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Abstract
We apply automated reasoning to investigation of finite factors of algebraic structures
associated with knot diagrams. We refute “double size” conjecture about cancellative
semigroups and keis.
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1 Definitions and context

1.1 Context and scope

The aim of this study is to improve our understanding of knot semigroups, π -orbifold
groups and two-fold groups via experiments with specific knot diagrams such as those
shown in Fig. 1. In this note we do not consider a wider context of this research in
knot theory beyond algebraic constructions based on knot diagrams. Having said this,
it makes sense to describe this context briefly. Knots are embeddings of a circle into
3-dimensional space. Two such embeddings are considered equivalent if one can be
deformed into the other by an ambient isotopy. Speaking of a knot, depending on the
context, one maymean an embedding or its equivalence class, or one can conveniently
consider knot diagrams instead of knots.

One of the most famous problems in knot theory is checking if two knots are
equivalent. An important role in solving this problem is played by knot invariants,
that is, knot-related constructions which are preserved by ambient isotopies. Some of
knot invariants are algebraic structures; arguably the best known and oldest examples
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of algebraic invariants are the Alexander polynomial and the knot group. Among
the constructions used in this paper, keis, π -orbifold groups and two-fold groups are
knot invariants. The authors conducted work in this area [5, 6], including estimating
efficiency of different invariants [7, 10].

The authors have introduced and published several articles on what we call knot
semigroups [10, 13, 14]. As we discuss below, knot semigroups are closely related to
keis, π -orbifold groups and two-fold groups, see Sect. 1.5. Although knot semigroups
are not knot invariants (see Section 8.2 in [13]), we have hopes that they solve another
knot-theoretical problem, see the next paragraph.

The most important partial case of the knot equivalence problem is the unknotting
problem, which asks whether a knot is trivial, that is, not knotted. For example, speak-
ing of classical constructions, triviality can be detected using knot groups [2], but
cannot be detected using Alexander polynomials (for example, see [8]). It was proved
in 1969 that triviality can be detected using two-fold groups [15]; a more general result
was proved in 1984; its proof is very involved and fills up a whole book [12]. The fact
that triviality can be detected using keis was proved in 1984 as a corollary of [15] in an
unpublished PhD thesis [16] and there seems to be no published proof of this fact. As
to knot semigroups, it has been conjectured that they detect triviality, see Conjecture
1 below (this is Conjecture 24 in [13]; see also Conjecture 25 in [13]).

Below, we denote knot diagrams by letters such as d; we will denote semigroups
(keis, groups) by letters S (K , G) and variations thereof.

1.2 Knot semigroups

A semigroup is called cancellative if it satisfies two conditions: if xz = yz then x = y,
and if xy = xz then y = z. For each given knot diagram d, wewill define a cancellative
semigroupwhichwe call the knot semigroup of d and denote by Sd. By an arcwemean
a continuous line on a knot diagram from one undercrossing to another undercrossing.
For example, consider the knot diagram t on the figure; it has three arcs, denoted by
a, b and c. To denote a crossing on a knot diagram we shall use notation x � y � z,
where x and z are the two arcs terminating at the crossing and y is the arc passing
over the crossing. For example, the crossings on diagram t are b � a � c, b � a � a
and c � a � a. To define the knot semigroup of a diagram d, assume that each arc is
denoted by a letter. Then at every crossing x � y � z, ‘read’ two defining relations
xy = yz and yx = zy. The cancellative semigroup generated by the arc letters with
these defining relations is the knot semigroup Sd of D. For example, on diagram t we
can read relations ba = ac and ab = ca at the left-top crossing, relations ba = aa
and ab = aa at the right-top crossing and relations ca = aa and ac = aa at the
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bottom crossing. Using these relations, one can deduce equalities of words in St. In
particular, from aa = ba = ca, using cancellation, one can deduce a = b = c,
that is, all generators are equal to one another; in other words, St is an infinite cyclic
semigroup. The unusually simple structure of St may be related to the fact that t is
a diagram of the trivial knot: indeed, it is ‘tangled’, but it is not really ‘knotted’. A
general conjecture was formulated in [13].

Conjecture 1 A knot diagram d is a diagram of the trivial knot if and only if Sd is an
infinite cyclic semigroup.

1.3 Keis

A kei (also known as an involutory quandle) is defined as an algebra with one binary
operation � and three axioms

a � a = a, (a � b) � b = a and (a � b) � c = (a � c) � (b � c).

For a given knot diagram d, the kei Kd of the knot is a kei generated by the arc letters
with defining relations x � y = z and z � y = x for each crossing x � y � z of d.
The mnemonic behind notation x � y = z is expressed in [9]: ‘x under y gives z’.
The three axioms of a kei directly correspond to the three Reidemeister moves [4].

1.4 �-Orbifold and two-fold groups

For a given knot diagram d, theπ -orbifold groupGd of the knot is a group generated by
the arc letters with the following relations. For each arc x of the diagram d, introduce
a relation x2 = 1. At every crossing x � y � z, introduce a defining relation xy = yz
(or, equivalently, yx = zy, or yxy = z, or yzy = x). Let A denote the generating set
of Gd (i.e. the set of labels of the arcs of d), and consider the natural homomorphism
from the free semigroup A+ onto Gd. It is easy to see that, for each element g of Gd,
either only words of an odd length are mapped to g or only words of an even length are
mapped to g under the homomorphism. Accordingly, let us say that g is an element of
odd (even) length in the former (latter) case. A subgroup of Gd consisting of the set
of all elements of even length is called the fundamental group of the 2-fold branched
cyclic cover space of a knot [12, 16]; we shorten this name to the two-fold group of a
knot, and denote the group by G2d.

1.5 Knot semigroups, keis and two-fold groups

Note that for every group G, one can define a kei K (G) whose elements are the
elements of G, and in which the operation is g � h = hg−1h. Such a kei is also
referred to as a core quandle of G in [1].

For a finite sequence of group elements g1, g2, g3, g4, . . . , define the alternating
product of this sequence as the product g1 ·g−1

2 ·g3 ·g−1
4 · . . . . Note that for every group

G, one can define a semigroup S(G) whose elements are words over the alphabet G,
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and in which two words u, v are equal if and only if u and v have both the same length
and the same alternating product in G.

For many types of knot diagrams, including those studied in [13], there is a simple
connection between knot semigroups, keis and two-fold groups, as follows. Consider
a knot diagram d whose two-fold group is G2d and whose π -orbifold group is Gd. In
many examples, it turns out that the kei Kd is isomorphic to K (G2d), and the knot
semigroup Sd is isomorphic to S(Gd).

However, there is no reasonwhy it should be so for all knot diagrams; one can expect
that at some point, knot semigroups, keis and two-fold groups will diverge. The aim
of research reported in this note is to make progress towards finding counterexamples
in which the simple correspondence described above does not hold anymore.

2 What conjectures we had

In [10] automated reasoning was applied to search for non-trivial cancellative factor
semigroups of minimal sizes for knot semigroups of all knots up to 9 crossings.1 Out
of 84 standards knots diagrams with no more than 9 crossings, in 55 cases cancellative
factor semigroups of a minimal size were found, in 9 cases cancellative factor semi-
groups were found which are not necessarily minimal, and in 20 cases the search took
a long time and was abandoned, and no cancellative factor semigroups were found.
After comparing the sizes of the found cancellative factor semigroups with the min-
imal sizes of factor keis, found in our earlier work [5], we formulated the following
conjecture.

Conjecture 2 [10] Consider a knot diagram d. Suppose the kei of Kd has a factor kei
of size k. Then semigroup Sd has a cancellative factor semigroup of size 2k.

Since we concentrate on minimal sizes of factors, the conjecture above can be
usefully amended in the following two ways, both consistent with data from our
experiments from [5, 10].

Conjecture 3 Consider a knot diagram d. Suppose Kd has finite factor keis, and Sd
has finite cancellative factor semigroups. Let k and s be minimal sizes of a non-trivial
factor kei of Kd and a non-trivial factor semigroup of Sd, respectively. Then s = 2k

Conjecture 4 Consider a knot diagram d. Let k be the minimal size of a non-trivial
factor kei of Kd. Then there exists a non-trivial cancellative factor semigroup of Sd
of size 2k.

Note that we do not know whether the kei Kd of every non-trivial knot diagram d
has a finite non-trivial factor kei, and we do not know whether the semigroup Sd of
every non-trivial knot diagram d has a finite non-trivial cancellative factor semigroup;
hence, themore carefulwording inConjecture 3.As to our computational experiments,

1 We were looking for cancellative finite factor semigroups and not arbitrary finite factor semigroups
because the latter task is not interesting. Indeed, one can prove that for every finite n, every knot semigroup
has a (non-cancellative) factor semigroup of size exactly n.
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922 925 930 936 944 945

Fig. 1 Knot diagrams with nine crossings which are counterexamples to double size conjecture(s)

we still do not know whether the kei of the knot 1083 has finite factors [5], and only in
this paper for the first time we find a finite cancellative factor semigroup of the knot
semigroup of the knot 922 [10].

3 Main results

The main result of this paper is that we refute all versions of the “double size” con-
jecture (Conjectures 2, 3, 4) by finding a suitable counterexample. Indeed, we find six
knot diagrams with 9 crossings each, all having minimal factor keis of size 15, but
having no cancellative factor semigroups of size 30. All these cases were left open in
[10].

Namely, consider knot diagrams known as 922, 925, 930, 936, 944,945 and shown in
Fig. 1. The minimal non-trivial factor keis of keis of all these knots have size 15 [5].
However, we prove that their semigroups do not have cancellative factor semigroups
of size 30.

If these six knot diagrams do not have cancellative factor semigroups of size 30,
one can ask about the sizes of finite cancellative factor semigroups that they do have.
For each of these diagrams 922, 925, 930, 936, 944, 945 we prove that their π -orbifold
groups have factor groups of size 60; we also prove that this is the minimal size of
finite non-trivial factor groups ofπ -orbifold groups of 922, 925, 930, 936, whileminimal
sizes for 944, 945 are 34 and 46, respectively.

Since for any knot diagram d every finite factor group of Gd is a cancellative factor
semigroup of Sd, we conclude that for each of the diagrams 922, 925, 930, 935, 944,
945 their semigroups have cancellative factor semigroups of size 60. Furthermore, the
semigroups of the diagrams 944, 945 have cencellative factor semigroups of sizes 34
and 46, respectively.

Wedonot knowwhether the corresponding sizes 60, 34, 46of the cancellative factor
semigroups are minimal for the inidcated knots diagrams, but we can conjecture that
they are, as we state below.

Conjecture 5 The cancellative factor semigroups of semigroups of knots 922, 925, 930,
936 have all minimal size 60, and of knots 944, 945 have minimal sizes 34 and 46,
respectively. More generally, one can conjecture that for any knot diagram d the
minimal factor semigroups of Sd are exactly the minimal factor groups of Gd.

It is known that every finite cancellative semigroup is a group. Therefore, all finite
cancellative factor semigroups of knot semigroups are groups. One can argue that
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perhaps there is a finite group which is a cancellative factor group of a knot semigroup
of a knot diagram d which is smaller than every factor group of the π -orbifold group
of d. This is why, one can argue, experiments with cancellative factor semigroups still
make sense, in addition to experiments with factor groups. Having said this, in these
experiments we have never encountered a finite group which is a cancellative factor
group of a knot semigroup of a knot diagram d which has a smaller size than the
smallest factor group of the π -orbifold group of d, hence, the following conjecture
can be stated (and if the following conjecture is true that the previous Conjecture 5 is
also true).

Conjecture 6 If a finite group is a cancellative factor group of a knot semigroup of a
knot diagram d then there is a factor group of the π -orbifold group of d of the same
or smaller size.

We describe how we obtained these results in the next section.

4 Automated reasoning and experimental results

Automated finite model building [3] is the area of automated reasoning concerning
with developing efficient algorithms for solving the following task. Given a set of
first-order sentences � build a finite model for � if it exists.

We use automated model finding to search for finite factor structures (cancellative
semigroups, groups and keis), because these factors are, obviously, finitemodels for the
corresponding first-order theories. To be more specific, let 〈A | R〉 be a presentation
of a semigroup S with a finite set of generators A and a finite set of relations R.
Then finite cancellative factor semigroups of S are precisely the finite models of a
theory consisting of R and (x ∗ y) ∗ z = x ∗ (y ∗ z), (x ∗ y = x ∗ z) → y = z,
(y ∗ x = z ∗ x) → y = z}. A similar statement can be formulated for π -orbifold
groups, too.

In our experiments we used Mace4 finite model finder [11] implementing complete
search algorithm. If there is a finite model of a specified finite size, then such a model
will be found, is there no such model, this fact will be reported.

For each of the knots 922, 925, 930, 936, 944, 945 we built presentations for groups
and semigroups according to definitions presented in Sect. 1, based on knot diagams
shown in Fig. 1.

To be specific, the presentations of π -orbifold groups are as shown below, and the
presentations of knot semigroups also contain inverted equalities yx = wz for each
equality xy = zw.

922: a1a9 = a9a2, a2a7 = a7a3, a3a1 = a1a4, a4a2 = a2a5, a5a8 = a8a6, a6a3 =
a3a7, a7a5 = a5a8, a8a6 = a6a9, a9a4 = a4a1.

925: a1a4 = a4a2, a2a6 = a6a3, a3a1 = a1a4, a4a8 = a8a5, a5a3 = a3a6, a6a9 =
a9a7, a7a5 = a5a8, a8a7 = a7a9, a9a2=a2a1.

930: a1a9 = a9a2, a2a6 = a6a3, a3a1 = a1a4, a4a2 = a2a5, a5a8 = a8∗6, a6a3 =
a3a7, a7a5 = a5a8, a8a7 = a7a9, a9a4 = a4a1.

936: a1a4 = a4a2, a2a7 = a7a3, a3a5 = a5a4, a4a1 = a1a5, a5a8 = a8a6, a6a9 =
a9a7, a7a3 = a3a8, a8a6 = a6a9, a9a2 = a2a1.
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944: a1a4 = a4a2, a2a5 = a5a3, a3a6 = a6a4, a4a1 = a1a5, a5a8 = a8a6, a6a4 =
a4a7, a7a5 = a5a8, a8a7 = a7a9, a9a2 = a2a1.

945: a1a9 = a9a2, a2a7 = a7a3, a3a1 = a1a4, a4a2 = a2a5, a5a8 = a8a6, a6a2 =
a2a7, a7a5 = a5a8, a8a7 = a7a9, a9a4 = a4a1.

In the first series of experiments for each knot diagram 922, 925, 930, 935, 944, 945, we
used Mace4 to search for finite cancellative factor semigroups of size 30, as predicted
by double size conjectures. In each case Mace4 has completed exhaustive search and
returned result “no models exist”.

In the second series of experiments for each knot diagram 922, 925, 930, 935, 944, 945,
we used Mace4 to search for finite factor groups of π -orbifold groups using default
iterative search strategy of Mace4; that is, starting from size 2, it completes exhaustive
search of models for a current size, and if a model is not found, the size increases by 1
and search continues. For each of the 922, 925, 930, 935 knots, the search is completed
by finding the models of minimal size 60, while for 944, 945 the search yielded the
models of minimal sizes 34 and 46, respectively.

We have placed experimental data including inputs and outputs of all reported
experiments with Mace4 online; see https://zenodo.org/records/10003636.
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