74 4.22×10−3 1.37×10−3 5.47 33.86
LSTM 6.98×10−3 1.55×10−3 -1.27 1.99 4.20×10−3 5.59×10−4 3.17 16.06
HistData 2.65×10−3 1.00×10−4 6.85 52.37 5.25×10−3 6.86×10−4 5.26 41.50

120 days

HLTM 3.93×10−3 6.94×10−18 -1.36 -0.62 4.96×10−3 8.69×10−4 3.62 14.51
TBATS 2.92×10−3 5.79×10−5 -0.07 11.49 7.05×10−3 4.32×10−4 -1.28 15.96
ARIMA 5.42×10−3 1.59×10−4 0.19 -0.84 2.03×10−2 1.75×10−3 -3.89 15.08
LR 7.68×10−3 1.39×10−3 0.36 -1.53 3.89×10−3 6.04×10−4 3.59 15.33
SVR 7.32×10−3 1.81×10−3 -0.78 0.80 2.99×10−3 9.70×10−4 3.69 16.75
KNN 7.05×10−3 4.35×10−4 -3.26 12.28 3.02×10−3 1.33×10−3 4.30 25.96
XGBoost 6.52×10−3 9.75×10−4 3.38 17.98 2.86×10−3 9.66×10−4 2.98 8.12
LSTM 6.32×10−3 9.92×10−4 -0.35 -0.03 3.75×10−3 6.15×10−4 4.72 31.24
HistData 2.85×10−3 1.56×10−4 7.80 66.41 5.45×10−3 4.08×10−4 6.07 47.25

150 days

HLTM 3.93×10−3 6.94×10−18 -1.36 -0.62 9.34×10−3 8.19×10−4 5.41 55.52
TBATS 2.49×10−3 2.15×10−4 8.02 71.54 9.26×10−3 6.46×10−4 -4.33 26.20
ARIMA 4.67×10−3 1.88×10−4 -7.00 58.73 3.07×10−2 3.39×10−3 -2.51 5.11
LR 5.49×10−3 2.68×10−4 -2.34 9.18 5.02×10−3 6.39×10−4 4.39 26.29
SVR 6.81×10−3 1.20×10−3 0.52 2.55 5.72×10−3 5.65×10−4 4.18 28.53
KNN 5.04×10−3 2.06×10−4 0.48 0.08 5.66×10−3 6.71×10−4 7.41 70.54
XGBoost 7.75×10−3 1.34×10−3 0.06 4.06 5.66×10−3 4.83×10−4 7.95 73.75
LSTM 5.07×10−3 1.29×10−3 1.04 0.74 5.89×10−3 2.16×10−3 9.45 92.23
HistData 2.76×10−3 9.24×10−5 2.05 5.68 5.13×10−3 1.86×10−3 5.00 30.51
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Table B.6: Expected portfolio Sharpe Ratio summary statistics. Values in bold represent the
best results for each row. For reference, the perfect foresight values are 4.04×10−2 (30 days),
3.72×10−2 (60 days), 3.72×10−2 (90 days), 3.29×10−2 (120 days), and 3.23×10−2 (150
days).

Out-of-sample One-day-ahead

30 days Mean SD Skewness Kurtosis Mean SD Skewness Kurtosis

HLTM 1.04×10−2 3.60×10−6 -2.33 11.07 1.75×10−2 3.05×10−3 -3.91 19.98
TBATS 4.91×10−3 1.12×10−3 6.83 49.75 1.72×10−2 4.72×10−3 3.40 33.56
ARIMA 1.05×10−2 4.22×10−4 −9.31 91.19 1.35×10−2 4.67×10−3 0.02 -0.07
LR 1.88×10−2 1.86×10−4 0.62 -1.07 3.12×10−2 7.08×10−3 -2.91 8.87
SVR 2.55×10−2 2.69×10−3 0.73 -1.05 3.43×10−2 6.00×10−3 -2.91 20.73
KNN 2.49×10−2 1.06×10−4 2.18 4.11 3.29×10−2 6.30×10−3 -3.27 9.95
XGBoost 2.23×10−2 9.52×10−3 0.34 -0.59 3.17×10−2 4.36×10−3 -4.21 18.83
LSTM 2.29×10−2 1.72×10−3 1.00 1.39 3.42×10−2 5.65×10−3 −4.63 22.79
HistData 1.83×10−2 4.83×10−3 -2.73 9.20 1.83×10−2 4.83×10−3 -2.73 9.20

60 days

HLTM 5.11×10−3 3.84×10−5 2.94 31.95 9.99×10−3 1.93×10−3 6.42 55.21
TBATS 3.54×10−3 4.58×10−4 3.18 28.98 3.67×10−3 1.65×10−3 5.27 28.47
ARIMA 9.17×10−3 8.21×10−4 2.21 3.88 1.79×10−2 1.54×10−3 −2.30 18.00
LR 1.35×10−2 3.37×10−3 1.87 6.47 2.96×10−2 3.66×10−3 -2.97 9.76
SVR 1.81×10−2 5.12×10−3 1.55 2.16 2.66×10−2 3.68×10−3 −3.95 18.05
KNN 1.62×10−2 5.44×10−4 2.29 7.67 2.96×10−2 4.07×10−3 -3.79 16.15
XGBoost 2.01×10−2 5.06×10−3 0.42 1.05 3.23×10−2 4.21×10−3 -2.99 8.49
LSTM 1.69×10−2 4.21×10−4 6.80 60.02 2.69×10−2 4.96×10−3 -0.71 4.29
HistData 1.21×10−2 1.40×10−3 −1.80 21.04 1.21×10−2 1.40×10−3 −1.80 21.04

90 days

HLTM 8.20×10−3 3.81×10−5 4.14 16.48 1.26×10−2 2.05×10−3 -2.80 15.94
TBATS 2.89×10−3 2.54×10−4 6.11 47.25 1.25×10−2 1.85×10−3 -4.93 26.76
ARIMA 4.91×10−3 7.47×10−4 2.80 7.84 1.36×10−2 1.12×10−3 0.46 22.37
LR 1.31×10−2 2.66×10−3 2.40 7.35 2.64×10−2 3.10×10−3 -3.15 10.96
SVR 1.74×10−2 4.71×10−3 -0.60 0.01 2.80×10−2 2.64×10−3 -4.22 18.00
KNN 1.67×10−2 1.17×10−3 -2.41 7.18 2.69×10−2 4.65×10−3 -2.80 7.19
XGBoost 1.57×10−2 1.98×10−3 -2.16 13.26 2.63×10−2 1.80×10−3 -3.77 17.19
LSTM 1.62×10−2 5.58×10−3 -1.05 0.51 2.65×10−2 2.40×10−3 −4.85 25.12
HistData 1.08×10−2 8.27×10−4 −4.01 17.80 1.08×10−2 8.27×10−4 −4.01 17.80

120 days

HLTM 7.55×10−3 1.42×10−17 1.26 -1.46 7.98×10−3 1.26×10−3 1.27 21.04
TBATS 3.07×10−3 2.14×10−4 5.67 44.64 4.23×10−3 1.50×10−3 4.39 27.30
ARIMA 4.10×10−3 3.37×10−4 -0.07 -0.70 5.90×10−3 7.67×10−4 4.19 19.43
LR 1.26×10−2 3.75×10−3 1.08 -0.80 2.36×10−2 1.95×10−3 −5.10 41.21
SVR 1.60×10−2 5.80×10−3 -0.40 -1.39 2.07×10−2 2.45×10−3 -1.34 7.96
KNN 1.55×10−2 1.12×10−3 2.95 12.13 2.02×10−2 3.86×10−3 -0.84 5.29
XGBoost 1.49×10−2 1.88×10−3 −3.60 16.67 2.04×10−2 2.67×10−3 0.54 8.29
LSTM 1.67×10−2 2.40×10−3 -0.79 1.29 2.31×10−2 2.01×10−3 −2.99 11.44
HistData 1.03×10−2 4.56×10−4 -3.21 15.81 2.71×10−4 9.52×10−4 8.17 76.41

150 days

HLTM 7.76×10−3 1.42×10−17 1.26 -1.46 1.43×10−2 7.98×10−4 1.94 22.08
TBATS 3.38×10−3 1.97×10−4 4.57 52.51 1.41×10−2 8.73×10−4 -4.74 23.67
ARIMA 3.88×10−3 1.03×10−3 -1.69 2.36 9.32×10−3 5.83×10−4 -0.83 16.33
LR 1.26×10−2 4.93×10−4 −2.97 17.70 2.12×10−2 1.39×10−3 -3.54 13.33
SVR 1.38×10−2 2.79×10−3 -0.30 2.18 2.30×10−2 2.52×10−3 -3.78 16.36
KNN 1.28×10−2 3.84×10−4 -0.03 -0.14 2.32×10−2 1.65×10−3 -3.57 13.34
XGBoost 1.42×10−2 1.70×10−3 0.80 11.74 2.32×10−2 1.73×10−3 −4.75 24.98
LSTM 1.40×10−2 3.04×10−3 0.73 -0.64 2.32×10−2 1.63×10−3 -3.30 11.59
HistData 1.30×10−2 4.39×10−4 −6.82 61.77 7.15×10−3 1.58×10−3 0.59 20.76
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Technical Analysis Indicators

Table C.1: RMSE summary statistics for REITs. Values in bold represent the best results for
each row.

Out-of-sample One-day-ahead
Without TA With TA Without TA With TA

30 days Mean SD Mean SD Mean SD Mean SD

LR 5.60 12.49 4.55 7.55 1.04 2.10 1.04 1.38
SVR 5.59 12.45 4.13 7.28 1.02 2.01 1.06 1.41
KNN 5.61 12.53 4.06 7.36 1.03 2.04 1.02 1.41
XGBOOST 5.60 12.49 3.83 6.53 1.02 2.00 1.04 1.62
LSTM 5.60 12.57 3.54 5.44 1.08 2.16 1.01 1.24
HLTM 21.77 40.15 6.47 14.23
TBATS 21.77 40.15 6.47 14.23
ARIMA 21.47 38.98 6.69 14.68

60 days

LR 7.47 14.79 6.97 14.09 2.40 5.76 2.22 4.00
SVR 7.46 14.75 5.66 10.05 2.40 5.76 2.33 4.04
KNN 7.48 14.82 5.73 11.05 2.39 5.75 2.29 4.58
XGBOOST 7.49 14.87 5.36 8.00 2.39 5.75 2.28 3.71
LSTM 7.56 14.50 5.31 7.92 2.40 5.75 2.27 2.58
HLTM 16.87 35.63 10.28 24.67
TBATS 16.87 35.63 10.28 24.67
ARIMA 17.08 35.82 10.60 25.29

90 days

LR 9.70 19.79 5.94 10.75 1.15 2.18 0.99 0.94
SVR 9.69 19.73 6.67 12.19 1.13 2.12 0.98 0.95
KNN 9.70 19.74 6.64 12.14 1.13 2.12 0.99 1.06
XGBOOST 9.70 19.78 5.81 9.72 1.13 2.13 0.97 0.91
LSTM 9.72 19.86 6.08 8.58 1.14 2.16 0.92 0.88
HLTM 20.82 35.66 9.30 17.45
TBATS 21.28 36.75 9.30 17.45
ARIMA 20.81 35.67 9.47 17.78

120 days

LR 10.96 16.75 7.19 11.43 1.16 2.22 1.14 1.23
SVR 10.95 16.73 6.63 10.10 1.14 2.16 1.11 1.22
KNN 10.97 16.79 6.55 8.55 1.14 2.16 1.14 1.23
XGBOOST 10.95 16.75 6.30 8.92 1.14 2.16 1.15 1.32
LSTM 10.99 16.81 5.87 7.39 1.17 2.23 1.15 1.25
HLTM 22.91 35.97 9.83 15.19
TBATS 22.91 35.97 9.83 15.19
ARIMA 22.88 35.95 10.01 15.51

150 days

LR 8.00 12.91 5.90 10.27 1.16 2.19 1.11 1.96
SVR 8.00 12.91 5.14 6.90 1.15 2.16 1.05 1.10
KNN 8.02 12.96 5.11 6.59 1.15 2.16 1.06 1.21
XGBOOST 8.00 12.91 4.97 7.46 1.15 2.17 1.04 1.11
LSTM 8.00 12.92 4.51 7.52 1.16 2.18 1.04 1.04
HLTM 17.32 27.37 7.91 12.70
TBATS 17.32 27.37 7.91 12.70
ARIMA 16.91 26.80 8.07 13.00

113
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Table C.2: RMSE summary statistics for stocks. Values in bold represent the best results for
each row.

Out-of-sample One-day-ahead
Without TA With TA Without TA With TA

30 days Mean SD Mean SD Mean SD Mean SD

LR 9.19 20.62 7.61 16.62 2.28 4.38 2.18 2.34
SVR 9.16 20.51 6.84 12.92 2.29 4.44 2.16 2.60
KNN 9.21 20.66 7.69 14.72 2.30 4.45 2.15 2.18
XGBOOST 9.19 20.58 6.25 10.31 2.30 4.48 2.17 2.29
LSTM 9.11 20.21 6.38 9.47 2.31 4.39 2.13 2.27
HLTM 41.21 100.20 11.36 26.54
TBATS 41.21 100.20 11.36 26.54
ARIMA 41.47 100.15 11.72 27.15

60 days

LR 12.34 23.85 11.00 21.10 2.77 5.64 2.72 3.05
SVR 12.32 23.75 10.48 21.89 2.77 5.64 2.65 3.10
KNN 12.30 23.80 11.31 21.99 2.76 5.63 2.54 2.76
XGBOOST 12.31 23.75 9.35 16.18 2.77 5.63 2.70 3.03
LSTM 12.29 23.67 10.03 13.88 2.77 5.63 2.55 2.23
HLTM 30.29 71.90 12.38 24.16
TBATS 30.29 71.90 12.38 24.16
ARIMA 31.30 75.72 12.73 24.77

90 days

LR 19.45 43.66 15.37 30.84 3.25 6.97 3.29 2.78
SVR 19.45 43.63 13.20 24.21 3.35 7.31 3.33 2.77
KNN 19.39 43.57 14.11 27.87 3.24 6.96 3.29 2.79
XGBOOST 19.44 43.61 11.89 18.21 3.25 7.00 3.27 2.63
LSTM 19.44 43.53 11.73 18.59 3.25 6.97 3.24 2.64
HLTM 42.37 98.42 18.72 44.32
TBATS 42.85 100.01 18.72 44.32
ARIMA 42.37 98.45 19.08 44.93

120 days

LR 28.90 85.13 21.89 62.52 3.39 7.47 3.38 2.41
SVR 28.87 84.97 18.29 52.29 3.45 7.70 3.14 2.57
KNN 28.82 84.91 17.19 29.41 3.36 7.43 3.35 2.51
XGBOOST 28.88 85.06 16.79 22.44 3.39 7.49 3.21 2.33
LSTM 28.89 85.01 16.56 16.86 3.36 7.39 3.18 2.27
HLTM 62.94 192.98 28.82 81.52
TBATS 62.94 192.98 28.82 81.52
ARIMA 62.76 193.89 29.20 82.25

150 days

LR 28.62 75.28 22.93 52.34 3.28 7.15 3.21 1.96
SVR 28.55 75.08 20.01 34.49 3.28 7.18 3.14 2.08
KNN 28.58 75.07 20.02 38.75 3.27 7.13 3.07 2.02
XGBOOST 28.62 75.24 19.09 24.23 3.27 7.15 3.16 3.13
LSTM 28.46 74.86 19.03 23.88 3.27 7.13 3.12 2.20
HLTM 71.50 190.19 29.09 75.40
TBATS 71.50 190.19 29.09 75.40
ARIMA 71.46 190.44 28.78 75.06
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Table C.3: RMSE summary statistics for bonds. Values in bold represent the best results for
each row.

Out-of-sample One-day-ahead
Without TA With TA Without TA With TA

30 days Mean SD Mean SD Mean SD Mean SD

LR 0.51 0.56 0.49 0.55 0.17 0.18 0.21 0.20
SVR 0.51 0.56 0.45 0.60 0.17 0.18 0.19 0.17
KNN 0.51 0.56 0.44 0.62 0.17 0.18 0.17 0.17
XGBOOST 0.51 0.56 0.43 0.41 0.17 0.18 0.18 0.21
LSTM 0.52 0.56 0.45 0.37 0.18 0.18 0.17 0.16
HLTM 1.22 1.48 0.48 0.57
TBATS 1.16 1.37 0.48 0.57
ARIMA 1.22 1.48 0.51 0.60

60 days

LR 0.58 0.73 0.58 0.55 0.17 0.17 0.16 0.15
SVR 0.58 0.73 0.55 0.58 0.17 0.17 0.17 0.15
KNN 0.58 0.73 0.52 0.56 0.17 0.17 0.18 0.17
XGBOOST 0.58 0.73 0.53 0.64 0.17 0.17 0.17 0.13
LSTM 0.59 0.74 0.56 0.31 0.18 0.18 0.18 0.13
HLTM 0.93 1.24 0.60 0.68
TBATS 0.93 1.24 0.60 0.68
ARIMA 0.96 1.29 0.62 0.69

90 days

LR 0.87 0.89 0.61 0.52 0.20 0.20 0.22 0.24
SVR 0.87 0.89 0.79 0.68 0.20 0.20 0.20 0.15
KNN 0.87 0.89 0.74 0.59 0.20 0.19 0.18 0.17
XGBOOST 0.87 0.90 0.63 0.51 0.20 0.20 0.21 0.22
LSTM 0.88 0.90 0.66 0.40 0.20 0.20 0.20 0.17
HLTM 1.74 2.05 0.85 0.86
TBATS 1.74 2.05 0.85 0.86
ARIMA 1.72 2.02 0.87 0.88

120 days

LR 0.94 1.12 0.91 0.79 0.19 0.19 0.19 0.18
SVR 0.93 1.10 0.81 0.66 0.19 0.19 0.20 0.24
KNN 0.93 1.12 0.79 0.65 0.19 0.18 0.20 0.15
XGBOOST 0.94 1.12 0.78 0.75 0.20 0.20 0.19 0.16
LSTM 0.94 1.12 0.77 0.49 0.20 0.19 0.18 0.20
HLTM 2.05 2.48 0.99 1.19
TBATS 2.05 2.48 0.99 1.19
ARIMA 2.07 2.51 1.01 1.20

150 days

LR 1.03 1.26 0.94 1.10 0.20 0.19 0.19 0.16
SVR 1.03 1.26 0.94 0.47 0.19 0.19 0.20 0.19
KNN 1.04 1.26 0.93 0.94 0.20 0.19 0.21 0.16
XGBOOST 1.03 1.26 0.95 0.89 0.20 0.19 0.18 0.14
LSTM 1.04 1.25 0.94 0.90 0.20 0.19 0.18 0.16
HLTM 1.79 2.37 1.03 1.28
TBATS 1.79 2.37 1.03 1.28
ARIMA 1.83 2.41 1.05 1.29
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Table C.4: Expected portfolio return summary statistics. Values in bold represent the best
results for each row.

Out-of-sample One-day-ahead
Without TA With TA Without TA With TA

30 days Mean SD Mean SD Mean SD Mean SD

LR 1.12×10−3 4.75×10−6 3.07×10−3 2.16×10−4 1.31×10−3 3.52×10−4 3.51×10−3 1.93×10−4

SVR 1.44×10−3 3.95×10−4 3.40×10−3 2.02×10−4 1.44×10−3 4.92×10−4 3.55×10−3 1.67×10−4

KNN 1.43×10−3 1.25×10−5 3.46×10−3 2.05×10−4 1.38×10−3 2.95×10−4 3.78×10−3 1.69×10−4

XGBoost 1.23×10−3 5.04×10−4 3.45×10−3 2.06×10−4 1.47×10−3 1.50×10−4 3.49×10−3 1.99×10−4

LSTM 1.44×10−3 1.69×10−4 3.36×10−3 1.86×10−4 2.72×10−3 2.37×10−4 3.70×10−3 1.57×10−4

HLTM 9.06×10−4 1.78×10−6 9.62×10−4 1.79×10−4

TBATS 1.93×10−4 7.73×10−5 9.02×10−4 3.79×10−4

ARIMA 6.73×10−4 2.85×10−5 1.25×10−3 4.35×10−4

60 days

LR 8.40×10−4 3.49×10−4 2.98×10−3 2.13×10−4 1.86×10−3 1.97×10−4 3.40×10−3 1.45×10−4

SVR 1.52×10−3 6.36×10−4 2.51×10−3 2.34×10−4 1.48×10−3 1.90×10−4 3.13×10−3 2.16×10−4

KNN 1.02×10−3 9.18×10−5 2.90×10−3 1.66×10−4 1.75×10−3 2.17×10−4 3.49×10−3 1.72×10−4

XGBoost 1.58×10−3 6.06×10−4 3.46×10−3 1.86×10−4 2.07×10−3 2.28×10−4 3.66×10−3 1.76×10−4

LSTM 1.26×10−3 4.09×10−5 2.40×10−3 2.45×10−4 1.45×10−3 4.50×10−4 3.62×10−3 1.80×10−4

HLTM 3.81×10−4 2.33×10−6 6.90×10−4 1.55×10−4

TBATS 2.40×10−4 2.78×10−5 2.84×10−4 1.34×10−4

ARIMA 6.72×10−4 7.48×10−5 2.12×10−3 2.16×10−4

90 days

LR 8.21×10−4 2.08×10−4 2.43×10−3 2.35×10−4 1.74×10−3 2.06×10−4 2.79×10−3 2.37×10−4

SVR 1.35×10−3 4.26×10−4 2.64×10−3 2.58×10−4 1.91×10−3 1.77×10−4 3.48×10−3 1.85×10−4

KNN 1.70×10−3 2.38×10−4 2.44×10−3 2.60×10−4 1.85×10−3 2.68×10−4 3.03×10−3 2.07×10−4

XGBoost 1.42×10−3 2.89×10−4 2.85×10−3 2.31×10−4 1.71×10−3 1.91×10−4 3.00×10−3 1.99×10−4

LSTM 1.40×10−3 4.99×10−4 2.32×10−3 2.90×10−4 1.73×10−3 1.46×10−4 3.06×10−3 2.03×10−4

HLTM 6.49×10−4 4.14×10−6 9.84×10−4 1.73×10−4

TBATS 1.70×10−4 1.39×10−5 9.62×10−4 1.48×10−4

ARIMA 3.92×10−4 6.81×10−5 1.91×10−3 1.73×10−4

120 days

LR 1.14×10−3 4.15×10−4 2.21×10−3 2.73×10−4 1.49×10−3 1.76×10−4 2.72×10−3 2.33×10−4

SVR 1.14×10−3 2.26×10−4 2.08×10−3 2.47×10−4 1.42×10−3 6.14×10−4 3.75×10−3 1.99×10−4

KNN 1.12×10−3 3.50×10−4 1.91×10−3 1.97×10−4 1.32×10−3 1.15×10−4 2.92×10−3 1.77×10−4

XGBoost 1.11×10−3 2.79×10−4 2.13×10−3 2.55×10−4 1.22×10−3 1.93×10−4 2.57×10−3 1.97×10−4

LSTM 1.15×10−3 2.72×10−4 2.09×10−3 1.98×10−4 1.43×10−3 1.77×10−4 2.76×10−3 2.26×10−4

HLTM 5.19×10−4 1.05×10−18 5.48×10−4 9.70×10−5

TBATS 1.85×10−4 1.04×10−5 3.75×10−4 1.39×10−4

ARIMA 3.21×10−4 2.92×10−5 8.56×10−4 8.18×10−5

150 days

LR 9.53×10−4 5.63×10−5 1.99×10−3 2.43×10−4 1.51×10−3 9.19×10−5 3.01×10−3 1.87×10−4

SVR 1.17×10−3 3.15×10−4 2.22×10−3 2.09×10−4 1.75×10−3 1.77×10−4 2.61×10−3 2.29×10−4

KNN 9.31×10−4 4.53×10−5 2.26×10−3 2.15×10−4 1.76×10−3 1.34×10−4 2.98×10−3 2.20×10−4

XGBoost 1.27×10−3 2.31×10−4 2.45×10−3 2.37×10−4 1.76×10−3 1.14×10−4 3.01×10−3 2.39×10−4

LSTM 1.03×10−3 3.38×10−4 2.41×10−3 1.94×10−4 1.78×10−3 1.26×10−4 2.73×10−3 1.72×10−4

HLTM 1.13×10−4 1.06×10−4 1.40×10−3 8.89×10−5

TBATS 1.11×10−4 1.05×10−4 1.38×10−3 1.15×10−4

ARIMA 6.94×10−4 1.09×10−4 1.65×10−3 1.33×10−4
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Table C.5: Expected portfolio risk summary statistics. Values in bold represent the best results
for each row.

Out-of-sample One-day-ahead
Without TA With TA Without TA With TA

30 days Mean SD Mean SD Mean SD Mean SD

LR 1.86×10−3 3.44×10−5 1.07×10−2 1.85×10−4 1.80×10−3 6.41×10−4 1.12×10−2 1.31×10−4

SVR 6.16×10−3 1.70×10−3 1.11×10−2 1.40×10−4 1.79×10−3 9.90×10−4 1.11×10−2 1.27×10−4

KNN 3.13×10−3 7.79×10−5 1.12×10−2 1.17×10−4 1.90×10−3 1.12×10−3 1.13×10−2 1.28×10−4

XGBoost 4.61×10−3 9.17×10−4 1.12×10−2 1.31×10−4 1.57×10−3 8.05×10−4 1.12×10−2 1.32×10−4

LSTM 3.39×10−3 1.06×10−3 1.09×10−2 1.48×10−4 1.85×10−3 8.39×10−4 1.13×10−2 1.13×10−4

HLTM 8.24×10−3 3.41×10−5 2.66×10−3 6.95×10−4

TBATS 1.21×10−3 2.75×10−4 2.76×10−3 1.26×10−3

ARIMA 3.91×10−3 4.27×10−5 8.29×10−3 5.99×10−4

60 days

LR 4.03×10−3 3.89×10−3 1.07×10−2 1.65×10−4 4.04×10−3 1.38×10−3 1.09×10−2 1.18×10−4

SVR 6.77×10−3 2.05×10−3 1.04×10−2 1.73×10−4 3.10×10−3 7.58×10−4 1.08×10−2 1.64×10−4

KNN 3.84×10−3 4.49×10−4 1.04×10−2 1.47×10−4 3.54×10−3 7.27×10−4 1.11×10−2 1.06×10−4

XGBoost 6.00×10−3 1.95×10−3 1.10×10−2 1.46×10−4 4.13×10−3 8.27×10−4 1.12×10−2 1.30×10−4

LSTM 5.37×10−3 2.24×10−4 1.02×10−2 1.93×10−4 2.86×10−3 9.96×10−4 1.12×10−2 1.30×10−4

HLTM 4.51×10−3 6.24×10−6 4.96×10−3 5.93×10−4

TBATS 3.89×10−3 7.39×10−5 5.17×10−3 3.52×10−4

ARIMA 5.05×10−3 2.37×10−4 1.38×10−2 1.17×10−3

90 days

LR 3.71×10−3 3.81×10−4 1.04×10−2 1.54×10−4 4.29×10−3 7.32×10−4 1.06×10−2 1.72×10−4

SVR 5.78×10−3 1.15×10−3 1.07×10−2 1.81×10−4 4.57×10−3 5.03×10−4 1.11×10−2 1.35×10−4

KNN 1.00×10−2 1.55×10−3 1.07×10−2 1.61×10−4 4.82×10−3 1.09×10−3 1.08×10−2 1.42×10−4

XGBoost 8.02×10−3 1.97×10−3 1.05×10−2 2.14×10−4 4.22×10−3 1.37×10−3 1.07×10−2 1.50×10−4

LSTM 6.98×10−3 1.55×10−3 1.07×10−2 1.71×10−4 4.20×10−3 5.59×10−4 1.07×10−2 1.49×10−4

HLTM 5.89×10−3 2.41×10−5 5.92×10−3 1.09×10−3

TBATS 2.73×10−3 4.62×10−5 5.75×10−3 5.45×10−4

ARIMA 5.73×10−3 2.92×10−4 1.94×10−2 1.65×10−3

120 days

LR 7.68×10−3 1.39×10−3 1.04×10−2 1.94×10−4 3.89×10−3 6.04×10−4 1.05×10−2 1.74×10−4

SVR 7.32×10−3 1.81×10−3 1.02×10−2 1.65×10−4 2.99×10−3 9.70×10−4 1.00×10−2 1.55×10−4

KNN 7.05×10−3 4.35×10−4 9.65×10−3 1.57×10−4 3.02×10−3 1.33×10−3 1.05×10−2 1.44×10−4

XGBoost 6.52×10−3 9.75×10−4 1.00×10−2 2.19×10−4 2.86×10−3 9.66×10−4 1.02×10−2 1.76×10−4

LSTM 6.32×10−3 9.92×10−4 9.91×10−3 1.41×10−4 3.75×10−3 6.15×10−4 1.06×10−2 1.70×10−4

HLTM 3.93×10−3 6.94×10−18 4.96×10−3 8.69×10−4

TBATS 2.92×10−3 5.79×10−5 7.05×10−3 4.32×10−4

ARIMA 5.42×10−3 1.59×10−4 2.03×10−2 1.75×10−3

150 days

LR 5.49×10−3 2.68×10−4 9.92×10−3 1.97×10−4 5.02×10−3 6.39×10−4 1.06×10−2 1.44×10−4

SVR 6.81×10−3 1.20×10−3 9.97×10−3 1.67×10−4 5.72×10−3 5.65×10−4 1.04×10−2 1.79×10−4

KNN 5.04×10−3 2.06×10−4 9.99×10−3 1.78×10−4 5.66×10−3 6.71×10−4 1.06×10−2 1.80×10−4

XGBoost 7.75×10−3 1.34×10−3 1.03×10−2 1.81×10−4 5.66×10−3 4.83×10−4 1.08×10−2 1.73×10−4

LSTM 5.07×10−3 1.29×10−3 1.01×10−2 1.56×10−4 5.89×10−3 2.16×10−3 1.04×10−2 1.11×10−4

HLTM 3.93×10−3 6.94×10−18 9.34×10−3 8.19×10−4

TBATS 2.49×10−3 2.15×10−4 9.26×10−3 6.46×10−4

ARIMA 4.67×10−3 1.88×10−4 3.07×10−2 3.39×10−3
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Table C.6: Expected portfolio Sharpe Ratio summary statistics. Values in bold represent the
best results for each row.

Out-of-sample One-day-ahead
Without TA With TA Without TA With TA

30 days Mean SD Mean SD Mean SD Mean SD

LR 1.88×10−2 1.86×10−4 2.78×10−2 2.15×10−3 3.12×10−2 7.08×10−3 3.21×10−2 1.86×10−3

SVR 2.55×10−2 2.69×10−3 3.10×10−2 1.95×10−3 3.43×10−2 6.00×10−3 3.28×10−2 1.58×10−3

KNN 2.49×10−2 1.06×10−4 3.15×10−2 1.96×10−3 3.29×10−2 6.30×10−3 3.45×10−2 1.66×10−3

XGBOOST 2.23×10−2 9.52×10−3 3.14×10−2 1.99×10−3 3.17×10−2 4.36×10−3 3.19×10−2 1.91×10−3

LSTM 2.29×10−2 1.72×10−3 3.08×10−2 1.78×10−3 3.42×10−2 5.65×10−3 3.40×10−2 1.50×10−3

HLTM 1.04×10−2 3.60×10−6 1.75×10−2 3.05×10−3

TBATS 4.91×10−3 1.12×10−3 1.72×10−2 4.72×10−3

ARIMA 1.05×10−2 4.22×10−4 1.35×10−2 4.67×10−3

60 days

LR 1.35×10−2 3.37×10−3 2.72×10−2 2.09×10−3 2.96×10−2 3.66×10−3 3.18×10−2 1.41×10−3

SVR 1.81×10−2 5.12×10−3 2.29×10−2 2.30×10−3 2.66×10−2 3.68×10−3 2.84×10−2 2.13×10−3

KNN 1.62×10−2 5.44×10−4 2.72×10−2 1.64×10−3 2.96×10−2 4.07×10−3 3.23×10−2 1.67×10−3

XGBOOST 2.01×10−2 5.06×10−3 3.17×10−2 1.79×10−3 3.23×10−2 4.21×10−3 3.34×10−2 1.67×10−3

LSTM 1.69×10−2 4.21×10−4 2.16×10−2 2.43×10−3 2.69×10−2 4.96×10−3 3.31×10−2 1.74×10−3

HLTM 5.11×10−3 3.84×10−5 9.99×10−3 1.93×10−3

TBATS 3.54×10−3 4.58×10−4 3.67×10−3 1.65×10−3

ARIMA 9.17×10−3 8.21×10−4 1.79×10−2 1.54×10−3

90 days

LR 1.31×10−2 2.66×10−3 2.23×10−2 2.29×10−3 2.64×10−2 3.10×10−3 2.53×10−2 2.33×10−3

SVR 1.74×10−2 4.71×10−3 2.40×10−2 2.46×10−3 2.80×10−2 2.64×10−3 3.20×10−2 1.75×10−3

KNN 1.67×10−2 1.17×10−3 2.21×10−2 2.48×10−3 2.69×10−2 4.65×10−3 2.79×10−2 2.01×10−3

XGBOOST 1.57×10−2 1.98×10−3 2.56×10−2 2.27×10−3 2.63×10−2 1.80×10−3 2.77×10−2 1.92×10−3

LSTM 1.62×10−2 5.58×10−3 2.06×10−2 2.82×10−3 2.65×10−2 2.40×10−3 2.82×10−2 1.98×10−3

HLTM 8.20×10−3 3.81×10−3 1.26×10−2 2.05×10−3

TBATS 2.89×10−3 2.54×10−4 1.25×10−2 1.85×10−3

ARIMA 4.91×10−3 7.47×10−4 1.36×10−2 1.12×10−3

120 days

LR 1.26×10−2 3.75×10−3 1.97×10−2 2.29×10−3 2.36×10−2 1.95×10−3 2.47×10−2 2.31×10−3

SVR 1.60×10−2 5.80×10−3 1.89×10−2 2.46×10−3 2.07×10−2 2.45×10−3 2.17×10−2 2.01×10−3

KNN 1.55×10−2 1.12×10−3 1.79×10−2 2.48×10−3 2.02×10−2 3.86×10−3 2.74×10−2 1.73×10−3

XGBOOST 1.49×10−2 1.88×10−3 1.90×10−2 2.27×10−3 2.04×10−2 2.67×10−3 2.39×10−2 1.95×10−3

LSTM 1.67×10−2 2.40×10−3 1.98×10−2 2.82×10−3 2.31×10−2 2.01×10−3 2.52×10−2 2.17×10−3

HLTM 7.55×10−3 1.42×10−17 7.98×10−3 1.26×10−3

TBATS 3.07×10−3 2.14×10−4 4.23×10−3 1.50×10−3

ARIMA 4.10×10−3 3.37×10−4 5.90×10−3 7.67×10−4

150 days

LR 1.26×10−2 4.93×10−4 1.78×10−2 2.39×10−3 2.12×10−2 1.39×10−3 2.80×10−2 1.84×10−3

SVR 1.38×10−2 2.79×10−3 2.22×10−2 2.09×10−4 2.30×10−2 2.52×10−3 2.38×10−2 2.22×10−3

KNN 1.28×10−2 3.84×10−4 2.05×10−2 2.05×10−3 2.32×10−2 1.65×10−3 2.71×10−2 2.15×10−3

XGBOOST 1.42×10−2 1.70×10−3 2.23×10−2 2.36×10−3 2.32×10−2 1.73×10−3 2.72×10−2 2.33×10−3

LSTM 1.40×10−2 3.04×10−3 2.25×10−2 1.92×10−3 2.32×10−2 1.63×10−3 2.58×10−2 1.73×10−3

HLTM 7.76×10−3 1.42×10−17 1.43×10−2 7.98×10−4

TBATS 3.38×10−3 1.97×10−4 1.41×10−2 8.73×10−4

ARIMA 3.88×10−3 1.03×10−3 9.32×10−3 5.83×10−4
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