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Abstract

Causal analysis is fundamental to science and decision-making. It unravels the
structure of the process underlying the data and estimates the effectiveness of inter-
ventions. Deriving causal notions from randomised experiments is well understood
and relatively simple analytically. However, there is also considerable interest in the
analysis of far more widely available non-experimental observational data, which
is substantially more challenging. There has been considerable research on causal
analysis in the statistics literature, but more recently also from computer scientists
since the robustness and performance of existing statistical approaches to causal
estimation can be improved by machine learning (ML). However, despite growing
evidence that hyperparameters of ML methods are critical for strong predictive
performance, this aspect is neglected in causality. To make matters worse, the use of
observational data, while convenient due to their availability, creates serious obstacles
for model evaluation and tuning. The relationship between hyperparameters and
model performance is understudied in ML, let alone in significantly more challenging
causal settings. This work fills this gap by investigating the intricate interplay
of challenges posed by causal settings, ML methods, hyperparameter selection,
and estimation performance, all within the context of two causal estimation tasks:
treatment effect estimation and causal structure learning. This unique direction
has led this study to several original contributions, such as a novel estimation
method, or the first of their kind extensive performance evaluation analyses from
the perspective of hyperparameters. The results form the ultimate claim of this
thesis, which is that hyperparameters play a pivotal role in causal estimation
performance, but crucially, their optimisation is significantly limited by incomplete
observations within observational causal data. Consequently, this work calls for
more careful treatment of hyperparameters in practice and more fundamental
research into causal hyperparameter optimisation to harness the full potential of
ML in causal estimation.
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1
Introduction

This chapter introduces the thesis in a bottom-up manner. It first briefly presents
its components independently, such as causality and machine learning, which
after connecting all together form a unique perspective that unravels novel
questions and ultimately motivates this work. A summary of contributions and
contents ahead concludes the chapter.
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1.1 Causality

Gaining causal knowledge from data is fundamental to science. It allows going

beyond ambiguous associations and instead answers questions that are causal in

nature, such as “Does smoking cause cancer?”, as opposed to a limited perspective

1
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of “Is smoking associated with cancer?”. However, many statisticians would argue

that it is not important if smoking (S) causes cancer (C) or whether people with

cancer just happen to smoke as long as the joint distribution P (S,C)1 can be

modelled accurately. The situation changes when we consider patient data from

different hospitals, resulting in different marginals P (S). The model that follows

the causal factorisation2 P (C|S)P (S) (Figure 1.1 left) and which contains the

causal component (causal mechanism [1]) P (C|S) will generalise across hospitals,

but the anti-causal model3 that subsumes factorisation P (S|C)P (C) (Figure 1.1

right) will not show such robustness. The fact that the causal factorisation is

faithful to the true data generating process (DGP), where smoking causes cancer,

makes it invariant to domain changes. And although these data shifts violate

the usual assumption of independent and identically distributed (IID) data, they

are prevalent in real-world applications4.

causal anti-causal

Figure 1.1: Causal graphs depicting the problem with Smoking (S) and Cancer (C)
variables.

Indeed, it is causal questions and functions that are usually of interest and which

require addressing to make meaningful progress. However, statistics have forbidden

researchers to think in causal terms for decades by saying that “correlation is

not causation”, or at best by trivialising causality as merely a special case of

1P denotes probability.
2Factorisation of the joint distribution into its constituent conditional and marginal distributions

that respects the topology of the assumed causal graph is called a causal factorisation.
3Anti-causal model involves assuming variable relationships that have the opposite direction to

causal ones, hence ‘anti-’.
4IID assumes the same distributions in training and production, but different hospitals

encountered in production may involve distributions different from those seen in training.
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correlation (Pearson correlation coefficient of ±1). This unnatural constraint, in

turn, gave rise to obscure situations like spurious correlations5 and many other

well-known paradoxes (e.g. Simpson’s paradox [2]6) that could not be explained

by standard statistical tools.

First attempts to unlock causal language in science date back to 1920 when Wright

introduced his path analysis in a guinea pig study [3], further generalised to a

discussion on correlation and causation [4]. Such controversial at the time thoughts

met strong opposition from statistics and hence did not lead to this approach

being more commonly incorporated, despite fair recognition from other fields [5–7]

and Wright’s defence 60 years later [8].

It was only in the early 2000s when causality was finally “mathematised”7 by Pearl’s

do-calculus [10]. Crucially, this formal mathematical framework allows distinguishing

between probabilities that are affected by observing X, as in P (Y |X), and those

where X is intervened on, expressed as P (Y |do(X)). In this context, by intervention,

we mean performing an action, such as applying a medical treatment, which in

practical terms translates to setting X to a desired value that represents the action

(e.g. P (Y |do(X = 1)); see Figure 1.2). Furthermore, such notation can be used to

express causal relationships by saying that “X causes Y ” if P (Y |do(X)) > P (Y ), as

opposed to P (Y |X) > P (Y ) that only implies observing X. With this approach, it

is possible to build complex graphs that capture all assumed causal relationships in

the underlying DGP. These graphical models represent a causal model and provide

a way of explicitly expressing data assumptions made by the analyst.

Equipped with this framework, it is possible to solve problems beyond the reach of

standard statistics. As depicted by Pearl in his ladder of causation [9], standard

tools are limited to associations and involve questions like “How would Y change if

5Coincidental correlation of otherwise unrelated events.
6For example, we may observe a positive trend across the entire population, but negative

per-group trends upon creating groups with a new input variable.
7Credit to Pearl [9].
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Figure 1.2: Example causal graph with two variables X and Y . The do-notation
represents intervention, in this case setting X to 1.

I observe X?”. It is only with causal tools that questions involving interventions or

retrospective thinking (counterfactuals) can be answered, such as “Will Y change

if I do X?” or “What would Y be if I had acted differently?” respectively. In

real-world situations, many sought-after questions are in fact causal. As opposed

to asking “What should be the price of a given house based on its properties?”,

what is often of real interest is “How the price of this house will change if we

modify X?”, or even better “What would be the cheapest investment in the house

that would increase its value the most?”.

While the above framework enables the expression of causal questions mathemat-

ically, serious obstacles to computing the answers through data still exist. To

demonstrate one of the main problems clearly, let us use Rubin’s potential outcomes

framework [11]. The outcomes of units (e.g. health index) that received treatment

(T = 1; e.g. experimental drug) are denoted with Y1, and those in the control group

(T = 0; placebo) have outcomes Y0. Now, in order to determine if the intervention

achieves desirable effects, one must answer the question “Does T improve Y?”,

which requires computing Y1 − Y0 for each individual in the study. However, it is

possible to observe only one outcome for each individual. We do not know what

would have happened to patients that received the treatment, had they not received

it in the first place (we observe Y1 but not Y0), and vice versa. The outcomes that

correspond to the alternative reality that did not happen are called counterfactuals.

The fact that they are missing, but are needed to compute causal effects entails the

fundamental problem of causal inference, demonstrated also in Table 1.1.
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ID X1 X2 X3 T Y0 Y1

1 1.397 0.996 0 1 ? 4.771
2 0.269 0.196 1 0 2.956 ?
3 1.051 1.795 1 1 ? 4.164
4 0.662 0.196 0 1 ? 6.172
5 0.856 1.795 1 0 7.834 ?

Table 1.1: Demonstration of the fundamental problem of causal inference. X1 −X3 are
background features, T intervention/treatment status, and YT correspond to observed
outcomes. Question marks denote unobserved (missing) counterfactuals (Y1−T ). The
problem stems from the fact that we always observe only one outcome per data unit
that corresponds to the assigned treatment status. The outcome for the same unit but a
different treatment status is always unknown. Thus, the effect of the form Y1 − Y0 cannot
be directly computed.

Although causal effects cannot be directly computed, they can be approximated

through the appropriate use of statistical methods. This gave rise to many causal

estimation methods, which in general can be grouped into two categories based on

the type of questions they attempt to answer. Questions of type “How X causes Y?”

involve the approximation of the function between the two variables and ultimately

the quantification of the causal effect. This is mostly known as causal inference

or treatment effect estimation [10]. The other type of question aims to determine

whether two (or more) variables are causally connected at all, and if so, whether X

causes Y or the other way around. With multiple variables involved, the product is

a structure of interconnected causal variables – causal graphs. The task of inferring

such models is often referred to as causal discovery or causal structure learning

(CSL) [12]. Both types of causal tasks are further discussed in Chapter 2.

1.1.1 Observational Data
Data derived from Randomised Controlled Trials (RCTs) are the gold standard in

science when it comes to causal analysis. Owing to their randomisation, the

treatment assignment does not depend on the data unit itself, whereas their

controlled nature reduces discrepancies between the treated and control groups.

Both characteristics are paramount to causal inference as they ensure unbiased

estimates (Section 2.4.1), but conducting such experiments is often expensive or
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even infeasible due to ethical reasons (e.g. drinking alcohol or smoking). Utilising

much more accessible observational data collected passively without any controlled

protocol overcomes these issues. For example, even though it is impossible to

prescribe smoking as part of an experiment, information about existing smokers

and non-smokers can be collected through surveys. However, because people

decide on their own whether to smoke or not, the treatment assignment is no

longer random, and it depends on the unit’s background features P (T |X). Note,

while not considered in this work, T may depend on omitted variables that are

not conditionally independent of Y |X. This non-random assignment in practice

leads to data biases (see Section 2.4.1) where certain data subpopulations are

either underrepresented or missing (e.g. no/very few young smokers). As a result,

distributions of treated and control units differ in the input space to the extent

that it makes accurate causal effect estimation very challenging. This problem is

more generally known in the literature as covariate shift, where there is variation

in the response pattern across response surfaces.

Another potential problem arises due to possible confounding of the causal effect,

wherein both treatment T and outcome Y depend on the same background features

X. This considerably complicates identification and modelling as all the input

features need to be carefully handled to de-confound the effect of interest, which

notably may increase the complexity of the target function. Another common

take on this problem is to simply assume no confounding as part of the set of

assumptions made a priori.

There is also a parallel to be drawn with domain adaptation, wherein generalising

to a distribution different from that seen in training is the core problem. The

major difference between the areas is that in domain adaptation the distributional

discrepancies occur between the training and test sets, whereas in causal inference

they usually take place between treated and control units. Both challenges essentially

entail performing well on previously unseen (parts of) distributions that can arise

due to covariate shift, known as out-of-distribution (OOD) generalisation problem.
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In terms of observational data, there are two major types important to distinguish

between. The distinction is based on the number of times each unit is observed

over time. Longitudinal (or panel) data involve multiple observations per data

unit across a longer period of time. The readings are usually taken at regular

time intervals (e.g. every month or year) at which point information about all

units is collected. This time-series data structure shares similarities with standard

forecasting problems, with the crucial difference being that in panel data we deal

with multiple entities observed over time as opposed to just one in classic forecasting

(e.g. a single stock price). Though multi-channel time-series is quite common in,

for example, biomedical engineering. Perhaps a closer resemblance to the DGP

behind panel data is Reinforcement Learning (RL), wherein an agent interacts with

the environment across multiple actions (creates observations over time) repeated

over separate game episodes (creates distinct units). A noteworthy difference in

this case, however, is that RL agents are often allowed to perform one of multiple

possible actions, whereas in causal inference it is customary to consider only two

actions (treated or untreated status). In addition, the number of actions performed

by the agent can vary among game episodes, whereas in panel data each unit is

expected to be observed an equal amount of times.

The second type of observational data involves only a single observation per data

unit; there are no repeated measurements over time. This variant is often referred to

as cross-sectional data and is notably much more common than longitudinal/panel

data. It closely resembles classic tabular data structures known in machine learning

(ML) with the only exception of the treatment status variable T which is considered

a special input feature on top of the usual background covariates X.

In this work, we focus specifically on cross-sectional observational data and consider

all aforementioned challenges. A more detailed discussion about causal data is

further continued in Chapter 2.
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1.2 Machine Learning

Finding patterns in data has always been strongly rooted in statistics [13], but

perhaps what sets ML apart is its focus on the extraction of algorithms from

data for machine intelligence [14] that can be used to predict future outcomes (i.e.

extrapolation) as opposed to merely explaining existing data (i.e. interpolation)

that is often the case with classic statistics.

Today’s ML is commonly divided into supervised and unsupervised learning tasks

where the data in the former include expected answers (or labels) that can be

utilised to identify an approximating function that fits given data well enough. The

approximators are further grouped into regressors and classifiers depending on the

type of the target variable (continuous or discrete respectively). With the lack of

labels, unsupervised learning is mostly concerned with finding meaningful structures

within the data. RL is a third ML category that involves agents interacting

with an environment and which often receive a form of a reward (or penalty)

to incentivise desired behaviour.

Regardless of the three categories mentioned above, the (artificial) Neural Network

(NN) architecture has always been an important part of ML. Despite its early

Perceptron form [15] encountered some setbacks [16] (e.g. inability to solve the

XOR problem), it was eventually proved to have universal approximation properties

[17] that laid the foundations for deep learning [18] and its subsequent successes

over the last three decades. Some notable NN-based deep learning breakthroughs

occurred in the areas of computer vision [19–21], text translation [22], RL in games

[23] and recently in chatbots [24].

The ML successes showed that it is possible to find accurate approximations in

highly complex nonlinear settings, even with very little to no data preprocessing,

also known as end-to-end learning. This sparked a lot of interest in using ML

methods in other application areas, including causal analysis.
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1.2.1 Hyperparameters
The parameters of a model define a space and form of possible solutions, with

different forms often referred to as model or hypothesis classes H. Through

optimisation, an exact solution (h ∈ H) in the form of specific parameter values can

be identified. For example, a regression line of the form H1: y = mx+ b consists

of two such parameters, where m is the slope and b is the intercept. Through

optimisation (e.g. minimisation of the least squares loss), one possible solution

could be h1: y = x + 2 (m = 1, b = 2). Further, by adding more polynomial

terms we can expand the space of solutions to more complex models, such as H2:

y = θ2x
2 + θ1x+ θ0, with θ ∈ {θ0, θ1, θ2} being the parameters. Or more generally:

H(n): y = θnx
n + θn−1x

n−1 + · · · + θ1x + θ0.

The difference between any two hypothesis classes in this case can be captured by the

variable n that controls the number of parameters and associated polynomial terms.

That is, by changing n it is possible to move from one solution space to another. To

differentiate between model parameters θ and special variables like n that change the

hypothesis class H, the latter can be named hyperparameters (HPs). Many ML

methods incorporate them in one way or another, regardless of their parametric or

non-parametric nature. They can be also thought of as parameters of the algorithm

that do not necessarily correspond to the parameters of the underlying model that

generated the data. Some examples of HPs include L1 (sparsity) and L2 (model

complexity) regularisation terms in linear regression, maximum depth in Decision

Trees, or the number of hidden layers and neurons in NNs.

Hyperparameters can often control how general a hypothesis is, as is the case with n

above, where higher n values create more specific (or complex) hypotheses that can

fit given data more closely but can also result in overfitting. Thus, hyperparameters

clearly play a vital role in the bias-variance trade-off and their optimisation, or

tuning, can reduce prediction error if done correctly [25].
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In the context of this thesis, we are particularly interested in the types of HPs that

control model complexity as well as those that specify and control optimisation

algorithms. When it comes to selecting between different model classes, this task

falls under the name of model selection. Furthermore, we define HP selection as

a sub-task of model selection. That is, in this work, model selection entails selecting

HP values and selecting model classes. In other words, we treat all modelling and

learning choices that are confined within a single model class as hyperparameter

selection, whereas the task of model selection involves selecting between model

classes and HP values.

On a high level, tuning can be broken down into three major sub-problems:

exploration of hyperparameter values, performance evaluation of candidate values,

and selecting the winning combination. While the principles are straightforward,

each sub-problem involves non-trivial challenges. In exploration, larger search

spaces increase the probability of finding the right hypothesis class for given data

but also raise computational demands. This puts exhaustive grid searches at a

specific disadvantage, creating the need for alternative exploration approaches, such

as greedy or evolutionary algorithms. Model evaluation requires a metric that

will be used to score candidate values, but different metrics may favour certain

types of predictors [26]. The decision about whether to evaluate candidates on a

single validation set or through Cross-Validation (CV) may also affect the final

solution, not to mention further details on data splits such as split percentages

or the number of folds in CV. Model assessment in ML also entails an important

assumption that training and test sets come from the same distribution, which

might be invalidated under covariate shifts, resulting in incorrectly selected H.

Picking the right combination may also be more complex as sometimes it might

be more desirable to pick not one but multiple top candidates concerning the

metric to increase robustness.

With all types of choices above, hyperparameter tuning becomes a challenge that

makes it prone to mistakes. At the same time, tuning also grows in importance
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together with increased interest in NNs due to their extreme modelling flexibility and

sensitivity to HPs. Despite this, HPs are often neglected. Partly due to convenient

implementations nowadays, practitioners tend to underappreciate the critical influ-

ence HPs have on the methods they use, often deferring to default hyperparameter

values suggested by package providers as a consequence, unknowingly ending up

with subpar modelling outcomes. Surprisingly, ML researchers also have their fair

share of bad practices in this area, with the prime example being the case when the

newly introduced method was thoroughly tuned but the baselines that are compared

to received little to no attention when it comes to their HPs. Such practice certainly

questions the efficacy of new developments and hinders future research.

The widespread use of ML methods on non-standard datasets that pose new

challenges (e.g. covariate shift) combined with hyperparameter tuning ignorance

certainly calls for more attention, making the investigation of this problem one

of the pillars of this work.

We continue our discussion around hyperparameters in Chapter 2.

1.3 Machine Learning for Causal Estimation

The relationship between machine learning and causality is mutually beneficial; one

helps address the shortcomings of the other. Some issues within ML are model

interpretability and OOD generalisation, just to name a few. The efforts under

the flag of causality for machine learning, also termed causal machine learning

or causal representation learning and inspired by the formalisation of the causal

framework [10], aim at bringing the ideas from causality to solve some pressing

issues in ML. That is, make models more transparent by forging intuitive causal

notions into them, or incorporate model design insights from causal estimators that

are meant to generalise in more challenging data conditions [1, 27].
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Causality has made great strides in the past few decades, but its estimation

techniques were mostly centred around population-level predictions with strongly

linear assumptions. Since an increasing interest in personalised estimates in recent

years, this has become a serious limitation. Encouraged by the successes of modern

ML methods capable of high prediction accuracy even in nonlinear settings, the

efforts of using ML in causal problems have begun, encompassed under the name

of machine learning for causality [28, 29], or here as machine learning for causal

estimation to make our interest in estimation tasks explicit.

Causal estimation problems are commonly divided into causal inference and causal

discovery. The former is about inferring causal parameters, such as causal (or

treatment) effects from observed data, in which ML methods have already made

promising advancements via neural networks [30], decision trees [31], or more

general meta-learners [32, 33]. A noteworthy part of causal inference is also

the problem of recommending the best intervention among the set of possible

ones, more commonly known in ML as policy optimisation, which differs from

treatment effect estimation significantly enough [34]8 to have its own family of

estimators [35] (i.e. policy learners).

In causal discovery, the goal is to estimate (or recover) causal graphs that explain

causal relationships among input features. This task differs significantly from

causal inference as it is unsupervised in nature due to the graph structures being

always unknown a priori. Despite the immense challenges of CSL, ML methods

have already proved their usefulness via standard NNs [36], adversarial approaches

[37] and variational auto-encoders [38].

In this work, our focus is specifically on machine learning for causality, with

treatment effect estimation and CSL being the main estimation tasks of interest.

However, we intend to go beyond the aspect of simply using ML methods and

8Policy learning focuses more on the sign of the causal effect (positive/negative) rather than
the exact quantification of the causal effect itself.
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rather investigate the challenges that arise from the use of ML in causal settings

that naturally differ from standard ML problems.

1.4 Motivation

This thesis brings together previously discussed topics into a unique perspective

that unveils knowledge gaps and new challenges to be considered. As previously

pointed out, there is considerable interest in using ML methods in causal settings

due to their past advancements in ML as well as already successful applications in

causal inference and CSL. However, even though ML procedures received widespread

attention mostly because of their high performances, a critical ingredient that drives

those achievements has been severely overlooked – hyperparameters. To make

matters worse, causal data are often more challenging than classic ML problems

due to almost universal covariate shifts but also because the ground truth is either

partly (counterfactuals) or completely (graphs) hidden. As a result, many standard

ML procedures, such as hyperparameter tuning and model evaluation, are not

readily available for causal applications out of the box.

While there has been some work on bringing ML methods into causal problems

(see Section 1.3), hyperparameters have been heavily neglected by both researchers

and practitioners. Given the acknowledged importance of HPs in ML, we deem

investigating their role in causality crucial for meaningful future progress in causal

estimation. Thus, the main goal of this thesis is to investigate the influence

of HPs in ML methods used for treatment effect estimation and CSL for the

analysis of cross-sectional observational data. This brings us to the core questions

and contributions of this work.
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1.5 Research Questions

The identified literature gaps gave rise to the following questions:

Q1. What are the challenges of causal estimation from observational data?

Q2. How do identified challenges affect performance evaluation and hyperparameter

tuning?

Q3. How does hyperparameter selection affect the performance of causal estimation

methods?

Q4. How does the choice of hyperparameter values influence the selection of causal

estimation methods in ensemble settings?

1.6 Main Findings

Based on conducted studies, this work claims the following findings:

F1. Incomplete observations in the form of missing counterfactuals are the root

cause of challenges in all causal estimation tasks that use observational data.

F2. In causal inference, F1 leads to data biases and covariate shifts that severely

impact the estimation of individualised causal effects and hyperparameter

tuning.

F3. In causal discovery, F1 emerges as unobserved interventions that limit causal

graph identification, but it is the lack of ground truth and subsequent limited

performance evaluation that makes the selection of hyperparameters and

algorithms almost impossible outside simulations.

F4. Hyperparameter tuning is critical for reliable causal effect estimation and is

more important than model class selection, but its reliability depends on used

evaluation metrics.
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F5. The choice of a method is still important in causal discovery, but the choice

of hyperparameter values does impact the final performance when selecting

among multiple approaches.

1.7 Contributions

This work offers the following contributions:

C1. A novel data augmentation method that improves the estimation of individu-

alised effects through reduced bias.

C2. Identification of the major challenges in causal estimation from observational

data and their impact on hyperparameter tuning and performance evaluation.

C3. Empirical evaluation and comparison of causal estimation methods across a

variety of metrics and datasets.

C4. Empirical analysis of the impact of hyperparameter selection on the perfor-

mance of individual causal estimators.

C5. Empirical analysis and comparison of the influence of choosing different

hyperparameter values on the estimation performance in ensemble settings.

1.8 Publications

This thesis includes the following three papers.

• Undersmoothing Causal Estimators With Generative Trees. Available on arXiv

and GitHub. Published in IEEE Access. Part of Chapter 3.

https://arxiv.org/abs/2203.08570
https://github.com/misoc-mml/undersmoothing-data-augmentation
https://doi.org/10.1109/ACCESS.2024.3376423
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• Hyperparameter Tuning and Model Evaluation in Causal Effect Estimation.

Available on arXiv and GitHub. Submitted to Machine Learning. Decision:

revise and resubmit. Part of Chapter 4.

• Robustness of Algorithms for Causal Structure Learning to Hyperparameter

Choice. Available on arXiv and GitHub. Presented at the 3rd Conference on

Causal Learning and Reasoning. Published in the Proceedings of Machine

Learning Research. Part of Chapter 5.

1.9 Overview of Chapters

This project evolved over time as new knowledge and evidence were gathered.

While some of the main chapters (3-5) may seem disconnected, they reflect the

journey behind the project which upon some additional explanation should come

together as a meaningful whole.

The initial research idea was to combine both causal inference and discovery into a

singular framework for complete causal analysis capable of recovering and processing

causal graphs for superior estimation of personalised causal effects of any desired

interventions. This approach was mainly motivated by recent breakthroughs in

CSL algorithms that seemed to be ready for real applications, or so the published

research claimed. Upon further investigation, this endeavour failed as we found the

algorithms extremely volatile and ineffective in environments outside of simulations.

Thus, a practical decision was made to abandon the development of the CSL module

in the envisioned framework and focus solely on effect estimation methodology in

individualised settings where a fixed causal graph is usually assumed. This is how

we arrived at our new method presented in Chapter 3.

Although we developed the new method successfully, we struggled with showcasing

the method’s full performance capabilities due to newly discovered difficulties

with hyperparameter tuning. It was at this moment that we realised that model

https://arxiv.org/abs/2303.01412
https://github.com/misoc-mml/hyperparam-sensitivity
https://www.springer.com/journal/10994
https://arxiv.org/abs/2310.18212
https://github.com/misoc-mml/hyperparams-causal-discovery
https://www.cclear.cc/2024
https://www.cclear.cc/2024
https://proceedings.mlr.press/v236/machlanski24a.html
https://proceedings.mlr.press/v236/machlanski24a.html
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evaluation and tuning are substantially more challenging in causal inference than

in standard ML, but we were not aware yet of the consequences. Surprisingly, our

experiences were barely (if at all) mentioned in the literature, let alone thoroughly

studied. Thus, we investigated the issue of model selection and tuning systematically

and arrived at astonishingly counterintuitive conclusions, presented in Chapter 4.

Equipped with the new knowledge of the importance of hyperparameters in effect

estimation and still remembering the difficulties of using causal discovery methods

due to their instabilities, we started wondering about the role of hyperparameters

in CSL. The motivation to study the issue more closely grew even stronger upon

realising that HPs are heavily neglected, almost completely ignored, in the causal

discovery literature; a state of things much worse compared to already quite

neglected treatment effect estimation methodology. As a consequence, the entire

project circled back to the previously abandoned topic of CSL but now within a

fresh context of HPs and robustness, included in Chapter 5.

While this work covers multiple areas, the (unspoken) importance of the findings

related to hyperparameters (Chapter 4 and 5) made this aspect the core topic of

this thesis. Even though the work in Chapter 3 does not explicitly talk about

hyperparameter-related problems, the issues discovered there through practice

were the catalyst for further research into hyperparameters that ultimately set

the tone for this thesis.

The content of this thesis is organised in the following manner:

Chapter 2 introduces the reader to the background knowledge necessary to

appreciate more technical chapters of this work. It gives a summary of the two

major application areas this work is concerned about: causal inference and

causal discovery. The discussion is further supplemented by a more detailed

presentation of types of causal data and associated with them challenges. The

topic of hyperparameters, and their methods of search and evaluation, are

also included.
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Chapter 3 presents our novel idea for improved treatment effect estimation in

individualised settings under covariate shifts. It proposes a new data aug-

mentation method based on recently developed generative trees. Based on

collected evidence, we show that it increases data complexity and subsequently

improves the accuracy of estimated heterogeneous treatment effects of causal

estimators trained on the data augmented by our method, as compared to

standard causal estimators trained on original data.

Chapter 4 investigates hyperparameters in the causal effect estimation setting

motivated by tuning difficulties discovered in the previous chapter. This work

performs an extensive set of experiments across multiple datasets, evaluation

metrics, causal estimators and their hyperparameters. One of the most

surprising outcomes is that many commonly used estimators are able to reach

or beat State-of-the-Art (SotA) performance levels if their hyperparameters

are well specified.

Chapter 5 builds upon findings on hyperparameters in the previous chapter but

here applies learnt lessons into the causal discovery area that was initially

explored at the start of the project. The experimental setup consists of

many data scenarios, learning algorithms and hyperparameter values, but

having in mind previously discovered issues with algorithms’ instabilities, this

work focuses strongly on robustness and performances under misspecified

hyperparameters. The main outcome of this chapter is that algorithms

respond differently to incorrectly specified hyperparameters in terms of

prediction performance, which is arguably an important property in CSL

where evaluation, and hence tuning, is borderline impossible due to missing

ground truth.

Chapter 6 consolidates the previous three chapters by revisiting the main discus-

sion points that appeared throughout. The core questions and findings, as

well as the original contributions this work offers, are also discussed in more
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detail. The overall goal of this chapter is to help readers appreciate each

chapter’s contributions and how they collectively form this thesis.

Chapter 7 concludes the thesis by summarising the core findings and contributions.

A look-ahead into possible future research, divided into opportunities either

directly raised by this work or identified in the literature, finalise this report.
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2
Background

This chapter covers knowledge foundations that should aid appreciation of
technical aspects of this thesis. It spans the main causal estimation tasks of
interest, such as causal discovery and inference, but also describes the types of
causal data used in forthcoming chapters. The topic of hyperparameters is also
discussed due to its central role throughout the totality of this work.
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2.1 Causal Discovery

The gold standard of causal analysis is still considered to be RCTs. However, they

are not always feasible due to ethical or financial reasons. Given the vast amounts

of data being collected nowadays, there is a lot of effort in the field to make use of

such non-experimental data to get useful causal insights. Apart from the inference

part, it is often of great interest to automatically extract, or discover, the true

underlying causal graph from given data. The reasons could be to simply better

understand the data at hand, or to incorporate the discovered causal structure

in further inference tasks. Causal discovery is a relatively young research area,

though highly vibrant in recent years. For a gentle introduction and recent review

of the area, the reader is referred to [39] and [40]. More complete approaches to

the topic can be found in [41] and [42].

2.1.1 Graphs, Models and Definitions
We start with a brief overview of the most important aspects of causality deemed

relevant to the task of inferring causal graphs from data. For a more extensive

review, we refer the reader to classic positions on causal analysis [41, 43, 44].

Here, we focus on two major approaches to causal graphs: graphical and functional.

With respect to the former, we are specifically interested in Directed Acyclic Graphs

(DAGs). Functional models, on the other hand, are often referred to as Structural

Causal Models (SCMs). The two approaches are demonstrated in Figure 2.1, which

also shows it is possible to capture the same graph with either of the two approaches.
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Figure 2.1: An example DAG (left) and its corresponding SCM (right).

Investigating the effects of interventions is an important part of causal analysis.

An efficient way of formally expressing such perturbations on a system is Pearl’s

do-calculus [43] (see also Section 1.1), allowing us to write do(X = x) to denote an

intervention on variable X. It is also a convenient way of distinguishing between

interventions and statistical conditioning. For instance, continuing with the example

from Figure 2.1, we can define the distribution for C as LC = L(C|A,B). However,

if we intervene on node B, that is, do(B = b), we get Ldo(B=b)
C = L(C|A, do(B = b)).

This operation is reflected in DAGs by removing all incoming edges to the node

we intervene on (no A → B link in the example), and by assigning a constant

to a variable instead of using its corresponding function to compute it in SCMs

(B := constant instead of B := fB()). As a consequence, it is clear that LC 6=

Ldo(B=b)
C , and by extension LABC 6= Ldo(B=b)

ABC . This shows an important difference

between observational and interventional distributions and why they must be

handled differently in modelling and inference tasks.
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D-Separation

A crucial concept in DAGs (and common assumptions defined below) is d-separation

[43]. For completion, let us define it here as well.

Definition 1 (d-separation). Two graph nodes X and Y are d-separated if all

paths between them are blocked.

A path is a sequence of graph nodes traversed through the connecting edges but

disregarding their direction. For example, (B,A,C) from Figure 2.1 is a path.

A path is blocked if two nodes ‘meet’ in a third node while respecting the direction

of the edges. This third node is also called a collider. For example, assuming

connection A→ B does not exist in Figure 2.1, then C is a collider and all paths

between A and B would be blocked, making A and B d-separated.

In addition, a path can be also blocked by a conditioning set Z. That is, a path is

blocked by Z if it contains a member of Z. For example, assuming connection B → C

does not exist in Figure 2.1, then B and C are d-separated if conditioned on A.

Finally, a path is not blocked if the conditioning set includes a collider or its descen-

dants.

2.1.2 Common Assumptions
Causal discovery from observations is an extremely difficult task and without certain

prior biases, it is, in fact, an ill-posed problem [41]. Over the years of CSL advances,

a set of commonly used assumptions have been established to make the search

more feasible. Here we provide the most important ones.

Assumption 1 (Sufficiency). There are no hidden confounders.

Assumption 2 (Markov condition). Two variables are independent in L(X) if they

are d-separated in G.

Assumption 3 (Faithfulness). Two variables are d-separated in G if they are

independent in L(X).
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Assumption 4 (Acyclicity). Any vertex can be visited only once when traversing

the graph through its directed paths. This assumption applies by default when

considering DAGs.

It is common to assume that d-separation links to conditional independence through

Markov and faithfulness assumptions defined above. This has an important practical

implication as it means that all variables are independent of their ancestors when

conditioned on their parents. As a result, causal mechanisms are effectively inde-

pendent of each other as well, subject to the error terms being independent of each

other. This specific observation has been formally formulated as the Independent

Causal Mechanisms principle [41]. Given this, the entire joint distribution L(X)

can be written as a product of distributions of all variables conditioned on their

parents XPAGj
. In other words:

L(X) =
∏
j

L(Xj|XPAGj
) (2.1)

2.1.3 Causal Structure Learning Methods
The goal of CSL is to infer (or identify) graph G given the distribution L(X). If

it is possible to do this, we say G is identifiable from L.

The four assumptions defined above gave rise to highly effective discovery algo-

rithms, often categorised as constraint-based. For instance, the Peter-Clark (PC)

method [12] exploits all four aforementioned assumptions and relies particularly

on conditional independence tests. As the tests are part of an exhaustive search,

the algorithm does not scale well to high-dimensional data sets, though there are

attempts to speed it up through parallel computing [45]. Other ideas involve

greedy search in the DAG space [46], which, perhaps unsurprisingly, suffer from

the local optimum issue and hence provide suboptimal solutions. As having more

assumptions often translates to poorer applicability of a given method to practical

problems, some methods try to relax specific constraints. The classic examples
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include Fast Causal Inference (FCI) [12] that drops sufficiency or Cyclic Causal

Discovery [47] allowing for cycles.

A major limitation of the aforementioned constraint-based methods is the fact they

are not able to identify a unique DAG solution. Instead, they provide multiple

possible solutions up to a Markov equivalence class. That is, some of the edges of

the resulting graph might be undirected. In fact, it has been proved that only a

Markov equivalence class can be identified in the case of multinomial distributions

[48] or linear SCMs with Gaussian noise [49]. This in turn raises questions about

the graph’s identifiability if one is willing to diverge from either Gaussianity or

linearity. As it turns out, it is possible to converge to a single solution under the

assumption that causal mechanisms are linear and the noise terms adhere to a

non-Gaussian distribution [50]. This approach, named Linear Non-Gaussian Acyclic

Model (LiNGAM), can be formally written as:

Xj = fj(XPAGj
) + εj, for j = 1, . . . , d (2.2)

Where fj is a linear function and εj is a non-Gaussian noise independent of Xj.

Similar findings have been reported for nonlinear cases but without the non-

Gaussianity constraint [51, 52], and for linear models with Gaussian noise terms

of equal variances [53]. Equation (2.2) still applies in the nonlinear case, but fj

is now a nonlinear function and the error term εj strictly enters additively. Note

in this setting we do not assume any specific noise distribution. This Additive

Noise Models (ANMs) approach was further extended to post-nonlinear models

[54] to allow for more flexibility in terms of how the noise enters the model. Thus,

Equation (2.2) transforms into:

Xj = gj(fj(XPAGj
) + εj), for j = 1, . . . , d (2.3)
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Another interesting perspective on the problem is provided via additive SCMs [55],

also termed Causal Additive Models (CAM), which are formally defined as:

Xj =
∑

k∈PAGj

f(Xk) + εj (2.4)

A recent breakthrough in causal discovery research has created yet another type of

algorithms called gradient-based. It has started with [56] and proposed NOTEARS

procedure, where the combinatorial search space of DAGs has been reformulated

as a continuous optimisation problem, which in turn can be solved via standard

optimisers, such as Stochastic Gradient Descent (SGD). The method learns the

causal graph in the form of a weighted adjacency matrix, where the weights

correspond to coefficients in the linear SCM. This approach was further generalised

in [36] to handle nonlinear settings by modelling causal mechanisms separately

through function approximators and extracting the adjacency matrix from the

models through partial derivatives.

This line of work inspired alternative ways of handling nonlinear cases through

continuous optimisation of the weighted adjacency matrix that embeds causal

relationships, including graph autoencoders [57, 58] or normalising flow architectures

[59]. One of the nonlinear generalisations, called GraNDAG [60], proposes an

alternative way of extracting the weighted adjacency matrix from the models, which

involves calculating the so-called neural paths between variables that effectively

are products of consecutive neural network weights. Furthermore, the work in

[61], again building on top of NOTEARS, recognised the fact that in nonlinear

settings we are no longer interested in weight values of the adjacency matrices, but

rather in the presence of a connection between each pair of variables. Thus, they

incorporated the Gumbel-Softmax trick [62] to compute a binary adjacency matrix,

where positive entries denote existing connections. This is an important idea as

such a binary matrix can be used as a mask in neural networks to control their
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input or, in fact, any weights. The masking idea was also explored in [37], but

the neural networks were trained in an adversarial manner.

2.1.4 Generative Approach to Causality
The usual approach to causal inference involves fitting a model to carefully selected

features based on a given causal graph. The choice of variables is of great importance

in order to avoid selection bias and inaccurate causal effect estimations as a

consequence. However, even with a perfect set of features, the entire inference

process is still limited by the approximators modelling the data. For instance, some

model families require vast amounts of data to learn something useful and generalise

reasonably. But perhaps the biggest downside of modern learning algorithms is

their limited ability to generalise out of the distribution provided in training. As

a result, this entire approach to causal inference has rather limited capabilities

of handling interventional distributions well enough, a central part of answering

causal and counterfactual questions.

There is perhaps an alternative approach to causal inference, offering solutions to

some of those issues. A general idea is to model causal relations, that is, mechanisms,

among all variables with respect to the underlying causal graph and then generate

new data samples from interventional distributions. The choice of modelling each

individual causal mechanism instead of fitting the entire joint distribution at once

is expected to not only capture complex interactions between variables but also

provide the ability to produce new outputs in the form of new data points. Thus, on

a high level, this can be seen as a data simulator that respects the underlying causal

graph and is able to respond to any interventions. Ultimately, in an ideal case, this

framework reconstructs the true DGP with access to its inner workings. When

compared to the classic causal inference approach, this framework not only has the

ability to produce infinite amounts of data but also allows to reshape distributions

in order to investigate various interventions and their effects.
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This simulation-based causal inference is a relatively new idea, practically uncharted

territory waiting to be explored. For this reason, there is very little existing work

on the topic. This direction of thought possibly starts in [63] where the authors

mention the generative capabilities of their Causal Generative Neural Network

(CGNN) method. According to the design description of the proposed method, it

is indeed possible to generate new data by sampling noise terms from assumed

distributions and letting the data propagate through the modelled functions with

respect to the causal graph. In addition, by substituting a selected causal mechanism

with a constant value, it is possible to simulate interventions. Unfortunately, the

authors provide no experimental results when it comes to causal inference apart

from claiming the method could be used in that way. This is because the primary

goal of CGNN is causal discovery. Similar observations can be drawn from [37],

which again focuses on CSL, but due to the way its SAM method was designed also

allows to control the error terms and ultimately generate new data as a consequence.

Unfortunately, the algorithm was not tested against causal inference tasks.

2.1.5 Causal Representation Learning
Most of the methods of causal analysis assume that provided datasets consist of

meaningful causal features, similar to data produced by randomised controlled trials.

However, it is not difficult to think about counterexamples, where it would be

rather meaningless to attempt to learn causal relations or structures directly on the

supplied variables, let alone investigate responses to interventions applied directly

to them. An intuitive example is images, where we would expect to perform causal

analysis not directly on individual pixels, but on high-level concepts or objects visible

on the picture instead. In those settings, there is a clear need to learn meaningful

causal representations first. In fact, this resembles the problem of manual feature

engineering and how deep learning helped to automate the process and created

end-to-end approaches capable of learning useful representations on their own [18].

Given those recent successes of representation learning, the idea of combining it
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with causal discovery methods to automatically extract high-level causal features is

indeed an interesting direction, often referred to as causal representation learning [1].

Despite the early stages of this research avenue, the first solutions have already been

proposed. One of the first rigorous investigations dates back to 2013 where Hoel,

Albantakis, and Tononi showed that causal analysis based on macro-level features

can outperform the one incorporating micro ones only [64]. Further works focused

on learning causal mechanisms in the latent space, though without learning the

causal structure explicitly [65]. In fact, the method requires prior knowledge about

the macro features, known there as targets. Thus, effectively, it learns a mapping

between provided high-dimensional data and manually defined target high-level

aspects, making it a strongly supervised technique. The work was further extended

in [66] to capture multiple levels of causal features, not just micro and macro ones.

More recent efforts have finally started bringing the best of both worlds, that is,

causal discovery and representation learning, by utilising the latest CSL optimisation

tricks [56], masked layers [61] and generative neural networks in the form of

Variational AutoEncoders (VAEs) [67, 68] or Generative Adversarial Networks

(GANs) [69]. For instance, CausalVAE [70], learns the weighted adjacency matrix

in the latent space, assuming linear relationships among the macro features. It

first maps the inputs into their latent representations and then performs CSL,

both happening simultaneously during training. A substantial limiting factor of

this approach, however, is that it requires prior knowledge about the final causal

variables, rendering it a fully supervised method. In fact, almost the same idea was

already explored in [65], but without VAEs. Other works tried alternative generators

in the form of GANs [71], wherein the proposed method also relies on linear SCMs,

but more importantly, again assumes strong supervised signals, this time about

the underlying causal graph among high-level features. Lastly, the work in [72]

models nonlinear SCMs through multiple neural networks (one model per each latent

feature). The reported results are promising as, contrary to previous works, they are

not tightly coupled to images, though the experiments involve simulated data only.
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2.1.6 Masked Neural Networks
The standard architecture of neural networks assumes that consecutive layers

are fully connected, that is, each neuron is connected with all other neurons in

neighbouring layers. Apart from the dropout technique where such connections can

be disabled randomly during training as a form of regularisation [73], there also

exists a type of networks where selected weights can be turned off permanently.

This idea was originally introduced in [74] and coined as Masked Autoencoder

for Distribution Estimation (MADE), where the connections can be controlled by

predefined binary masks. Moreover, the masks in MADE are defined in a very

specific way, so the outputs reconstruct the inputs using only allowed variables. As

a result, MADE decomposes the joint distribution into individual ones, a product

of which again produces the joint one. Note that in the causal context if the

masks adhere to the underlying causal graph, so variables depend only on their

parents in the SCM sense, the resulting distributions are actually causal mechanisms.

However, this idea has not been explored with MADE so far. Figure 2.2 shows an

example of MADE and its corresponding decomposed joint distribution in Equation

(2.5). They assume an input vector X = [X1, X2, X3] and approximations of input

variables denoted as X̂1, X̂2, and X̂3.

Figure 2.2: An example of MADE architecture with three variables. Note the hidden
neurons of group 1 depend on X1 only, whereas group 2 on both X1 and X2. Feature X3
does not contribute to any other variable. X1 does not depend on other features.
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L(X) = L(X̂1)L(X̂2|X̂1)L(X̂3|X̂1, X̂2) (2.5)

Although MADE has not been fully explored in the causal context yet, the idea of

masking certain connections, specifically in the first layer to control the contribution

of inputs, has appeared in recent causal discovery methods [37, 61, 72].

2.1.7 Discussion
The last two decades of research have been quite promising for causal discovery,

delivering a multitude of interesting methods and deepening our understanding of the

problem. Despite tremendous progress, the task remains extremely difficult. Even

a few data features pose enough challenges, not to mention real-life projects that

involve hundreds of them. Current SotA procedures excel at artificially generated

problems but clearly do not transfer those capabilities to real-world applications.

Although this is acceptable to some extent due to the lack of maturity of the field,

recent research suggests this may be also due to flawed experimental designs that

most methodologists follow. For instance, the latest methods do not necessarily

find causal relations among variables as it is hoped, but pick up noise patterns

instead [75]. Other research shows that simulated DAGs, which are used as testing

benchmarks for new methods, can be easily abused in certain ways [76], seriously

undermining the validity of many discovery methods proposed.

Our personal experiences with the latest methods confirm those issues. At the

current stage, most causal discovery algorithms are very difficult to use with real

data as they lack prediction stability and trustworthy tools of detecting prediction

mistakes. Another possible reason could be the discrepancy between simulated

datasets and real ones. CSL methods proved to work well in simulated environments,

which are built from specific assumptions about the DGP that are also incorporated

in CSL algorithms. This proves the algorithms solve their intended problems.

However, this algorithmic development approach assumes those simulated datasets

accurately reflect the properties of real data, which in the end might be a very
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strong assumption. If the simulations are indeed very different from real problems,

it would explain the difficulties of using those methods in practice. And the fact

that we cannot detect which of our assumptions actually hold when dealing with

real data only adds complexity to the issue.

CSL models are also often highly inaccurate when it comes to causal effect prediction,

again making the CSL part highly questionable as the two subtasks (causal graph

and effect learning) should be in line at least to some degree if they truly are to

be causal. There is also an ongoing discussion that using observational data alone

makes complete causal graph recovery inherently impossible, with suggestions to

explore mixtures of experimental and non-experimental data settings or even fully

interactive ones that are possible in reinforcement learning setups.

2.2 Causal Inference

In the majority of practical use cases, causal analysis boils down to quantification

of the causal (or treatment) effect, leaving the explanatory part in the form of

causal graph discovery as an entirely optional, or even redundant, effort. Thus,

the methods approximating such effects and relevant literature are often focused

exclusively on that single task. Here, we discuss the essential background as well

as the most important algorithms concerned with causal effect estimation. Recent

surveys provide a more extensive view of the field [77, 78].

2.2.1 The Two Frameworks
A common way of calculating causal effects is the Potential Outcome (PO) framework

[11]. More formally, a potential outcome Y(i)
t is the observed outcome when

individual i receives treatment t. In many ways, this approach is equivalent to

SCMs, though certainly not the same. In SCMs, instead of focusing on concrete

individuals and treatments, we write a more general equation Y = fY (XPAY
, εY ),

where Y represent the node Y, fY its function, and εY its noise term. Then, assuming
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that treatment variable T ∈ PAY (i.e. T is a parent of Y ), we can calculate the

outcome for a specific individual and treatment. This example also shows important

differences between the frameworks. The PO one focuses specifically on treatment

and outcome variables, removing other covariates from the picture, hence not

requiring the knowledge of the full causal graph. This approach is particularly

convenient in problems concerned with outcome estimation, where developing

estimators and formulating the estimation task is of major importance. SCMs,

on the other hand, aim to capture the entire graph and the mechanisms within,

providing a way of investigating the effects of interventions on any variable. This

method is specifically advantageous when modelling the entire DGP is of priority.

Thus, both frameworks clearly have their valid use cases, though there has been

some scepticism in the literature about the practicality of SCMs and DAGs in

the context of estimating causal effects [79].

2.2.2 Common Assumptions
When it comes to causal effect estimation, there are three common assumptions

about the DGP that many estimators build upon. As we incorporate them in this

work as well, we include their brief description for the convenience of the reader.

Assumption 5 (Stable Unit Treatment Value Assumption (SUTVA)). The poten-

tial outcomes of any unit (individual) do not affect the treatment assignment of any

other unit. Furthermore, there are no different levels or forms of the same treatment.

In short: a) no inter-unit interaction, and b) no hidden treatment variations.

Assumption 6 (Ignorability). Given background covariates X, potential outcomes

Y are independent from observed treatment T . That is, Y1,Y0 ⊥⊥ T |X. In practice,

it means that for individuals with the same X their treatment assignment T

can be perceived as random because there are no unmeasured hidden variables

(confounders), which is why this assumption is often referred to as unconfoundedness.

Assumption 7 (Positivity). Treatment assignment T is not deterministic for all

individuals X. That is, P (T = t|X = x) > 0 for all t and x. Informally, it requires
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the existence of potential outcomes for all treatments and individuals (and their

combinations). Ignorability and positivity together form strong ignorability.

2.2.3 Treatment Effect Estimation
Using Rubin’s potential outcome framework [11] (see also Section 2.2.1), which

is particularly convenient in outcome estimation without knowing the full causal

graph, the problem of estimating causal (treatment) effects can be defined as follows.

First, the main three variables of interest are background covariates X, treatment

assignment T , and outcome Y. Second, a potential outcome Y(i)
t is the observed

outcome when individual i receives treatment t ∈ {0, 1}.

Given this, the Individual Treatment Effect (ITE) is formulated as the difference

between the outcomes under treatment (Y(i)
1 ) and no treatment (Y(i)

0 ), as in

Equation (2.6).

ITEi = Y(i)
1 − Y

(i)
0 . (2.6)

Thus, to compute such a value for individual i, we need access to both potential

outcomes, Y(i)
1 and Y(i)

0 , but only one, called the factual, is observed: the other

potential outcome, called the counterfactual, cannot be observed. The fact that

we only observe factuals but also need the counterfactuals to properly compute

causal effects is known as the fundamental problem of causal inference: ITEs are

not identified by the observed data.

However, parameters such as the Conditional Average Treatment Effect (CATE)

and Average Treatment Effect (ATE) are identified, defined in Equations (2.7)

and (2.8) respectively.

CATE(x) = τ(x) = E [Y1 | X = x]− E [Y0 | X = x] (2.7)

ATE = E [τ(X)] = E [Y1 − Y0] , (2.8)

where E[.] denotes (statistical) expectation over the target population. The ATE

in Equation (2.8) is essentially the average ITE for the entire population (hence
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the expectation operator and no index i); the CATE in Equation (2.7) is the

average ITE for everyone in the subpopulation characterised by X = x. The

ATE is not meaningful if there is substantial heterogeneity of the ITEs between

subpopulations. In such circumstances, CATE is more informative about ITEs

as it allows the effect to be conditioned on the subpopulation of interest. The

ITE can be thought of as a special case of CATE where individual i is the only

member of the subpopulation. While ITEi cannot be identified, CATE for the

subpopulation X = x which includes individual i will be a better estimate of it

than ATE (under the reasonable assumption that between-subpopulation variation

in ITEs is greater than that within subpopulations).

2.2.4 Traditional ATE Estimators
Many estimators are available with which to estimate ATE under the above

assumptions. Arguably, the most intuitive approach is regression adjustment

involving a single regression learner µ(t, x) = E[Y | T = t,X = x]. Recognising

the need for different modelling complexity per treatment arm, it is natural to

extend the approach to two separate learners µt(x) = E[Y | T = t,X = x] for t = 0

and t = 1. Single- and two-learner regression adjustment approaches have been

formalised as S- and T-Learners respectively (e.g. [32]).

Another method of adjustment is done as part of so-called reweighting methods

that seek to transform the observed support of input covariates for the treated

and control groups via propensity scores. These are simply defined as the unit’s

probability of receiving the treatment, that is, e(xi) = P (ti|xi). The propensity

scores can be further used to create so-called Inverse Propensity Weights (IPW), in

which the weight wi for sample i depends on treatment status ti and propensity

e(xi), as in Equation (2.9).

wi = ti
e(xi)

+ 1− ti
1− e(xi)

. (2.9)

The weight in Equation (2.9) can be also perceived as sample importance. The

higher the weight, the more impact that sample should have on the estimator. Its
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inverse nature refers to the weight and probability of treatment being inversely

proportional. Thus, assuming treated units are less numerous as compared to

the untreated ones, this approach assigns higher weights to treated samples hence

providing a balancing effect.

The inverse weights can be used as sample importance weights in conjunction with

the S-Learner, resulting in weighted regression. In traditional causal estimation of

average effects however, the weights are more commonly used to create the IPW

estimator [80], also known as Inverse Probability of Treatment Weighting (IPTW)

estimator, defined in Equation (2.10) to estimate ATEs.

ÂTEIPW = 1
n

n∑
i

[
yiti
ê(xi)

− yi(1− ti)
1− ê(xi)

]
(2.10)

where yi and ti are quantities observed in the data.

In practice, both µ(x) and e(x) can be subject to model misspecification. This led

to the development of the Doubly Robust estimators [81] which allow consistent

estimation of target parameters (large sample theory where bias tends to zero as the

sample size increases) even if one (but not both) of nuisance models µ(x) and e(x)

is misspecified. The Doubly Robust estimator, which builds on IPW estimation

from (2.10), is defined as in Equation (2.11).

ÂTEDR = 1
n

n∑
i

[
yiti − (ti − ê(xi))µ̂(xi, ti)

ê(xi)

− yi(1− ti)− (ti − ê(xi))µ̂(xi, ti)
1− ê(xi)

]
(2.11)

where the outcome nuisance model µ(x, t) depends on background covariates x and

treatment t. The Targeted Maximum Likelihood Estimation (TMLE) approach

builds on this idea to incorporate ML for the nuisance models µ(x) and e(x), but

notably uses ensemble learning (also called super-learning) to estimate them [82].

An alternative improvement is to use propensity scores to balance not only samples

but covariates as well [83]. IPW can also result in extremely small scores, making

the entire estimation very unstable. One possible solution is trimming, that
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is, to eliminate samples with propensity scores lower than a specified threshold

[84]. Another way of improving and stabilising propensity score models is post-

calibration [85].

2.2.5 CATE Estimators
The literature on CATE estimation is more recent. Doubly Robust and TMLE

estimators can be extended to CATE but require users to specify a family of

parametric models. Double Machine Learning (DML) [33] introduces a general

framework for parametric CATEs, implementation of which can assume linear effects

[86] or be applied to manually specified non-linear cases. DML additionally proposes

the use of Neyman-orthogonal estimating equations for CATEs. These have the

property of limiting the impact of bias from the estimation of the nuisance parameters

(µ(x) and e(x)) which can be minimised when combined with cross-fitting1. Hence,

DML proposes a two-stage estimation. When CATE is linear in X, the first stage

involves estimating nuisance functions µ(x) and e(x); then, the residuals Y − µ(x)

and T − e(x) are used to minimise the residual on the CATE square loss.

The DML approach above notably assumes parametric form of CATEs. However,

more recent work, known as the R-Learner [87], uses the same two-stage procedure,

but shows that CATEs can be estimated correctly without assuming any parametric

form. This allows to perform the second stage modelling non-parametrically and

hence is more general than DML.

All of these approaches (DML and R-Learner) fall into the class of Orthogonal

Learning methods [88] due to their dependence on the aforementioned Neyman-

orthogonal equations.

A different approach but also involving multi-stage modelling is X-Learner [32]. In

its first stage, it behaves as T-Learner and models µ0(x) and µ1(x) (see Section 2.2.4

above). Second stage involves computing imputed effects D(i)
0 = µ̂1(x(i)

0 )− y(i)
0 and

1Analogous to cross-validation but merges per-fold predictions to obtain predictions for the
entire dataset.
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D(i)
1 = y

(i)
1 − µ̂0(x(i)

1 ), followed by their modelling, defined as τ0(x) = E[D0|X = x]

and τ1(x) = E[D1|X = x]. The third and final stage is about CATE estimation that

is notably weighted by the propensity scores, defined as τ̂(x) = ê(x)τ̂0(x) + (1−

ê(x))τ̂1(x). This approach is specifically useful for problems where one treatment

arm (usually the untreated/control) dominates the other in terms of sample size.

X-Learner has also been shown to be a special case of the R-Learner (defined above).

CATE estimators outside Orthogonal Learning have also been explored. In the

realm of tree-like algorithms, there is Causal Forest [31] that generalises Decision

Trees and Random Forests to CATE estimation. Unlike standard trees which

splits are based on, for instance, Mean Squared Error (MSE) or entropy, causal

trees are based on CATE heterogeneity, resulting in the tree leaves containing

both treated and control samples but assigned to the same heterogeneous group.

The within-group difference then enables CATE estimation. Using ensembles of

trees, one gets Causal Forests, which offer a unique approach to CATE estimation,

though their non-standard design makes hyperparameter tuning more challenging

as it renders standard performance metrics (e.g. MSE) unusable2. Trees have also

been used as a data augmentation tool to address data imbalances via Generative

Trees for improved CATE estimation [89].

Neural networks have also been used in CATE estimation, many of which established

new SotA performance levels. Some of the more important ideas involve penalising

imbalanced representations (between treatment groups) using standard feedforward

networks [90], further extended to two-headed structures (one head/output per

treatment group) and more sophisticated distribution discrepancy metrics [91]

(Maximum Mean Discrepancy and Wasserstein distance), as well as solutions that

encourage the preservation of local similarities on top of balanced representations

[92]. In particular, the two-headed structure without penalisation, termed TARNet

[91], inspired many other approaches, combining it with TMLE [30] or ensemble

2Causal Forests do not expose predicted potential outcomes, only causal effects.
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learning [93]. Other methods incorporate generative NNs in the form of VAEs

[94] and GANs [95].

2.2.6 Modern Estimators
The latest developments show even greater diversity in proposed methodologies and

are a testament to continued research interest in the causal estimation problem.

Neural architectures are still being explored in this line of work, most recently in

the form of normalising flows that target CATE distribution modelling instead

of expected values, providing uncertainty quantification as a consequence [96].

On another research front, there are continued developments concerned with

metalearners. One important example includes the addition of the conformal

prediction framework on top of metalearning that enables predictive intervals for

ITEs as opposed to CATE point estimates [97]. Conformal learning indeed has

been gathering increased interest in causal estimation as it found its way into offline

off-policy prediction problems as well [98]. B-Learner constitutes another proposed

metalearner that tackles the hidden confounding problem and provides bounds on

predicted CATEs [99]. Some other notable work involves forecasting treatment

outcomes over time [100] and a comparative study on performance differences

between parametric and nonparametric causal effect modelling [101]. Lastly, the

DML framework has been notably also extended to panel data [102].

2.2.7 Discussion
Apart from the classic effect estimators, there is growing interest in utilising NNs

as well, which indeed have been shown to be capable of handling causal notions

[103]. In addition, there is increasing evidence that simple and relatively small NNs

can deliver astonishing performance and generalise extremely well [104]. Both of

the points make NNs a promising future direction for causality.

As generative NNs are also a part of recent machine learning successes, they are

being explored in the treatment estimation setting as well. These architectures are,

for example, used to simulate new data sets that resemble real-world distributions
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but provide access counterfactuals for benchmarking purposes [105, 106]. Another

use case is to use generative networks to generate counterfactuals [107] as such

models are known to perform well at filling gaps in data.

As much as NNs can deliver great results, it is important to consider their drawbacks

as well, such as explainability or stability of training. These issues may make the

alternatives more desirable, such as much more transparent generative trees [108].

To counteract stability issues with NNs, one may consider ensemble learning [109].

When it comes to model capabilities of being truly causal (i.e. following the causal

factorisation) and reaching ultimate generalisation, recent research suggests it is

all about the balance between under- and over-parametrisation [110]. However,

standard cross-validation and hyperparameter search techniques are useless in

causal settings (discussed in Chapter 4), so finding such balance is non-trivial. One

proposition is to introduce a special kind of regularisation that depends on the

strength of confounding in the data [111].

The majority of causal inference literature have been so far focused on measuring

effects and their predictions. However, the latest research suggests this is not

always in line with the actual application targets when it comes to real world

projects [34]. More precisely, the outcome the decision makers are actually after is

individual treatment recommendation, not necessarily the effect itself. Although

accurate treatment suggestions can be derived from predicted effects, this leads

to training instabilities and suboptimal policy learnt in the finite sample regime.

One of the latest works in this line of research combines value and policy learning

under well-known double robustness, capable of handling multiple treatments as

well as continuous ones [35].

2.2.8 Evaluation Metrics
The main focus of utilised performance evaluation metrics is on the quantification of

the errors made by provided predictions. Thus, the metrics are often denoted as εX ,

where the error ε is measured with respect to prediction type X (lower is better).
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In terms of treatment outcomes, Y(i)
t and ŷ(i)

t denote true and predicted outcomes

respectively for treatment t and individual i. Note that one of the true outcomes

(i.e. counterfactual) is never observed thus the metrics below that use both of the

true outcomes can be used only in simulated environments where the two outcomes

are accessible, which is often the case with causal inference benchmark datasets.

Following the definition of ITE in Equation (2.6), the difference Y(i)
1 − Y

(i)
0 gives

a true effect, whereas ŷ(i)
1 − ŷ

(i)
0 a predicted one. Following this, we can define

Precision in Estimation of Heterogeneous Effect (PEHE), which is the root mean

squared error between predicted and true effects, as given in Equation (2.12).

PEHE =
√√√√1

n

n∑
i=1

(ŷ(i)
1 − ŷ(i)

0 − (Y(i)
1 − Y

(i)
0 ))2. (2.12)

Following the definition of ATE in Equation (2.8), we measure the error on predicted

ATE as the absolute difference between predicted and true average effects, formally

written as in Equation (2.13). Note, instead of expected values used in Equation

(2.8), here we switch to sample averages as the data sets used in experiments are

of finite size, denoted in Equation (2.13) with n.

εATE =
∣∣∣∣∣ 1n

n∑
i=1

(ŷ(i)
1 − ŷ

(i)
0 )− 1

n

n∑
i=1

(Y(i)
1 − Y

(i)
0 )
∣∣∣∣∣ . (2.13)

Given a set of treated subjects T that are part of sample E3 coming from an

experimental study, and a set of control group C, we can define the true Average

Treatment effect on the Treated (ATT) as per Equation (2.14). It is a difference

between the average outcome of the treated units and the average outcome of control

units that come from experimental data. Note that |A| denotes the cardinality of

a set A and A ∩ B is the intersection of sets A and B.

ATT = 1
|T|

∑
i∈T
Y(i) − 1

|C ∩ E|
∑

i∈C∩E
Y(i). (2.14)

3Sample E contains treated and control units, but not all control units come from E. Thus,
C ∩ E denotes controls specifically from E.
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The error on predicted ATT is then defined as the absolute difference between

the true and predicted ATT as in Equation (2.15).

εATT =
∣∣∣∣∣∣ATT− 1

|T|
∑
i∈T

(ŷ(i)
1 − ŷ(i)

0 )
∣∣∣∣∣∣ . (2.15)

To measure the risk (or regret) of a policy (or treatment assignment) recommenda-

tion, let us define policy π that depends on background features x such that π(x) = 1

if ŷ1 − ŷ0 > 0; π(x) = 0 otherwise. Following such a policy means recommending

the treatment to any individual who will benefit (positive effect) from it based on

predicted outcomes. The risk of applying such policy, as opposed to following the

optimal policy, is defined as policy risk Rpol in Equation (2.16).

Rpol = 1− (E [Y1|π(x) = 1]P(π(x) = 1) + E [Y0|π(x) = 0]P(π(x) = 0)), (2.16)

with mathematical expectation E[.] being switched to sample averages on data

sets of finite size.

2.2.9 Benchmark Datasets
There is a set of well-established benchmark datasets commonly used in the causal

inference literature (see e.g. [90–92, 94]) to evaluate and compare estimation

performances. Since they are extensively used throughout this work, we provide

brief descriptions for each of the datasets here; see respective references for additional

details. These are also summarised in Table 2.1 and openly accessible online [112].

Note we use the same metrics and data splits as in the literature to make our

results comparable.

It is worth noting that real-world causal inference observational data sets are

naturally “broken” as they inherently suffer from selection biases and covariate

shifts, often in the form of distributional differences between treated and untreated

units. Thus, in order to test causal estimators in conditions similar to real-world

situations, a common practice is to purposefully “break” existing data sets by

introducing biases and shifts. This thesis incorporates such datasets as overcoming
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said data challenges, and measuring the degree of success via appropriate evaluation

metrics, is the goal of this work.

data set # samples (t/c) # features outcome
IHDP 747 (139/608) 25 continuous
JOBS 3,212 (297/2,915) 17 binary
NEWS 5,000 (2,289/2,711) 3,477 continuous
TWINS 11,984 (5,992/5,992) 194 binary

Table 2.1: Summary of incorporated data sets. Letters t/c denote the amount of treated
and control samples respectively.

IHDP. Introduced by [113], based on Infant Health Development Program (IHDP)

clinical trial [114]. The experiment measured various aspects of premature infants

and their mothers, and how receiving specialised childcare affected the cognitive

test scores of the infants later on. We use a semi-synthetic version of this data

set, where the outcomes are simulated through the NPCI package4 (setting ‘A’)

based on real pre-treatment covariates. Moreover, the treatment groups are made

imbalanced by removing a subset of the treated individuals. We calculate PEHE

and εATE errors (Equations (2.12) and (2.13) respectively) for this dataset. The

data consists of 1,000 realisations with recommended training/test splits of 90/10.

JOBS. This data set, proposed by [115], is a combination of the experiment done by

[116] as part of the National Supported Work Program (NSWP) and observational

data from the Panel Study of Income Dynamics [117]. Overall, the data captures

people’s basic characteristics, whether they received job training from NSWP

(treatment), and their employment status (outcome). We use εATT (see Equation

(2.15)) and Rpol (see Equation (2.16)) metrics for this dataset, averaged over 10

runs with 80/20 training/test ratio splits.

NEWS. Introduced by [90], which consists of news articles in the form of word

counts with respect to a predefined vocabulary. The treatment is represented as

the device type (mobile or desktop) used to view the article, whereas the simulated

4https://github.com/vdorie/npci



2. Background 45

outcome is defined as the user’s experience. Similarly to IHDP, we calculate PEHE

(see Equation (2.12)) and εATE (see Equation (2.13)) metrics for this dataset. There

are 50 realisations within this dataset, with 90/10 training/test ratio splits.

TWINS. The data set comes from official records of twin births in the US in

the years 1989-1991 [118]. The data are preprocessed to include only individuals

of the same sex and where each of them weighs less than 2,000 grams. The

treatment is represented as whether the individual is the heavier one of the twins,

whereas the outcome is the mortality within the first year of life. As both factual

and counterfactual outcomes are known from the official records, that is, the

mortality of both twins, one of the twins is intentionally hidden to simulate an

observational setting. Here, we incorporate the approach taken by [94], where

new binary features are created and flipped at random (0.33 probability) in order

to hide confounding information. We calculate εATE (as in Equation (2.13)) and

PEHE (as in Equation (2.12)) metrics for this dataset, averaged over 10 iterations

with 80/20 training/test ratio splits.

2.3 Joint Discovery and Inference

Notably, there has been very little work that would combine both discovery and

effect inference parts under a single framework, which is partly understandable

due to the immaturity of the causal graph learning methods. One of the first

promising attempts involves autoregressive models [119], though they can handle

relatively small graphs only. A more scalable and complete approach builds on

the latest tricks in causal graph discovery (Gumbel-softmax, sparsity penalty and

differentiable acyclicity) and NNs (attention, graph networks) that ultimately

delivers quite a powerful method [120]. Good results, however, come here at the

cost of the method’s high complexity and advanced training techniques that may

reduce potential applicability by practitioners.
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2.4 Causal Data

Causal data take many forms depending on the application area. In most cases, they

are categorised based on their source (experimental/observational) and whether

they involve the time component (cross-sectional/longitudinal). In this work, we

are specifically interested in observational cross-sectional data, mostly due to

their prevalence in ML. In the following sections, we discuss the main characteristics

as well as challenges that entail such data.

2.4.1 Observational
When it comes to the source of data, experimental ones, formally known as RCTs,

are the gold standard for causal effect inference, with the now widely used Neyman’s

potential outcome framework (see Sections 2.2.1 and 2.2.3) originally developed

for effect inference from such randomised experiments [121] (original date 1923,

later translated in 1990).

RCTs are considered the gold standard because causal effects are identifiable by

design in those cases; data alone is sufficient to obtain the effects. This can be

attributed to the treatment assignment being strictly random, which leads to

exchangeability [122, Chapter 2]. That is, causal effects would have transferred

between the treatment groups (treated and control) had we changed treatment

assignment to opposite values (i.e. controls become treated and vice versa).

This type of data is presented in Figure 2.3, wherein said randomisation can be

noticed as node T not having any node parents, meaning T does not causally

depend on any other variable. Less formally, it is often said that randomisation

“breaks” any variable dependence T might otherwise have.

Other noteworthy design requirements in this setup, in which the time component

plays an important role, though only implicitly, are: a) all background covariates

X must be recorded before applying the treatment T , b) no background covariates

X after the outcome Y .
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Figure 2.3: A diagram representing experimental data via a causal graph. Nodes: X -
background covariates, T - treatment assignment, Y - outcome. Directed arrows denote
causal relationships (cause and effect). Note how the variables take specific order in time.

Randomised experiments are favourable due to their design and identifiability of

causal effects. However, they are often difficult to obtain due to multiple possible

reasons, such as high costs of experiments or ethical aspects (e.g. administering

smoking or drinking alcohol as the treatment). Not to mention some experiments

are just plain impossible due to physical barriers (e.g. what if London was located

1,000 metres above the sea level?).

These issues are alleviated by much more accessible observational data. The costs

are only those relating to data collection, for example via surveys. Ethical concerns

are also not as limiting as we can collect data about people who decide themselves

whether to smoke or drink and compare them to controls. As for London, moving

it vertically is still impossible, but with observational data, we can compare cities

across different vertical locations.

Accessibility has certainly been one of the main drivers behind the popularity

of observational data, and their widespread use has seen the potential outcome

framework being eventually extended to this type of data as well, resulting in what is

known today as Neyman-Rubin causal model [11] (see Section 2.2.3 for more details).

However, this accessibility comes at a cost, mostly due to non-randomised treatment
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assignment. That is, treatment is no longer assigned to individuals by an external

force according to a coin flip. In non-experimental data, subjects make their own

decisions about the actions they take (e.g. drink coffee, take aspirin, etc.), which

means the treatment assignment T now depends on subject-specific covariates X.

This is reflected in Figure 2.4 by the added causal link from X to T .

Figure 2.4: A diagram representing observational (non-experimental) data via a causal
graph. The layout and notation is similar to that found in Figure 2.3. Note two major
discrepancies between the two figures: a) T now depends on X due to non-random
selection, b) lack of experimental control may introduce mediators (the X between T and
Y ).

The added X → T connection breaks the idealistic design of RCTs. As a result,

exchangeability, by default, is no longer valid; causal effects are not identifiable.

To make the effects identifiable again, additional assumptions about the data are

necessary, which may, or may not, hold in practice (see Section 2.2.2 for common

assumptions). Thus, data alone are not enough for effect estimation as it was the

case with RCTs; it is data combined with additional assumptions that enable causal

inference from observational data [122, Chapter 2].

Bias

Further, lack of T randomisation leads to all sorts of biases. Overall, statistical

bias ‘refers to any type of error or distortion that is found with the use of statistical

analyses’ [123]. Further, there are multiple types of statistical biases to consider,

but in this work we are mostly interested in selection and estimator biases.
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As stated by Bareinboim, Tian, and Pearl (2022), ‘selection bias is induced by

preferential selection of units for data analysis, usually governed by unknown factors

including treatment, outcome, and their consequences, and represents a major

obstacle to valid causal and statistical inferences’ [124].

Whereas estimator bias occurs when the expected value of an estimator differs from

the underlying parameter that we want to estimate [125]. In addition, we call an

estimator unbiased if its estimation bias is zero; and biased otherwise.

In the context of causal estimation from observational data, selection bias takes the

form of data gaps or underrepresented data regions in one of the treatment groups

(e.g. very few or no young smokers). This leads to covariate shifts that in turn results

in biased causal estimates. These problems generally entail most of the challenges

in effect estimation from observational data, especially with individualised effects

as they are sensitive to covariate shifts.

Mixed Data

Interestingly, in methodological research, observational and experimental data both

serve their purpose. For instance, there are cases where data from clinical trials

[114] are purposefully biased and “broken” to create their observational equivalents

[113] in order to test the estimation performance of causal models under conditions

that closely resemble real-world problems. Other cases involve mixing observational

and RCT data into a single dataset, where the experimental units can be used as

quasi-ground truth, which is useful in the absence of the proper ground truth.

2.4.2 Cross-Sectional
It is also useful to group data based on whether they involve the time variable

or not, that is, whether each unit is observed more than once over time, possibly

at regular time intervals. This is important because the two data types require

different inference approaches.
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Among the two data types we discuss here, cross-sectional ones involve observing

the units only once, as demonstrated in Table 2.2. This characteristic can be either

beneficial or limiting, depending on a perspective. On one hand, this form of

data is more simplistic and hence easier to deal with as the only possible source

of variability is the one across units. In addition, due to this data structure

being closely similar to that found in standard supervised ML, a plethora of ML

methods is readily available to use in these settings out of the box as a consequence.

On the other hand, observing each unit’s outcome only for one treatment leaves

many alternative scenarios possibly rich in information not explored and hence

unavailable for inference, inevitably limiting potential prediction accuracy due

to incomplete information provided.

ID X1 X2 X3 Y

1 1.39 0.99 0 4.77
2 0.26 0.19 1 2.95
3 1.05 1.79 1 4.16
4 0.66 0.19 0 6.17
5 0.85 1.79 1 7.83
... ... ... ... ...

Table 2.2: Example cross-sectional data. Each unit is observed once (ID) and entails
background variables X and outcome Y .

The inclusion of the time component in longitudinal, or panel, data partly alleviates

the limitations of cross-sectional data mentioned above, with an example of panel

data being provided in Table 2.3. More observations over time per unit translates

to possibly more information available within the data that can be exploited for

inference and more accurate estimates. However, this benefit comes at a cost since

now there are two possible sources of variability within the data: across and within

units. As a result, such data requires different, possibly non-standard, inference

methods tailored towards time series datasets. This is partly because, while units

are mutually independent, the multiple observations per individual unit are not,

breaking the IID assumption so fundamental to many ML methods.
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ID time X1 X2 X3 Y

1 1 1.39 0.99 0 4.77
1 2 1.31 0.92 0 4.72
1 3 1.45 1.02 0 4.84
2 1 0.26 0.19 1 2.95
2 2 0.24 0.18 1 2.99
2 3 0.21 0.11 1 2.15
... ... ... ... ... ...

Table 2.3: Example longitudinal (panel) data. The notation is similar to that used in
Table 2.2. Note that here each unit (ID) is observed three times (time column). Also,
notice how the background variables can change over time within the same unit.

As mentioned above, cross-sectional data closely resembles those found in supervised

ML. This similarity made the adoption of ML methods into causal estimation

much easier, with now many ML-based approaches setting current SotA in causal

estimation. A possibly similar but underexplored relationship is the one between

longitudinal data and data seen in offline RL, as they both involve multiple

observations over time. Though multiple treatments per unit are not necessarily

explored within panel data, unlike crossover data [122, Chapter 2]. This direction

can possibly unlock a new family of ML-based methods applicable to this causal

data type, notably widely used in social and economic sciences.

2.5 Hyperparameters

Hyperparameters have always been part of learning algorithms in one way or

another, as they provide a means of adjusting learners to specific data at hand. For

instance, HPs can enforce feature sparsity in high-dimensional cases, or encourage

simpler hypotheses to avoid overfitting when necessary. In general, they provide

a mechanism through which the analyst can find the right balance between bias

and variance that is required for model generalisation.

There are three major methodological components the topic of HPs can be divided

into: the search among available HPs and values, performance evaluation of
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candidate solutions, and overall optimisation process formed by combining the

two. These are further discussed in Sections 2.5.2 - 2.5.4. However, before we

discuss those details, we first specify the types of HPs we are focusing on in this

thesis and draw a line between HP and model selection (Section 2.5.1).

2.5.1 Hyperparameters and Models
HPs can be found across many learning tasks (e.g. supervised, unsupervised, RL)

and frameworks (e.g. parametric, semi-parametric, non-parametric). But because

they can also be specific to certain ML algorithms, they can take different forms,

such as controlling the model’s complexity (e.g. L1, L2, max depth), or affecting

the optimisation process itself via learning rates or different variants of optimisation

algorithms (i.e. versions of gradient descent).

In the context of this thesis, we view HPs as options defined within the scope

of individual ML algorithms, and the choices that involve those options as

HP selection or tuning. Any other modelling decisions that involve selecting

among different ML (or causal) algorithms are classified in this work as a more

broadly defined model selection. More broadly because this work views model

selection as more general than HP selection, and which also involves model class

choices on top of HP tuning.

To clarify further, we classify as HPs those algorithmic options that:

• Specify model complexity

– e.g. number of hidden layers/neurons, L1/L2 regularisation, maximum

tree depth

• Specify the optimisation algorithm

– e.g. Stochastic Gradient Descent, Adam, Adagrad

• Control an optimisation algorithm
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– e.g. learning rate, momentum, decay

And the problem of selecting values across those options is termed here as HP

selection (or tuning).

Whereas the following are the algorithmic decisions that can be classified here

as model selection:

• Selection between different model classes

– (ML base learners) e.g. Decision Tree, Random Forest, Neural Network

– (causal estimators) e.g. X-Learner, Causal Forest, Double ML

• Hyperparameter selection (as defined above)

The reason we draw a line between HP and model selection is because in this

work we are often interested in analysing performances of individual causal and

ML learners as they usually employ different assumptions and showcase different

properties. In those cases, we take into account different HPs and values, but

defined per individual causal/ML learner. But whenever our interest shifts towards

performances across the learning methods (while still tuning HPs; think ensemble

learning), then we use the more general term that is model selection.

To complete the picture of what a (candidate) model entails in this work, we

define it here as a candidate solution (or hypothesis) that consists of a model class

and HP values. Following this logic, changing either the model class or HPs to

different values results in a different model. For this reason, whenever we evaluate

performances of candidate models, we also use the term model evaluation.

2.5.2 Search
There are several distinct ways to approach the hyperparameter search. First and

foremost, it is possible to disregard the search process entirely by using the default
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values recommended by the authors of the learning method. These are often derived

as the best setting averaged across different datasets and hence might be suboptimal

for the data at hand, which motivates performing the search in the first place.

Manually trying different options might be convenient initially due to its simplicity,

but is cumbersome and time-consuming in the long term owing to its sequential

nature, not to mention one needs to also keep track of already tested combinations

that further increase the burden of this approach.

More principled search procedures take away those negative aspects as they automate

the search process in many ways. Perhaps the most intuitive approach is the one that

performs the search exhaustively according to specified HP candidate values, also

known as grid search. It specifically suits discrete search spaces as one needs to define

all the candidate values that ought to be explored but may leave continuous HPs

underexplored. Random search methods [126] notably allow to set the distribution

to be explored instead, but the experiments using those might be more difficult

to replicate due to their randomness.

The above search methods solve many problems found in manual exploration, but

they are not without challenges. The main issue is computational demands that

increase with every explored HP candidate while at the same time exploring the HP

space as much as possible to increase the chances of identifying optimal HP values.

While parallelisation can alleviate this classic exploration-exploitation dilemma

[127]5 to some extent, it ultimately motivates more sophisticated search methods.

Some of them focus on directly reducing computational requirements, such as

“halving” which works as a tournament-like competition of candidate HP values

[128]. Other approaches focus on specific estimator types, like neural networks in

the case of Neural Architecture Search [129], with some of them building upon

evolutionary algorithms [130].

5A decision between exploitation of current knowledge and exploration that will potentially
enrich said knowledge, with both taking up computational resources.
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2.5.3 Evaluation
Performance evaluation is an integral part of HP optimisation since all candidate

settings must be tested and compared to each other to identify the best solution.

A core part of the evaluation is scoring metrics that allow ranking candidate HPs

from best to worst. The choice of metrics may depend on the type of the task

at hand. For example, one can consider mean squared error for regression, but

accuracy in classification tasks. Further, multiple metrics are usually available

within the same task, such as precision and recall which are alternatives to accuracy

in classification problems. All these choices have a considerable impact on the

final HP selection and model behaviour as different metrics can enforce certain

desirable outcome criteria by preferring those candidates that perform better in

that regard, such as the reduction of false positives or false negatives. As such,

there are no free lunches in metric selection as they highly depend on the data

at hand and desirable modelling criteria.

Accurate evaluation can notably be more challenging in certain situations. Data

shifts, for instance, can break the relationship between metric scores seen in

training and deployment, resulting in wrongly selected HPs for production and poor

generalisation. In other cases like unsupervised learning tasks, hardly any metrics

are available for tuning purposes, or in the rare cases where metrics can be used,

the ones available for HP tuning do not necessarily reflect the actual target (e.g.

goodness of data fit vs. accuracy of predicted causal graphs).

Another aspect affecting evaluation is data splitting and the use of separate validation

sets of the data. The basic approach is to split the data into training, validation

and test sets, wherein a single validation part is used for evaluation across all

candidates. The simplicity of this approach is certainly advantageous, but it can

arguably be sensitive to the choice of the validation set that may not fully reflect the

characteristics of the entire dataset. Cross-validation [131] addresses this undesirable

factor by covering the whole dataset across its folds, though at the cost of increased

compute demands due to repeated model training and evaluation per each CV fold.
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Performance evaluation is also a connecting factor between HP tuning and model

selection (see also 2.5.1) as both involve metrics and evaluation of candidate

hypotheses. This shared characteristic enables the exchange of methodologies

between the two, though only to a certain extent as not all learners support the

same validation metrics, which is precisely what makes model selection arguably

even more challenging than HP optimisation.

2.5.4 Optimisation
Hyperparameter optimisation (HPO), also known as tuning, brings together previ-

ously discussed search and evaluation components, but also introduces new problems,

such as the strategy of selecting the final solution. In its simplest and most common

form, it entails picking the winning candidate concerning a given evaluation metric.

An alternative approach is to use the metric to rank the candidates and then select

not one but multiple top performers from which an ensemble estimator can be

created to achieve better robustness [109].

The dilemma between exploration and exploitation found in HP optimisation is

also well recognised in RL wherein the agent can either exploit the currently learnt

policy or search for better ones. As such, HP tuning can be framed as a type

of RL, particularly a multi-armed bandit problem [128]6. A similar problem was

also investigated in the general ML literature in the context of hyperparameter

tunability [132], where certain HPs were shown to have a greater impact on

prediction performance.

The literature on HPO consistently shows its importance [25] and is still an active

area of research [133]. In addition, recent efforts under the name of automated

ML (AutoML), among other aspects, attempt to automate the selection of models

and HPs, so the users are not required to have expert knowledge of the learning

methods to effectively perform HPO [134].

6Each bandit arm refers to a different hyperparameter.
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Summary

• Causal discovery, also known as causal structure learning, is about
recovering the causal graph structure that underlies the data gen-
erating process using only observed data. This task is unsupervised, as
the true causal graph is unknown a priori.

• Causal inference entails estimating causal effects from observed
data despite that the effects are not identifiable on the individual level
due to fundamentally missing counterfactuals.

• Causal data that are of interest in this work can be categorised as
observational and cross-sectional, both of which pose challenges to
causal estimation in the form of data shifts and incomplete information
within.

• Hyperparameters can control many aspects of learning algorithms that
adjust the bias-variance trade-off and hence are important in achieving
accurate predictions. Their optimisation involves two major components:
search and performance evaluation.
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3
Undersmoothing Causal Estimators With

Generative Trees

Having learnt that current causal discovery algorithms are not ready for
applications, this project adjusted its course toward causal inference. This
chapter presents the first steps in this direction. The result is a novel data
augmentation method that improves the estimation of individualised causal
effects under covariate shifts. It is also the first utilisation of generative trees
in this type of problem.
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3.1 Introduction

In the absence of data from randomised experiments, analysts must use observational

data (see Section 2.4.1) to make inferences about the causal effects of interventions

or treatments, that is, what would happen if they intervened to change the treatment

status of individual units in a population. The estimation of average causal effects

— the average effect of the treatment aggregated across every unit in a population

— has been studied in considerable depth (see Section 2.2.4). However, there is

now growing interest in estimating heterogeneous treatment effects for individuals

characterized by a possibly large number of input variables or covariates (see Section

2.2.5). If there is substantial heterogeneity across units, such systems can unlock the

analysis of targeted interventions, for instance, in the form of personalised healthcare

based on covariates that describe patients’ symptoms and health histories.

The use of observational data creates challenges for the estimation of heterogeneous

causal effects. First, the analyst must make assumptions, for example, that treatment

selection is strongly ignorable given the available covariates (see Section 2.2.2). We

take ignorability to hold throughout, and focus on the second problem, namely, that

non-random treatment selection can lead to observed data in which the distributions

of covariates among the treated and untreated units are very different. In practice,

this can make it difficult for conventional causal estimators to learn the true

relationship between the treatment effect and covariates across the entire support

of the covariates, and so result in poor performance when tested on other datasets.

More generally, this issue is known as ‘covariate shift’, which in this setting means

the learning target P (Y |X) remains unchanged, while the marginal distributions

of the covariate inputs P (X) for treated and untreated can be very different.

Most existing methods attempt to transform the observational distribution by

sample reweighting schemes usually based on propensity scores [31–33, 80, 81]

(but not exclusively, see e.g. domain adaptation methods; see also Section 2.2.4

for propensity scores). However, reweighting seeks to standardise the observed



3. Undersmoothing Causal Estimators With Generative Trees 61

support of X for the treated and untreated groups, and so generally performs well

for estimating treatment effects averaged across the common support of X, but

less so for estimating conditional average treatment effects at points outside the

observed support; in other words, as pointed out by [135], reweighting does not

address the problem of model misspecification which can be detrimental when it

comes to estimating individualised treatment effects [136].

A promising alternative to these classical approaches is undersmoothing, where the

model is allowed to fit the data very closely to capture P (X) in the two treatment

groups, and in doing so potentially produce more accurate individualised predictions.

Encouraged by suggestions elsewhere - [137, footnote 3] and [138, 139] - in this work,

we develop a novel approach to causal effect estimation that improves accuracy

by undersmoothing the observed data.

Specifically, we propose to undersmooth using fast and straightforward generative

trees [108] to augment the existing data, and in doing so facilitate more robust

learning of downstream estimators of key causal parameters. The trees are used to

‘discretise’ the input space into subpopulations of similar units (subclassification);

the distributions of these groups are then modelled separately via mixtures of

Gaussians, from which we sample equally to reduce data biases (see Section 2.4.1).

The concept of model misspecification comes from the world of finite-dimensional

parametric models [136] when the analyst uses a parametric model family for

prediction that does not include the true prediction rule implied by the DGP. In

our context, where no such family is specified, the data augmentation algorithm

leads to individualised predictions which can be viewed as coming from an infinite-

dimensional model family for statistical functionals that, while not nonparametric,

is richer than those induced by existing alternative algorithms. We argue that the

implied model family is more likely to include the DGP because data augmentation

oversampling the underrepresented data regions is effectively performing targeted

undersmoothing and so reduces estimation bias [138] (see also Section 2.4.1). The
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practical upshot of this should be that, even with covariate shift, learners trained

on data augmented by our method offer more accurate predictions.

Data augmentation is a widely recognised data preprocessing method of improving

overall data quality through synthetic sample generation for better prediction

performance [140]. It has proven very effective in computer vision [141, 142]

which greatly influenced the wider popularisation of data augmentation techniques.

Data augmentation constitutes an important part of dealing with imbalanced

tabular data [143], specifically by oversampling minority classes in imbalanced

classification problems [144–147]. Interestingly, causal notions and ability to simulate

interventions has been attributed to successes of data augmentation [148]. This

links to a specific type of augmentation that focuses on generating counterfactuals

(unobserved outcomes), called counterfactual data augmentation, which found its use

in classification problems [149, 150] and reinforcement learning [151]. Other methods

focus on text classification [152], or mitigating the effects of confounding [153]. In

our case, the method we propose could be seen as oversampling underrepresented

data regions instead of just classes or specific outcomes like counterfactuals, making

our approach much more general.

Generative models have also been investigated in causal inference literature, mostly

in two major strands of work. In one, generative models are used for benchmarking

purposes to create new synthetic data sets that closely resemble real data but with

access to true, though synthetically generated, effects [105, 106]. The other branch

of research is concerned with generating causal effects [94], with more recent works

applied to bounding confounded average effects [154], continuous treatments under

confounding [155], and longitudinal data [156]. In this work, unlike the two strands

above, we use generative modelling for targeted data augmentation.

Arguably the closest work to ours that combines data augmentation and generative

models within the causal inference setting is [107]. Despite a similar approach on a

high level, that is, training downstream causal estimators on augmented data, we
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believe our frameworks differ substantially upon further examination. More precisely,

[107] incorporates neural network-based generative models to specifically generate

counterfactuals, and focuses on conditions where the treatment is continuous. In this

work, our proposed method: a) is based on simple and widely-used decision trees,

b) does not specifically generate counterfactuals, but oversamples heterogeneous

data regions (more general), and c) works with classic discrete treatments.

In terms of this work’s contributions, we show empirically that the choice of

model class can have a substantial effect on the estimator’s final performance,

and that standard reweighting methods can struggle with individual treatment

effect estimation. Given our experiments, we also provide evidence that our

proposed method increases data complexity1, reduces estimation bias by training

on augmented data (targeted undersmoothing), and leads to statistically significant

improvements in individual treatment effect estimation, while keeping the average

effect predictions competitive. Our experimental setup incorporates a wide breadth

of non-neural standard causal inference methods and data sets. We specifically

focus on non-neural solutions as they are more commonly used by practitioners.

The rest of this chapter is structured as follows. First, we revisit fundamental

concepts that should aid understanding of the technical part of this work. Next,

we formally discuss the problem of model misspecification, followed by a thorough

description of our proposed method. We then present our experimental setup

and obtained results. The next section provides further discussion of the results

and their implications. The final section concludes the chapter, including the

considered limitations of the method.

1Modelling complexity required to fit the data accurately.
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3.2 Preliminaries

Most of the background knowledge necessary for this chapter, including the problem

of causal effect estimation and relevant inference methods, can be found in Section

2.2 of Chapter 2. A brief discussion on the topic of covariate shift, which is

specifically relevant to this chapter, is provided in the following section.

3.2.1 Covariate Shift
The covariate-shift problem generally occurs when there are distributional dis-

crepancies in input variables X among certain groups of data samples. These

differences lead to ‘gaps’, that is, regions of the common support of X where the

observed data are non- or weakly informative about the target parameter. As

a result, point estimates of the target (e.g. ITEs or CATEs) in these gaps are

inaccurate. Note this issue is not as severe for population-level estimates (e.g.

ATEs) because these are averages across the entire support of X and so more robust

to gaps. The problem varies depending on the characterisation of the groups of

data among which the covariate shift occurs. In ML, this problem is often realised

when there are differences between training and test (target) distributions. These

can happen due to, for instance, different circumstances between data collection

and model deployment. In causal inference, on the other hand, said distributional

discrepancies exist between treated and control units. For example, in a study of

smoking effects on health, the observational data at hand may include very little

to no information about young smokers. Methods of dealing with covariate shift

include data adaptation [157], importance sample reweighting (see Section 2.2.4),

or causal effect estimation in general (see Section 2.2.5).

Covariate shift falls under a broader category of distribution shifts, in which a second

major shift problem occurs due to changes in the conditional distribution Y |X

between the target and input covariates. Specific reasons behind this may involve

confounding, but also a change in subject behaviour over time [158]. Regardless

of the nature of data shifts, they have been shown to have a clear impact on
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prediction performance [158, 159], and the fact that real-world data sets often suffer

from not one but a mixture of types of shifts only adds importance to this issue.

Robustness to data shifts is also discussed from the perspective of out-of-distribution

generalisation [160], a topic researched with renewed interest in ML recently partly

due to still unresolved issues with model inaccuracies after deployment.

3.3 Model Misspecification

The choice of model class (see Section 2.5.1) occurs at some point in any learning

task. Such a decision is made based on available data, usually the training part

of it, while the environment of the actual application can be different, a scenario

often mimicked via a separate test set. The occurring discrepancies between those

two data sets are known as the covariate shift problem. Within causal inference,

this manifests as differences between observational and interventional distributions,

ultimately making effect estimation extremely difficult. More formally, given input

covariates x, treatment t, and outcome y, the conditional distribution P (y|x, t)

remains unchanged across the entire data set, whereas marginal distributions

P (x, t) differ between observational and interventional data. This is where model

misspecification occurs as the model class is selected based on available observations

only, which does not generalise well to later predicted interventions.

Let us consider a simple example as presented in Figure 3.1. It consists of a single

input feature x, output variable y (both continuous), and binary treatment t. For

convenience, let us denote this data set as D. Note the effect is clearly heterogeneous

as it differs in D(x < 0.5) and D(x > 0.5). Furthermore, the two data regions

closer to the top of the figure, that is, D(x < 0.5, t = 1) and D(x > 0.5, t = 0),

are in minority with respect to the rest of the data. These scarce data points will

likely be treated as outliers by many learners, resulting in lower variance than

needed to provide accurate estimates. Thus, naively fitting the data will lead to

biased estimates, an example of which is depicted on the figure as Biased T and
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Figure 3.1: An example highlighting model misspecification issue. T and C denote
Treated and Control respectively. The difference in ITE error is almost twice as in ATE.

Biased C. However, what we aim for is an unbiased estimator that captures the

data closely while still generalising well, a scenario showcased by Unbiased T and

Unbiased C on the figure (see Section 2.4.1 for bias).

For ITE estimation, fitting the data closely is especially important. Although in

the case of average effect estimation the difference between biased and unbiased

estimators can be negligible, the individualised case usually exacerbates the issue.

For instance, in the presented example, the difference in ATE error is 0.44, but

it grows to 0.77 in ITE error.

In this work, instead of altering the sample importance, as many existing methods

do, we aim to augment provided data in a way that underrepresented data regions

are no longer dominated by the rest of the samples, leading to estimators no longer

treating those data points as outliers and fitting them more closely, ultimately

resulting in less biased solutions, decreased misspecification, and more accurate

ITE estimates. The following section describes our proposed method in detail.
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3.4 Debiasing Generative Trees

As described in the previous section, model misspecification can be caused by

underrepresented or missing data regions. Reweighting partially addresses this

problem, but struggles with ITE estimation, not to mention propensity score

approximators are subject to misspecification too. To avoid these pitfalls, we tackle

the misspecification through undersmoothness by augmenting the original data with

new data points that carry useful information and help the final estimators achieve

better ITE predictions. As the injected samples are expected to be informative

to the learners, the overall data complexity increases as a consequence. Moreover,

because this is a data augmentation procedure, it is estimator agnostic, that is, it can

be used by any existing estimation method. It is also worth pointing out that simply

modelling and oversampling the entire joint distribution would not work as the learnt

joint would include any existing data imbalances. In other words, underrepresented

data regions would remain in the minority, not addressing the problem at hand.

This observation led us to a conclusion that there is a need to identify smaller data

regions, or clusters, and model their distributions in separation instead, giving us

control over which areas to sample from and with what ratios. To achieve this, we

incorporate recently proposed Generative Trees [108], which retain all the benefits

of standard decision trees, such as simplicity, speed and transparency. They can

also be easily extended to ensembles of trees, often improving the performance

significantly. In practice, a standard decision tree regressor is used to learn the data.

Once the tree is constructed, the samples can be assigned to tree leaves according

to the learnt decision paths, forming distinct subpopulations that we are after.

The distributions of these clusters are then separately modelled through Gaussian

Mixture Models (GMMs). Similarly to decision trees, we again prioritise simplicity

and ease of use here, which is certainly the case with GMMs. The next step is to

sample equally from the modelled distributions, that is, to draw the same amount

of new samples per each GMM. In this way, we reduce data imbalances. A merge

of new and original data is then provided to a downstream estimator, resulting in
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Algorithm 1 Debiasing Generative Trees
Input: D - data set (columns [X,T, Y ]), E - causal estimator
Parameter: N - number of generated samples
Output: ED - debiased estimator
1: Let DG = ∅.
2: Split D into treated and control units using column T (DT and DC).
3: Train a Decision Tree regressor on DT (e.g. .fit(X, Y)).
4: Identify tree leaf index each DT unit is predicted as (e.g. .apply(X)).
5: Common tree leaf indexes form subpopulations S.
6: Let NG = N/(2× len(S)).
7: for Si in S do
8: Model Si with Gaussian Mixture Models (e.g. .fit([X, T, Y])).
9: Obtain Gaussian Mixture Model Gi.
10: Draw NG samples from Gi (e.g. .sample(NG)). Store them in DG.
11: end for
12: Repeat steps 3-11 for DC .
13: Merge D and DG into a single data set DM .
14: Train estimator E on DM (e.g. .fit(X, T, Y)). Get debiased estimator ED.
15: return debiased estimator ED

a less biased final estimator. Through experimentation, we find that splitting the

original data at the beginning of the process into treated and control units and

learning two separate trees for each group helps achieve a better overall effect. A

step-by-step description of the proposed procedure is presented in Algorithm 1.

As ensembles of trees almost always improve over simple ones, we incorporate

Extremely Randomised Trees for an additional performance gain. The procedure

remains the same on a high level, differing only in randomly selecting inner trees

at the time of sampling. Overall, we call this approach Debiasing Generative

Trees (DeGeTs) as a general framework, with DeGe Decision Trees (DeGeDTs)

and DeGe Forests (DeGeFs) for realisations with Decision Trees and Extremely

Randomised Trees respectively.

There are a few important hyperparameters (recall Section 2.5.1) to take care

of when using the method. Firstly, the depth of trees controls the granularity of

identified subpopulations. Smaller clusters may translate to less accurately modelled

distributions (too few samples), whereas too shallow trees will bring the modelling
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closer to the entire joint distribution which may result in not solving the problem

of interest at all. The other tunable knob is the number of new data samples to

generate, where more data usually equates to a stronger effect, but also higher noise

levels, which must be controlled to avoid destroying meaningful information in the

original data. Finally, the number of components in GMMs is worth considering,

where more complex distributions may require higher numbers of components.

As our method encourages higher modelling complexity, it is important to consider

overfitting, which can be taken care of through the standard practice of tuning

the hyperparameters mentioned above and cross-validation. This can be done

by using a downstream estimator’s performance as a feedback signal as to which

parameters work the best, which can also be tailored to a specific estimator of

choice. The number of GMM components can be alternatively optimised through

Bayesian Information Criterion (BIC) score. In order to make this method as

general and easy to use as possible, we instead provide a set of reasonable defaults

that we find work well across different data sets and settings. Default parameters:

max_depth = dlog2 Nfe − 1, where Nf denotes the number of input features,

n_samples = 0.5 × size(training_data), n_components ∈ [1, 5] — pick the one

with the lowest BIC score.

In addition, we observe the fact that DeGeTs framework goes beyond applied

Generative Trees and GMMs. This is because the data splitting part can, in fact,

be performed by other methods, such as clustering. Consequently, GMMs can

be substituted by any other generative models.

3.5 Experiments

There are a few aspects we aim to investigate. Firstly, how the established

reweighting methods perform in ITE estimation (see Section 2.2.3). Secondly, how

the choice of model class impacts estimation accuracy (misspecification). Thirdly,
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how our proposed method affects the performance of the base learners, and how it

compares to other methods. Finally, we also study how our method influences the

number of rules in pruned decision trees as an indirect measure of data complexity.

Although we do perform hyperparameter search (recall Section 2.5 for HPs) to

some extent in order to get reasonable results, it is not our goal to achieve the best

results possible, hence the parameters used here are likely not optimal and can be

improved upon more extensive search. The main reason is the setups presented

as part of this work are intended to be as general as possible. This is why in our

analysis we specifically focus on the relative difference in performance between

settings rather than comparing them to absolute SotA results.

The source code that allows for a full replication of the presented experiments is

available online2 and is based on the CATE benchmark3.

3.5.1 Data and Evaluation Metrics
We follow recent literature (e.g. [90–92]) in terms of incorporated datasets and

evaluation metrics. As such, our experimental setting involves the following datasets:

IHDP, Jobs, Twins, and News. The metrics used may differ across the datasets.

PEHE and εATE are used with IHDP, Twins and News, whereas εATT and Rpol

find their use with Jobs. See Sections 2.2.8 and 2.2.9 of Chapter 2 for more details

about metrics and datasets involved in this set of experiments.

3.5.2 Setup
We incorporate the following estimators.

Base Learners. Linear methods: Lasso (l1) and Ridge (l2). Simple Trees: pruned

Decision Trees, Extremely Randomised Trees (ET) [161]. Gradient Boosted Trees:

CatBoost [162], LightGBM [163]. Kernel Ridge regression with nonlinearities.

Dummy regressor returning the mean as a reference only.

2https://github.com/misoc-mml/undersmoothing-data-augmentation
3https://github.com/misoc-mml/cate-benchmark
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Reweighting Methods. Causal Forest [31], Double Machine Learning (DML)

[33], and Meta-Learners [32] in the form of T and X variations. See Sections 2.2.4

and 2.2.5 for a refresher on methods.

Debiasing Generative Trees. Our proposed method (Section 3.4). We include

the stronger performing DeGeF variation that involves Extremely Randomised Trees.

A general approach throughout all conducted experiments was to train a method

on the training set and evaluate it against appropriate metrics on the test set. 5

base learners were trained and evaluated in that way: l1, l2, Simple Trees, Boosted

Trees and Kernel Ridge. DML and Meta-Learners were combined with different

base learners as they needed them to solve intermediate regression and classification

tasks internally. This resulted in 3 × 5 = 15 combinations of distinct estimators.

Similarly, DeGeF was combined with the same 5 base learners to investigate how

they react to our data augmentation method. Causal Forest and dummy regressor

were treated as standalone methods. Overall, we obtained 27 distinct estimators

per each data set. In terms of Simple and Boosted Trees, we defaulted to ETs and

CatBoost respectively. For NEWS, due to its high dimensionality, we switched to

computationally less expensive Decision Trees and LightGBM instead.

As our DeGeF method is a data augmentation approach, it affects only the training

set that is later used by base learners. It does not change the test set in any

way as the test portion is used specifically for evaluation purposes to test how

methods generalise to unseen data examples. More specifically, DeGeF injects

new data samples into the existing training set, and that augmented training set

is then provided to base learners.

Hyperparameter search was also performed wherever applicable, though not too

extensive to keep our study as general and accessible as possible. The following is a

list of base learners and their hyperparameters we explored. ETs: max_leaf_nodes

∈ {10, 20, 30, None}, max_depth ∈ {5, 10, 20}. Kernel Ridge: alpha ∈ {0, 1e −

1, 1e−2, 1e−3}, gamma ∈ {1e−2, 1e−1, 0, 1e+1, 1e+2}, kernel ∈ {rbf, poly}, degree
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∈ {2, 3, 4}. CatBoost: depth ∈ {6, 8, 10}, l2_leaf_reg ∈ {1, 3, 10, 100}. LightGBM:

max_depth ∈ {5, 7, 10}, reg_lambda ∈ {0, 0.1, 1, 5, 10}. Causal Forest: max_depth

∈ {5, 10, 20}. For ETs, CatBoost, LightGBM and Causal Forest we set the number

of inner estimators to 1000. To find the best set of hyperparameters, we performed

5-fold cross-validation. When it comes to DeGeF, we set the number of estimators

to 10. The other parameters, like the number of new samples, tree depth and GMM

components, were set to defaults as recommended in the description of the framework.

All randomisation seeds were set to a fixed number (1) throughout all experiments.

Most of our experimental runs were performed on a Linux-based machine with 12

CPUs and 60 GB of RAM. More demanding settings, such as NEWS combined with

tree-based methods, were delegated to one with 96 CPUs and 500 GBs of RAM,

though such a powerful machine is not required to complete those runs.

3.5.3 Results
We incorporate the following estimator names throughout the presented tables: l1 -

Lasso, l2 - Ridge, kr - Kernel Ridge, dt - Decision Tree, et - Extremely Randomised

Trees, cb - CatBoost, lgbm - LightGBM, cf - Causal Forest, dml - Double

Machine Learning, xl - X-Learner, tl - T-Learner, degef - our DeGeF method.

Causal estimators can use different base learners to estimate, for instance, the

nuisance functions (see Section 2.2.5). This creates multiple possible combinations

of causal estimators and base learners. We denote different such combinations

with a hyphen, for instance, ‘dml-l1’. All presented numbers (excluding relative

percentages explained below) denote means and 95% confidence intervals (CIs).

Estimation performance. Tables 3.1 - 3.4 present the main results, where we

specifically focus on: a) relevant to a given data set metrics, and b) changes

in performance relative to a particular base learner. The latter is calculated as

((ra− rb)/rb)× 100%, where ra and rb denote results of advanced methods and base

learners respectively. The reason for analysing these relative changes rather than

absolute values is because in this study we are specifically interested in how more
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complex approaches (including ours) affect the performance of the base learners,

even if not reaching SotA results. For example, if a relative change for xl-et

reads ‘−20’, it means this estimator decreased the error by 20% when compared

to plain et learner for that particular metric. Changes greater than zero denote

an increase in errors (lower is better).

Data complexity. Table 3.5 shows the number of rules obtained from a pruned

Decision Tree while trained on original data and augmented by degef. The purpose

of this experiment is to explain the mechanism through which our method affects

the estimation performance of downstream learners. Here, we interpret the number

of induced tree rules as a model complexity level required to fit the data accurately.

Since our goal is bias reduction and undersmoothing, an increase in model complexity

after data augmentation would be desirable. Thus, by measuring model complexity

this way we can inspect the existence and strength of such desirable properties.

Note that sensitivity to noise and overfitting are not the subjects of interest in

this particular experiment.

3.6 Discussion

In terms of IHDP data set (Table 3.1), the classic methods (dml, tl, and xl) strongly

improve in ATE, but can also be unstable4 as it is the case with dml, specifically

dml-cb and dml-lgbm. Against PEHE, the situation is much worse as those methods

significantly decrease in performance when compared to the base learners, not

to mention catastrophic setbacks in the worst cases (deltas above 200%). Note

that not a single traditional method improves in PEHE (all deltas positive). Our

degef, on the other hand, often improves in both ATE and PEHE (see negative

deltas). Even in the worst cases with l1 and l2, degef is still very stable and does

4Unstable in the sense that certain combinations with base learners result in disproportionately
weak performances. We regard a causal estimator as ‘stable’ if all considered base learners
combinations for the estimator perform similarly.
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name εATE ∆% PEHE ∆%a

dummy 4.408± .103 - 7.898± .473 -
cf 0.397± .045 - 3.387± .318 -
l1 0.981± .106 - 5.790± .514 -
dml-l1 0.387± .043 −60.52 7.782± .691 34.42
tl-l1 0.273± .033 −72.19 7.858± .678 35.73
xl-l1 0.282± .034 −71.27 7.660± .678 32.31
degef-l1 1.051± .107 7.15 5.809± .514 0.33
l2 0.974± .104 - 5.786± .514 -
dml-l2 0.381± .040 −60.91 7.859± .691 35.82
tl-l2 0.273± .034 −72.02 7.810± .679 34.99
xl-l2 0.287± .034 −70.53 7.723± .678 33.47
degef-l2 1.093± .107 12.16 5.820± .514 0.58
dt 0.636± .084 - 4.025± .402 -
dml-dt 1.262± .116 98.50 6.679± .570 65.95
tl-dt 0.406± .044 −36.22 8.012± .698 99.07
xl-dt 0.529± .065 −16.81 7.317± .653 81.79
degef-dt 0.542± .075 −14.83 3.882± .384 −3.55
kr 0.356± .031 - 2.276± .170 -
dml-kr 0.616± .059 73.06 8.174± .728 259.16
tl-kr 0.167± .010 −53.02 8.024± .706 252.60
xl-kr 0.247± .023 −30.65 7.847± .698 244.82
degef-kr 0.316± .031 −11.18 2.149± .181 −5.58
et 0.519± .074 - 3.093± .322 -
dml-et 0.869± .082 67.61 6.532± .563 111.23
tl-et 0.306± .042 −41.01 7.445± .643 140.75
xl-et 0.453± .053 −12.63 6.875± .597 122.32
degef-et 0.394± .052 −24.03 2.818± .273 −8.89
cb 0.404± .038 - 2.179± .210 -
dml-cb 1.123± .052 177.88 6.976± .580 220.18
tl-cb 0.224± .027 −44.48 7.715± .664 254.10
xl-cb 0.388± .044 −3.97 6.894± .604 216.42
degef-cb 0.328± .032 −18.73 2.013± .190 −7.63
lgbm 0.412± .052 - 2.866± .273 -
dml-lgbm 1.516± .142 268.30 7.544± .632 163.25
tl-lgbm 0.255± .028 −38.10 8.002± .678 179.25
xl-lgbm 0.435± .046 5.53 7.602± .650 165.29
degef-lgbm 0.397± .051 −3.54 2.691± .250 −6.09

Table 3.1: Results for IHDP data set. Metrics are mean ± 95%CI (lower is better).
a∆% = change over the baseline (negative means improvement).
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name εATT ∆% Rpol ∆%a

dummy 0.029± .000 - 0.326± .000 -
cf 0.025± .000 - 0.294± .000 -
l1 0.005± .000 - 0.296± .000 -
dml-l1 0.012± .000 146.75 0.366± .000 23.43
tl-l1 0.012± .000 140.15 0.374± .000 26.10
xl-l1 0.022± .000 361.49 0.356± .000 20.16
degef-l1 0.054± .012 1010.26 0.296± .000 0.00
l2 0.034± .000 - 0.296± .000 -
dml-l2 0.008± .000 −77.14 0.374± .000 26.20
tl-l2 0.007± .000 −79.25 0.370± .000 24.75
xl-l2 0.011± .000 −67.37 0.361± .000 21.91
degef-l2 0.056± .009 62.76 0.296± .000 0.00
dt 0.029± .000 - 0.365± .000 -
dml-dt 0.149± .000 408.57 0.336± .000 −7.80
tl-dt 0.035± .000 21.07 0.351± .000 −3.68
xl-dt 0.037± .000 27.98 0.296± .000 −18.75
degef-dt 0.048± .014 64.01 0.335± .015 −8.12
kr 0.017± .000 - 0.400± .000 -
dml-kr 0.007± .000 −61.39 0.374± .000 −6.52
tl-kr 0.005± .000 −70.54 0.305± .000 −23.81
xl-kr 0.003± .000 −80.58 0.279± .000 −30.32
degef-kr 0.019± .012 11.82 0.299± .013 −25.16
et 0.006± .000 - 0.276± .000 -
dml-et 0.099± .000 1686.11 0.353± .000 27.66
tl-et 0.010± .000 86.50 0.295± .000 6.81
xl-et 0.004± .000 −36.17 0.235± .000 −14.87
degef-et 0.015± .009 167.98 0.270± .014 −2.24
cb 0.026± .000 - 0.308± .000 -
dml-cb 0.010± .000 −60.23 0.368± .000 19.42
tl-cb 0.026± .000 −0.50 0.250± .000 −18.86
xl-cb 0.045± .000 72.93 0.239± .000 −22.56
degef-cb 0.019± .007 −26.61 0.257± .030 −16.51
lgbm 0.029± .000 - 0.247± .000 -
dml-lgbm 0.191± .000 555.20 0.387± .000 56.81
tl-lgbm 0.004± .000 −86.33 0.305± .000 23.62
xl-lgbm 0.021± .000 −29.31 0.297± .000 20.20
degef-lgbm 0.021± .007 −27.62 0.283± .024 14.83

Table 3.2: Results for JOBS data set. Metrics are mean ± 95%CI (lower is better).
a∆% = change over the baseline (negative means improvement).



76 3.6. Discussion

name εATE ∆% PEHE ∆%a

dummy 0.033± .002 - 0.318± .004 -
cf 0.064± .001 - 0.323± .005 -
l1 0.042± .000 - 0.319± .004 -
dml-l1 0.028± .003 −33.55 0.318± .004 −0.29
tl-l1 0.052± .001 23.80 0.324± .005 1.59
xl-l1 0.053± .001 25.46 0.322± .004 0.71
degef-l1 0.064± .004 53.10 0.323± .004 1.18
l2 0.047± .002 - 0.320± .004 -
dml-l2 0.042± .001 −11.32 0.334± .009 4.25
tl-l2 0.042± .000 −10.47 0.337± .011 5.19
xl-l2 0.042± .001 −10.95 0.335± .010 4.83
degef-l2 0.067± .004 41.28 0.324± .004 1.10
dt 0.004± .005 - 0.319± .004 -
dml-dt 0.070± .011 1859.14 0.327± .002 2.53
tl-dt 0.062± .000 1631.81 0.334± .004 4.67
xl-dt 0.059± .000 1549.54 0.323± .004 1.20
degef-dt 0.064± .013 1697.62 0.349± .005 9.37
kr 0.045± .001 - 0.320± .004 -
dml-kr 0.055± .028 20.87 0.323± .012 0.99
tl-kr 0.050± .000 9.18 0.334± .006 4.45
xl-kr 0.043± .002 −4.96 0.325± .007 1.73
degef-kr 0.033± .004 −27.17 0.320± .004 0.15
et 0.027± .006 - 0.322± .003 -
dml-et 0.047± .002 74.36 0.320± .005 −0.32
tl-et 0.051± .000 87.25 0.327± .006 1.76
xl-et 0.050± .001 85.14 0.323± .006 0.53
degef-et 0.054± .007 96.91 0.335± .002 4.23
cb 0.039± .000 - 0.319± .004 -
dml-cb 0.078± .011 99.66 0.328± .002 2.65
tl-cb 0.051± .000 31.77 0.331± .008 3.65
xl-cb 0.048± .002 22.63 0.323± .006 1.04
degef-cb 0.051± .003 31.48 0.326± .004 2.06
lgbm 0.038± .000 - 0.327± .005 -
dml-lgbm 0.034± .007 −10.56 0.362± .008 10.90
tl-lgbm 0.042± .002 9.79 0.393± .009 20.34
xl-lgbm 0.039± .002 2.02 0.366± .009 12.18
degef-lgbm 0.042± .002 8.61 0.328± .006 0.56

Table 3.3: Results for TWINS data set. Metrics are mean± 95%CI (lower is better).
a∆% = change over the baseline (negative means improvement).



3. Undersmoothing Causal Estimators With Generative Trees 77

name εATE ∆% PEHE ∆%a

dummy 2.714± .212 - 4.381± .361 -
cf 0.544± .089 - 3.907± .481 -
l1 0.244± .068 - 3.370± .365 -
dml-l1 0.233± .062 −4.50 2.469± .269 −26.73
tl-l1 0.298± .052 22.13 2.166± .201 −35.74
xl-l1 0.220± .045 −9.75 2.152± .186 −36.14
degef-l1 0.225± .048 −7.86 3.370± .361 0.00
l2 0.260± .068 - 3.371± .366 -
dml-l2 0.236± .080 −9.08 5.108± .394 51.52
tl-l2 0.173± .030 −33.33 4.182± .343 24.06
xl-l2 0.174± .036 −33.09 4.162± .345 23.45
degef-l2 0.178± .041 −31.64 3.366± .362 −0.16
dt 0.344± .076 - 2.717± .277 -
dml-dt 4.523± .783 1216.23 5.875± .676 116.18
tl-dt 0.329± .062 −4.12 2.638± .222 −2.92
xl-dt 0.290± .060 −15.47 2.639± .263 −2.87
degef-dt 0.355± .080 3.22 2.727± .266 0.35
kr 0.715± .133 - 3.316± .367 -
dml-kr 2.544± .256 255.79 4.186± .399 26.25
tl-kr 0.198± .150 −72.27 2.677± .290 −19.26
xl-kr 0.229± .112 −68.00 2.695± .297 −18.72
degef-kr 0.582± .102 −18.61 3.256± .349 −1.80
et 0.276± .051 - 2.063± .200 -
dml-et x - x -
tl-et x - x -
xl-et x - x -
degef-et 0.290± .052 5.13 2.013± .167 −2.40
cb 0.127± .029 - 1.880± .179 -
dml-cb x - x -
tl-cb x - x -
xl-cb x - x -
degef-cb x - x -
lgbm 0.162± .045 - 2.074± .241 -
dml-lgbm 1.461± .181 799.12 3.240± .386 56.27
tl-lgbm 0.161± .033 −0.81 1.861± .138 −10.25
xl-lgbm 0.131± .042 −19.41 2.005± .228 −3.31
degef-lgbm 0.151± .042 −6.78 2.038± .228 −1.71

Table 3.4: Results for NEWS data set. Metrics are mean ± 95%CI (lower is better).
a∆% = change over the baseline (negative means improvement). Estimators marked with
‘x’ – no results due to unreasonably excessive training time.
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not destroy the predictions as it happened with the other approaches. Thus, our

method clearly offers the best improvements in PEHE and competitive predictions

in ATE while providing a good amount of stability.

In the JOBS data set (Table 3.2), classic methods again achieve strong improvements

in average effect estimation (see ATT) in best cases, though they can be substantially

worse as well (e.g. dml-et). In policy predictions, an equivalent of ITE, traditional

techniques are even less likely to provide improvements, except the X-Learner. With

respect to degef, it can also worsen the quality of predictions in ATT, as shown with

degef-l1, though it does not get as bad as with dml-et. However, even in that worst

example, policy predictions are not destroyed. The best cases in degef, on the other

hand, achieve strong improvements in policy. Similarly to IHDP, here degef provided

solid improvements in ITE predictions (policy) while staying on par with traditional

methods in ATT, obtaining reasonable improvements and keeping the worst cases

still better than the worst ones in the other methods, proving again its stability.

TWINS data set (Table 3.3), proved to be very difficult for all considered methods

when it comes to PEHE, though they did not worsen the predictions as well.

Some good improvements in ATE can be observed, but also noticeable decreases

in performance in the worst cases (combinations with dt). Our method behaves

similarly to the classic ones, offering occasional gains and keeping the decreases

within reasonable bounds. The stability of degef is especially noticeable in PEHE

as the worst decrease (degef-dt) is still better than in other methods.

The last data set, NEWS (Table 3.4), showed the traditional approaches can

provide some improvements in PEHE as well, at least in their best efforts, though

performance decreases are also noticeable in the worst ones. They also offer

quite stable improvements in ATE, except extremely poor dml-dt. The X-Learner

performs particularly well across both metrics (most deltas negative). Our proposed

method offers reasonable gains in ATE as well while keeping performance decreases

at bay even in the worst efforts. Even though degef provides little improvement
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in PEHE, it does not destroy individualised predictions either. Overall, this data

set showcases superior stability properties of degef particularly well, making it a

preferable choice if small but safe performance gains are desirable over potentially

higher but riskier improvements.

In general terms, the results show that performance can vary substantially depending

on the model class, even within the same advanced method (dml, xl, degef ). For

instance, DML proved to work particularly well with L1 and L2 as base learners,

whereas X-Learner often outperforms T-Learner, adding more stability to the

results as well. Our proposed technique usually offers significant improvements

in ITE predictions in the best cases, often better than traditional methods, while

keeping the predictions stable even in the worst examples. Classic methods are

clearly strong in ATE estimates but can struggle in individualised predictions.

Overall, these methods (dml, xl) proved to be less stable than ours, where the worst

cases can perform quite poorly, especially dml. This makes degef a safer choice

on average when considering various estimators, even more so when achieving the

best possible performance is not considered a priority.

The observation that the choice of model class can significantly impact estimation

performance opens up a more general question about possible reasons behind said

performance differences. We investigated this question closely from the perspective

of hyperparameters in another study [164], which offers rather surprising lessons. We

have found that hyperparameter selection plays a significant role in this in the sense

that, if done optimally (with access to a tuning oracle), the performance differences

among individual estimators become small, rendering model selection secondary

and suggesting that free lunches are possible under the right conditions. A wider

implication of this is that causal estimators are generally comparable with respect

to potential performance (only potential performance because optimal tuning is

impossible in practice) and that some of the performance differences we found

can be attributed to imperfect model evaluation, which in turn suffers from the

same challenges as causal estimation itself – missing counterfactuals and covariate
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shifts. As a result, while theoretically, many estimators are capable of similar

performance levels, the best one can do in practice is to perform hyperparameter

tuning as thoroughly as possible (which we do in our experiments here) to reduce

the influence of model evaluation imperfections.

We also investigate the number of rules in pruned Decision Trees as a proxy for

data complexity and required model complexity to accurately fit the data. As

presented in Table 3.5, degef significantly increases the number of rules across

all data sets, translating to an increase in data complexity. This proves that

augmented data encourages richer model families that are more likely to include the

true DGP, subsequently leading to reduced bias, undersmoothing, and decreased

misspecification. In addition, we observe that modest data complexity increases

in IHDP and JOBS correlate with strong degef gains in ITE estimation in those

two data sets, whereas a much bigger difference in TWINS (from 9.6 to 59.1)

correlated with considerably lower prediction performance gains (Table 3.3). This

suggests there is a practical limit to increased data complexity beyond which

performance benefits decrease.

After combining all the results, we can observe that degef : a) improves effect

predictions (Tables 3.1 - 3.4), and b) increases data complexity (Table 3.5). Both

points essentially demonstrate the positive effects our method has on prediction

performance (point (a)) and specific mechanisms enabling such benefits (point (b)).

More specifically, degef encourages higher modelling complexity (undersmoothing)

through increased complexity of the augmented data (point (b)). This reduces bias

and misspecification, which in practical terms improves prediction performance,

even under covariate shift (as per point (a)). In terms of theoretical guarantees, we

rely on [136] and [138], which provide a thorough formal analysis of the problem

of model misspecification and undersmoothing respectively.
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data set original data augmented data ∆%a

IHDP 33.6± 2.0 53.3± 2.6 58.63
JOBS 6.0± 0.0 11.3± 5.3 88.33
TWINS 9.6± 0.9 59.1± 11.9 515.63
NEWS 19.4± 2.5 32.0± 4.7 64.95

Table 3.5: Number of rules in a pruned Decision Tree with and without degef
augmentation. Numbers are mean ± 95%CI. a∆% = relative change in number of
rules. We interpret the number of tree rules as a proxy for model complexity required to
fit the data (more rules, more complex model), which is an indirect proof for increased
data complexity as a result of degef data augmentation (∆% column), confirming the
desired undersmoothing effect and reduced model misspecification has been achieved
successfully.

3.7 Conclusion

In this work, we proposed Debiasing Generative Trees, a novel data augmentation

method based on generative trees for improved estimation of heterogeneous causal

effects. Data augmented by DeGeTs through oversampling underrepresented data

regions reduces bias and undersmooths causal estimators trained on the data.

Higher modelling complexity of downstream learners achieved this way enriches

the model family that is more likely to include the true DGP and hence reduces

model misspecification. In practice, this results in more accurate predictions, even

with covariate shift, especially in individualised estimation where the consequences

of misspecification are exacerbated.

Our key finding is that our proposed approach offers significantly better performance

improvements in individual effect estimation, as compared to traditional reweighting

procedures while staying competitive on average effect tasks. Our method also

exhibits better stability in terms of provided gains than other approaches, rendering

it a safer option overall. Furthermore, we show through our experiments that

the choice of model class can significantly affect achieved performance, and that

reweighting methods can struggle on individualised estimation tasks. This links

with our recent research on hyperparameters suggesting that tuning alone can be

a source of major differences between performances [164]. Note, however, that
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hyperparameter optimisation is highly non-trivial in causal settings as it suffers

from the same challenges as causal estimation itself.

3.7.1 Limitations
In terms of possible limitations of our method, we assume the data sets we work

with have relatively low noise levels. This is because in noisy environments, the

inner GMMs would likely pick up a lot of noise and thus sampling from them

would result in even more noisy data samples. The result would be the opposite of

what we aim for, that is, to increase data complexity and bring new informative

samples, not to introduce bias in the form of noise. Thus, our method would likely

worsen base learners’ performance in such environments. Furthermore, we expect

extremely high-dimensional data sets may cause computational issues due to the

increasing depth of the inner trees. This is partly why setting a reasonable depth

limit is important. Our proposed method is also subject to the standard set of

assumptions (SUTVA and strong ignorability; see Section 2.2.2). Thus, scenarios

that violate those are outside the applicability of the method.

3.7.2 Future Work
In terms of possible future directions, it might be interesting to investigate the

feasibility of replacing generative trees with neural networks to handle extremely

high-dimensional problems. Another direction would be to instantiate DeGeTs

framework with alternative methods, such as standard clustering and generative

neural networks. Furthermore, extending our approach to data sets with a high

degree of noise could increase its applicability to a wider set of real-world tasks. In

addition, an in-depth theoretical analysis of specific mechanisms behind the increased

estimation robustness of the proposed method may further explain its effectiveness.
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Summary

• A novel data augmentation method based on Generative Trees proved to
successfully achieve the undersmoothing effect, as a result improving the
accuracy of downstream causal effect estimators.

• The proposed data augmentation approach is competitive with standard
methods on average treatment effects while performing significantly better
on individualised treatment effects.

• The choice of model class can significantly affect the final effect estimation
performance.

• Standard reweighting methods can struggle in individualised effect esti-
mation.
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4
Hyperparameter Tuning and Model

Evaluation in Causal Effect Estimation

Facing surprisingly non-trivial hyperparameter optimisation challenges as part
of the previous chapter motivated a thorough investigation of the issue. This is
the central topic of this upcoming chapter, which studies the complex interplay
of model class selection, tuning and metrics, and their impact on causal effect
estimation performance.
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4.1 Introduction

Modern ML methods are remarkably flexible and hence perfectly suited to causal

effect estimation, either as subcomponents of an overall causal inference procedure

(e.g. [32, 33]) or as an “algorithmic substrate” upon which further developments

take place (e.g. [31, 91]). However, the hyperparameters of ML learners must

be highly tuned to the dataset at hand to avoid large estimation errors [25]. In

practice, hyperparameter tuning heavily relies on accurate model evaluation (recall

Section 2.5.1), but this task is more challenging for causal than non-causal ML

for the fundamental reason that causal parameters (e.g. ATE, CATE) depend

on unobservable counterfactuals.

Specifically, a key practice in ML is to follow a model selection procedure that

reliably identifies the best solutions across a rich space of candidate models and

hyperparameters, each of which is evaluated using performance-validation metrics

and cross-validation. This task is especially difficult in causal effect estimation

because causal parameters are functions of the difference in ‘potential outcomes’

Y1 − Y0, where Y1 represents individuals’ outcomes under the treatment and Y0

represents those outcomes for the same individuals had they instead not received the

treatment: hence, one potential outcome is always ‘counterfactual’ and unobservable

[165] (see also Section 2.2.3).

For model evaluation, this means it is only possible to measure prediction error

compared to the observed outcomes Y = (1 − T )Y0 + TY1, where T = 1 for

individuals who are treated and T = 0 for individuals who are not. The prediction

error is then assessed using e.g. the observable Mean Squared Error (oMSE) based

on Y . Ideally, we would measure prediction error directly on Y1 − Y0, but the

corresponding potential Mean Squared Error (pMSE) is inaccessible (see Section

2.2.8 for such metrics). Were the observed data balanced between treated and

untreated units across the entire support of our pre-treatment covariates X, as in
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the case for data from RCTs, we could expect oMSE to be an accurate proxy for

pMSE. Or, to put it differently, this idealised setup would make it reasonable to

assume that the models with the best observed data fit (lowest oMSE) also have

the best potential data fit (lowest pMSE). We demonstrate the problem between

oMSE and pMSE with examples in Section 4.3.

Observational data, however, does not come from RCTs because treatment selection

is non-random and assumed to depend on X. This leads to a domain adaptation,

or covariate-shift, problem, as the distribution of X among treated and untreated

subjects can be very different [89] (see also Section 2.4.1). As a result, oMSE

can be a poor approximation of pMSE, as illustrated in Section 4.3. Because

hyperparameter tuning is so crucial for ML methods, bad oMSE can lead to badly

tuned ML models and, ultimately, to causal estimators with poor pMSE [166, 167].

To the best of our knowledge, this is the first study to investigate rigorously the

influence of hyperparameter tuning on causal estimator performance. In order to

achieve this, we look at a) the impact of the quality of hyperparameters on causal

estimation performance, and b) the effectiveness of observable metrics (oMSE) at

approximating ideal but inaccessible target metrics (pMSE) in the task of model

selection and tuning. The role of hyperparameters in causal estimation is under-

studied. Past research investigated the impact of broader model selection on causal

performance, that is, broader in the sense that both models and hyperparameters

are part of a single selection search space, making it impossible to analyse the

impact of only hyperparameters on performance (e.g. [168, 169]). At the same time,

many papers proposing new causal estimators employ different hyperparameter

tuning strategies, which makes it difficult to compare the performance of different

estimators in different studies and makes it difficult to assess the influence of

tuning on the final performance.

In terms of the effectiveness of observable metrics, other studies have already

acknowledged that oMSE can be a poor proxy for pMSE. Some propose new
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metrics to alleviate the issue [87, 166, 170–172], whereas others systematically

review currently available oMSE metrics [168, 169]. However, none of these studies

explores the potential performance achievable using pMSE metrics, which is crucial

to understanding the impact on practice, because counterfactuals are by definition

unobserved. We overcome this problem by leveraging causal inference benchmark

datasets, namely, IHDP, Jobs, Twins and News (Section 2.2.9).

These benchmark datasets are designed specifically to test the performance of causal

estimators and hence include the ground truth in the form of either counterfactuals

or causal effects, making metrics like pMSE available to us. However, note that

the training data sets used herein comprise only observational data (i.e., no

counterfactuals or causal effects) such that the ground truth and pMSE metrics are

used only for performance assessment purposes and not for model selection/tuning.

Our interest in model selection and evaluation metrics combined with the empirical

nature of this study, create a similar context to that found in two recent papers.

[168] compare the effectiveness of multiple observable metrics in model selection

using simulated data. [169] perform a similar analysis but attempt to make their

datasets more realistic through generative modelling [106], a concept previously

proposed by [173]. Both are useful for identifying the best model selection metrics

and for observing how model selection affects estimation performance. Our work

differs in two important aspects. First, in some of our experiments we limit our

model selection search spaces to hyperparameters only in order to study their

exclusive impact on individual causal estimators and their estimation performance

(see a) above). Second, we include ideal pMSE metrics in model selection to

obtain potential performances. This allows us to better understand the magnitude

of the consequences of oMSE inaccurately approximating pMSE (important for

hyperparameter tuning), and explore potential performances of causal estimators

given the right hyperparameters (see b) above).
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The rest of this chapter is structured as follows. Section 4.2 gives a brief background

overview on the topic of model selection and evaluation, followed by Section 4.3

discussing the challenges of model evaluation in the causal effect estimation setting.

The proposed methodology is described in Section 4.4. Obtained results are

presented and discussed in Section 4.5, with supplementary results also presented

in Appendix A.1. Section 4.6 concludes the chapter.

4.2 Preliminaries

There are two major topics fundamental to this work – the problems of causal effect

estimation and causal model selection. A thorough discussion on the former can be

found in Section 2.2 of Chapter 2 due to its wider use in this thesis. Model selection,

evaluation, and the specific challenges of the two posed by causal estimation, are

described further in this section. For a more comprehensive treatment of the subject

of model selection in causal settings, please refer to [168, 170].

4.2.1 Model Selection
No single model is universally better than others in all situations (no free lunch

theorem). Thus, a model most suitable to the task at hand must be selected every

time a new task is encountered, either manually by employing prior knowledge about

the problem or in a data-driven manner, the latter being the focus of this work. More

formally, the task is to select a modelMm∗ from a collection of candidate models

M = {M1, ...,MM} that minimises incurred loss L on validation data Dval after

being trained on training data Dtr. To simplify the notation, let us also introduce a

modelMm trained on training data Dtr as a predictive model Pm. We use Pm to

connectMm specifically with Dtr. Putting both equations together, we have

Pm = P(Mm,Dtr) (4.1)
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m∗ = argmin
m=1,...,M

L(Pm,Dval) (4.2)

To reduce the clutter, let us refer to winning models Mm∗ and Pm∗ as simply

M∗ and P∗ respectively. The goal could also be adjusted to maximise a scoring

criterion, instead of minimising a loss function. Note, candidate modelsM may

include different CATE estimators (e.g. X-Learner, Doubly Robust), base learners

(e.g. Linear Regression, Decision Tree) and hyperparameters (e.g. regularisation

strength, hidden layers). Therefore,M can be defined as a tuple {C, (B,H)} that

consists of causal estimators C and a pair of base learners and hyperparameter

values (B,H), with c ∈ ΩC and (b, h) ∈ ΩB,H. B and H must be a pair as not all base

learner-hyperparameter combinations are meaningful. Thus, it is clear that changing

any of the three will result in a new candidate model. An S-Learner with Linear

Regression as its base learner and a hyperparameter L1 = 0.1 could be one possible

example of a candidate model, say M1. Then, using the same CATE estimator

and base learner, but changing the hyperparameter to L1 = 0.5 now results in a

different modelM2. This is because, even though both models have the same Cc
and Bb, they differ in Hh, hence they are different candidate models (M1 6=M2).

Rewriting the problem to include all three search spaces explicitly results in

m∗ = {c∗, (b∗, h∗)} = argmin
c=1,...,C
b=1,...,B
h=1,...,H

L({Cc, (Bb,Hh)},Dval) (4.3)

Note that many causal estimators allow for multiple base learners to be defined, so

a single Bb may contain a tuple of multiple learners. Similarly, many base learners

have multiple tunable hyperparameters, hence it is acceptable for a single Hh to be

defined as a set of multiple hyperparameters. The loss L is commonly obtained on

a single validation set or through CV, where the final loss is an average of losses

obtained on each validation fold. For this reason, Dtr ∩ Dval is not necessarily ∅

(i.e. empty) in the case that CV is used. Following Equation (4.2), an example

with MSE as an evaluation metric would look like:

m∗MSE = argmin
m=1,...,M

MSE(Pm,Dval) (4.4)
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4.2.2 Evaluation of Model Selection
In addition to model evaluation for model selection purposes, assessing the effec-

tiveness of an evaluation metric at the task might also be desirable, especially

when comparing multiple metrics. In order to avoid overfitting, the evaluation of

model selection metrics should be performed on a separate set of data than model

selection itself. For this purpose, let us define validation and test data, Dval and

Dte respectively, as well as separate categories of validation and test loss functions

Lmval = Lval(Pm,Dval) (4.5)

Lmte = Lte(Pm,Dte) (4.6)

Note that (Dtr∪Dval)∩Dte = ∅ is always true, even in the case of using CV. Further,

we define the performance of a model selection metric Lval as the performance of a

model P∗val selected with Lval, but evaluated against the test set with a test metric Lte

L∗te = Lte(P∗val,Dte) (4.7)

Continuing the example in Equation (4.4), the model P∗MSE selected with MSE

validation metric can now be evaluated via a test metric PEHE (see Equation

(4.18) in Section 4.3). The value obtained is an assessment of MSE ’s performance

with respect to PEHE.

L∗PEHE = PEHE(P∗MSE,Dte) (4.8)

Therefore, the ultimate goal becomes to optimise for the test loss indirectly through

model selection performed on validation data. More generally, when considering

multiple validation loss functions L = {L1, ...,LV }, and a single test loss function

Lte of choice, the task can be defined as a nested optimisation problem, wherein

the goal is to select a validation loss function Lv∗ that, through its model selection,

optimises the test loss the best. That is

v∗ = argmin
v=1,...,V

Lte(P∗v ,Dte) (4.9)



92 4.2. Preliminaries

Acknowledging Lte as the desired ultimate goal, as shown by Equations (4.7) and

(4.9), creates the need to incorporate as much information about Lte into Lval as

possible. In practice, however, Lte may require access to the type of data unavailable

to Lval (e.g. counterfactuals in PEHE), making the task extremely challenging.

This important realisation of targeting Lte through available data is foundational

to targeted learning estimators [82] and evaluation metrics [171].

Oracle

The usual practice is to perform model selection on validation data, or a validation

task. However, to evaluate model selection metrics, it is also useful to consider

model selection on test data directly via test loss functions, completely bypassing

validation metrics that could on their own be the source of model selection bias.

This is defined as:

m∗∗ = argmin
m=1,...,M

Lte(Pm,Dte) (4.10)

ModelMm∗∗ ,M∗∗ for short, thus is a candidate model that achieves the best test

loss Lte among all candidate modelsM. Note thatM∗∗ may differ across different

test metrics Lte. Furthermore, its loss L∗∗te with respect to the same test loss function

Lte is the best possible among the defined collection of candidate models.

L∗∗te = Lte(P∗∗te ,Dte) (4.11)

Note, in some cases, test data Dte can contain ground truth information the

validation set does not have, such us true causal effects. Thus, in some sense,

M∗∗ can be perceived as the optimal model choice, at least concerning the chosen

test metric Lte and available test set. Due to this relative optimality, we refer to

Equation (4.10) as Oracle model selection, and the loss L∗∗te as Oracle performance.

An Oracle defined in such terms would arguably be a weak one due to it being

derived from sample, not population, data. However, assuming the sample test set

Dte closely reflects population data, our weak Oracle is expected to approximate
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the true Oracle reasonably well. Thus, for simplicity, we refer to the weak Oracle

as just Oracle throughout the rest of the text.

An example of Oracle performance with respect to test metric PEHE would be:

L∗∗PEHE = PEHE(P∗∗PEHE,Dte) (4.12)

Regret

Apart from Oracle performance being useful in order to show what performance

levels a model can achieve when detached from a possibly biased validation metric,

it is also useful in the effectiveness assessment of any validation metric. This is

because accurately estimating the test performance Lte is the ultimate goal, thus

such an assessment can reveal how far a test loss achieved through a validation

metric is from the aforementioned optimal test loss. That is:

Regret = |Lte(P∗∗te ,Dte)− Lte(P∗val,Dte)| (4.13)

Which can be interpreted as a regret of choosing a validation metric Lval that

selected model P∗val with respect to test metric Lte and the best model P∗∗te selected

via Oracle model selection. With the latter being simply the Oracle performance

L∗∗te , it can be rewritten to:

Regret = |L∗∗te − Lte(P∗val,Dte)| (4.14)

With the regret being zero when the validation loss Lval is as accurate in terms

of performance estimation as the test loss Lte.

Another perspective on Regret is that it is a measure of bias introduced by validation

loss function Lval as compared to the optimal test performance L∗∗te . An example

with MSE and PEHE validation and test metrics respectively would be as follows:

RegretPEHE = |L∗∗PEHE − PEHE(P∗MSE,Dte)| (4.15)

This metric has been already introduced in the literature in one form or another,

sometimes additionally normalised by the Oracle performance L∗∗te , as in [172].
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Furthermore, the problem of selecting the best validation score (see Equation

(4.9)) could also be rewritten in a way that instead of optimising the test loss

function Lte, it would minimise regret Regrette, though they in principle refer to

the same problem. Also, a Regret defined in such a way is in fact a weak Regret

as it is based on a weak Oracle. However, assuming the weak Oracle is a good

approximation for the true one, the weak Regret is also expected to be an accurate

enough approximation of the true Regret.

Rank Correlation

Regret in Equation (4.13) measures the validation metric’s ability to select winning

models, but it does not tell how accurately the rest of the candidate models were

scored by the metric. Measuring how validation and test scores of all candidate

models correlate with each other fills that gap, which is achieved with the Rank

Correlation (RC) metric as per below.

RC = corr(Lte(P ,Dte),Lval(P ,Dval)) (4.16)

Higher correlations translate to a validation metric being better at ranking (hence

‘rank’) candidate models from best to worst in relation to each other. An important

characteristic of RC is that it potentially exposes mistakes a validation metric

makes with respect to scoring non-winning candidate models. This is because

changing the rank order given by a validation metric, but only of non-winning

candidate models will, not change the Regret, but will likely result in a different

RC value. Such a characteristic makes rank correlation an important assessment

tool, supplementary to Oracle and Regret when evaluating validation scores and

their effectiveness at model selection tasks. An example of using RC for metric

evaluation in the literature can be found in [172].

4.2.3 Causal Model Selection Methods
When it comes to model performance evaluation, there are multiple approaches to

choose from. Perhaps the most straightforward and most prevalent in supervised
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learning is MSE between predicted and factual outcomes (see Equation (4.17)

below), also referred to in the literature as µ-risk [168] or factual validation [171].

The major shortcoming is the assumption that prediction error on factual outcomes

is an accurate proxy for prediction error on CATEs, which, as shown by [170] and

in Section 4.3, can have severe limitations. That is, it does not target CATE, only

µ0(x) and µ1(x) separately. Nevertheless, its ease of use and popularity in machine

learning make it a common metric of choice, similarly to R2.

In terms of selection methods tailored specifically to CATE estimation, the usual

goal is to work around the issue of missing ground truth (see Equation (4.18) below).

Many approaches attempt to synthesise it through another layer of CATE modelling

and treat it as a proxy for the final performance, also called plugin validation

[171]. More concretely, an additional CATE estimator is trained specifically on

validation data and then provides CATE predictions τ̃(x) on the same subset of

data. Cross-fitting is often employed here to avoid overfitting. From now on, those

CATE predictions τ̃(x) are treated as if they were true causal effects, but only for

model selection purposes. Any other candidate CATE estimator that is subject to

model evaluation is trained on training data and makes CATE predictions τ̂(x) on

validation data. To evaluate the candidate model, its predictions τ̂(x) are compared

to the synthetic ground truth τ̃(x), based on which model selection decisions can

be made. The semi-ground truth τ̃(x) is essentially plugged in instead of true

CATEs τ(x) into, for example, PEHE formula (see Equation (4.18)). Moreover,

some solutions involve predicting only counterfactual outcomes and obtaining τ̃(x)

by reusing given factuals, also referred to as imputed effects [32], whereas other

approaches do not use factual outcomes and predict τ̃(x) directly. Many models

have been used so far as a source of τ̃(x). One example is using matching with

a distance measure between data points to identify counterfactuals [170], or any

other CATE estimator [173], including neural networks [172], all of which provide

synthetic CATEs as a semi-ground truth. Generative models have also been used

to generate artificial potential outcomes and subsequently τ̃(x) [105, 106], with the

major drawback being the notorious instability of such models. However, the idea
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of synthesising CATEs shares the same inherent issue with CATE estimation itself,

that is, missing counterfactuals. This leaves the problem of model tuning of the

CATE synthesiser open. It is also arguably a paradoxical approach, as having a

model that accurately synthesises CATEs would solve the main problem in the

first place, rendering any further model selection pointless.

A response to possibly biased plugin validation is unplugged validation via influence

functions [171]. Another alternative is R-Loss derived from the main formula

of the R-Learner [87] (see Section 2.2.5), further extended to R-Score [86] that

penalises constant CATE predictions, similarly to R2 penalising constant outcome

predictions in general. Interestingly, it is also possible to rewrite R-Loss as a

reweighed ideal metric, such as PEHE [167].

4.3 Problem Demonstration

The graphical example in Figure 4.1 depicts some of the challenges of model selection,

or model evaluation in general, in causal effect estimation. It is extreme on purpose

to demonstrate the issues clearly and make it easier for the reader to appreciate

the difficulty of the task. More concretely, we show how systematically missing

data in small samples can affect, with a varying degree, goodness-of-fit and causal

metrics and possible further consequences of that.

Our example is a straightforward two-dimensional case, consisting of an input

feature X, response Y (both continuous), and binary (0, 1) treatment assignment T .

The DGP is a non-linear additive noise model where the mean of Y is sinusoidal in X

with independent and identically distributed normal errors. Treated cases are often

challenging to collect in practice (e.g. high costs, ethical reasons), leading to those

units being not fully representative of DGP behind the treated arm. In general, all

sorts of imbalances can arise from covariate shift and non-random selection, making

the task of modelling the DGP with available data certainly non-trivial. Taken to
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x

y

a) setting

x

b) case 1 (MSE = 0.13, PEHE = 1.03)

x

c) case 2 (MSE = 0.16, PEHE = 0.07)

x

d) case 3 (MSE = 0.69, PEHE = 0.04)

truth candidate test data treated missing control

Figure 4.1: MSE - evaluation metric on observed data (validation set/cross-validation)
used for model selection purposes (accessible with real datasets; lower is better). PEHE
- evaluation metric on unobserved test data (not accessible with real datasets due to
missing counterfactuals; lower is better).

the extreme, mostly for demonstration purposes, Subfigure a) depicts a possible

scenario we can find ourselves in (note faded treated units). Despite the missing data

problem, which in practice can exist in both treatment arms, the goal is to model

the underlying DGP as closely as possible and provide accurate treatment effect

predictions not only for observed units but also the ones the model has not seen in

training (see data points marked with ‘X’). The error for this is captured via the

PEHE metric (Equation (4.18) below), which is generally inaccessible due to missing
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counterfactuals in real datasets, but useful in simulations and benchmark datasets

designed specifically to assess the performance of CATE estimators where PEHE

practically becomes the metric to beat. The crucial difference between the two

is that MSE measures average prediction error on observed outcomes Y, whereas

PEHE quantifies errors on predicted CATEs (i.e. difference between outcomes

Y1 − Y0). That is, given an outcome prediction model µ̂t:

MSE = 1
n

n∑
i=1

(Y(i)
t − (1− t)µ̂0(x(i))− tµ̂1(x(i)))2 (4.17)

PEHE =
√√√√1

n

n∑
i=1

[(µ̂1(x(i))− µ̂0(x(i)))− (Y(i)
1 − Y

(i)
0 )]2 (4.18)

Note PEHE directly targets τ(x) = µ1(x)− µ0(x) and uses both Y0 and Y1 (one of

them is never observed), whereas MSE targets each of µ0(x) and µ1(x) individually

rather than the difference between them and involves only observed outcomes Yt.

Clearly, PEHE cannot be targeted directly using only the observed data, only MSE;

hence, it is tempting to assume that more accurate (in terms of MSE) outcome

predictions (better fit) will lead to accurate CATE estimates. However, the disparity

between model selection (MSE) and desired performance (PEHE) metrics, combined

with the aforementioned missing data issue can lead to undesirable solutions, as

demonstrated by Subfigures b) - d) and further discussed in the following paragraphs.

Even at this preliminary stage, it becomes relatively apparent that the model

selection task, which is perceived as a rather solved problem in supervised ML, is

a non-trivial challenge in the treatment effect estimation setting.

Case 1 (Subfigure b) The control data are fitted well, accurately capturing the

DGP for this part of the data. The model in the treated arm failed to

match the underlying trend due to the severity of data loss. This solution

is likely favoured if using standard model selection metrics, such as MSE.

Despite having the best MSE compared to the other two candidate solutions

(Subfigures c) and d)), this variant is not desirable due to poor generalisation
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in the treated arm and overall high CATE prediction errors, as correctly

captured by high PEHE.

Case 2 (Subfigure c) Both treatment arm models capture the true DGP very well.

Selecting a more complex model that matches the DGP trend in the treated

arm despite data loss is especially difficult with conventional performance

metrics (see worse MSE than Case 1). One possibility for a performance metric

to overcome this is to consider the task in its entirety (CATE estimation)

instead of fitting each arm separately. Or put differently, the information

about the trend in one treatment arm can be useful for modelling choices of

the other arm. This way of thinking leads to targeted learning [82] and in

general to more sophisticated causal model selection methods [87, 171]. Due

to better generalisation, the Case 2 solution is clearly preferred (better PEHE

than Case 1), but certainly non-trivial to identify (worse MSE than Case 1).

Case 3 (Subfigure d) This example is much harder to imagine in real-life sit-

uations, but can certainly happen when the goal is to beat SotA methods

concerning PEHE on causal benchmark datasets. These datasets are often

designed specifically to assess the performance of CATE estimators and

thus include true CATEs to enable such tests (PEHE is then possible to

calculate). While optimising for PEHE directly during the fitting process of

CATE estimators would be an unacceptable violation of good practices, it is

practically impossible to eliminate the exposure to PEHE completely to zero.

For instance, if one were to develop a new CATE estimator, checking PEHE

on the test set throughout the development might be an unavoidable step to

ensure low enough PEHE is achieved for the new estimator to be considered

worth paying attention to by the community and increase overall chances of

it being published. Due to such external judgements, the information about

the test PEHE may leak into the design of the new CATE estimator. A

possible result is an undesirable solution that misses the main DGP trends

and thus generalises poorly (the worst MSE of all 3 cases), but because of
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the information leak about test PEHE, it manages to win the competition in

terms of PEHE minimisation (and thus becoming a new SotA CATE estimator

on the benchmark). Examining the plots of course makes it easy to discard

this particular solution, but for high-dimensional X graphical representations

quickly become non-trivial and hard to interpret.

Examining the three example cases together, it can be observed that MSE is a rather

poor proxy for PEHE, which is quite counterintuitive as a better fit is believed

to generally lead to improved CATE estimates. Therefore, simple model selection

metrics, such as MSE, may not be sufficient to identify desirable solutions. Focusing

too much on benchmark datasets and (indirectly) on PEHE can be dangerous as well.

Just because a solution achieves a low level of errors on CATEs does not necessarily

mean this is the desirable solution. Let us consider the following hypothetical

scenario. A new CATE estimator has been developed (Case 2). Practitioners

perform model selection with MSE and thus choose to proceed with the Case 1

model due to lower MSE. On the other hand, the research community deemed the

Case 2 model not good enough, as the Case 3 estimator achieved better PEHE on

benchmark datasets. Both communities rejected a perfectly sound and desirable Case

2 solution. How do we overcome this situation? Shall we exploit the benchmarks too?

It is straightforward to pick the Case 2 solution by examining the plots. With actual

datasets, plotting is not an option due to the high dimensionality of input features,

leaving performance metrics as the only feedback signal. These are clearly not ideal,

as relying on any of them exclusively may result in undesirable solutions, as shown in

the examples. Perhaps an untapped potential lies in a combination of goodness-of-fit

and CATE loss measures, or variations of such. This is motivated by an observation

that even though the non-trivial Case 2 solution has neither the best MSE, nor the

best PEHE, its sum of MSE and PEHE is the lowest. As evidenced by the presented

simulation study and analysis, model selection in the causal effect estimation setting

is clearly non-trivial and poses many challenges. Performance metrics seem to play

an important role, possibly having a much stronger influence on the final performance
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of CATE estimation than it is commonly assumed. This motivates further study

on causal model selection, CATE estimators, and their interplay, but on datasets

closer to reality. This is the subject of the remaining content of this chapter.

4.4 Methodology

The goal of our experimental setup is to empirically investigate: a) the impact of

the quality1 of selected hyperparameter values on causal estimation performance,

and b) the effectiveness of observable metrics (oMSE) at approximating ideal but

inaccessible target metrics (pMSE) in the task of model selection and tuning.

Following Equations (4.5) and (4.6), we further assume that validation data consists

of background covariates, treatment and factual outcomes (Dval = {X,T, Yf}),

whereas test data of the same plus counterfactual outcomes (Dte = {X,T, Yf , Ycf}).

As a result, validation loss functions become observable metrics (Lval = oMSE)

and test loss functions equal to ideal (potential) metrics (Lte = pMSE). Thus, the

goal a) is to explore how different hyperparameters across the search space H affect

estimation performance Lte per each individual combination of estimators Cc and

base learners Bb. Whereas goal b) is about comparing performances L∗te achieved

via observable metrics Lval (Equation (4.7)) to potential (or Oracle) performances

L∗∗ obtained with ideal metrics Lte (Equation (4.11)) at the model selection task

across the search space (C,B,H).

The setup involves 4 datasets (Section 4.4.1), 6 observable metrics (Section 4.4.2)

and multiple CATE estimator combinations (7 CATE estimators, 9 base learners;

Section 4.4.3) coupled with various hyperparameter sets. Model selection metrics

are also evaluated using different quality measures (Section 4.4.5). Further details

about the experiments can be found in Appendix A.2.

1We introduce three categories when it comes to HP values: default, the best, and the worst.
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4.4.1 Data

We incorporate four benchmark datasets commonly used in the treatment effect

estimation literature, which were designed to assess the performance of CATE

estimators. These datasets are: IHDP, Jobs, Twins and News. Depending on the

characteristics and available information as part of the data, different performance

metrics Lte are used. With Jobs, εATT and Rpol metrics are used; otherwise εATE

and PEHE. Each dataset consists of a number of slightly different variations, often

referred to as realisations or simply iterations. While these numbers vary across

datasets (10-1, 000), we stick to 10 across all four, mostly due to computational

reasons, as we find that 10 iterations are already strongly indicative of the overall

performance of CATE estimators. See Sections 2.2.8 and 2.2.9 of Chapter 2 for

more details about metrics and datasets involved in this set of experiments.

4.4.2 Model Evaluation Metrics

This study incorporates multiple validation metrics that can be used for model

selection purposes. These are also referred to as observable metrics Lval.

MSE

The usual MSE measures aggregate squared error on factual outcomes. Lower is bet-

ter.

µ-risk = 1
n

n∑
i=1

(yi − µ̂t(xi))2 (4.19)

R-Squared

R2 measures the quality of variability in predictions. This is an important im-

provement over MSE as it penalises models outputting a constant value (or close

to it). Higher is better, where 1.0 is the best possible.

µ-riskR = 1−
∑
i(yi − µ̂t(xi))2∑

i(yi − 1
n

∑n
i=1 yi)2 (4.20)
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Plugin Validation

It involves fitting a CATE model on the validation set and then treating the

estimator as a source of (pseudo) ground truth a candidate model trained on the

training data is evaluated against. In order to avoid making predictions on the same

data set that was used for training, the usual approach is to perform cross-fitting.

The idea is similar to cross-validation, where data is split into K folds of the same

size. The training phase is exactly the same as in CV, but instead of performing

evaluation on the validation folds, we make only predictions on them, and store them

for later use. Through this process, we obtain τplug estimator which can be used as

an alternative source of ground truth when calculating various CATE metrics. The

usual approach is to use the formula for PEHE but use τplug instead of the actual

ground truth for individual effects. This gives us the Plugin PEHE formula as:

τ -riskPEHEplug =
√√√√ 1
n

n∑
i=1

(τ̂(Xi)− τplug(Xi))2 (4.21)

Since τplug can be treated as simply the source of true CATEs, a Plugin ATE

formula get also be obtained:

τ -riskATEplug =
∣∣∣∣∣ 1n

n∑
i=1

τ̂(Xi)−
1
n

n∑
i=1

τplug(Xi)
∣∣∣∣∣ (4.22)

Both of the above are separate model selection strategies as they provide different

feedback signals. The following estimators and base learners are used to obtain

τplug. CATE estimators: S-Learner and T-Learner (see Section 2.2.4). Base learners:

Decision Tree, Boosted Trees (LightGBM), and Kernel Ridge. Basic model selection

is also performed first for base learners. The same hyperparameter search space

is used as for the proper CATE estimators. R2 metric is used to select the best

combination via 5-fold CV stratified on treatment T [131]. Once the selection is

done, proper learning is performed to obtain τplug.
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Matching

As any CATE estimator can be plugged into τ -riskplug as τplug, we also experiment

with matching. For clarity, we denote it as τ -riskmatch to distinguish it from

regular plugins.

We obtain τplug through k-Nearest Neighbours (kNN) algorithm. Data points of each

treatment group are stored by a separate kNN instance, and then matching pairs

are found using opposite kNN instances. For example, to find counterfactuals for

all controls, control units are passed to the kNN instance that stored treated units,

resulting in treated units that match the best the control ones. The same process

is then repeated for the other treatment group. The overall result is predicted

(matched) counterfactuals, which combined with factuals, can be used to obtain

CATEs, further used as pseudo ground truth.

We use Euclidean distance in the kNN to find matching pairs. Along with the

default single-neighbour matching (k = 1), we also experiment with k = 3 and

k = 5. In those cases, the resulting counterfactual prediction is an average of k

nearest matches inversely weighted by their distance to the query point (closer points

have greater influence). Similarly to τ -riskplug, we also investigate the effectiveness

of both PEHE and ATE variants.

R-Score

We start by defining two nuisance functionsm(X) = E [Y | X] and e(X) = E [T | X],

estimates of which are plugged into the R-Loss formula [87]:

L(τ) = 1
n

n∑
i=1

([Yi − m̂(Xi)]− [Ti − ê(Xi)]τ(Xi))2 (4.23)

By inserting any candidate CATE estimator τ̂ , the R-Score, formulated by [86],

is then of the following form:

τ -riskR = 1− L(τ̂)
minτ L(τ) (4.24)
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With the denominator being a simple linear CATE model that achieves the lowest

loss. Similarly to R2 that penalises constant-valued predictions, τ -riskR treats the

linear CATE model as its baseline, and hence penalises predicting constant effects.

Higher is better, with a value of 1.0 being a perfect score. A negative score suggests

worse performance than predicting constant effects.

Estimates of the nuisance functions m(X) and e(X) are obtained through cross-

fitting, same as with τ -riskplug. Consequently, the same base learners are used to

obtain m̂(X) and ê(X), that is, Decision Trees, LightGBM and Kernel Ridge. The

only difference is the need to use regressors and classifiers to get m̂(X) and ê(X)

respectively. In addition, basic model selection is performed for both nuisance

functions via stratified 5-fold CV [131].

The initial idea of the R-Loss (Equation (4.23)) comes from [87]. They recommend

using Gradient Boosted Trees (XGBoost), which we do incorporate but in the

form of LightGBM. Further extension to a more robust R-Score (here τ -riskR;

Equation (4.24)) is credited to [86].

Policy Risk

Whenever it is possible to obtain Rpol metric (see Section 2.2.8), which is the

case with the Jobs dataset (see Section 2.2.9), it can also be used for model

selection purposes. The only important difference is to obtain it on validation

data, instead of the test set.

4.4.3 Estimators
We use the following CATE estimators: S-Learner (SL), T-Learner (TL), X-

Learner (XL) [32], Doubly Robust (DR) [81], Double Machine Learning (DML) [33],

Inverse Propensity Score Weighting (IPSW) [174], Causal Forest (CF) [31]. Many

are provided by EconML [86]. See Sections 2.2.4 and 2.2.5 for descriptions.

We then combine with the following Base learners: Lasso Lars (L1), Ridge

Regression (L2), Decision Trees (DT), Random Forest (RF), Extremely Randomised
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Trees (ET) and Kernel Ridge (KR) accessed via scikit-learn [175]. Gradient Boosting

Trees as LightGBM (LGBM) [163] and CatBoost (CB) [162]. Feedforward NNs

realised via TensorFlow [176].

Each combination of CATE estimators and base learners is treated as a separate

model, such as SL-L1 or DR-RF. We combine all learners to obtain the experi-

mental setup. The only exceptions are NNs, combined only with SL and TL for

computational reasons, and CF (standalone estimator, no choice of base learners).

All CATE estimators, base learners and hyperparameters refer to search spaces

C, B and H respectively in Equation (4.3). Following standard industry practice,

we perform 10-fold cross-validation [131].

4.4.4 Hyperparameters
The hyperparameters and corresponding ranges of values that were explored as

part of using various base learners are listed in Table 4.1. Moreover, whenever

ensemble learners were used, such as RF, ET, CB, LGBM and CF, the number of

inner learners (n_estimators) was set to 1, 000. When it comes to NNs, we used

relu activations, 0.25 dropout, 0.01 L2 regularisation in the output layer, 10, 000

optimisation steps (not epochs) and Adam optimiser [177]. All hyperparameters

refer to the search space H in Equation (4.3).

4.4.5 Validation of Model Evaluation Metrics
In order to investigate the effectiveness of model evaluation metrics, we incorporate

the following quality measures. First, by recognising the fact that the priority is

to optimise the accuracy of CATE estimation, we judge a validation metric’s Lval
quality by the performance of the modelM∗

val it selects against the test metrics

Lte that are applicable for a particular dataset. See Equations (4.2) and (4.7).

Each validation metric is evaluated against all test metrics. Oracle performances

L∗∗ (Equation (4.11)) are also collected for all test metrics and compared to those

achieved via validation metrics. While Oracle performances are not accessible when

dealing with real datasets (lack of ground truth; missing counterfactuals), it is
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base learner hyperparameter values
L1 and L2 alpha {.001, .01, .1, .5, 1∗, 2, 10, 20}

max_iter {1000∗, 10000}
DT, RF, ET and CF max_depth {2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20∗}

min_samples_leaf {.01, .02, .03, .04, .05, 1∗, 2, 3, 4, 5, 6, 7, 8, 9}
KR alpha {.001, .01, .1, 1∗}

gamma {.01, .1, 1∗, 10, 100}
kernel {rbf, poly∗}
degree {2, 3∗, 4}

CB depth {5, 6, 7, 8, 9, 10∗}
l2_leaf_reg {1∗, 3, 10, 100}

LGBM max_depth {5, 6, 7, 8, 9, 10∗}
reg_lambda {0, .1∗, 1, 5, 10}

NN hidden_layers {1, 2}
hidden_units {4, 8, 16, 32, 64, 128}
learning_rate {.0001, .001}

batch_size {32, 64, 128, full}

Table 4.1: Hyperparameter search spaces defined per base learner. *Default hyperpa-
rameter values.

certainly a useful tool for this study to measure how biased different model selection

approaches can be (specifically to analyse how far apart observable and potential

metrics are). Moreover, using this method can shed some more light on the real

capabilities of various CATE estimators, showing what they can potentially achieve

if model selection choices are optimised for the ideal target Lte.

4.5 Results and Discussion

In order to provide context for the presented numbers, we compare our results

to recent literature on causal effect estimation. These include TARNet and CFR-

WASS [91], SITE [92], GANITE [95], CEVAE [94], as well as BLR, BNN-4-0 and

BNN-2-2 [90]. Instead of picking only the best-performing estimator per dataset

and test metric, we select multiple best ones that effectively form a range of values

that here we consider as state-of-the-art performance levels. This is represented

as grey areas in the following plots. The only exception is the Twins dataset for
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which no results with respect to εATE metric are available. For this reason, we

set the range ourselves to [0.0, 0.1].

Our first goal is to analyse how the quality of hyperparameters impacts effect

estimation performance across different causal estimators. For each CATE estimator-

base learner combination (Cc,Bb), and across all hyperparameters H, we select three

types of hyperparameters: default as defined by code packages, those that achieve

the worst test metrics values (max Lte), and those that attain the best test metrics

values (min Lte, effectively L∗∗, or Oracle). Figure 4.2 depicts obtained results.

Clearly, changing only hyperparameters and their quality influences estimation test

performance by a significant margin. In fact, to the extent that hyperparameters

alone can decide whether estimation performance is below or above SotA levels

(e.g. green vs. orange dots). Across all datasets, there are very few instances with

quality hyperparameters (green) that do not meet SotA levels (above or to the

right of grey areas), suggesting that quality hyperparameters are sufficient for great

estimation performance. Furthermore, quality hyperparameters (green colour) are

evidently necessary to surpass SotA in IHDP and Jobs datasets (below or to the

left of grey areas). In Twins, only quality cases are below a high-standard value of

0.01 εATE. Results on News are less conclusive, though the concentration of green

points is still the best (closest to the bottom left corner) among the three groups.

In our further analysis, we take a closer look at how estimation performance varies

across different causal estimators when picking only quality hyperparameters. This

is to investigate if and how the sufficiency of quality hyperparameters differs between

specific causal estimators. More specifically, we analyse all combinations of CATE

estimators and base learners (Cc,Bb), and from all explored hyperparameters H, we

select only those instances that achieved the best test metrics values (i.e. Oracle

performances). The results are presented in Figure 4.3, which are essentially the

green points distilled from Figure 4.2 but grouped by types of CATE estimators

and ML base learners. Certainly, the vast majority of presented estimators either

meet (all datasets) or even surpass (all datasets except Twins) SotA performance
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Figure 4.2: Performance of CATE estimators with three different types of quality of
hyperparameters across all four datasets. Each data point represents the mean across
dataset iterations. Lower is better applies to all metrics, thus the closer to the bottom-left
corner, the better. Note the logarithmic scale for all axes to aid visual presentation except
policy risk in Jobs. Dots which are below and left of grey SotA boxes beat SotA.

levels (within, below or to the left of the grey area). This is true regardless

of CATE estimators and base learners, with very few exceptions. For example,

linear models (L1 and L2) combined with SL and IPSW underperform in IHDP,

perhaps due to them being inherently too simple to fit the solution. Some instances

involving DR performed particularly poorly, which could be due to estimated

propensities being too close to zero, a known issue of propensity-based methods

[84]. Note, that a similar type of analysis could have been performed to support

the necessity of quality hyperparameters (distil orange or blue dots from Figure
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Figure 4.3: Performance of CATE estimators with the best hyperparameters across all
four datasets, grouped by types of causal estimators and base learners. Each data point
represents the mean across dataset iterations. Lower is better applies to all metrics, thus
the closer to the bottom-left corner, the better. Dots which are below and left of grey
SotA boxes beat SotA.

4.2). However, hyperparameter tuning is already recognised by the ML community

as recommended practice, making any further analysis in this direction beyond

Figure 4.2 rather unnecessary.

Our results presented so far show that estimators equipped with the right hyper-

parameters can perform surprisingly well. However, finding those well-performing

hyperparameters in a data-driven way requires an observable metric that can be

used in the process of hyperparameter tuning. In Figures 4.2 and 4.3, we used
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Figure 4.4: Performance of model selection metrics across all four datasets. Each data
point represents the mean across dataset iterations. Lower is better applies to all metrics,
thus the closer to the bottom-left corner, the better. Dots which are below and left of
grey SotA boxes beat SotA.

potential metrics to select the best hyperparameters to show the true capabilities of

common causal estimators, but those metrics cannot be used in tuning in practice

as they require access to true CATEs (inaccessible in real life scenarios). For

this reason, the next step is to investigate how effective are various observable

metrics at selecting the best solutions (hyperparameters/models). The solutions

they select are evaluated against test metrics, which are effectively a measure of

the quality of considered observable metrics. The search space here includes all
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CATE estimators C, base learners B and hyperparameters H, processed by

each metric and its variation. As a consequence, each dataset iteration can be

‘won’ by a completely different estimator type (as opposed to previous experiments).

Also, because the entire search space (C,B,H) is now considered, the task at hand

is no longer just hyperparameter selection, but rather model selection (choosing

among C and B), though they both use metrics for the same purpose – model

evaluation (see also Section 2.5.1). To reveal the bias of observable metrics, we

also include potential (Oracle) performances achieved when using ideal (potential)

metrics instead of observable ones to select winning candidate models (see Oracle).

Results obtained are presented in Figure 4.4. First, the performance obtained varies

substantially among metrics, especially among those that perform internal learning

(same colour but different shapes). Choosing between εATE and PEHE as feedback

signals (see τ -riskplug and τ -riskmatch) also makes a difference. This shows the choice

of a selection metric can seriously impact the final estimation performance (meeting

or not meeting SotA levels) and makes it a very important choice to make during

the modelling process. Another important observation is that, although SotA

performance is available through many observable metrics, clearly none of them

reach the best possible performance achieved via ideal metrics (Oracle). Indeed, the

gap itself is to some degree unsurprising as observable metrics are only imperfect

proxies for the potential ones. However, the magnitude of the gap is considerable

to the extent that suggests better model selection metrics should be feasible if this

problem receives enough attention in the future. This gap also indirectly shows

that the quality hyperparameters that suffice for excellent estimation performance

(shown in Figures 4.2 and 4.3) might be hardly identified by observable metrics.

4.6 Conclusion

This study provided empirical evidence that the right hyperparameters, with respect

to ideal metrics, are sufficient and necessary (empirically speaking) in order to
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reach, or even exceed, SotA performance levels in causal effect estimation. In

most cases, this holds true across different types of causal estimators and ML

base learners, encouraging to prioritise the selection of good hyperparameters

over the choice of estimators and learners. Another implication is that both

excellent and poor estimation performances can be achieved by only changing

hyperparameter values. This places a big question mark on published benchmarks

that test various estimators. If hyperparameters account for such a big part

of the estimation performance, should claimed performances be credited to the

method itself or well-identified hyperparameters? The fact that studies often

use different metrics to optimise hyperparameters only adds complexity to this

issue. Furthermore, we also show the quality of hyperparameters/models selected

with different metrics varies significantly. As a consequence, the choice of model

evaluation metric highly impacts the resulting estimation performance. In addition,

we show that observable metrics (feasible with observational data) select considerably

worse hyperparameters/models as compared to those selected with ideal (but

normally inaccessible) metrics. While the discrepancy is unsurprising, mostly due

to observable metrics being imperfect proxies for ideal ones, its size encourages

the development of more robust model selection methods.

Through substantial empirical evidence, we make a strong case that more focus

on metrics is needed for causal learning problems. In this, we connect with the

theoretical work on the validation of causal models by [171]. In their framework,

oMSE is a special case of plug-in loss in which the counterfactuals are ‘synthesised’

through elements of the candidate causal model (their Equation (6)), and pMSE is

a special case of expected loss under the true causal model used to generate the

observed data (their Equation (5)). They propose a targeting procedure based

on theoretically derived influence functions to update the plug-in estimate to lie

closer to the solution that would have been obtained had pMSE been available (see

their Theorem 1). The approach implemented in their paper (based on a first-order

Von Mises expansion as set out in their Theorem 2) will work well in terms of

choosing the best model if the plug-in estimate lies inside a tight neighbourhood
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of the true value, but our results indicate that this cannot be guaranteed to hold.

We argue strongly, therefore, that more attention to overcoming this problem is

needed from theorists and methodologists (e.g. implementing Alaa and Schaar’s

influence function approach for higher-order, and thus more accurate, Von Mises

expansions) because this is of vital importance for practice.

An overall takeaway is that contrary to common belief, popular causal estimators

can provide excellent estimation performance given the right hyperparameters,

but currently available observable metrics fail at identifying these miraculous

hyperparameters. This, however, does not mean they are unreachable. Highly

interpretable models, such as linear regression or decision trees, provide intuitive

hyperparameters that can be manually tuned to the problem at hand by domain

experts by ingraining their prior knowledge into the model via hyperparameters. This

is our practical recommendation until more robust observable metrics are developed.

4.6.1 Limitations
This study is limited in a few ways. First, we make the usual set of assumptions

about the data, that is, SUTVA and strong ignorability (see Section 2.2.2), which

may or may not hold in practice. Secondly, the experimental setup has some

shortcomings, mostly due to computational reasons. While an effort was put into

exploring relatively wide search spaces to make our findings as general as possible, a

practical balance had to be found to ensure computational feasibility. This applies

to explored hyperparameters of base learners as well as combinations of base learners

in CATE estimators. More concretely, if a CATE estimator uses multiple base

learners, only one type of learners is explored at a time, never mixing multiple types

of learners simultaneously. For instance, in the case of a T-Learner with two internal

base learners per treatment arm, if the goal is to combine it with Decision Trees

then both internal regressors will be Decision Trees. If we explore it with Random

Forests, both regressors are then Random Forests. And so on. As some CATE

estimators incorporate as many as 5 base learners (e.g. X-Learner), we further cut

down the search space by assigning the same hyperparameter values for all base
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learners while exploring different variations of hyperparameters. This is possible

because all base learners are always of the same type within a CATE estimator.

Finally, the setup is limited by our choice of CATE estimators, base learners, model

evaluation metrics and datasets. However, regardless of those shortcomings, we

believe the proposed setup is general enough to support our findings, and extending

it would unlikely alter the main observations fundamentally while unnecessarily

increasing the computational burden significantly.

4.6.2 Future Work
In terms of future work, given the excellent performances achieved here with

already established estimators, we argue new causal estimators are not needed

for meaningful progress in causal effect estimation. Rather a more thorough

understanding of the causal model selection and hyperparameter tuning is required,

as once recognised in ML [25], that will eventually unlock those great performances

we showed are possible but on real-life observational datasets. Recent studies indeed

push the frontier in this area (e.g. [87, 171, 172]), but many of the proposed model

selection methods involve another layer of learning, on top of causal estimation,

which is again subject to hyperparameter tuning, making them very unstable in

practice. Perhaps there are alternative ways to be explored for improving causal

hyperparameter tuning without relying on learning methods. Moreover, as the

number and complexity of causal model selection approaches increase, new tools

and frameworks might be needed to facilitate the use of the latest selection methods

and help practitioners in the complex task of model evaluation in the causal setting

(e.g. [178]). The sensitivity of causal estimators to hyperparameter choices could

also be studied further by, for example, investigating whether said sensitivity

changes as we modify the sample size of the data. Finally, due to the importance

of hyperparameters in the estimation performance and inconsistent practices in

published benchmarks, some form of standardisation in model tuning across the

field of causal inference might be necessary to overcome this issue in the future.

One possibility is to develop a public benchmarking platform that would test and
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tune all types of causal estimators equally thoroughly, something that has been

done in the causal discovery community [179].
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Summary

Major findings:

• The right hyperparameters, with respect to ideal/potential metrics, are
sufficient and necessary (in an empirical sense) to attain excellent
causal effect estimation performance, regardless of types of causal
estimators and base learners, provided that the ML learners are chosen
to be flexible enough to fit the problem at hand. Conclusion: using the
right hyperparameter selection methodology is far more important than
selecting causal estimators and base learners.

• For most common causal estimators, there exists a set of suitable hy-
perparameters for which they reach or even surpass state-of-the-art
performance based on observed metrics for other estimators and learners.
Conclusion: hyperparameters alone can be used to significantly change the
estimation performance, questioning recent benchmarks.

• The quality of hyperparameters/models selected with different commonly
used observable metrics varies substantially. Conclusion: the choice
of the (observable) metric used in hyperparameter tuning/model selection
highly impacts achieved estimation performance.

• Commonly used observable metrics select significantly worse hyperpa-
rameters/models as compared to those selected with ideal but normally
inaccessible potential metrics. Conclusion: better observable metrics
are needed to unlock, or reduce the gap to, those excellent potential
performances.

Minor findings:

• It is uncommon for a single causal estimator to provide accurate estimates
for individual and average effects simultaneously.

• Using an evaluation metric that matches the estimation target may
improve ranking, but not necessarily select the winning model.
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5
Robustness of Algorithms for Causal

Structure Learning to Hyperparameter
Choice

The newly discovered importance of hyperparameters in causal inference was
the catalyst of renewed interest in causal discovery methods within this project
as now hyperparameters have become one of the possible causes of previously
encountered issues with using the methods within real-world settings. This
forthcoming chapter explores such a possibility by analysing how the causal
graph recovery performance is influenced by the choice of hyperparameters across
different methods, with a particular emphasis on robustness to misspecified cases
due to its relevance in (unsupervised) causal structure learning.
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5.1 Introduction

Uncovering causal graphs is a useful tool in data-driven decision-making as it helps

understand the underlying DGP. A large number of CSL algorithms (see Section

2.1.3) incorporate ML methods. These, in turn, heavily rely on HPs (Section 2.5) for

accurate predictions [25]. In addition, there has been growing evidence that correctly

specified HPs can close the performance gap between SotA and other methods [164,

180–182]. Are hyperparameters as important in causal structure recovery?

Hyperparameter optimisation is extremely challenging in CSL as the true graphs

(see Section 2.1.1) are inaccessible outside of simulated environments. This inability

to reliably tune could be one of the reasons behind the struggle to apply some

of the algorithms to real data problems [75], or why HPs are often completely

neglected in this area. On the one hand, benchmarks and evaluation frameworks

(e.g. [183, 184]) usually focus on finding a learning algorithm that works best under

specific circumstances but without considering HPs as part of the problem. On the

other hand, studies that address HP tuning (e.g. [185, 186]) consider individual

algorithms, but not the impact of tuning (or the lack of it) on selecting the best

algorithm for the available data. Understanding how HPs affect algorithm choice,

as well as individual methods, is clearly missing but can be a crucial next step

toward more stable causal discovery in real data applications. To make matters

worse, the evaluation metrics used for tuning can be imperfect and sometimes favour

specific learning methods [26]. This brings us to the core questions of this chapter:

Do different algorithms perform similarly given access to a hyperparameter oracle?

How robust are they against misspecified hyperparameters?

In this work, we set out to address these questions and investigate the impact HPs

have on the causal graph recovery performance of individual algorithms, as well as
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on the best algorithm choice (see Figure 5.1). We start by showing how a single

HP plays a crucial role in the simplest causal graph problem (two variables). More

extensive experiments strengthen this observation and confirm it as a more general

phenomenon. The experimental setup involves many seminal CSL algorithms (see

Section 2.1.3) tested against real and simulated datasets.

Contributions. This work offers the following contributions:

• Compare algorithms’ performances and their winning percentages across

hyperparameters.

• Compare algorithms’ performances under well-specified and misspecified

hyperparameters.

• Compare algorithms’ winning percentages under well-specified and misspecified

hyperparameters.

NOTEARS

FGES

Algorithms

HPs

HPs

 
 

 
 

 
 

 

SHD

NOTEARS

FGES

...

HP quality 
 
        best
 
        sim_mean
 
        worst

Figure 5.1: Summary of the main idea. We explore various causal structure learning
algorithms and investigate how hyperparameters affect their performance. Notation: h1
and h2 are different hyperparameter values; X denotes IID data provided to algorithms; Â
is recovered adjacency matrix while G(Â) is a causal graph based on Â; SHD is structural
Hamming distance (lower is better). Note how recovered causal graphs differ between
different hyperparameters of the same algorithm (green edges are correct; red incorrect).
sim_mean are hyperparameters that achieved the best average performance across all
simulations.

Related work. This work connects with the existing literature mainly through

the topics of performance evaluation and HP analysis. The performance of CSL

algorithms has been evaluated from several different perspectives, such as mixed data

types [183] or time series data [187]. In an attempt to strengthen the evaluation,
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there have been efforts to develop testing environments that closely resemble

real-life datasets. Some examples include simulators based on gene regulatory

networks [188] or neuropathic pain pathology [184]. [189] take evaluation further by

proposing to test algorithms on the parts of real-life datasets that are known a priori.

Furthermore, to improve reproducibility, [179] developed a benchmarking platform

that covers a wide range of learning methods and data scenarios. The importance

of hyperparameters and their impact on performance has been mostly studied in

other areas outside of CSL. In the offline RL setting, [180] reported, among other

aspects, that robustness to hyperparameter choices1 is an important issue and

that careful tuning can deliver close to optimal policies. [181], on the other hand,

makes a case for hyperparameter tuning in model-based RL. Similar observations

have been reported in causal effect estimation [164], graph learning [182], code

classification [190] and evolutionary algorithms [191], where SotA performance levels

are attributed to HPs alone. HPs have been also studied in the broader context of

“tunability” [132] and optimisation approaches [133]. Some notable recent works

even challenge our current understanding of how HPs interact with loss functions

[192] and decision boundaries [193]. HPs in CSL have mostly been discussed in

the context of tuning. One common approach is to select hyperparameters that

result in stable predictions of causal structures across random data samples [185,

194, 195]. Another strand of work performs out-of-sample validation for tuning

purposes based on predictive accuracy of models fitted in accordance with the

recovered causal graph structure [186], or assigned scores developed specifically

for CSL tuning [196]. Metrics based on regression error have been also considered

[110], though in the context of two variables.

Chapter structure. In Section 5.3 we demonstrate the importance of hyper-

parameters in CSL via a bivariate example, further motivating more extensive

numerical experiments presented and discussed in Section 5.4. Further sections

include extended details about the experiments (Appendix B.3), show supplemental

1Robustness is seen as low sensitivity of the final performance to hyperparameter choices.



5. Robustness of Algorithms for Causal Structure Learning to Hyperparameter
Choice 123

results (Appendix B.1), and offer additional recommendations for practice (Appendix

B.2). Section 5.5 concludes the chapter and offers potential future work directions.

5.2 Causal Structure Learning

Throughout this chapter, we build upon the assumptions and fundamental ideas

of CSL introduced in Section 2.1 of Chapter 2. Since the graphical and functional

causal graphs from Section 2.1 are of core interest in this chapter, we will now

define them more rigorously to aid further technical discussions around them. CSL

algorithms that we take into account in this chapter are presented in Section 5.4.2.

Graphical. Let G = (V, E) be a graph with nodes/vertices V = {1, . . . , p} and

edges E ⊆ V 2. Edges are pairs of nodes (j, k) ∈ V where (v, v) /∈ E to exclude

self-cycles. Nodes j, k are adjacent in G if either (j, k) ∈ E or (k, j) ∈ E . An

edge is undirected if (j, k) ∈ E and (k, j) ∈ E , whereas it is directed if only

one pair appears in E2; if this pair is (j, k) then j is called a child of parent k.

The set of parents of j in G is denoted by PAGj . We call G undirected if all its

edges are undirected; conversely, G consisting only of directed edges is directed. A

mixed graph consists of both directed and undirected edges. The skeleton of any

directed or mixed graph G is an equivalent graph with all directed edges replaced

by undirected ones. A fully connected graph G is one where all pairs of nodes are

adjacent. A (directed) path is a sequence of nodes connected by (directed) edges.

A partially directed acyclic graph (PDAG) is a mixed graph such that there is

no pair (j, k) such that there are directed paths from j to k and vice versa. Then,

G is a directed acyclic graph if it is a PDAG and is directed. Two graphs are

Markov equivalent, or belong to the same equivalence class, when they involve the

same sets of d-separations (see Section 2.1.1). A completed PDAG (CPDAG)

can encode such a class of graphs, in which undirected edges mean that the graphs

2Clarification: two directed edges between the same nodes that have opposing directions result
in a single undirected edge.
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within the class may contain a directed edge in either direction; directed edges

denote agreement in edge direction in subsumed graphs.

Functional. Another perspective on causal graphs is Structural Causal Models,

also called Structural Equation Models (SEMs). In practice, they still encode

the same information as the graphical approach, but provide an alternative view

via equations. Thus, SCMs can be seen as a complementary technique, not the

opposite one. SCMs view the causal relationships among features as functions,

which are referred to as causal mechanisms. The general idea is that each variable

is a function of its parents, including the unobserved variables in the form of

noise terms. This can be defined as follows. Let us consider a vector of random

variables X = (X1, . . . , Xp) and their corresponding noise terms E = (ε1, . . . , εp)

generated according to an unknown DGP leading to joint distribution L(X). The

node j ∈ V represents random variable Xj and the edge between nodes j and

k in E is directed if and only if Xk is used in the DGP to generate Xj. Then,

each causal mechanism can be written as:

Xj = fj(XPAGj
, εj) for j = 1, . . . , p (5.1)

5.3 Hyperparameters in Causal Structure Learn-
ing

5.3.1 Bivariate Example
An illustrative example, strongly inspired by [110], is the classic cause-effect pairs

challenge [42] that consists of two (synthetically generated here3) variables X and Y ,

with the goal of establishing the existence and direction of the causal link between

them (X → Y , X ← Y , no link) given only observed data. One possible solution is

to fit two regressors y = f(x) and x = g(y), and predict the causal direction based on

3X = εX , Y = sin(X) + εY , εX , εY ∼ N (0, 1).
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Figure 5.2: The number of allowed regression parameters, a hyperparameter, clearly
affects the prediction error of the two models and can determine the predicted causal
direction (see decision colours at the bottom). The algorithm predicts X → Y if εf < εg,
X ← Y if εf > εg, and is inconclusive otherwise. Note that the true causal direction is
unknown in practice.

the lower prediction error of the two models (εf = [y − f̂(x)]2 and εg = [x− ĝ(y)]2;

no link if the errors are comparable). As shown in Figure 5.2, changing the

hyperparameter that controls the number of regression parameters can result in a

different causal direction being predicted. This is precisely what constitutes the

problem since the true DGP and the correct hyperparameter value are unknown.

Observation 1. Incorrect hyperparameter values can cause prediction mistakes.

Observation 2. There might be more than one correct and incorrect hyperparam-

eter choice.

The problem grows in complexity as the number of graph nodes and edges increases.

This is because each edge is a potentially different function to approximate that

will require a different hyperparameter value (function complexity) to obtain the

correct answer. In addition, many algorithms provide multiple hyperparameters

to tune, making even more room for further mistakes, and effectively increasing

the chance of hyperparameter misspecification. In fact, even the bivariate example
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can involve more hyperparameters by, for instance, introducing a threshold such

that the algorithm predicts ‘no link’ if |εf − εg| < threshold. To this end, we make

the following claim and set up the following key definition:

Claim 1. The existence and direction of an edge in the predicted causal graph

strongly depend on the algorithm’s hyperparameters.

Definition 2 (Hyperparameter Misspecification). Mistakes in predicted causal

graph structure arising from incorrect hyperparameters.

Note that in practice HP misspecification may be not the only source of pre-

diction mistakes, as not all learning algorithms are guaranteed to converge to

optimal solutions.

5.3.2 General Form of the Problem
Let X ∈ Rn×p represent IID data of n observations and p features. Furthermore, let

A ∈ {0, 1}p×p be a binary adjacency matrix of directed graph G(A) such that the

(binary) graph edges ajk = 1 if (j, k) ∈ E and ajk = 0 otherwise (see also Section

5.2 for notation). A weighted adjacency matrix W ∈ Rp×p is defined such that

its corresponding binary edge A(W )jk = 1 if the weighted edge wjk 6= 0 and zero

otherwise, which results in a weighted graph G(W ). Let us also define distance

d(A,B) between two adjacency matrices A and B such that d(A,B) = 0 if and only

if G(A) = G(B) are the same graph; otherwise d(A,B) > 0. In practice, d can be

realised with any specific distance measure of choice, such as Euclidean or sum of

squared differences4. In our discussion here, this specific choice does not matter as

long as the distance metric measures the difference between the two matrices.

From now on, let us denote A as the true adjacency matrix and Â its estimate

obtained by a computer program P (think algorithm) from IID data X using

program options O so that

Â = P (O,X), (5.2)

4d(A,B) =
∑p

j

∑p
k(ajk − bjk)2
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where O generally involves the user specifying algorithm S and hyperparameter val-

ues H. Therefore, given K user-specified candidate programs P = {P1, . . . , PK} and

Âk = P (Sk, Hk, X), (5.3)

where Sk and Hk are the algorithm and hyperparameter choices associated with

program candidate k, then the best program is

k∗ = argmin
k∈{1,...,K}

d(A, Âk), (5.4)

Note that k∗ is never identifiable unless A is known. Furthermore, identification of

G does not guarantee Âk∗ = A as Âk∗ depends on algorithms S and their ability

to identify A, as well as the choice of their hyperparameters H.

More generally, when considering different algorithms S and hyperparameters H,

Equation (5.4) is the standard model selection problem, whereas if the choice of

algorithms is fixed to a specific value, leaving hyperparameters as the only variable,

the task reduces to hyperparameter tuning. In practical terms, obtaining the

distance d(A, Â) is not feasible, as the true matrix A and its corresponding graph

G(A) are inaccessible outside simulated environments. As algorithms can vary

substantially in design, the appropriate way to compare them requires the use of

distance measures that incorporate the ground truth A. This renders model selection

impractical in CSL problems. Tuning hyperparameters of a single algorithm might

be feasible by comparing its relative scores across explored hyperparameter values.

5.3.3 Common Hyperparameters
Despite differences in algorithms, many of them share similar hyperparameters.

Commonly used ones are briefly described here.

Significance level of independence tests. Refers to the p-value of independence

tests and the desired level of certainty. Decreasing the value (increasing certainty)

will usually result in fewer predicted edges. Often named as alpha and incorporated

by traditional and pairwise algorithms.
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Sparsity. A penalty term that encourages sparser solutions. Higher values result

in fewer predicted edges. Similar in mechanism to L1 regularisation which discards

less relevant features. Often employed by regression-based solutions, especially

if they perform some form of feature selection.

Model complexity. A penalty that encourages simpler models to avoid overfitting

(L2 regularisation). As shown in the example in Section 5.3.1, its influence on

the final prediction is complicated. This usually applies to solutions that model

the assumed form of SEMs.

Post-prunning threshold. Many SEM-based methods output weighted adjacency

matrices W that need to be converted to the binary form of A (see notation in

Section 5.3.2 above). This is usually done by applying a threshold below which all

edges are set to zero. That is, aij = 1 if wij > w_thresh; 0 otherwise.

Note that alpha and w_threshold are algorithm agnostic and can be transferred

between methods, whereas the other two hyperparameters may differ in value

between algorithms.

5.4 Experiments

Since our analysis in Section 5.3.1 is based merely on a simple and artificial example,

our next step is to study the influence of hyperparameters more rigorously in a

more general setting. We devise a set of experiments consisting of diverse data

sets of various sizes and difficulty (Section 5.4.1), processed by a representative set

of CSL algorithms (Section 5.4.2). Different hyperparameter selection scenarios

are also detailed (Section 5.4.4).

The experimental framework is implemented through Benchpress [179], a bench-

marking platform to evaluate CSL algorithms. Performances of all algorithms

are collected from Benchpress, followed by some mild post-processing of the
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results to suit our analysis of hyperparameters. All numerical experiments can

be fully replicated using the code and data that are available online at: https:

//github.com/misoc-mml/hyperparams-causal-discovery.

5.4.1 Graphs and Data
Simulations

We follow recent literature on CSL when it comes to simulating different DGPs.

The simulation procedure starts with generating a random DAG G with p nodes

and d edges, built according to a random graph model. The resulting graph is

binary, with A ∈ {0, 1}p×p. Next, IID data X ∈ Rn×p are sampled from a simulated

SEM of choice, with n being the sample size. Each individual combination of

settings is repeated for 10 seeds and forms a single experiment. In our experiments,

we explore p ∈ {10, 20, 50}, d ∈ {1p, 4p}, and n ∈ {200, 1000}. Included random

graph models are Erdös-Rényi (ER) [197] and Barabási-Albert [198], with the

latter also known as scale-free (SF). We also explore n = 10, 000 but only for

sparse ER graphs with p = 50 nodes due to computational limitations. As for

explored SEMs, we include the following:

Linear Non-Gaussian (gumbel). X = XW T + z ∈ Rp, with W ∈ Rp×p as edge

weights assigned independently from U([−2,−0.5]∪ [0.5, 2]) and based on A. Noise

z follows the Gumbel distribution z ∼ Gumbel(0, Ip×p).

Nonlinear Gaussian (gp). Xj = fj(XPAGj
) + zj for all j ∈ [p] in the topological

order of G. Noise zj follows Gaussian distribution zj ∼ N (0, 1), j = 1, . . . , p. Where

functions fj represent a draw from a Gaussian process with a unit bandwidth

radial basis function kernel.

Note that both settings have been shown to be identifiable. That is, linear non-

Gaussian additive models [50] and nonlinear additive models [51].

https://github.com/misoc-mml/hyperparams-causal-discovery
https://github.com/misoc-mml/hyperparams-causal-discovery
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Real Datasets

We also tested CSL algorithms against real or semi-real datasets. The most popular

ones in the literature are protein signaling (Sachs) and SynTReN.

Protein signaling (Sachs) comes from [199] which measures protein and phospho-

lipid expression levels in human cells. The ground truth causal graph has been

established and accepted by the experts in the field. We use the second dataset

that is already logged and standardised and consists of n = 902 observations,

p = 11 nodes and d = 17 edges.

SynTReN is a generator of synthetic transcriptional regulatory networks and

related gene expression data that simulate a real experiment [188]5. We use the same

data as in [60], which consist of 10 random seeds, n = 500 samples and p = 20 nodes.

5.4.2 Causal Structure Learning Algorithms
We consider in our setup the following learning algorithms (see also Section 2.1.3 for

a refresher). Due to high computational demands, we only focus on well-established

and seminal algorithms that, in our view, effectively represent different classes of

solutions. More details about the HPs involved can be found in Appendix B.3.1 and

B.3.2. Note the algorithms may have different termination criteria due to design

differences, but they all produce (CP)DAGs (see Section 5.2).

• PC [200]. Peter and Clark algorithm. A constraint-based approach that

starts with a fully-connected undirected graph and removes edges based on

conditional independence tests. Next, it attempts to orient as many of the

remaining edges as possible. The result is a CPDAG.

Hyperparameters: alpha (significance level for conditional independence

tests).

• FCI [201]. Fast Causal Inference. Constraint-based. An important generali-

sation of PC to unknown confounding variables.

5http://bioinformatics.intec.ugent.be/kmarchal/SynTReN/index.html



5. Robustness of Algorithms for Causal Structure Learning to Hyperparameter
Choice 131

Hyperparameters: alpha (significance level for conditional independence

tests).

• FGES [202]. Fast Greedy Equivalence Search. Optimised and parallelised

version of the original score-based GES algorithm [46]. It starts with an empty

graph and adds an edge that yields maximum score improvement until no

significant score gain is achieved. Then it removes edges in the same greedy

manner until a plateau.

Hyperparameters: penaltyDiscount (sparsity penalty).

• LiNGAM [50]. Linear Non-Gaussian Acyclic Model. Assumes linear SEMs

and non-Gaussian noise that enters additively: Xj = ∑
k∈PAGj

wjkXk + εj.

Hyperparameters: max_iter (FastICA [203]), thresh (post-prunning thresh-

old).

• ANM [51]. Additive Noise Model. Assumes nonlinear SEMs and additive

noise: Xj = fj(XPAGj
) + εj.

Hyperparameters: alpha (significance level for the independence test).

• CAM [55]. Causal Additive Models. Assumes a generalised additive noise

model with additive noise and functions: Xj = ∑
k∈PAGj

f(Xk) + εj.

Hyperparameters: cutoff (variable selection threshold).

• NOTEARS [56]. Score-based continuous DAG optimisation with a smooth

acyclicity regularisation term. Assumes linear SEMs with additive noise.

Hyperparameters: lambda1 (sparsity term), max_iter (optimisation steps)

and w_threshold (post-prunning threshold).

• NOTEARS MLP [36]. Nonlinear extension of NOTEARS by incorporating

the Multi-Layer Perceptron (MLP). Assumes nonlinear SEMs with additive

noise.

Hyperparameters: lambda1 (sparsity term), lambda2 (regularisation strength),

w_threshold (post-prunning threshold), hidden_units (number of units in the

hidden layer).
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Many traditional algorithms, such as PC, FCI and FGES, make the standard set of

assumptions that involve sufficiency, faithfulness and Markov condition (see Section

2.1.2). These, however, are often not enough to identify a unique DAG as a solution,

which is a major drawback of these methods (they output CPDAGs; not all edges

oriented). Making assumptions about distributions and functional forms of the

DGP seems to be critical to overcoming this issue (all methods above except for

PC, FCI and FGES output DAGs; all edges oriented).

5.4.3 Evaluation
We compare algorithms’ performances across three commonly used metrics: struc-

tural Hamming distance (SHD), false positives (FPs), and false negatives (FNs). All

three accommodate for the fact that the ground truth is always a DAG but some of

the incorporated algorithms output CPDAGs. The implementation of SHD we use

counts not only the number of edge additions, removals and reversals but also the

edge orientations, needed to turn the predicted graph into the true DAG. FPs and

FNs count false edges and are calculated based on graph skeletons. For this purpose,

predicted and true graphs are converted to skeletons to obtain the two metrics. This

allows us to include methods that output CPDAGs even though the primary focus

of this study is DAG recovery. See below for more detailed definitions of the metrics.

The evaluation metrics we incorporate are provided via Benchpress [179, appendix

A.1.]. For the convenience of the reader, we briefly describe here those that

are useful for this study.

SHD

Let us define E and E ′ as a set of edges of the true and predicted DAG respectively.

Then, for e ∈ E ′, true positives (TP) and false positives (FP) are assigned as follows:

TP (e) =


1 if e ∈ E and correctly oriented
0.5 if e ∈ E and incorrectly oriented
0 otherwise

(5.5)
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FP (e) =


1 if e /∈ E
0.5 if e ∈ E and incorrectly oriented
0 otherwise

(5.6)

where TP and FP are sums of all TP(e) and FP(e) scores respectively. The structural

Hamming distance (SHD) aggregates the number of additions, removals and reversals

in predicted edges so they match the true ones (E = E ′). It can be defined as:

SHD = |E| − TP + FP (5.7)

Note the SHD defined as above allows evaluating mixed graphs, that is, comparing

DAGs to CPDAGs. If, for instance, a predicted undirected edge exists in E but is

supposed to be directed, it will result in TP = 0.5 and FP = 0.5, ultimately leading

to SHD = 1. This shows that the need to orient an undirected edge is treated

equally as the need to add, remove or reverse an edge so E = E ′. Such evaluation

puts algorithms outputting CPDAGs at a disadvantage compared to DAG-only

methods. We justify it on the grounds that the main focus of this study is DAG

recovery, hence any predicted undirected edge is treated as any other mistake. The

ability to evaluate mixed graphs is an important feature of this study as it allows

us to compare algorithms outputting CPDAGs and DAGs.

False Positives and Negatives

The false positives (FPs) and false negatives (FNs) that we use as standalone

performance metrics differ from those defined as part of SHD above. Crucially, the

FP and FN metrics we use are always computed based on graph skeletons (i.e. all

edges undirected). To achieve this, all directed edges of a predicted or true graph

are converted to undirected ones. This modification makes the comparison between

algorithms that output CPDAGs and DAGs more fair. Once the graphs in question

are converted to skeletons, we can define the metrics as follows.
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Let us define E and E ′ as a set of undirected edges of the true and predicted

graph skeleton respectively. Then, for e ∈ E and e′ ∈ E ′, false positives (FP)

and false negatives (FN) are assigned as follows:

FP (e′) =
1 if e′ /∈ E

0 otherwise
(5.8)

FN(e) =
1 if e /∈ E ′

0 otherwise
(5.9)

where FP and FN are sums of all FP(e’) and FN(e) scores respectively.

5.4.4 Hyperparameters
All incorporated learning algorithms have at least one HP. We collect performances

of algorithms across all HP combinations (exhaustive grid search; see Appendix

B.3.1). Note that while many HPs are defined on continuous spaces, we search

over a pre-defined set of points chosen to cover the space as completely as possible.

To better understand the influence of HPs on CSL performance, we experiment

with four different HP selection strategies described below.

BEST. To simulate the choice of the best HPs (as if we had access to the HP

oracle), we pick HP values that achieved the lowest metric value in that particular

data setting. Each data setting can have a different set of the best HPs.

WORST. Identified similarly to ‘best’ except the criterion here is the high-

est metric value.

DEFAULT. Default HP values recommended by the authors of an algorithm.

See Appendix B.3.2.

SIM_MEAN. An alternative to ‘default’. We found a single set of HP values per

algorithm that achieved the lowest average metric value across all simulations.

These are simulation-derived default values. See Appendix B.3.1 for identified values.
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5.4.5 Results
Presented results employ the following naming convention with respect to the DGP:

graph_p (number of nodes), graph_d (edge density), graph_type (graph models;

ER or SF), data_n (sample size), data_sem (SEM type; gumbel or gp). Error

bars are standard errors unless stated otherwise. Note only the most important

results are presented in this section. The rest of the results, that do not change

conclusions, are in Appendix B.1.

Performance Distribution Across Hyperparameters

As per Figure 5.3, all algorithms perform similarly when averaged across all

simulations and hyperparameters. This confirms that no single algorithm is the

best in all conditions; they rather specialise in solving specific challenges that

are ingrained in their design via assumptions (see Section 2.1.2). Some minor

deviations from this general observation can be noticed when considering FPs

(false positives) only (see FCI, PC and ANM), but they become negligible when

considering the main metric (SHD).
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Figure 5.3: Proportions of performances (lower is better) across all HP values and
simulations. Interpretation: algorithms perform similarly when averaged over all DGPs
and HPs; no algorithm is the best in all conditions.

Performance vs. Hyperparameter Quality

As shown in Figure 5.4, achieved performance is clearly affected by both algorithm

and HP choices. Even assuming access to HP oracle (blue colour), selecting different

algorithms will have a significant impact on the result (blue bars differ among

algorithms). This is because assumptions, either implicit or explicit, about the

DGP play a critical role in controlling the performance of each method. It is worth
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Figure 5.4: Performances (lower is better) for small sparse graphs (p = 10, d = 1) with
linear (gumbel) and nonlinear (gp) SEMs depending on the quality of selected HPs (see
the legend). Interpretation: a) fixed HPs (orange and green) perform similarly to the
optimal ones (blue), b) algorithm selection is important even with optimal HPs (blue
bars differ among algorithms), c) certain algorithms and setups are riskier (differences
among red bars), and d) methods with optimised HPs provide only true edges (see blue
bars in FPs).

noting that, in contrast to previous studies of HP choice for other causal methods,

the absolute performance level achieved by the algorithms is low: no algorithm

achieves, nor is very close to, SHD = 0. The complexity of the learning task is

such that accurate causal structure discovery currently lies beyond the state of the

art, which could be due to limited information within observational data. In this

context, fixed HPs (orange and green) seem to be a viable strategy as they are

relatively close to the best cases (blue). This shows that HP values transfer well

between different DGPs, which can be exploited in practice as a countermeasure

to challenging HP optimisation. The differences between simulation-derived and

paper-default values (orange and green respectively) are negligible in most cases

except for FNs (false negatives) where the former perform better. This indicates

that the recommended defaults often prioritise sparsity, which reduces FPs, at
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the cost of increased FNs. The worst HPs (red), on the other hand, can result

in performances substantially worse than the fixed ones. This shows the risks of

HP misspecification, the degree of which clearly varies across algorithms (different

robustness), which could be due to again different data assumptions in algorithms

or varied degrees of freedom via the algorithm’s HPs. Note also how the majority

of mistakes under misspecified HPs (red) are due to FPs (red bars in FPs larger

than in FNs). However, once HPs are optimised (blue), FPs are mostly eliminated

and the remaining mistakes are now due to FNs (blue bars larger in FNs than FPs).

This has critical implications for practice: the predicted edges can be trusted (FP

small) but the absence of an edge cannot (FN large). Remaining FNs could be also

a sign of too-aggressive sparsity/pruning or simply failed identification, with the

latter being an indicator for future algorithmic improvements.

Performance vs. Cardinality of Hyperparameters

A speciously interesting comparison that emerges from our study is the relationship

between the cardinality6 of the HPs we explore and algorithm performance. Our

study was not set up to explore this issue, so we now clarify what can and cannot

be concluded about this relationship from our study. As presented in Figure 5.5,

higher cardinalities (81 and 200) lead to only small performance improvements

under optimised HPs (blue bars), but they involve significantly higher risks of

poor performances if HPs are misspecified (red). This shows that larger HP search

spaces should be explored with caution as they provide little gain for a much higher

risk of poor performance. Note, however, that different cardinalities presented

here may involve different algorithms, making room for coincidental trends. For

example, it is unclear given the data if robustness to misspecified HPs is due to HP

cardinalities or algorithms, as the two highest cardinalities were explored exclusively

with (potentially volatile) neural networks.

6We define cardinality as the total number of possible combinations across hyperparameters
and values. For example, two HPs, with three possible values each, results in the cardinality of
3× 3 = 9.
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Figure 5.5: The influence of explored HP cardinalities (HP card) across algorithms on
performance (lower is better), depending on the quality of selected HPs (see legend).
DGP: small sparse graphs (p = 10, d = 1) with linear (gumbel) and nonlinear (gp) SEMs.
Note how higher cardinalities lead to small SHD gains under optimal HPs (blue) but at
the cost of much worse performances under misspecified HPs (red). Warning: different
cardinalities may involve different algorithms (possible coincidental trends).

graph_p 10 20 50
data_sem gumbel gp gumbel gp gumbel gp
graph_d 1 4 1 4 1 4 1 4 1 4 1 4

HP
best

FGES
FCI FGES CAM CAM FGES PC

N_MLP CAM CAM FGES PC
N_MLP CAM CAM

HP
sim_mean

FGES
PC

FGES
CAM
ANM

CAM CAM FGES PC CAM CAM FGES PC CAM CAM

HP
worst FGES

FGES
PC
CAM

LiNGAM
FGES CAM FGES PC LiNGAM CAM

LiNGAM FGES PC LiNGAM LiNGAM

Table 5.1: Top algorithm choices based on the highest winning percentages, grouped
by DGP properties (graph_p, data_sem, graph_d) and quality of selected HPs (best,
sim_mean, worst). If there is no clear winner, multiple top performers are reported.
Notice how the winners change across DGPs (columns), but also across HPs (rows),
showing algorithm selection is nuanced. N_MLP denotes NOTEARS_MLP.

Winning Algorithms vs. Hyperparameter Quality

Previous analysis revealed that the best algorithm choice may depend on specific

DGP properties as well as HP choices. To make it clearer, we collect winning

algorithms across different DGP properties and HP selection strategies. An

algorithm with the lowest SHD in a given setting wins. Table 5.1 presents top

performers across different settings based on accumulated winning percentages. The

results confirm that no single algorithm wins in all settings. Specific DGP properties

may favour certain methods. When looking at how top performers change depending

on different HP choices, it is clear that the best algorithm selection depends not only
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on DGP properties but also on the type of available HPs. For instance, to minimise

the risk of poor performances, one can select algorithms from the ‘HP worst’ category.

Performance vs. Sample Size

Figure 5.6 confirms that increased sample size generally helps, even with relatively

large graphs (p = 50), though some algorithms need more data to notice major

benefits (see LiNGAM in gumbel and NOTEARS_MLP in gp). Positive effects can

be noticed with respect to improved best HP cases (min values) and an increased

proportion of good performances (mean values). This case also confirms that

relatively large and sparse graphs can be recovered with high accuracy given the

right HPs (min values of some green boxes are close to 0).
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Figure 5.6: The influence of sample size (data_n; colours) on performances (lower
is better) across all HPs. DGP: sparse (d = 1) large (p = 50) ER graphs with linear
(gumbel) and nonlinear (gp) SEMs. ANM was excluded due to the long execution time
against 10, 000 samples. Note how increased sample size not only improves performances
under the best and worst HPs (min and max decrease) but also the proportion of good
performances (means decrease as well), suggesting increased sample size helps with HP
misspecification.

Semi-Synthetic and Real Data

We put our simulation-derived findings to a test by performing CSL on SynTReN

and Sachs datasets (Figure 5.7). SHD numbers are compared to SotA performances
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retrieved from [60], which are 33.7 ± 3.7 and 12 SHD for SynTReN and Sachs

respectively. Both cases generally confirm that fixed HPs (sim_mean and default)

can work almost as well as the best HPs, and that even the best HPs may not

be enough to reach the best possible performance as some algorithms perform

better than others under those conditions. It is also clear from both cases that

HPs play an important role and, in fact, can decide whether an algorithm reaches

or beats SotA. For instance, against SynTReN, both NOTEARS methods and

LiNGAM seem to be good options under the best and fixed HPs. But under the

worst HPs, NOTEARS methods can be extremely inaccurate, making ANM the

safest choice in this case. In the Sachs dataset, this is no longer the case with

ANM, showing that the best algorithm pick indeed strongly depends on DGP

properties. All algorithms except ANM can, in fact, beat SotA on Sachs data.

However, when it comes to robustness to HP misspecification and safety of use,

NOTEARS methods appear to be the riskiest, with LiNGAM being extraordinarily

robust as it beats SotA even with its worst HPs.

5.5 Conclusion

In this work, we have successfully shown that HPs play an important role in causal

structure learning. However, the way HPs influence the methods is somewhat

different from recent results from the ML literature. More specifically, [164,

182] found that many learners can reach SotA performance levels with the right

HPs, reducing the importance of model class selection. However, in this study,

we observe that algorithms still differ significantly in performance even with

access to the HP oracle. However, reliable tuning is not always available in CSL,

leading to HP misspecification and prediction errors. This is where HPs become

important as we showed that different learning algorithms vary in robustness to

HP misspecification and that strong performance under the right HPs does not

necessarily translate to misspecification robustness. As a consequence, an algorithm
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(a) SynTReN dataset. Numbers are averaged across data seeds.
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Figure 5.7: Performances (lower is better) against SynTReN (top) and Sachs (bottom)
datasets depending on the quality of selected HPs (colours). Notice that: a) HP values
derived from simulations perform well here (orange), and b) the quality of HPs and
algorithm choice are both important for beating SotA.

that is the best pick under correct HPs might be a suboptimal choice when its

HPs are misspecified; another algorithm with better misspecification robustness

might be safer to use, especially in those cases where minimising the consequences

of potential misspecification is a priority. Thus, overall, the best algorithm choice

may depend not only on the properties of the DGP but also on the quality (as

defined in Section 5.4.4) of selected HP values. In terms of secondary findings,

default HPs seem to perform surprisingly well in many cases, and hence may

constitute a viable alternative to tuning. Moreover, in the case of sparse graphs,

predictions with optimised HPs seem to include only true edges (no FPs, some

FNs), which has critical implications for practice. Another interesting observation is

that relatively large sparse graphs (50 nodes) can be recovered with high accuracy,

subject to large sample sizes and the right HPs. It is also important to acknowledge
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the possibility that robustness to misspecified HPs might be impacted by the

cardinality of explored HPs as larger search spaces may increase the probability

of poor performances. Our results show this is indeed possible, but crucially the

chances of good performances also slightly rise in this case. This suggests that

higher HP cardinalities can be advantageous and disadvantageous, which motivates

including the worst performances in this analysis. Furthermore, while we agree that

the probability of getting the worst performances is low in practice, it is undeniably

greater than zero and hence worth considering.

5.5.1 Recommendations
As for practical advice, we stress the fact that there are no universal answers in

CSL; there are many forces at play (DGP properties, algorithms, HPs) that make

the choices highly nuanced. Algorithm selection seems to be the most important

for performance, though HPs should not be neglected (see Table 5.1 for guidance).

Default HPs (from packages or this work) should be a reasonable starting point.

For further tuning, one can consider prediction stability across HPs [185, 194,

195], though larger HP search spaces should be considered with care (risk of poor

performances). Focusing on “tunable” HPs [132] (i.e. those with greater impact

on prediction performance) may help reduce the search space.

5.5.2 Limitations
This study is naturally limited by our choice of explored algorithms, HPs and

simulation properties. It is worth noting, however, that we do not intend to identify

the best possible learning algorithm or HPs. On the contrary, the objective of

this work is to show that the appropriate algorithm choices are nuanced, as also

recently shown in the treatment effect estimation domain [26] and that HPs should

be part of that subtle decision-making process, further confirming the importance

of HPs reported in the literature [164, 180–182]. And while more extensive search

spaces are unlikely to negate such conclusions, it is worth pointing out that in our
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experiments we explore discrete HP values of continuous search spaces. As for the

choice of HPs and values, we believe our setup accurately reflects common practice.

5.5.3 Future Work
As increasing the sample size increases the proportion of good performances across

HPs, the next step would be to examine if HP misspecification vanishes with

infinite data. More challenging “anterial graphs” [204] with cycles and undirected

edges could be another direction. The surprising effectiveness of fixed HPs might

be also worth a systematic study, with an emphasis on transfer between DGPs.

Further study into the source of robustness to misspecified HPs is also in order (HP

cardinality or algorithms). Furthermore, making advanced tuning metrics more

accessible could help facilitate better practice. Finally, although some HP tuning

metrics are general enough to perform algorithm selection (e.g. [186, 194]), doing

so on real-life datasets is still a challenge. One promising direction could be partial

validation on graph edges obtained from domain knowledge [189].



144 5.5. Conclusion

Summary

Major findings:

• Causal structure learning algorithms significantly differ in recovery perfor-
mance even with access to the hyperparameter oracle. Choosing the right
algorithm for the problem at hand is still the most important decision to
be made.

• Algorithms vary in robustness to hyperparameter misspecification, and
strong performance under well-specified hyperparameters does not neces-
sarily translate to robustness under misspecified cases.

• The optimal algorithm choice in ensemble settings requires consideration
of the data at hand, but also hyperparameter choices.

• Default hyperparameter values can perform almost as well as near-
optimally selected ones.

• The edges in predicted sparse graphs can be trusted as the remaining
mistakes are only due to missing edges.

Minor findings:

• Relatively large (50 nodes) sparse graphs can be recovered with good
accuracy, assuming a large sample size and correctly specified hyperpa-
rameters.

• There are no free lunches in causal discovery, even when assuming access
to the tuning oracle.

• Larger sample sizes increase the proportion of good performances regard-
less of hyperparameters, suggesting they possibly become irrelevant as
data size approaches infinity.
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Discussion

Here we consolidate the main three chapters by revisiting the main discussion
points and overlapping topics that connect them. We also comment on the
noteworthy findings and contributions of this thesis, including each chapter’s
involvement to help picture them as a whole thesis. Some important limiting
aspects of this work are also discussed.
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6.1 Consolidation

As some selected topics appear in multiple places throughout this thesis, this

section discusses them more closely to help understand how the main chapters
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relate to each other.

6.1.1 Causal Effect Estimation
Chapters 3 and 4 are both concerned with heterogeneous causal effect estimation

(Section 2.2.3), but they approach the topic from different perspectives and hence

offer distinct insights and contributions. That is, the former improves CATE

estimation by introducing a new method, while the other has a more theoretical focus

on hyperparameters and their influence on prediction performance (including CATE

estimation). Furthermore, while only one of the chapters explicitly investigates

hyperparameters, this topic is in fact highly important in both of them. This is

because Chapter 3 also compares performances of existing methods, which requires

hyperparameter tuning to ensure fair comparison and meaningful conclusions.

However, despite this similarity, there are important tuning differences between

the two. Chapter 4 approaches hyperparameter optimisation in a more complete

manner as it includes multiple metrics that can be used for hyperparameter selection

and crucially also considers optimally selected performances (i.e. oracles). Such

considerations make it more theoretical. On the other hand, Chapter 3 is more

practical in this regard as it uses a single observable (Chapter 4) metric to select the

best hyperparameters and naturally cannot access optimal choices. This perspective

matches the one of a practitioner.

Different limits in terms of tuning give rise to crucial discrepancies when comparing

various estimators and their performances. More specifically, in Chapter 3 we

learn that there are non-trivial performance differences due to the choice of the

model class, despite performing thorough but practical hyperparameter tuning for

each estimator. Chapter 4, however, offers somewhat opposite conclusions that

causal estimators perform similarly, subject to optimal hyperparameters. The

requirement of optimal hyperparameters is unfortunately unrealistic in practice,

making performances obtained in this way only potential and theoretical. This

shows that practical tuning, as it is currently done, is very likely to result in

larger prediction errors than is theoretically possible. Thus, a remaining open
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question is whether the necessary criteria can be identified from the observed

data, with influence functions offering one possible way of moving forward due to

promising robustness to model choices [171]. This point also shows that the two

concluding remarks are not necessarily opposite; they simply consider tuning and

performances under different circumstances. In other words, it is still useful to

learn that theoretically (in the limit of tuning) many causal estimators can achieve

similar performances, while in more challenging and pragmatic settings that are

closer to real-world situations, inevitable tuning imperfections (e.g. metric choice

[26]) will lead to non-trivial estimator differences. That is, one offers theoretical

insights, while the other is more grounded in practice.

More generally, this case also shows that theoretical and practical analyses can

lead to rather different conclusions. Both perspectives are certainly necessary

to fully comprehend any problem and are arguably rather complementary than

opposing. If anything, this case is an example of why any claim should be challenged

from theoretical and practical sides, not just one. In addition, it demonstrates

that theoretical guarantees, which often imply certain idealistic conditions, do not

necessarily translate in full to rather messy practical situations, even to the extent

where the conclusions become completely opposite. To clarify, this is not to say

that the theoretical works are wrong; they do solve their intended problems they

were designed for. The problem is in assumed conditions that may not accurately

reflect real data challenges. For example, proving a method converges to the desired

solution as sample size approaches infinity is not quite practical if practitioners deal

with relatively small samples (n < 1, 000). Another case is with overlap, where we

often assume high common support in the input space between treated and control

units (i.e. high overlap), while in practice the coverage might be much lower than

anticipated. Some communities also strongly question the ignorability assumption

(see Section 2.2.2) that is so central to many estimation methods. Unfortunately,

most of the assumed conditions cannot be easily verified with real data, leaving

room for expert domain knowledge as a possible alternative at the moment.
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6.1.2 Covariate Shift
As covariate shift (see Section 3.2.1) is one of the main issues in effect estimation,

it forms yet another topic shared between Chapters 3 and 4. Though the problem

affects them in different ways, it all boils down to distributional discrepancies of

input features between treated and control units, which leads to fewer samples (or

even gaps) in the common support of the inputs across the groups. The consequences

of this are two-fold. First, it badly affects modelling and individualised predictions

that we are after as point estimates are highly sensitive to sparsely covered data

regions. This is covered as part of Chapter 3 and demonstrated in Figure 3.1.

Second, sparse data regions also distort performance evaluation, as models can

potentially perform well in dense data regions but provide poor predictions in the

affected areas that are equally important, but due to error averaging one may fail to

detect the problem. Further, inaccurate model evaluation will lead to misspecified

hyperparameters as evaluation is a critical part of hyperparameter selection. And

as tuning highly influences prediction accuracy, as a result we end up with poor

prediction performance. To make matters worse, distorted evaluation also makes the

broader model selection much more challenging. Overall, this side of the problem is

covered in Chapter 4 and Figure 5.2. Thus, it is clear that covariate shift negatively

affects both estimation and model tuning.

Covariate shift is generally a well-recognised problem in estimation, but not so

much in model evaluation and tuning. The same seems to be the case in the area

of OOD generalisation that deals with more general (i.e. other than covariate) data

shifts. Indeed, the OOD literature acknowledges the impact of various distributional

changes on prediction performance (e.g. [158, 159]), but does not specifically

consider how the shifts may affect the evaluation, tuning and selection of models,

indirectly impacting the final performance as well. Given this work showed how

shifts in covariates can affect both estimation (Chapter 3) and tuning (Chapter

4), it is not unreasonable to anticipate similar problems under other types of data

shifts. Ultimately, even the very best methods will only reduce the errors, as in
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the end they will be always limited by the data and information theory. One

possible way forward could be to identify regions of weak overlap, for which further

data collection would be suggested.

6.1.3 The Role of Hyperparameters
Although all main chapters touch on the topic of hyperparameters in one way

or another, analysing them specifically constitutes the core of Chapters 4 and 5.

While in both cases we are concerned about the influence of hyperparameters on

the estimation performance, the prediction tasks involved are very different; one

deals with causal effect estimation (supervised learning; Section 2.2.3) and the other

with causal graph recovery (unsupervised learning; Section 2.1.3). This important

difference partly explains why the role of hyperparameters, though clearly present

in both instances, differs between the two.

That is, as part of Chapter 4 we learnt that HP tuning of ML methods in effect

estimation accounts for so much performance change that it makes it more important

than model class selection. For clarity, some small performance gains are to be made

from selecting an optimal estimator type, but not as large as from optimal tuning.

This finding is rather surprising as it implies that most of the estimators explored

in this work reach comparable performance levels and hence estimator development

might not be as important as better tuning methodologies. Interestingly, Chapter

5 offers somewhat inverse conclusions though in the context of causal discovery

– that selecting an algorithm most suitable for the problem at hand accounts for

much larger performance gains than tuning. This demonstrates the gravity of

data assumptions (see Section 2.1.2) ingrained into CSL methods, and that their

role goes well beyond identification results (uniqueness guarantees), such as those

based on Gaussian likelihood in [55]. The tight connection to assumptions may

also suggest that overall robustness is rather unattainable for such methods. If

this is indeed the case, Bayesian approaches may constitute a way forward due

to their focus on stating the priors.
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However, the above does not mean hyperparameters are irrelevant in causal

discovery; their role is simply different from the one seen in causal inference.

In CSL, hyperparameters become crucial when we start considering robustness to

misspecification, that is, how the prediction performance and choice of best-suited

algorithm change between well and poorly-specified hyperparameters. And as CSL

is unsupervised in nature, robustness to misspecification only grows in importance

as users are more likely to make tuning mistakes (no model evaluation). Thus,

overall, hyperparameters prove to be of very high importance in both estimation

tasks (causal effects and graphs).

6.1.4 Causality and (No) Free Lunches
Another interesting point that emerges from hyperparameter analysis conducted in

Chapters 4 and 5 is the possibility of free lunches, or lack thereof. More specifically,

Chapter 4 claims that under the right conditions (optimal HP tuning), the model

class choice is irrelevant due to very small differences, implying that free lunches1

are possible under those very specific (admittedly theoretical) circumstances. Such

a conclusion is quite astonishing as it goes against the no free lunch theorem that

is well-established in ML [205] and optimisation [206]. Interestingly, a similar

analysis done in the context of causal graph discovery (Chapter 5) showed the

opposite – no free lunches.

One possible explanation for such discrepancy between the two strands of work is

perhaps the maturity level of the subfields. For one, treatment effect estimation

methodologies date back to at least 1974 and Rubin’s potential outcomes framework

[11] (see also Section 2.2.4), effectively accumulating 50 years of development that

resulted in multiple causal estimators now so strong that after identifying the right

setup (i.e. tuning) all are comparable. Causal discovery, on the other hand, is a much

younger area of research, with some serious treatments of the problem starting only

1This implies it is possible to choose any causal estimator and achieve a strong predictive
performance, which goes against the logic of selecting a method specifically suited for the data
problem at hand. Eliminating this choice, while still getting strong performances, is what
constitutes a free lunch here.
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in the 1990s [200, 201]. This almost 20 years’ worth of research difference could partly

explain why CSL algorithms have not yet reached the required level of development

to perform universally well and enable free lunches as in effect inference. Perhaps,

and hopefully, we will witness causal graph learning greatly improving over the next

20 years, though it may take considerably longer to achieve results similar to effect

estimation due to an immensely harder challenge that is unsupervised in nature.

6.1.5 Performance Evaluation
An element found across all main three chapters is the performance evaluation of

many methods against multiple datasets and metrics. This approach, also known

as benchmarking, is central to this work as it provides strong empirical evidence for

the claims that would be otherwise difficult to support with theoretical work. For

example, Chapter 3 provides extensive benchmarking across many existing causal

estimators to prove the effectiveness of the proposed method (Section 3.5.3). While

proving certain desirable statistical properties (e.g. convergence, consistency) could

explain how the method works in the infinite data regime (and subject to other

strict data assumptions), such guarantees do not necessarily hold when sample

sizes are finite. Furthermore, it is not unreasonable to assume that estimators can

behave quite differently in finite and infinite regimes (see also conflicting conclusions

between optimal and practical conditions discussed in Section 6.1.1). On top of

that, data in all real-world applications are always limited and may not necessarily

exhibit the strict properties assumed during theoretical derivations. Thus, testing

methods in more practical settings that benchmarking provides carries a lot of

weight in terms of pragmatic expectations of the method’s performance levels. This

is not to diminish the importance of theory; both strands have their place in science.

For instance, theoretical work certainly helps position new developments within

the existing body of knowledge. However, it would be not of much use (especially

to practitioners) to prove the new method in Chapter 3 has certain theoretical

properties if it cannot perform well in practice as compared to existing alternatives.
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The above point also touches on a broader problem of developing methods based on

data assumptions that cannot be accurately detected. Most methods that follow this

development approach solve their intended tasks well, as can be observed with strong

performances achieved within simulations that also incorporate said assumptions.

The main issue, however, is that we do not know which of the assumptions apply

to the real data at hand. For example, as per Chapter 4, causal estimator choice

might not be as important if we tune them well, but the evaluation metric we

choose for tuning makes a difference. Each penalises different aspects of modelling

errors. Which one should we select? Another example, this time from Chapter 5, is

that choosing a CSL algorithm will make a difference. Each incorporates different

assumptions about the DGP. Which is the right one for our data problem at hand?

Ideally, we would answer both questions by detecting DGP’s properties to see which

data assumptions hold in our real dataset, and select the method that employs

them. Unfortunately, this is infeasible, data assumptions cannot be detected with

current tools. Whereas current evaluation metrics do not capture the full picture

(i.e. metrics are biased towards certain estimators, or are only proxies for true

targets). And as a result, such choices require domain expertise as of today.

Benchmarking is also a viable strategy to explore problems for which theory is not

developed enough yet to lend satisfactory answers. This is the case with Chapters

4 and 5 which investigate the role of hyperparameters in causal estimation. While

theoretical fundamentals in effect estimation are relatively well-developed [43] (also

Section 2.2.3), how exactly hyperparameters enter the problem is still not well

understood, and the fact that Chapter 4 unveils some very surprising findings (i.e.

free lunches; see Section 4.5) only adds weight to this statement. In fact, given

the analysis in [192], it can be argued that the way hyperparameters interact with

loss functions, in general, does not fit current theories, seriously limiting possible

theoretical contributions to hyperparameter analysis at the moment. Not to mention

that the aforementioned study in [192] is itself empirical in nature and its design

is heavily based on performance evaluation across various experimental setups.

Furthermore, as for causal discovery, it can be argued that we are still far from
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solving the problem to a satisfactory degree (e.g. sparse graphs of max 10 nodes;

see Section 5.4.5) even experimentally, let alone have a solid fundamental theory.

Adding hyperparameters to the equation only increases the complexity of an already

poorly understood problem. In such circumstances, where theory is of not much

help, empirical benchmark-focused studies are often the only means of progression,

and this was the case for Chapters 4 and 5 for the above-mentioned reasons.

Despite this immense utility, benchmarking approaches are at times unfairly accused

of triviality or lack of technological innovation. However, the art of benchmarking

is in a careful study design and execution of experiments, so it is possible to

understand problems from perspectives never imagined before while at the same

time balancing inevitable computing constraints. And if such in-depth systematic

analyses yield critical new insights, they are anything but trivial. Moreover, the

strong and rapidly growing track record of unique insights provided by benchmarks,

a collection this work strives to support and contribute to, speaks for itself. Some

notable examples include benchmark-based reports published in highly regarded

venues, such as AISTATS [181], NeurIPS [207, 208] or Journal of Causal Inference

[101]. In fact, the need for benchmarking has been already recognised by certain

top conferences in the field by, for instance, explicitly mentioning benchmarking as

a submission topic2 or even creating a dedicated submission track3.

6.2 Main Questions and Findings

The research questions and findings initially presented in Chapter 1 are discussed

here in more detail. Specifically, how the findings (denoted with F; Section 1.6)

offer answers to the previously raised questions (Q; Section 1.5), and through

which main chapters.

2https://www.cclear.cc/2024/CallforPapers
3https://neurips.cc/Conferences/2023/CallForDatasetsBenchmarks

https://www.cclear.cc/2024/CallforPapers
https://neurips.cc/Conferences/2023/CallForDatasetsBenchmarks
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6.2.1 Main Challenges vs. Performance
What are the challenges of causal estimation from observational data? (Q1). While

details may differ between causal inference (Section 2.2) and discovery (Section

2.1), the fact that observational data are always in one way or another incomplete

(see Section 2.4.1) constitutes the main problem in causal estimation (F1). Some

reasons behind it are ingrained into our reality and hence inherently unavoidable,

some are potentially addressable through better methodologies.

The constraint that we can observe only one outcome per individual is natural

yet fundamentally limiting for data analysis (see Section 2.2.3). Once a selected

intervention is applied, we will never learn what would have happened to the

individual were they subject to a different intervention. And while collecting data

across people may help slightly by administering different treatments to similar

subjects, no two individuals are ever truly the same. This is problematic for

both causal tasks.

In causal inference, as we learn in Chapters 3 and 4, this issue manifests itself

in the form of missing counterfactuals. As a result, computing truly individual

effects is inherently impossible; we never observe outcomes for all treatments for

the same individual. A way around this problem is to calculate effects within

groups of similar units, with similarity captured by a finite set of variables. For

example, subjects can be clustered by age, occupation, nationality, etc. This way of

approaching things gives rise to conditional average effects (Section 2.2.3). These

can get increasingly more individualised by enlarging the conditioning set, but will

never become truly individual as this arguably requires a conditioning set of possibly

infinite size. Despite this unavoidable limitation, conditional average quantities

are still much more informative than plain average parameters obtained across the

entire population. And dealing with such individualised estimates constitutes the

basis for today’s causal effect estimation research field.
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Furthermore, the aforementioned strategy of assigning different treatments to similar

subjects as a way of overcoming the fundamental problem of missing counterfactuals

is also the source of non-trivial issues with observational data. This is because,

in the observational setting, we do not control the treatment assignment, just

simply collect more data in the hope of better coverage across all treatments that

will mimic an otherwise infeasible experiment. However, the lack of control over

randomisation leads to selection biases (see Section 2.4.1), which are not necessarily

due to data collection mistakes, but simply difficulties in obtaining large quantities

of certain subpopulations (e.g. young smokers). As a result, the data exhibits

discrepancies in the response function outside the common support of the input

variables – covariate shift (F2). As we learn in Chapter 3, this specifically hurts

individualised predictions, as point estimates are naturally sensitive to missing

overlap. There are usually two ways of overcoming this issue. One is to enrich

the data with experimental samples to improve the estimates (as done in [209,

210]), but such data is rarely available. Another way points to the advancement of

estimation methods that can withstand such challenging conditions, with our new

data augmentation method presented in Chapter 3 being one such example.

In causal discovery, as we learn in Chapter 5, incomplete data means not all

interventions are explored for all units. This, in turn, reduces per-variable variance

which is critical to accurately establish causal relationships between variables (F3).

Such a shortcoming in data is extremely difficult to overcome algorithmically, and

the larger and more dense the graphs, the harder the task is. One can even argue

that there is a practical limit in terms of graph size that can be recovered accurately

from such limited observational data. Our results in Chapter 5 indeed show that

graphs with up to 20 nodes can be recovered accurately with a reasonable amount

of data (n = 1, 000), but only assuming sparse connections. However, 50-node

(sparse) graphs require an order of magnitude more data (n = 10, 000) to make the

predicted graphs accurate enough. Assuming the data requirement trend continues,

the large graphs that are often of interest [202] would need millions of samples for

correct predictions – an impractical requirement for practitioners that often have
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relatively small datasets (n < 1, 000). An alternative way of improving things is

to supply the observational data with additional interventions. This is of course

not always feasible due to the unavailability of experimental data, but it clearly

helps with the data-size-to-performance ratio [211, 212].

6.2.2 Main Challenges vs. Hyperparameters
How do identified challenges affect performance evaluation and hyperparameter

tuning? (Q2.) All tuning problems take root in performance evaluation that is

far from trivial in causal estimation. This is because the identification of the

best hyperparameter values across all considered candidates heavily depends on

evaluation. That is, the set of hyperparameter values is selected if it achieves the

best score across all other combinations of values that are part of the hyperparameter

search. But if the evaluation is flawed, suboptimal hyperparameter values will be

chosen. Performance evaluation for tuning purposes is generally challenging in

causality, but the details differ between the estimation tasks.

In causal inference, as we learn in Chapter 4, covariate shift affects not only

individualised estimates (Section 3.5.3) but also model evaluation (F2; Section 4.3).

The underrepresented, or entirely missing, subpopulations affected by selection

bias (Section 2.4.1) are where the model’s performance is misjudged. Consequently,

the hyperparameter values that work well on given (broken) observations might

be unsuitable for the true DGP that is unbiased. Another issue is rooted in the

fundamental problem of missing counterfactuals; we care about the accuracy of

effect estimation, but because individual effects are not observed, we cannot measure

prediction errors on them. While such perfect metrics are used for benchmarking

purposes that take advantage of simulations, such direct quantities cannot be

used in real scenarios and tuning. Goodness-of-fit metrics are seemingly attractive

alternatives, but as we learn in Chapter 4, those have serious shortcomings as they

do not reflect the model’s effect estimation capabilities well enough. This motivates

the development of specialised causal metrics (e.g. [87, 171]), which clearly do make
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a difference as our results in Chapter 4 show performance differences (and hence

different hyperparameter choices) across various metrics used for tuning.

As for evaluation in causal discovery (Chapter 5), the situation is even more

challenging as CSL is completely unsupervised; the true causal graph is never

known. Without the ground truth, accurate performance evaluation is feasible

only in simulations. As a result, tuning hardly exists in practice (F3), at least

in the conventional sense where the main performance metric of interest would

be used for tuning (similar problem to that of effect estimation above). Despite

this immense challenge, there have been attempts to derive metrics that would

indirectly measure causal graph learning accuracy without the ground truth. Some

ideas are specific to tuning and centred around the stability of predictions across

explored hyperparameter values [194, 195], though there are no guarantees that

the most stable prediction is the correct causal graph. The latest efforts seem to

focus on regression accuracy where the structural modelling respects the predicted

causal graph structure [186, 196]. Here, the main limitation seems to be the fact

that sufficiently (over-)parametrised causal and anti-causal regression models are

indiscernible based on only goodness-of-fit metrics [110] (see also Section 5.3.1).

A different direction proposed in [189] looks particularly promising as it performs

model validation on parts of the graph known in advance by domain experts. While

such expertise might be difficult to access, the evaluation, even though limited

to known graph parts, directly reflects the type of performance that is of main

interest (existence and direction of edges).

6.2.3 Hyperparameters vs. Individual Performance
How does hyperparameter selection affect the performance of causal estimation

methods? (Q3.) Through chapters 4 and 5, we learn that the choice of hyperpa-

rameters strongly impacts the performance of individual estimation methods. It is

expected to some degree as hyperparameters can often control the bias and variance

aspects of a model. For example, in linear regression, the analyst can tune the

number of coefficients that will control allowed degrees of freedom, but can also
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add L1 and L2 regularisation terms that will prevent the model from overfitting.

Similar mechanisms are available in most ML methods via hidden neurons and

layers in NNs, maximum tree depth in regression trees, and so on (see Section

2.5). As a consequence, one can expect that hyperparameters do have a role in

causality as well due to its reliance on ML. But how exactly, and to what extent, do

hyperparameters influence the final performance of causal methods? Similarly to

the discussion found in the previous two subsections above, the answer is nuanced

and depends on the causal task at hand.

Chapter 4 claims that hyperparameters are critical for performance in causal

inference in two major ways (F4). First, hyperparameters are necessary to achieve

SotA as the results show that default hyperparameters perform much worse than after

tuning (Figure 4.2). Second, hyperparameters are sufficient to attain SotA as even

standard estimators can achieve or beat SotA levels with the right hyperparameter

values (Figure 4.3). This is a testament to the importance of hyperparameters and

the high sensitivity of modern ML methods to them. Such results also support

growing evidence in the wider literature on the importance of hyperparameters

in achieving SotA [180–182].

However, the caveat is that for the above necessity and sufficiency effects to occur,

one needs a near-optimal tuning mechanism (i.e. hyperparameter oracle). Such

an idealistic mechanism is unfortunately not available in practice as we can see in

our results a significant performance gap between the tuning oracle and currently

available evaluation metrics (i.e. the metrics are suboptimal; Figure 4.4). In addition,

performance differences when using different metrics for tuning purposes are also non-

trivial. This is clear evidence of how performance evaluation is important for tuning

– by only changing the metrics we can observe non-trivial performance differences.

Thus, the overall practical recommendation is to carefully consider hyperparameter

tuning and evaluation metrics used for that purpose as both will strongly impact

the final performance. It is also worth pointing out that the advice applies not only

to practitioners but also to researchers, so they carefully consider their experimental
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details when comparing methods in their studies (i.e. all included methods should

be carefully tuned for a fair comparison, ideally with the same metrics if possible,

not to mention enough transparency for a successful study replication).

The role of hyperparameters in causal discovery, as we see in Chapter 5, is

considerably different from that seen in causal inference as discussed above. First,

hyperparameter tuning, even near-optimal one, does not seem to be as important,

even to the point that default hyperparameter values perform mostly on par

with the optimised ones (F5; Section 5.4.5). Such realisation is on its own very

surprising as defaults are rarely as good in ML; tuning usually has at least some

effect. It is also good news for practice as tuning in CSL is very limited but

in this case avoidable with well-performing default hyperparameters. A possible

explanation behind the phenomenon could be that hyperparameters play a much

bigger role in regression/line fitting as there they have a direct impact on bias

and variance, whereas CSL is a completely different task, much more reliant on

statistical dependence among variables, with regression playing only a small part

if any at all (i.e. some methods are completely regression free).

Hyperparameters seem to start playing an important role in causal discovery

when we consider misspecified cases and the worst performances. According to

our results, these clearly differ from the best and default hyperparameter cases,

and the extent to which they are worse is rather extreme. Although the chances

of facing the worst cases in practice are low, especially when defaults seem to

work so well, the probability involved is arguably never zero. Thus, when we

combine a non-zero probability of hitting extremely poor performances due to

hyperparameter misspecification with the fact that reliable hyperparameter tuning

is almost impossible in causal discovery, at least taking it into account as a potential

risk factor seems like a reasonable strategy, even more so in high-stakes situations

where any degree of prediction mistakes is unacceptable. Furthermore, current

data does not say much about how transferable the defaults are to other much

different datasets, meaning that using seemingly safe defaults may carry some risks
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of hyperparameter misspecification, which is why working on tuning mechanisms

for causal discovery algorithms is so important.

6.2.4 Hyperparameters vs. Ensemble Performance
How does the choice of hyperparameter values influence the selection of causal

estimation methods in ensemble settings? (Q4.) We know from the previous dis-

cussion (Section 6.2.3) that hyperparameters and tuning influence the performance

of individual methods, but how about their role in the task of selecting among

different model classes (i.e. ensemble settings)? That is, the cases where we select

from not just one but multiple different learning methods. The model selection task

is arguably very similar to model tuning as both involve model evaluation. Thus,

given we are already aware of the importance of hyperparameters on learners, one

can anticipate model selection carrying similar importance weight. This expectation

is indeed reasonable but only to a certain extent because of possible discrepancies

in performance evaluation between the two. More precisely, not all learners support

the same evaluation metrics, making it challenging to combine tuning and model

class selection across different types of estimators. And because we know that the

choice of metrics can heavily influence the model’s performance, this detail is in fact

a non-trivial issue. For example, MSE as a metric is generally insufficient to penalise

all aspects of misspecification in prediction (see Section 4.3). Thus, the choice of

the loss function, which usually entails modelling assumptions, is very important.

This aspect is indeed noticeable in causal inference as our results in Chapter 4

show that when we perform model selection (with tuning) with different evaluation

metrics, we can expect significantly different results. This observation is further

explained in the literature [26] by suggesting that evaluation metrics can favour

certain types of learners (hence the term ‘biased validation’). It gets even more

interesting when we add to this discussion the observation that after optimal tuning

performance differences between learners become negligible, meaning that free

lunches in causal effect estimation are possible under certain conditions (F4). This

leads us to a critical conclusion – that tuning and metrics are much more important
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than learners themselves. That is, if after tuning there is no significant difference

between learners, but the metrics significantly change the final performance and

can work better with certain methods, then metric selection is by far the most

important factor here. This has serious implications for practice by emphasising the

role of thorough tuning over the model class selection, in the sense that it perhaps

might be better to thoroughly tune a single learner as opposed to performing model

selection across shallowly tuned models if available resources cannot guarantee both.

In research, on the other hand, the choice of metrics used in benchmarks must be

carefully considered and justified as it can make certain methods underperform.

An explanation for this could be that many effect estimators reached a level of

advancement so high that the performance differences between them have become

almost indiscernible. It also means that we perhaps do not need new estimators

anymore, but rather better evaluation mechanisms that will improve tuning and

remove bias from model class selection (i.e. favour no methods).

In causal discovery, algorithm selection seems to be more critical as there are

significant performance differences between methods even assuming access to the

hyperparameter oracle. This potentially shows the importance of data assumptions

factored into the algorithms (Section 2.1.2), which notably can differ between

learners quite substantially. Another possible explanation is a lower level of method

advancement as compared to effect estimation, which could be due to CSL being

a relatively younger research area than effect estimation, but also because causal

graph recovery is arguably more challenging due to its unsupervised nature. As a

consequence, there are no free lunches in causal discovery. However, as we know

from the previous discussion above (Section 6.2.3), hyperparameters in CSL are

important when considering the worst performances. This grows in importance

in model selection as we show in Chapter 5 that different algorithms display a

varied degree of robustness to misspecified hyperparameters (F5). That is, certain

algorithms are safer to use if we consider the risk of poor performances under unlucky

hyperparameter values. In addition, we can see that different algorithms constitute

the best choices depending on the quality of hyperparameter values (i.e. best,
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default, worst). Which means that an algorithm under the best hyperparameters

might be the best choice for a given DGP, but a different algorithm might perform

better if we consider the worst hyperparameters due to its better robustness to

misspecified cases (see also Table 5.1). This clearly shows that the capacity to

perform well under correctly specified hyperparameters does not necessarily translate

to strong robustness to misspecification. It is also worth mentioning that the size

of the hyperparameter search space may influence the worst performances and

perceived robustness as larger search spaces may make the worst performances

more extreme and more likely. Having said that, other reasons for this issue are

also possible and equally likely, such as the volatility of neural networks or the fact

that some CSL algorithms are heavily based on regression methods. Thus, overall,

when selecting CSL algorithms, it is worth considering not only which method

performs the best for a specific DGP, but also how they perform under different

types of hyperparameters, even more so that tuning in causal discovery is very

limited and the transferability of default hyperparameter values across different

datasets is not yet well understood and hence not quite ready to use with confidence

in production (discussed in Section 6.2.3 above as well).

6.3 Contributions

This work makes several noteworthy original contributions (denoted with C; see

Section 1.7) that are briefly discussed in the following paragraphs.

Averages are not enough for effective decision-making; we need more individualised

estimates for that purpose. However, standard off-the-shelf methods were mostly

designed for average estimates. To address this gap, Chapter 3 is the first to propose

a novel data augmentation method based on recently developed generative trees

(C1). Through undersmoothing and bias reduction (see Section 2.4.1), it improves

the estimation of individualised effects of downstream learners trained on augmented

data. This work is partly related to [107] that generates counterfactuals through
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generative neural networks for continuous treatments. Our work is significantly

different as it: a) uses simple and commonly used decision trees, b) is more

general by oversampling underrepresented subpopulations, and c) works with

traditional binary treatments.

Through chapters 3 – 5 we learn that the incompleteness of observational data is

the main source of challenges in causal estimation (i.e. missing counterfactuals and

selection bias; C2). This might be not as surprising, but the impact of this issue on

model evaluation and tuning has not been studied in depth before. In this context,

Chapter 4 reveals that covariate shift negatively impacts performance evaluation

to the point that the selection of metrics used for tuning is the most important

component of the modelling process (more important than model class), which

is in line with the latest literature on the topic [26]. In Chapter 5, on the other

hand, we can see the lack of ground truth is the main source of issues with tuning

in CSL, though inconsistent metric support across learning algorithms is also an

issue. This shows that further work on reliable hyperparameter optimisation in this

area, which recently gathered some interest [186, 189, 196], is of vital importance

for meaningful progress in the field.

All three main chapters (3 – 5) have a strong benchmarking component wherein

we test estimation performance across many methods and datasets (C3). The

main reason behind this is that different methods are often scattered across the

literature, but can be resource-intensive to evaluate properly. This makes it difficult

to compare them to each other and harms research progress. This work aims

to address this issue but is also unique by specifically focusing on standard and

seminal methods commonly used among practitioners. For instance, chapters 3 and

4 involve standard causal estimation methods like S and T learners, Double ML

(see Sections 2.2.4 and 2.2.5), but importantly we instantiate them with multiple

standard regressors, such as decision trees, random forests and linear models. Such

an approach gives us a unique opportunity to study the influence of not only

meta-learners (S, T, DML) but base learners (types of regressors) as well, which
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is rather uncommon in the literature. Further, in this context, Chapter 5 focuses

exclusively on seminal algorithms as they are well-established and most likely used

in practice but rarely compared in full in the wider literature.

Finally, performance analysis from the perspective of hyperparameter selection

constitutes one of the strongest and novel contributions of this thesis (C4 and

C5). While metrics and tuning have been studied before in the context of causal

inference [87, 168, 169, 171] and discovery [186, 194–196], oracle, default and

worst hyperparameter performances have been overlooked, with the hyperparameter

analysis done as part of Chapter 5 being the first of its kind in the area of CSL. One

of the critical aspects of this approach is that it is disconnected from potentially

biased selection metrics and shows the methods’ true performance capabilities.

With this perspective incorporated, it also becomes clear if default hyperparameters

are worth using, and how learners behave if hyperparameters are poorly selected.

Moreover, by including existing metrics in the analysis, we were able to reveal their

imperfections and the gap they create between potential performances and the

ones that are attainable with current tools. Last but not least, this type of design

unravelled the sensitivity of estimator selection to the choice of hyperparameters as

well as metrics as the optimisation of the former heavily depends on the accuracy of

the latter. We hope this work encourages more studies on hyperparameters in the

future and contributes towards now growing evidence about their importance

[132, 180–182, 192, 193].

6.4 Limitations

A core part of Chapters 3 and 4 are four standard benchmark datasets (Section 2.2.9).

One can wonder if larger and more diverse datasets would change the conclusions

about causal estimators being so similar in performance and so dependent on

hyperparameter tuning.
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While this is a valid concern, the four datasets used in this work cover a lot of

possibilities in terms of data challenges, in fact more than one can initially anticipate.

This is because said datasets are in fact ‘meta-datasets’ as each of them consists

of numerous slightly different data variants, called in the literature realisations

or iterations. Each of the realisations can be biased differently, with some more

challenging than others (think Bootstrapping or Monte Carlo simulations for an

analogy). All four datasets total 1, 070 such iterations, with IHDP dataset notably

accounting for most of them (1, 000). As a result, the treatment effect estimation

experiments involve not just four but in fact 1, 070 different datasets. Furthermore,

the datasets cover both regression and classification problems, include continuous

and discrete input features, vary in terms of sample size (747–11, 984) as well as

input size (17–3, 477), and exhibit different ratios between treated and control

sample sizes (see Table 2.1 for the details). Thus, in the context of causal effect

estimation from observational data with the standard set of assumptions (Section

2.2.2), these benchmarks are a good representation of the problem to be solved,

hence their popularity and recognition in the causal inference community. Adding

even more datasets to this setup would unlikely enrich the space of problems to

solve in a meaningful way, and thus would unlikely alter the conclusions about

similar performances of causal estimators.

However, what could possibly change in light of much larger datasets is the

dependency of causal estimators on hyperparameters and tuning. This possibility

was explored to some extent in Chapter 5 and the CSL task, where the proportion

of good performances increased with the sample size regardless of hyperparameters

(performances averaged across all HP values), suggesting the effect of HP tuning

(and hence its importance) decreases as sample size increases. While this specific

aspect was not studied in the treatment effect estimation chapters, a possibility of

observing a similar effect to that found in causal discovery cannot be rejected. That

is, observing that causal estimators’ sensitivity to HP choices decreases as sample

size grows significantly. Properly studying this research question is indeed outside
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the scope of the datasets incorporated in this work, but which would certainly

constitute an interesting future research direction to explore.

Summary

• Some overlapping topics that appear throughout this thesis are: causal
effect estimation, covariate shift, hyperparameters, free lunches in causality,
and performance evaluation.

• The questions and findings of this work are centred around two main
problems: (i) the impact of causal challenges on estimation performance
and hyperparameter tuning, (ii) the role of hyperparameters and tuning
in causal estimation.

• This work offers a wide range of unique contributions, spanning from a
novel method for improved effect estimation, through extensive perfor-
mance evaluation benchmarks, to the first of their kind hyperparameter
analyses in the context of causal estimation.

• The conclusions about causal estimators having similar prediction per-
formances would unlikely change with wider dataset setups, but the
dependence of the estimators on hyperparameter tuning could possibly
change with significantly larger datasets.
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Conclusion

This chapter concludes the thesis by briefly summarising the main findings and
contributions. The outline of potential future research directions either created
or identified by this work finalise this report.
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7.1 Summary of Main Findings

The overall conclusion of this thesis is that hyperparameters can be a blessing

and a curse when it comes to causal estimation from observational data. This

is because the analysis done in this work showed that prediction performance of

causal estimators heavily depends on selected HP values. If done properly, HP

tuning can make even standard causal learners reach or surpass SotA performance

levels, as evidenced by performances achieved with the best HP values presented

in Chapters 4 and 5. However, if HPs are neglected, even the most sophisticated

causal estimators become highly unreliable, as evidenced by performances achieved

167
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with default and the worst HP values presented in the same chapters.

The finding about standard causal estimators reaching SotA performance levels

implies that all the methods are similar when it comes to prediction performance and

that ultimately no causal estimator is stronger than another. A useful conclusion

from this observation is that prioritising thorough HP tuning of fewer causal

estimators might be a much more effective strategy in practice as opposed to using

an extensive number of estimators that were only shallowly (or not at all) tuned.

Further analysis into HP tuning and model class selection in observational causality

revealed unacceptable practices employed by the community. First, data-driven HP

tuning of causal estimators is almost completely ignored, especially in the fields

outside of computer science. Instead, many use default HP values, copy HP values

from other projects that used different data, or worse, adjust HP values manually in

order to make the causal model confirm preconceived beliefs about the data. In light

of the evidence provided in this work implying the critical importance of detailed

HP tuning for accurate causal estimation, all the aforementioned current practices

are completely unacceptable as without HP tuning the causal estimates are simply

untrustworthy. To improve reliability of conclusions based on causal estimates,

an in-depth HP tuning must become an integral part of every causal estimation

work, which must also be assessed during peer review. A potential reason behind

these poor practices could be improper education about good ML practices outside

of computer sciences. Another reason could also be the high complexity of HPs

that require a non-trivial time investment from users to properly understand them.

Software packages that provide implementations for the causal methods could also

discourage the use of fixed-valued HPs and shift towards HP tuning performed by

default. Perhaps a hidden and less discussed reason behind neglected HP tuning is

precisely the fact that no data-driven tuning opens up a possibility to adjust the

causal model to a preconceived idea about the data via manually set HP values,

which of course would completely break scientific integrity of any work involving

such practices. Unfortunately, the level of sensitivity to HP choices demonstrated
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by causal estimators certainly makes it possible, which is why it is so imperative

to include data-driven HP tuning in observational causality.

Another important issue in HP tuning within observational causal data is unreliable

performance evaluation of causal models. This constitutes a critical problem as

candidate HP values and models must be evaluated in order to select the combination

most suitable for the data. The issue stems from the fact that the true target of

causal estimation is never accessible1. Instead, we can only use those evaluation

metrics that merely approximate the true estimation target, and since these are

imperfect proxies, unreliable performance evaluation leads to unreliable HP tuning

and model class selection. This is again an unacceptable state of affairs in the causal

community as it ultimately leads to unreliable causal estimation from observational

data. One potential reason behind the current state of things is heavy reliance on

existing ML methodologies for model evaluation in the context of causal HP tuning,

but since these are not tailored to causal estimation targets, they do not work

properly in causal estimation settings. This very problem of ineffective standard

evaluation metrics is supposed to be addressed by bespoke metrics dedicated for

causal estimation. However, as evidenced in this work, these special causal metrics

also result in unreliable selection of HP values and models. Some major issues

with causal metrics used for HP tuning is that they themselves involve data fitting

and HP tuning (i.e. room for mistakes), or are biased towards specific types of

causal estimators. There is also a question whether strong causal metrics are at all

possible given the limited information within purely observational environments,

which could be addressed by adding records from experimental data.

The core and ultimate problem with HP tuning here is that causal estimators

and metrics may employ different assumptions about the data. Ideally, we would

detect which set of assumptions applies to the data at hand, select estimators and

metrics accordingly, and perform detailed HP tuning. Unfortunately, detecting

data assumptions with current tools is infeasible. In the meantime, the best

1We observe outcomes Y but never causal effects Y1 − Y0. We never observe causal graphs.
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workaround in practice might be to use expert domain knowledge when selecting

model classes and evaluation metrics.

The final message of this thesis is that HP tuning is critical for reliable causal

estimation from observational data, but reliable HP tuning in this context is

extremely challenging, resulting in observational causal estimation highly unreliable.

This state of things is certainly undesirable; critical improvements are needed if we

ever hope to consistently draw meaningful causal conclusions from observational

data. A message to practitioners is to prioritise HP tuning despite its imperfections

and challenges, but also exploit domain knowledge as much as possible when

selecting model classes and evaluation metrics to counteract existing biases of the

current methods. When it comes to research frontier, we urge for a shift in efforts

from new causal estimators to reliable and unbiased mechanisms for HP tuning and

model class selection. In causal inference, the work in the direction of metrics based

on influence functions seems to be particularly promising as they show robustness

to model class choices [171]. In causal discovery, a meaningful way forward could

be to focus on metrics that measure predicted causal graph’s usefulness in the next

task that builds upon the causal graph, such as causal inference2.

7.2 Summary of Contributions

This thesis contributes to the wider literature in several distinct ways, spanning

across knowledge advancements, methodological developments, and novel approaches

to empirical analysis.

Knowledge. This work identifies major challenges in causal observational data

and their influence on hyperparameter optimisation, followed by the impact

of hyperparameters on estimation performance.

2This would be analogous to clustering that precedes classification or recommendation systems.
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Methodology. We are the first to propose a novel data augmentation method

based on Generative Trees that improves the estimation of individualised

effects through undersmoothing and reduced bias of downstream estimators

trained on data augmented by our method.

Analysis. This report offers comprehensive performance evaluation benchmarks of

causal estimators across a variety of metrics and datasets, with a strong focus

on standard and seminal methods commonly used by practitioners. Crucially,

these include first-of-their-kind extensive empirical analyses of the role of

hyperparameter selection in causal estimation performance within individual

learners and ensemble settings.

7.3 Future Work

No research project is ever fully completed; this report is no different in this regard.

We discuss viable further extensions of this line of work in Section 7.3.1. Alternative

interesting research directions not directly arising from this work but nevertheless

related to the topic are described in Section 7.3.2 that also concludes this report.

7.3.1 Generated by This Work
This work is strongly focused on empirical analysis as most of the issues discussed

here, especially concerning hyperparameters, are not yet well understood, which is

reflected by scarce literature on those specific problems but also through recently

published work that fundamentally questions our understanding of hyperparameters

with respect to loss functions [192] and explored HP values [193]. Thus, a natural

first step was to explore said issues empirically and confirm their existence in

practice. Now, with the issues and their impacts confirmed empirically, the next

reasonable step would be to analyse them from a theoretical perspective in an

attempt to explain the observed mechanisms with mathematical language. This

direction would mostly revolve around hyperparameters and how their selection
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affects not just specific estimators but the estimation task itself. Such an approach,

in turn, could shed some light on the development of tuning procedures and metrics

applicable specifically to causal tasks. This movement has already started to some

extent in causal inference (e.g. [87, 171]), but none of the current tools is free

from model-induced bias [26]. In causal discovery, this is rather new and still

requires fundamental work, though research interest seems to be picking up in

this challenging area [186, 196, 213].

One specific potential direction could be to find the connection between the likelihood

of a recovered causal graph (e.g. similar to that in [55]) and hyperparameters involved

in the framework. Alternatively, one could consider graphs through the lens of

parametrised edge weights wherein hyperparameters naturally start to occur in the

form of the number of allowed coefficients per graph edge. This could be further

extended to more complex nonlinear cases where each node is a (parametric) function

of its parents, with the number of parameters again controlled by hyperparameters.

Admittedly, such a parametric approach might be limited, but nevertheless easier to

set up and take initial steps in solving the problem. A similar parametric approach

could be taken within effect estimation as well, which should notably transfer well to

neural networks since some of their hyperparameters directly control the number of

(latent) parameters (e.g. hidden layers and neurons). However, an important point

that must be considered in this line of work is the fundamental problem behind

covariate shift, which is the lack of information in certain areas of support, with the

latter being transferred to evaluation metrics as they are based on observed data.

For this reason, it might be useful to consider Bayesian approaches or further data

collection in the affected data regions as alternative ways of progression. Another

aspect that would benefit from the theoretical approach is the data augmentation

method presented in Chapter 3. Mainly, how, why, and through what mechanisms

our data augmentation approach differs from traditional (i.e. reweighting) methods.

As for other extensions related to specific projects, our data augmentation can

handle underrepresented data regions but not complete data gaps. This is because
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the method needs to learn the distributions of those regions. It could also mean there

might be a practical threshold of data region density below which our method loses

its utility, or an amount of information necessary to reconstruct the distributions

well enough for subsequent sampling. Extending the framework to more noisy

environments could also increase its applicability to real-world data scenarios.

Using generative neural networks (e.g. GANs [69] or VAEs [67, 68]) instead of

Gaussian models could also help to deal with high-dimensional data. Regarding the

benchmarking framework for CSL that is part of Chapter 5, it would be natural

to extend it to more challenging (and perhaps more practical) graphs that are not

DAGs, allowing for cycles and undirected edges [204]. The surprising effectiveness

of default hyperparameters should also be investigated further, specifically how well

they transfer between different DGP settings to confirm their safety of use with real

data. Since it is also unclear whether robustness to misspecified hyperparameters

should be attributed to the cardinality of explored hyperparameters or learning

algorithms themselves, a study focusing on this aspect would be highly valuable.

Another possible strand of future work, motivated by the discovered importance of

hyperparameter tuning and its dependence on evaluation metrics, would be centred

around causal software packages. These recently have grown in numbers due to the

increased popularity of causal methods, but most of them assume that validation

methods known from standard ML will be applicable to causal methods as well.

Such an assumption is, however, not safe as causal problems require their own

dedicated evaluation procedures, which are unfortunately not easily accessible to

practitioners without expert knowledge of such bespoke methods. To make a strong

positive impact on practice, causal packages should prioritise good practices around

model evaluation, selection and tuning that is appropriate to causal methods. This

should include accessibility of causal evaluation metrics (notably made possible

in [178]) as well as algorithm selection procedures, with a strong emphasis on the

ease of use to encourage their widespread adoption in practice. Furthermore, the

way most methods are currently implemented does not encourage hyperparameter

tuning at all by leaving hyperparameters at default values unless the user is aware
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of their importance and puts some extra effort towards tuning. This needs changing,

ideally to an extent that tuning occurs effortlessly by default and avoiding it requires

additional actions, increasing the chances that the latter is an informed decision, not

an accident. While such a design might feel unnatural given the history of writing

programming functions and objects in the same established patterns, the status quo

should not take precedence over what is right. Some notable approaches, in fact, have

started to appear in this space already, with the end goal being Automated Causal

Inference (AutoCI [214, 215]) and Automated Causal Discovery (AutoCD [213]).

7.3.2 Further Literature Gaps
There are other interesting research directions not necessarily related to hyperpa-

rameters but still potentially crucial for causal estimation. One common aspect

that seems underexplored is longitudinal panel data, which opens up at least two

interesting future avenues. The first builds on the observation that panel data

resembles to some degree the environment seen in offline off-policy reinforcement

learning. While the resemblance is not perfect, repeated unit observations over

time that occur in the two are the most important mutual factors. A detailed

analysis and comparison of the two frameworks could potentially reveal if, and how,

methodologies from one could be incorporated into the other. Owing to existing

successes of offline RL [216–218], investigating the use of NN-based RL methods with

panel data could be specifically useful due to recent interest in personalised nonlinear

causal effect estimation and standard panel data methods being centred around

mostly linear models. Notably, (recurrent) neural network solutions have been

already explored to some extent in similar settings, particularly with counterfactual

predictions over time [219], which could constitute a viable starting point for further

work in this direction. There is, however, one possible complication worth keeping

in mind while exploring this route. More precisely, viewing longitudinal data as RL

(i.e. repeated cross-sectional quasi-experiments) may amplify issues known from

cross-sectional settings due to growing d-separation sets (see Section 2.1.1) as time

passes and more confounding information is collected.
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Increased per-unit information found in panel data could be also beneficial to

causal discovery algorithms. Causal structure learning from limited cross-sectional

observations is indeed extremely challenging; very few methods can recover causal

graphs with high accuracy and only under narrow conditions. A viable strategy for

further progress could be to increase useful information within the data. For instance,

supplying standard cross-sectional observational data with additional interventions

opens new possibilities in terms of achievable accuracy and algorithmic design [211].

CSL has been successfully explored also in purely interventional environments found

in RL [220]. Thus, since panel data can be seen as limited interventions over time,

it might be potentially beneficial for more accurate causal discovery while still

remaining in the context of observational data. Some potential obstacles worth

considering that may arise from repeated measurements are the increased number

of graph nodes and violated sparsity assumptions.

The idea of combining causal discovery and inference into a unified system was

initially explored as part of this project (see Section 1.9). While still highly ambitious

with current tools, it remains an interesting direction worth future exploration,

though perhaps from different perspectives given past fruitless attempts. One

critical lesson from this report is that current CSL algorithms cannot fully and

reliably reconstruct relatively large graphs that are of interest. However, certain

easier cases seem to be within reach, that is, sparse graphs with up to 10-20 nodes.

From the perspective of causal inference, existing methods can already achieve high

performances, but transfer, or “transportability”, across different domains is still a

challenge [221]. Truly causal models are meant to be invariant to domain changes

via independent causal mechanisms [1] ingrained into them, but it requires the

knowledge of the causal structure (to obtain the disentangled factorisation of the

joint). Since full causal graph recovery is not quite feasible yet and model-free3

effect estimation has clear shortcomings, perhaps exploring something in-between

3Most effect estimators assume the simplest of causal structures known as the “triangle” wherein
all background covariates affect the treatment and the outcome, with the treatment also pointing
towards the outcome. Such a simplistic viewpoint rarely reflects reality accurately.
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the two would move things forward – localised small sparse CSL, combined with

(structured) function approximation. More specifically, the idea revolves around

breaking down function approximation into multiple functions of small and sparse

causal structures. Note, that in order to break down the target function into smaller

ones, another round of (meta-)CSL would be necessary. And since per-function

groupings are unknown and collectively create latent variables, causal discovery

specifically designed to work with hidden variables would be necessary for this step

[222]. In fact, such a structured approach to function approximation, especially

taking latent modelling into account, strongly resembles computational hypergraph

discovery [223], in which the causal graph is seen as a computational graph, with

latent variables as intermittent computational steps.

Domain invariance and model generalisability are, in fact, of high interest outside

causal inference as well. The same problem comes up in other areas like domain

adaptation and off-policy RL, but also in biomedical signal processing due to the

non-stationarity of the data (within and across subjects). This topic, often referred

to across ML as the OOD generalisation problem (see [160] for a survey), has

been recently investigated with renewed interest owing to ML models failing in

production. Some critical issues causing this are essentially data shifts of various

kinds that clearly degrade prediction performance, generally categorised into shifts

in input covariates X and those affecting the target-input relationship Y |X, as per

[158, 159] (see also Section 3.2.1). As a result, the fundamental IID assumption

is violated (training and deployment data are never truly the same), breaking all

methods that build upon it. The fact that this issue is prevalent in so many areas

calls for more fundamental research in this direction, which may require not only

new estimators more robust to data shifts, but also a fresh perspective on training

and evaluation procedures (i.e. test for OOD generalisation and data gaps), as

well as better data collection immune to biases.



Appendices

177





A
Supplementary Material for Chapter 4

Contents
A.1 Extended Results . . . . . . . . . . . . . . . . . . . . . . 179

A.1.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . 179
A.1.2 CATE Estimators . . . . . . . . . . . . . . . . . . . . . 179
A.1.3 Base Learners . . . . . . . . . . . . . . . . . . . . . . . . 183
A.1.4 Model Evaluation Metrics . . . . . . . . . . . . . . . . . 186
A.1.5 Default Hyperparameters vs. Oracle . . . . . . . . . . . 194
A.1.6 Correlations Among Dataset Metrics . . . . . . . . . . . 195
A.1.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 198

A.2 Experimental Details . . . . . . . . . . . . . . . . . . . . 201

A.1 Extended Results

A.1.1 Baselines
The baseline numbers we compare our results to are presented in Table A.1. We

simply present the numbers as reported in the papers. Note the number of dataset

iterations used may vary across papers and does not always match ours (10).

A.1.2 CATE Estimators
In order to investigate how different evaluation metrics affect the final performance

of individual CATE estimators, we perform model selection over the search space of

179
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IHDP Jobs Twins News
method εATE PEHE εATT Rpol PEHE εATE PEHE
TARNet .280± .010 0.950± .020 .110± .040 .210± .010 .315± .003 - -
CFR-WASS .270± .010 0.760± .020 .090± .030 .210± .010 .313± .008 - -
SITE - 0.656± .108 - .219± .009 - - -
GANITE - 2.400± .400 - .140± .010 .297± .016 - -
CEVAE .460± .020 2.600± .100 .030± .010 .260± .000 - - -
BLR .200± .000 5.700± .300 - - - .600± .000 3.300± .200
BNN-4-0 .300± .000 5.600± .300 - - - .300± .000 3.400± .200
BNN-2-2 .300± .000 1.600± .100 - - - .300± .000 2.000± .100

Table A.1: State-of-the-art methods in CATE estimation.

base learners and hyperparameters for each CATE estimator separately. With

respect to Equation (4.3), this translates to a search over B and H per each Cc.

Optimal performances L∗∗ concerning the dataset’s ground truth metrics are also

included (Oracle). Some metrics cannot be calculated for certain estimators due

to not exposing predicted outcomes, hence the ‘-’ entries.

For presentation purposes, only the best-performing variations of τ -risk metrics

are included. For τ -riskplug this is τ -riskPEHEplug with KR base learner, for τ -riskmatch

it is τ -riskPEHEmatch with k = 1, and for τ -riskR the LGBM learner performs the

best. Both µ-risk and µ-riskR are included here as well. Tables A.2 and A.3

present obtained results.

As shown in Tables A.2 and A.3, if optimal model selection choices are made (Oracle

column), the errors with respect to average effect predictions (εATE and εATT ) are

close to perfection across all CATE estimators and datasets. Almost all of these

reach, or even surpass, SotA performances (Table A.1). A similar observation can be

made with respect to individualised effect predictions (PEHE and Rpol), where most

CATE estimators are strongly competitive with Table A.1 SotA. Thus, in general, if

optimal model selection choices are made, most CATE estimators appear to provide

very competitive performances across all metrics and datasets, as compared with

the best methods available. This hints at a conclusion that it does not matter that

much which particular CATE estimator is chosen if simply a decent performance

is desirable, but only under optimal model selection decisions.
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name µ-risk µ-riskR τ -riskplug τ -riskmatch τ -riskR Oracle
IHDP - εATE
SL 0.246± 0.098 0.184± 0.052 0.264± 0.060 0.223± 0.094 0.318± 0.062 0.001± 0.001
TL 0.168± 0.098 0.180± 0.096 0.151± 0.045 0.143± 0.070 0.202± 0.068 0.000± 0.000
IPSW 0.131± 0.034 0.261± 0.093 0.239± 0.058 0.215± 0.094 0.315± 0.086 0.001± 0.000
DR 0.211± 0.079 - 0.182± 0.041 0.163± 0.064 0.533± 0.350 0.002± 0.001
DML 0.438± 0.136 - 0.290± 0.047 0.282± 0.117 0.508± 0.181 0.007± 0.003
XL - - 0.234± 0.085 0.275± 0.132 0.270± 0.135 0.009± 0.007
CF - - 0.241± 0.129 0.241± 0.129 0.240± 0.129 0.198± 0.131
SL-NN 0.486± 0.128 0.486± 0.128 0.579± 0.270 0.344± 0.162 0.342± 0.067 0.104± 0.038
TL-NN 0.221± 0.076 0.198± 0.048 0.422± 0.138 0.379± 0.165 0.507± 0.208 0.000± 0.000
IHDP - PEHE
SL 1.373± 0.612 1.390± 0.644 1.549± 0.673 1.296± 0.618 1.548± 0.697 1.205± 0.561
TL 0.701± 0.202 0.724± 0.199 1.214± 0.536 0.747± 0.239 1.129± 0.379 0.621± 0.200
IPSW 1.552± 0.726 2.117± 0.932 1.517± 0.647 1.309± 0.616 1.396± 0.609 1.204± 0.560
DR 1.470± 0.624 - 1.688± 0.794 1.508± 0.755 1.658± 0.793 1.275± 0.581
DML 1.905± 0.826 - 1.890± 0.898 1.827± 0.893 2.005± 0.880 1.679± 0.830
XL - - 1.317± 0.498 1.154± 0.441 1.276± 0.448 1.067± 0.409
CF - - 2.300± 1.185 2.295± 1.185 2.295± 1.185 2.290± 1.186
SL-NN 1.064± 0.212 1.064± 0.212 1.490± 0.614 1.184± 0.340 1.232± 0.277 0.925± 0.224
TL-NN 0.894± 0.183 0.868± 0.175 1.535± 0.685 1.179± 0.459 1.399± 0.496 0.641± 0.190
Jobs - εATT
SL 0.066± 0.020 0.076± 0.020 0.086± 0.030 0.071± 0.022 0.076± 0.023 0.003± 0.001
TL 0.074± 0.023 0.077± 0.022 0.083± 0.023 0.080± 0.023 0.081± 0.025 0.000± 0.000
IPSW 0.077± 0.025 0.080± 0.024 0.069± 0.022 0.079± 0.017 0.079± 0.020 0.024± 0.019
DR 0.075± 0.023 - 0.123± 0.037 0.080± 0.023 0.064± 0.019 0.001± 0.001
DML 0.078± 0.023 - 0.083± 0.025 0.079± 0.025 0.107± 0.031 0.016± 0.005
XL - - 0.092± 0.036 0.078± 0.026 0.077± 0.025 0.003± 0.002
CF - - 0.074± 0.021 0.077± 0.023 0.072± 0.021 0.053± 0.022
SL-NN 0.068± 0.022 0.071± 0.022 0.074± 0.025 0.066± 0.023 0.075± 0.025 0.023± 0.019
TL-NN 0.066± 0.026 0.075± 0.025 0.088± 0.022 0.092± 0.028 0.088± 0.025 0.010± 0.010
Jobs - Rpol

SL 0.261± 0.019 0.262± 0.021 0.236± 0.018 0.250± 0.019 0.211± 0.012 0.158± 0.011
TL 0.235± 0.019 0.237± 0.018 0.241± 0.015 0.245± 0.013 0.241± 0.016 0.128± 0.012
IPSW 0.245± 0.013 0.245± 0.011 0.245± 0.024 0.249± 0.021 0.248± 0.019 0.158± 0.013
DR 0.240± 0.010 - 0.282± 0.021 0.249± 0.012 0.243± 0.015 0.149± 0.010
DML 0.264± 0.014 - 0.263± 0.024 0.249± 0.015 0.271± 0.021 0.193± 0.012
XL - - 0.256± 0.025 0.236± 0.013 0.233± 0.019 0.153± 0.013
CF - - 0.254± 0.018 0.246± 0.016 0.225± 0.016 0.204± 0.017
SL-NN 0.254± 0.018 0.257± 0.017 0.248± 0.013 0.250± 0.018 0.251± 0.014 0.162± 0.010
TL-NN 0.226± 0.014 0.248± 0.022 0.242± 0.015 0.239± 0.015 0.216± 0.015 0.132± 0.009

Table A.2: Performance of individual CATE estimators achieved under different model
evaluation metrics, grouped by datasets (IHDP and Jobs) and test metrics. Numbers are
mean ± standard error across dataset iterations. Lower is better.
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name µ-risk µ-riskR τ -riskplug τ -riskmatch τ -riskR Oracle
Twins - εATE
SL 0.039± 0.000 0.039± 0.000 0.047± 0.001 0.047± 0.001 0.027± 0.002 0.000± 0.000
TL 0.051± 0.000 0.051± 0.000 0.077± 0.000 0.077± 0.000 0.077± 0.000 0.000± 0.000
IPSW 0.040± 0.000 0.040± 0.000 0.045± 0.001 0.045± 0.001 0.023± 0.002 0.000± 0.000
DR 0.053± 0.001 - 0.077± 0.000 0.077± 0.000 0.063± 0.001 0.001± 0.000
DML 0.033± 0.001 - 0.043± 0.001 0.060± 0.003 0.031± 0.000 0.001± 0.000
XL - - 0.077± 0.000 0.077± 0.000 0.052± 0.001 0.013± 0.001
CF - - 0.068± 0.000 0.064± 0.001 0.064± 0.000 0.063± 0.000
SL-NN 0.024± 0.001 0.024± 0.001 0.038± 0.001 0.037± 0.001 0.024± 0.003 0.001± 0.000
TL-NN 0.050± 0.002 0.049± 0.001 0.064± 0.003 0.068± 0.002 0.066± 0.002 0.000± 0.000
Twins - PEHE
SL 0.319± 0.002 0.319± 0.002 0.320± 0.002 0.320± 0.002 0.319± 0.002 0.317± 0.002
TL 0.328± 0.003 0.328± 0.003 0.326± 0.002 0.326± 0.002 0.326± 0.002 0.318± 0.002
IPSW 0.320± 0.002 0.320± 0.002 0.320± 0.002 0.320± 0.002 0.318± 0.002 0.317± 0.002
DR 0.330± 0.003 - 0.326± 0.002 0.326± 0.002 0.323± 0.002 0.318± 0.002
DML 0.318± 0.002 - 0.320± 0.002 0.323± 0.001 0.318± 0.002 0.317± 0.002
XL - - 0.326± 0.002 0.326± 0.002 0.323± 0.003 0.318± 0.002
CF - - 0.324± 0.002 0.323± 0.002 0.323± 0.002 0.323± 0.002
SL-NN 0.319± 0.002 0.319± 0.002 0.320± 0.002 0.320± 0.002 0.319± 0.003 0.317± 0.002
TL-NN 0.340± 0.004 0.340± 0.004 0.332± 0.004 0.334± 0.004 0.332± 0.005 0.328± 0.004
News - εATE
SL 0.156± 0.034 0.156± 0.034 0.645± 0.102 0.194± 0.043 0.144± 0.036 0.027± 0.011
TL 0.193± 0.046 0.193± 0.046 0.710± 0.173 0.265± 0.057 0.190± 0.051 0.007± 0.004
IPSW 0.149± 0.033 0.191± 0.045 0.764± 0.167 0.174± 0.042 0.140± 0.029 0.044± 0.019
DR 0.140± 0.033 - 0.368± 0.099 0.233± 0.063 0.166± 0.037 0.006± 0.002
DML 0.392± 0.066 - 0.769± 0.060 0.806± 0.270 0.587± 0.086 0.003± 0.001
XL - - 0.369± 0.083 0.169± 0.039 0.122± 0.029 0.008± 0.006
CF - - 0.598± 0.101 0.540± 0.095 0.539± 0.095 0.536± 0.095
SL-NN 2.395± 0.232 2.395± 0.232 1.559± 0.124 1.419± 0.181 1.497± 0.164 1.370± 0.189
TL-NN 0.714± 0.229 0.714± 0.229 1.594± 0.622 0.540± 0.158 1.043± 0.597 0.000± 0.000
News - PEHE
SL 1.729± 0.127 1.729± 0.127 3.115± 0.217 1.769± 0.125 1.727± 0.124 1.688± 0.122
TL 1.593± 0.129 1.593± 0.129 2.704± 0.207 1.727± 0.126 1.623± 0.126 1.549± 0.128
IPSW 1.708± 0.121 1.733± 0.123 3.173± 0.218 1.778± 0.128 1.723± 0.123 1.677± 0.122
DR 1.689± 0.123 - 2.426± 0.251 1.800± 0.128 1.730± 0.132 1.618± 0.128
DML 2.489± 0.368 - 2.765± 0.318 2.653± 0.241 2.399± 0.246 2.063± 0.157
XL - - 2.598± 0.214 1.804± 0.144 1.784± 0.140 1.704± 0.134
CF - - 2.544± 0.191 2.318± 0.176 2.321± 0.177 2.317± 0.177
SL-NN 3.959± 0.334 3.959± 0.334 3.473± 0.298 3.428± 0.310 3.426± 0.310 3.395± 0.308
TL-NN 3.908± 0.408 4.057± 0.484 4.385± 0.748 3.476± 0.401 3.760± 0.647 2.306± 0.122

Table A.3: Performance of individual CATE estimators achieved under different model
evaluation metrics, grouped by datasets (Twins and News) and test metrics. Numbers
are mean ± standard error across dataset iterations. Lower is better.
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This is, however, no longer true when using actual, non-optimal, selection metrics

(non-Oracle columns). Some selection methods appear to be better than others in

certain situations, but not consistently. The lack of a clear pattern suggests there

is no single best model selection method. A possible explanation is that selection

methods make different assumptions about the data or prediction targets, and hence

penalise different aspects of prediction mistakes. It is also perhaps a good example

demonstrating how much the final CATE performance can vary by changing only

model selection metrics, to the extent that a selection metric can decide if the

final product is a success or a failure, even when using exactly the same CATE

estimator. For an example, see TL estimator under IHDP - PEHE – performances

with τ -riskplug and τ -riskR are relatively mediocre, whereas with all other metrics,

performances reach SotA. In other words, model selection metric alone can “make

or break” a CATE estimator, which suggests the explored validation approaches

are very limited. But even more importantly, there is clearly a significant gap

between Oracle performances and the ones available via common metrics, showing

the latter can be a source of bias too.

A.1.3 Base Learners
We also study the impact different evaluation metrics have from the perspective of

individual base learners (Tables A.4 and A.5). Thus, the model selection search space

spans across CATE estimators C and hyperparameters H for each individual

base learner Bb. Presented τ -risk variants are the same as in Section A.1.2. As

µ-risk metrics are unavailable for certain CATE estimators, and the search here is

done across C, those metrics are excluded from this particular analysis.

Similar trends can be observed from the perspective of base learners (Tables A.4

and A.5). More precisely, optimal model selection decisions (Oracle), lead to

performances close to, or surpassing, SotA in Table A.1. Actual model selection

metrics again prove to deliver variable results, with a clear gap between them and

optimal choices. This suggests the choice of base learners is not that important

either for the final CATE performance. Note that by only examining Tables A.2
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name τ -riskplug τ -riskmatch τ -riskR Oracle
IHDP - εATE
L1 0.277± 0.100 0.226± 0.100 0.340± 0.129 0.046± 0.016
L2 0.330± 0.179 0.215± 0.116 0.270± 0.142 0.161± 0.112
DT 0.620± 0.201 0.451± 0.293 0.399± 0.202 0.000± 0.000
RF 0.204± 0.054 0.109± 0.043 0.253± 0.095 0.020± 0.011
ET 0.220± 0.107 0.281± 0.191 0.292± 0.129 0.003± 0.002
KR 0.190± 0.042 0.137± 0.072 0.282± 0.104 0.001± 0.001
CB 0.242± 0.061 0.109± 0.019 0.267± 0.064 0.004± 0.002
LGBM 0.351± 0.066 0.183± 0.069 0.264± 0.080 0.016± 0.008
NN 0.415± 0.139 0.379± 0.165 0.507± 0.208 0.000± 0.000
IHDP - PEHE
L1 1.820± 0.887 1.698± 0.904 1.795± 0.881 1.643± 0.884
L2 1.738± 0.859 1.617± 0.840 1.810± 0.899 1.603± 0.841
DT 2.294± 0.978 2.189± 1.037 2.330± 1.028 1.890± 0.932
RF 1.816± 0.818 1.718± 0.822 1.909± 0.968 1.529± 0.811
ET 1.955± 1.026 1.788± 0.999 1.999± 1.107 1.582± 0.915
KR 1.306± 0.523 0.746± 0.239 1.399± 0.623 0.653± 0.195
CB 1.428± 0.684 0.972± 0.410 1.453± 0.700 0.893± 0.386
LGBM 1.976± 0.939 1.418± 0.599 1.881± 0.907 1.326± 0.562
NN 1.531± 0.685 1.179± 0.459 1.399± 0.496 0.641± 0.190
Jobs - εATT
L1 0.078± 0.024 0.075± 0.025 0.093± 0.024 0.032± 0.022
L2 0.077± 0.026 0.079± 0.025 0.082± 0.025 0.061± 0.023
DT 0.076± 0.022 0.069± 0.021 0.062± 0.019 0.002± 0.001
RF 0.073± 0.024 0.074± 0.022 0.074± 0.021 0.011± 0.006
ET 0.082± 0.025 0.077± 0.026 0.073± 0.023 0.014± 0.008
KR 0.080± 0.023 0.080± 0.022 0.085± 0.026 0.000± 0.000
CB 0.077± 0.023 0.073± 0.020 0.066± 0.021 0.025± 0.011
LGBM 0.076± 0.022 0.073± 0.023 0.076± 0.024 0.009± 0.003
NN 0.088± 0.022 0.085± 0.028 0.088± 0.025 0.010± 0.010
Jobs - Rpol

L1 0.246± 0.014 0.243± 0.014 0.270± 0.024 0.197± 0.013
L2 0.245± 0.019 0.255± 0.014 0.224± 0.019 0.199± 0.014
DT 0.270± 0.025 0.230± 0.014 0.233± 0.019 0.142± 0.010
RF 0.253± 0.017 0.241± 0.015 0.239± 0.017 0.155± 0.015
ET 0.244± 0.015 0.232± 0.012 0.223± 0.016 0.148± 0.013
KR 0.235± 0.016 0.254± 0.016 0.262± 0.024 0.141± 0.009
CB 0.222± 0.019 0.211± 0.016 0.212± 0.015 0.156± 0.011
LGBM 0.220± 0.016 0.204± 0.014 0.221± 0.015 0.174± 0.011
NN 0.242± 0.015 0.247± 0.014 0.216± 0.015 0.131± 0.009

Table A.4: Performance of individual base learners achieved under different model
evaluation metrics, grouped by datasets (IHDP and Jobs) and test metrics. Numbers are
mean ± standard error across dataset iterations. Lower is better.
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name τ -riskplug τ -riskmatch τ -riskR Oracle
Twins - εATE
L1 0.075± 0.002 0.077± 0.000 0.025± 0.003 0.022± 0.000
L2 0.047± 0.001 0.047± 0.001 0.034± 0.002 0.030± 0.001
DT 0.042± 0.001 0.050± 0.002 0.030± 0.004 0.000± 0.000
RF 0.052± 0.001 0.063± 0.000 0.037± 0.003 0.000± 0.000
ET 0.043± 0.001 0.045± 0.000 0.040± 0.002 0.000± 0.000
KR 0.044± 0.000 0.045± 0.000 0.027± 0.002 0.000± 0.000
CB 0.043± 0.003 0.046± 0.002 0.043± 0.001 0.023± 0.001
LGBM 0.025± 0.001 0.033± 0.001 0.026± 0.001 0.011± 0.000
NN 0.038± 0.001 0.037± 0.001 0.024± 0.003 0.000± 0.000
Twins - PEHE
L1 0.325± 0.001 0.326± 0.002 0.318± 0.002 0.317± 0.002
L2 0.320± 0.002 0.320± 0.002 0.319± 0.002 0.318± 0.002
DT 0.320± 0.002 0.321± 0.002 0.320± 0.004 0.317± 0.002
RF 0.321± 0.002 0.324± 0.002 0.320± 0.003 0.317± 0.002
ET 0.320± 0.002 0.321± 0.003 0.321± 0.004 0.318± 0.002
KR 0.320± 0.002 0.320± 0.002 0.319± 0.002 0.317± 0.002
CB 0.320± 0.002 0.321± 0.002 0.321± 0.002 0.318± 0.002
LGBM 0.318± 0.002 0.320± 0.003 0.319± 0.003 0.317± 0.002
NN 0.320± 0.002 0.320± 0.002 0.319± 0.003 0.317± 0.002
News - εATE
L1 0.705± 0.136 0.414± 0.100 0.403± 0.128 0.044± 0.015
L2 0.254± 0.067 0.184± 0.069 0.263± 0.074 0.065± 0.040
DT 0.694± 0.070 0.391± 0.095 0.475± 0.098 0.002± 0.001
RF 0.347± 0.097 0.276± 0.073 0.260± 0.068 0.026± 0.020
ET 0.371± 0.090 0.341± 0.086 0.294± 0.075 0.035± 0.027
KR 1.700± 0.293 0.877± 0.345 0.529± 0.213 0.022± 0.006
CB 0.257± 0.063 0.219± 0.059 0.136± 0.028 0.035± 0.015
LGBM 0.722± 0.059 0.180± 0.035 0.253± 0.060 0.029± 0.015
NN 1.477± 0.155 0.653± 0.169 1.497± 0.164 0.000± 0.000
News - PEHE
L1 3.070± 0.247 2.411± 0.208 2.560± 0.227 2.140± 0.178
L2 3.287± 0.303 3.283± 0.303 3.289± 0.304 3.208± 0.270
DT 2.895± 0.288 2.735± 0.224 2.498± 0.155 2.078± 0.156
RF 2.555± 0.197 1.932± 0.168 1.936± 0.166 1.911± 0.166
ET 2.499± 0.188 1.950± 0.172 2.000± 0.188 1.916± 0.176
KR 3.446± 0.297 2.986± 0.314 3.057± 0.575 2.475± 0.276
CB 2.132± 0.128 1.695± 0.133 1.755± 0.135 1.544± 0.128
LGBM 2.703± 0.424 1.801± 0.124 1.883± 0.100 1.693± 0.125
NN 3.208± 0.249 3.438± 0.405 3.426± 0.310 2.306± 0.122

Table A.5: Performance of individual base learners achieved under different model
evaluation metrics, grouped by datasets (Twins and News) and test metrics. Numbers
are mean ± standard error across dataset iterations. Lower is better.
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and A.3, it could be argued that those great performances under Oracle column are

due to certain base learners winning most of the time. But by observing Tables

A.4 and A.5, this is clearly not the case as most learners achieve very competitive

results. Therefore, it seems that it is not CATE estimators, nor base learners, that

are important; it is model selection that drives the final CATE performance.

A.1.4 Model Evaluation Metrics
Winner Selection

In Table A.6, we focus exclusively on model evaluation metrics and how their

different variants perform at the model selection task. The search space, thus,

includes all CATE estimators C, base learners B and hyperparameters H,

processed by each evaluation metric and its variation.

As in Tables A.2 – A.5, it is evident in Table A.6 that the gap between CATE

performances obtained via Oracle and other metrics is significant. The explored

model selection metrics are clearly sub-optimal and biased, across all performance

metrics and datasets. No single metric used for model selection attains the desirable

standard set by Oracle.

Among the practical model selection metrics and their variations, matching using

PEHE as the feedback signal (τ -riskPEHEmatch ) performs the best on the IHDP dataset,

followed by µ-risk, with µ-riskR being somewhat decent but clearly worse. On Jobs

data, there is a fairly low variability between the metrics (no clear winner), though

τ -riskR appears to be the most consistent. On Twins, τ -riskPEHEplug with S-Learner

variation seems to be leading, followed by µ-risk and µ-riskR. Against News, µ-risk

and τ -riskR with tree-based learners (DT and LGBM ) performed the best.
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All this shows a lot of variability between selection methods, confirming again

that none of the explored selection methods is universally the best on all problems.

This is especially true for selection approaches that internally incorporate some

form of learning (all τ -risk metrics). No learner is generally the best, and this

problem applies to selection methods that involve learning. A solution could be

to perform some form of model selection again, that is, select the variation of the

model selection method that performs the best. However, this circular logic brings

us back to the start of the main problem – model selection for CATE estimation. A

“solution” that performs model selection for model selection (double model selection)

does not really address the problem, just shifts it to another algorithmic area.

Making strong assumptions in the form of priors to manually build an accurate

learning-based model selection does not solve the problem either because if such

priors are accessible, they can be simply incorporated straight into the CATE

estimator, eliminating the very need for any model selection. This is one of the

main arguments against selection metrics incorporating learners – the main problem

comes back unsolved. Such an issue does not exist when dealing with non-learning

metrics, namely µ-risk, which clearly provide more stable CATE performances across

all datasets. In addition, plain µ-risk appears to be generally a safer choice over

µ-riskR as the former is rarely worse, but often quite better.

When it comes to plugin validation (τ -riskplug), T-Learning variations are generally

better than S-Learning ones on IHDP and Jobs. This indeed makes sense as

stronger CATE estimators are expected to be a better guiding force in model

selection. Interestingly though, some S-Learning variants are better on the Twins

dataset. However, such a division between SL and TL is not that clear with the

News dataset. When comparing the plugin variants that provide either ATE or

PEHE as the guiding signal, it is not entirely clear which one would be a better

choice, though PEHE seems to be a slightly safer choice in most cases, with ATE

being as good at times. This is in line with the intuition that more accurate CATEs

should lead to better ATEs, but not the other way around (accurate ATEs are not

sufficient for good CATEs). If only a single specific plugin variant had to be chosen,
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TL-KR providing PEHE appears to be the most consistently good, with an exception

for News where tree-based variants appear to perform better, especially LGBM.

With matching validation (τ -riskmatch), the ones paired with PEHE are better

most of the time, except Jobs and Rpol metric, where the ATE variant dominates.

As for the number of neighbours considered in the kNN algorithm, k = 5 is often

the worst choice, suggesting that spreading the counterfactual estimation into too

many data points is detrimental to prediction accuracy. The choice between k = 1

and k = 3 is not that clear anymore.

Among the three learners used in conjunction with τ -riskR, there is no clear winner,

though the one with Decision Trees appears to be the least stable. If stability is

indeed the priority, LGBM variant is perhaps the safest approach, which admittedly

is the recommended option (XGBoost) by [87].

Correlations

Similarly to the previous section, we focus here on various evaluation metrics across

the search space of all CATE estimators C, base learners B and hyperpa-

rameters H, but instead of selecting the best model M∗ according to a given

metric, we use the metrics to rank all candidate modelsM = (C,B,H). Because we

record the test performances of all candidate models, we can calculate correlations

between the aforementioned rankings and ground truth metrics (test performance).

This perspective sheds some light on how well evaluation metrics rank candidate

models from best to worst. Table A.7 presents obtained results. Note all dataset

metrics, as well as most model evaluation ones, indicate better performances if the

scores are lower. Thus, positive correlations are expected there. µ-riskR and τ -riskR
are exceptions as their higher scores indicate better performance, meaning their

correlations with dataset metrics are expected to be negative.
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In Table A.7 we explore the same model evaluation metrics as in Table A.6, but

here we are interested in how they correlate with dataset metrics. In practice, this

tells something about an evaluation metric’s ability to rank candidate models, the

validity of which is tested against dataset metrics that are treated as ground truth.

In terms of specific performances, both µ-risk metrics are roughly on par with

each other with plain µ-risk being slightly favourable, especially for PEHE. τ -riskR

seems to be relatively stable across all data as well but is seldom the best choice

except for ATT estimation.

T-Learning variants of τ -riskplug seem to rank better than their S-Learning coun-

terparts, an observation similar to that of Table A.6. Notably, this is visible for

the IHDP dataset only. However, what can be clearly observed across all datasets

and both plugin and matching metrics is that τ -riskATE variants correlate much

better with εATE and εATT than τ -riskPEHE ones. The opposite is also true, that is,

τ -riskPEHE metrics correlate better with PEHE than τ -riskATE. This shows that

choosing the type of feedback signal in the metric, so it matches the estimation

target certainly improves ranking. Interestingly, this is not the case when picking

only the winning candidate model. Thus, if the plugin or matching metrics are

considered, their variant (ATE or PEHE) should be aligned with the estimation

target (ATE/ATT or CATE respectively). An additional consequence of this

conclusion is that if both average and individualised parameters are to be estimated,

they should be tackled separately with different evaluation metrics employed per

estimation target. This also indirectly suggests that the models that perform well

in the ATE estimation task will unlikely be the top performers when it comes

to CATE estimation, and vice versa.

Moving on to Rpol in the Jobs dataset, there is clearly only one correct choice with

respect to model evaluation – Rpol itself. All other metrics are surprisingly hardly

useful at all at the task given their close proximity to a value of 0 (no correlation).

This perhaps also demonstrates the difficulty of the policy recommendation task, and
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how much it differs from CATE estimation. It also strengthens the argument that

the model evaluation target should be aligned with the final estimation target

as much as possible.

Overall, a lot of variability can be observed across the evaluation metrics, again

resembling the winner-picking task in this regard. As with estimators and base

learners, no single evaluation metric appears to be always the best across various

problems. Unsurprisingly, there are no free lunches when it comes to choosing an

evaluation metric as well, even more so when a metric involves learning too (τ -risk

metrics). As for general recommendations, µ-risk seems to be the most stable for

PEHE, τ -risk variants for ATE/ATT , andRpol when it itself is the estimation target.

There are perhaps very few surprises except for two observations. First, as mentioned

before, metrics other than Rpol are unexpectedly unhelpful at ranking models with

respect to policy risk. Second, the SL-LGBM variation of τ -riskplug appears to be

extremely incorrect at ranking against IHDP to the extent that its scores correlate

negatively with dataset metrics. This anomaly indeed matches poor results in the

winner selection task (Table A.6) for this metric variant, suggesting the SL-LGBM

model did not learn the data very well.

Winner Selection and Ranking

Concluding both winner selection and ranking (Tables A.6 and A.7) at the same time,

there is evidently substantial variability across evaluation metrics and datasets, re-

gardless of whether the task is model selection or ranking. As a result, it is extremely

difficult to provide general recommendations for practitioners without having a

better understanding of the task at hand. The best course of action in this case

seems to be to prioritise the stability1 of a metric over its winning frequency. Metrics

not involving learning, such as µ-risk or Rpol, appear to share those characteristics,

making them favourable and reasonably safe defaults. Learning-based metrics like

1Stability in terms of performing well, but never terribly, across different tasks and different
metric variants.
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τ -risk clearly depend on modelling choices (and hyperparameters) of their inner

learners, complicating the main problem of causal estimation even further.

Another observation across both tables is that the metrics that could be the best

choice for selecting a winning model might not be the best at model ranking, and

vice versa. This confirms evaluating a metric on how well it selects a winning model

differs from evaluating it on how well it ranks all candidate models. Although

both tasks require a validation metric to score all candidate models, model ranking

requires the correct order of all models, as opposed to picking the correct winner

which completely disregards the importance of ordering the non-winning models.

Due to those clear differences in winner and ranking evaluations, incorporating

both should be considered when evaluating model selection metrics. The type

of information they provide can also be used in different ways, depending on set

priorities. For instance, rank correlation can possibly serve as a confidence or

stability test for any evaluation metric, in addition to its scores based on winner

selection. That is, the better the metric’s rank correlation, the more confidence

one can have that the candidate model selected as the winner is not a random

chance but rather a result of a series of correct evaluations of multiple candidate

models. Put alternatively, the more models are ordered correctly, the higher the

chance the winning model is placed correctly at the top of the ranking. Another

example would be to separate winner and ranking measures depending on the task

at hand. If selecting the winning model is a priority, evaluating the winner selection

becomes more important. Evaluating the ranking, on the other hand, might be

useful when the goal is to select not one but top N models from the collection of

candidates, for example, to average their responses for improved robustness instead

of relying on a single model. Despite the utility of rank correlation, it appears

to be uncommon for the purpose of the assessment of evaluation metrics in the

literature but was notably included in [172].
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A.1.5 Default Hyperparameters vs. Oracle
We are also interested in how estimators with default hyperparameters (no tuning)

perform when compared to those with optimal tuning (Oracle). The latter is

performed only across hyperparameters H, so each data point represents a com-

bination of a CATE estimator Cc and a base learner Bb (e.g. SL-DT, DR-KR,

etc.). Figure A.1 presents obtained results.
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Figure A.1: Performance of CATE estimators with (Oracle) and without (defaults)
hyperparameter tuning. Each data point represents the mean across dataset iterations.
Lower is better applies to all metrics, thus the closer to the bottom-left corner, the better.

The four plots in Figure A.1 clearly demonstrate the risk associated with using

default hyperparameters, and why tuning is of vital importance in order to achieve

satisfactory estimation performance. The two top cases against IHDP and Jobs show
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the issue perfectly; most of the points representing optimal tuning are clustered

near the desirable bottom-left corner of the plots. As we move diagonally from the

bottom-left corner of the plots to the top-right, fewer Oracle cases, but more default

ones, can be observed. The data points linked to default hyperparameters clearly

occupy the area representing worse estimation performance as compared to optimal

tuning. A similar, but somewhat less clear, picture can be observed with the News

dataset. Both groups of points seem to be more mixed, but the main concentration

of Oracle points still appears to be closer to the desirable bottom-left area. In Twins,

the spread across the X axis is particularly inconclusive, whereas, across PEHE,

estimators with default hyperparameters perform worse much more frequently.

A general conclusion from the four plots is that not performing any hyperparameter

tuning at all can have a severe negative impact on the estimation performance, and

the selection of CATE estimators and base learners is not enough to reach optimal

results. While the estimation performance also varies across CATE estimators

and base learners to some extent (see the spread of orange dots), it is extremely

difficult to consistently obtain decent performance with default hyperparameters

(blue dots). Evidently, hyperparameter tuning alone can substantially affect the final

performance and is arguably more important than the choice of CATE estimators

and base learners, as supported by Tables A.2 – A.5 as well.

A.1.6 Correlations Among Dataset Metrics
More accurate CATE predictions are in general expected to lead to more accurate

ATE estimates. By extension, a good CATE estimator should do as well in the ATE

estimation task, overall encouraging to use of the same instance of an estimator to

predict various causal parameters (CATE, ATE) at the same time. This is because

CATE estimation is about differences between potential outcomes per individual

unit (Y(i)
1 − Y

(i)
0 ), whereas ATE estimation task targets the same quantities, but

averaged across the population (E[Y1 − Y0]). Thus, it is reasonable to expect

more accurate individual predictions (CATE) will lead to more accurate prediction

of the mean (ATE). We take a closer look at this assumption by investigating
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how average-based (e.g. εATE) and individualised (PEHE) ground truth metrics

correlate with each other across various candidate models. Table A.8 presents

the results. The top part involves all candidate models across base learners and

hyperparameters (B,H) per CATE estimator Cc. Lower part includes models

across (C,H) per Bb. The very bottom line refers to correlations obtained across

(C,B,H). These three different perspectives allow us to see whether modelling

choices affect the average-individualised correlations.

IHDP Jobs Twins News
(εATE,PEHE) (εATT ,Rpol) (εATE,PEHE) (εATE,PEHE)

SL 0.874± 0.061 0.056± 0.021 0.294± 0.047 0.907± 0.014
TL 0.757± 0.066 0.082± 0.035 0.122± 0.005 0.980± 0.012
IPSW 0.901± 0.031 0.127± 0.105 0.366± 0.011 0.753± 0.023
DR 0.644± 0.069 0.054± 0.024 0.772± 0.019 0.989± 0.006
DML 0.934± 0.037 −0.011± 0.047 0.972± 0.001 0.522± 0.077
XL 0.791± 0.031 0.115± 0.041 −0.108± 0.066 0.746± 0.072
CF 0.443± 0.155 0.085± 0.161 0.799± 0.127 0.900± 0.028
SL-NN 0.890± 0.042 0.212± 0.111 0.167± 0.026 0.921± 0.027
TL-NN 0.238± 0.088 0.183± 0.114 0.226± 0.025 0.662± 0.037
L1 0.855± 0.085 0.305± 0.152 0.906± 0.076 0.807± 0.029
L2 0.344± 0.113 0.142± 0.160 −0.136± 0.056 0.893± 0.035
DT 0.327± 0.072 0.117± 0.037 0.030± 0.018 0.395± 0.099
RF 0.466± 0.121 0.075± 0.096 0.274± 0.003 0.902± 0.017
ET 0.285± 0.125 0.119± 0.107 −0.101± 0.013 0.925± 0.012
KR 0.558± 0.035 0.014± 0.019 0.032± 0.003 0.977± 0.013
CB 0.475± 0.059 0.037± 0.098 0.072± 0.021 0.172± 0.081
LGBM 0.387± 0.087 0.039± 0.071 0.023± 0.067 0.062± 0.120
NN 0.337± 0.067 0.182± 0.114 0.241± 0.023 0.655± 0.037
ALL 0.660± 0.048 0.022± 0.011 0.148± 0.003 0.979± 0.011

Table A.8: Correlations between ground truth dataset metrics averaged across dataset
iterations. Metrics refer to predictions on the test set, collected on all candidate models.
Numbers are mean ± standard error.

By analysing Table A.8, it is evident that correlations between ground truth metrics

can highly depend on both modelling choices and data itself due to considerable

variability in correlations across types of estimators as well as datasets. Weak, or

in extreme cases negative, correlations are particularly interesting as they challenge

the common belief that better CATE predictions translate to better ATEs.
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Out of four negative correlations, three are against Twins (see XL, L2 and ET ),

suggesting this task might be particularly challenging to get both CATE and

ATE parameters accurate using a single estimator instance. Most correlations

for this dataset are indeed weak, though there are four examples with relatively

strong correlations (above 0.7) as well, showing the effect is not entirely due to

the dataset itself. This is in fact the best example that proves correlations within

the same dataset may change drastically (from −0.136 to 0.972), suggesting the

ability to handle the estimation of both parameters may depend on a model (which

could be due to any of the three in (C,B,H)). Furthermore, correlations clearly

change across datasets as well, even within a single estimator or base learner.

The bottom line (see ALL) summarises this observation the best, which shows

correlations across all candidate models M. In Jobs dataset, all records are

particularly consistent in terms of how weak their correlations are (0.022 under

ALL), further supporting observations from Table A.7 that policy risk constitutes

a vastly different problem than CATE estimation, pointing towards treatment

recommendation and policy optimisation which were already shown to be different

from causal effect estimation [34].

As a result of possible multiple sources of variability in correlations (models and

datasets), it is difficult to draw any general conclusions with considerable confidence.

There are, however, two weaker observations that could offer some useful insights.

First, perhaps the row that recorded the most consistently high correlations across

all four datasets is L1, whereas CB and LGBM show consistently weak correlations.

A possible interpretation of this could be that simpler models are capable of handling

both CATE and ATE estimation parameters simultaneously, possibly due to their

lower variance. Second, by examining Figure A.1, it can be observed that the

degree to which both metrics are correlated (X and Y axis) may depend on the

model’s relative performance. This is particularly well demonstrated in IHDP, Jobs

and News plots – as performances get closer to the desirable bottom-left corner, a

stronger correlation between the metrics can be observed. Putting both observations

together, a resulting hypothesis would be that relatively simple yet well-performing
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models can handle both average and individualised estimation parameters the

best. The trick, however, is to find the balance between model simplicity and its

performance, where one could possibly come at the cost of another.

While the models that can estimate both CATEs and ATEs with reasonable accuracy

and consistency are achievable, they seem to be an exception rather than a rule,

especially if specific efforts are not put towards such a balance. Thus, it is generally

unreasonable to expect the same model instance to perform well in CATE and ATE

estimation simultaneously. Rather, a separate model that targets each estimation

parameter separately should be used. A solution could be to perform a model

search and tuning in conjunction with an evaluation metric that aligns well with

the desired estimation target. This point of view is further supported by Tables

A.6 and A.7. Another possible consequence links to how causal estimators are

tested on benchmark datasets, where estimators are often validated across multiple

ground truth metrics. If separate models, or their variants, should be used per

estimation target for optimal results, this practice should be allowed whenever

evaluating causal estimators for benchmarking purposes.

A.1.7 Discussion
Putting together observations from Tables A.2 – A.5, it can be seen that all CATE

estimators and base learners can achieve great performance levels under optimal

model selection choices. As a consequence, the choice of any particular estimator or

learner appears to be secondary, especially if pushing CATE performance to the

limits is not a priority, with a decent performance being satisfactory. In other words,

if most combinations of estimators and learners are equally strong, it does not

matter that much which one will end up being selected. It is rather hyperparameter

tuning of base learners, which is a form of model selection, that appears to have

much more influence on the final CATE performance. The results clearly present

that the same combination of estimators and learners but under different model

selection schemes can differ in the final CATE performance significantly, ranging from

poor to exceptionally good. Given these results and observations, model selection,
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particularly base learner hyperparameter tuning, appears to be the deciding factor

behind the quality of the final CATE performances, leaving the choices of particular

CATE estimators and base learners as less influential.

An important note, however, is that all this is true under a crucial condition

of optimal model selection decisions. Can we make optimal choices with model

selection methods currently available? As evidenced by the presented results, not

quite, due to a clear gap between the performances achieved under optimal and

non-optimal choices. Thus, even though many estimators can potentially achieve

great performances, they are not accessible with commonly used selection metrics.

Going back to the graphical example in Section 4.3, perhaps we can link the

performances under the Oracle model selection as the desirable but non-trivial to

identify solution Case 2. This definitely shows the importance of further research

into causal model selection, so we can eventually identify those great performances

we already know are feasible.

There is also an alternative interpretation of the results from the perspective of

the graphical example in Section 4.3. More precisely, it is also possible to interpret

the results under the Oracle as the undesirable Case 3, which seemingly achieves

exceptional performance given its low PEHE but clearly did not capture the main

trends very well. This possibility highlights an important issue. How can we

distinguish between Case 2 and Case 3 if the only piece of information we have is

PEHE? How can we be sure if the results under the Oracle are in fact desirable?

Without the aid of plots, as in Section 4.3, this becomes a challenging task. And

as demonstrated by the Section 4.3 example, simple metrics like MSE may not be

enough for model selection, whereas PEHE might not be enough for final CATE

estimation performance evaluation, as both used in separation fail to identify the

desirable Case 2. This problem yet again shows the importance of further research

into causal model selection in order to understand those issues more fundamentally.
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Also noteworthy are the performance improvements as the search space of model

selection gets bigger, that is, going from Tables A.2 – A.5 (smaller search space) to

Table A.6 (the biggest search space), especially when observing the results under

the Oracle. At the very least, it is a mere confirmation that wider search spaces can

potentially deliver better solutions, which of course comes at higher computational

costs. But perhaps it is even more important to state the reverse, that smaller search

spaces can potentially be detrimental to the final CATE performance. This point of

view indirectly stresses the importance of performing model selection as part of the

CATE estimation and optimisation process. Taken to the extreme, constraining

the solution to a particular model using general defaults (no model selection at all)

can be risky. Previous analysis suggests the choice of CATE estimators and base

learners is indeed less important under optimal model selection decisions, but this

still assumes some form of model selection, hyperparameter tuning of base learners

in this case. Thus, tuning hyperparameters at least to some limited extent should

be the bare minimum of the CATE modelling process. In fact, this observation is

supported by Figure A.1, wherein performances with default hyperparameters are

clearly and consistently inferior to those with optimally selected hyperparameters,

showing yet again the power of thorough hyperparameter tuning alone.

Finally, model selection methods that themselves perform learning internally (all

τ -risk) are subject to tuning, or model selection in general, leaving the main problem

of selection unsolved. This is evidenced by significant variability between those

selection methods and their variants as they are clearly sensitive to how internal

learners respond to provided data. Non-learning selection metrics (all µ-risk) seem to

be more stable for this reason, making them a safer choice as a whole. But crucially,

none of the selection metrics attain the performance levels obtained by the Oracle.
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A.2 Experimental Details

The proposed experimental design involves four major stages: data pre-processing

(stage 1), learning, prediction, and validation (stage 2), post-processing (stage 3),

and compilation of results (stage 4). Figure A.2 depicts the framework and its

components. Hyperparameters H are defined per each base learner (see Section

4.4.4). Validation metrics LV are obtained on validation sets Dval (see Section 4.4.2).

Test metrics LT = {εATE,PEHE, εATT,Rpol} are calculated against test sets Dte.

Stage 1 All data splits are performed and stored before any learning to ensure fair

comparison between methods. This involves preparing 10 iterations of each

of the four datasets (see iter), where each iteration is split into training and

testing parts (train and test in the diagram). Furthermore, each training set

is split into 10 cross-validation folds (see fold), stratified on treatment status

T, wherein each fold consists of a training and validation part (train and valid

respectively), following recommendations in [131]. Performing all the splits

only once and saving them for later use ensures all estimators are trained on

exactly the same training data and then evaluated on the same validation

and test sets. The only sources of variability thus are the internal workings of

learners and minor differences between dataset iterations.

Stage 2 All τ -risk metrics perform internal learning on validation sets before

returning their evaluation scores. Because all validation folds are stored

after stage 1, all necessary learning can be performed only once per τ -risk

variant and saved for later use. This is why the stage 2 diagram includes

an arrow pointing from valid to metrics. τ -risk learning is done via 5-fold

cross-fitting to avoid overfitting [131]. Once metrics are ready to use, it is

possible to start fitting causal estimators. Each candidate model from the

(C,B,H) search space is trained on training data and provides predictions on

validation data that are then used to calculate evaluation metrics LV (top

half of stage 2). All repeated across 10 CV folds and 10 dataset iterations.
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 . 

  .
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A.7

Figure 
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Same as
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( ).
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between  and 
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3. Mean and standard
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4. Repeat 1-3 for all
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3. Obtain corresponding test
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5. Repeat 1-4 for all datasets.
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Same as Query 4
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between test
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2. Select row with the best

metric value. 
3. Obtain corresponding test

metrics values. 
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5. Repeat 2-4 for all  and

 metrics. 
6. Repeat 1-5 for all

datasets. 
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Figure A.2: Diagram of the proposed experimental design with four main stages. Stage
1 : data pre-processing, Stage 2 : learning, prediction, and validation, Stage 3 : post-
processing, and Stage 4 : compilation of results. Note matching colours of different parts
of data.
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This simulates the standard model selection procedure via cross-validation.

Next, all candidate models are trained again but now on the entire training

set coming from a dataset iteration (bottom half of stage 2), followed by test

predictions and calculation of ground truth metrics LT . This again mimics

standard model selection practice; once a modelling choice is made, the final

candidate model is trained on all the data and tested on new data that the

model was not exposed to before. In our case, the difference is that we

collect test performances of all candidate models, not just the winning ones.

Whenever a CATE estimator performs cross-fitting internally (DR, DML), we

set the number of folds to 5 [131]. We explore the search space of candidate

models (C,B,H) as exhaustively as possible, but with certain limitations due

to computational reasons. See Section 4.6.1 for more details.

Stage 3 All validation LV and test LT metric scores that were obtained in stage 2

are stored together with information about used candidate models, dataset

iteration index and CV fold index in the case of validation metrics. To

further simulate the usual model selection procedure, it is necessary to average

validation metric scores across all 10 CV folds. This is done per each unique

combination of (Cc,Bb,Hh, iteri) across folds 1−10. Column foldi now can be

dropped. Next, average validation scores can be merged with test scores using

(Cc,Bb,Hh, iteri) as the merging key. The result is a single table containing

all candidate modelsM and all validation and test metric scores associated

with them. This allows us to further analyse how using various validation

metrics affects the final test performance of causal estimators. Put differently,

it is now possible to simulate using a specific validation metric LV for model

selection purposes and immediately seeing consequences in test performance

LT . As test performances of all candidate models are stored, it is also possible

to identify Oracle performances L∗∗ (see Equation (4.11)) with respect to

each ground truth metric LT . Such an all-encompassing table is created per

each dataset.
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Stage 4 Having all the results in a single table per dataset allows us to explore and

analyse them from different perspectives. In order to provide a better intuition

as to how the presented tables and figures have been created using obtained

numbers, SQL-like pseudocode queries have been included in the diagram,

each of them linked to a particular table or figure that is presented in this

chapter in Section 4.5 (or Appendix A.1). Note that all queries are repeated

for all datasets. Also noteworthy is the fact that the numbers presented in

all tables are means and standard errors across dataset iterations, which are

stored under the iteri column in the aforementioned final tables. Finally,

when performing model selection across dataset iterations, in each iteration a

different candidate model can be selected as a winner. In some sense, each

dataset iteration is treated as a separate mini-dataset.
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B.1 Extended Results

The following results complement the ones presented so far in Section 5.4.5.

Although they do not change the overall conclusions of the chapter, they offer

additional analysis that may facilitate a deeper understanding of the problem

and the final outcomes.
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B.1.1 Best Performances
Figures B.1 and B.2 focus on performances achieved specifically with the best

(oracle) hyperparameters. These correspond to the best performances presented

in Figure 5.4 (blue bars). Some important observations: a) algorithms differ in

performance even with access to a hyperparameter oracle, b) number of graph

nodes and edge density can significantly impact performance, and c) no algorithm

performs best under all conditions (linear vs. nonlinear).
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Figure B.1: Best performances against ER graphs. Error bars are standard errors.



B. Supplementary Material for Chapter 5 207

10 20 50
graph_p

0

10

20

30

40

50

60

70

SH
D

10 20 50
graph_p

0

10

20

30

40

50

60

70

10 20 50
graph_p

50

100

150

200

250

10 20 50
graph_p

50

100

150

200

250

150

175

200

225

250
graph_type = sf | graph_d = 1 | data_n = 200

200

225

250

275

300
graph_type = sf | graph_d = 1 | data_n = 1000

400

600

800

graph_type = sf | graph_d = 4 | data_n = 200

400

600

800

graph_type = sf | graph_d = 4 | data_n = 1000

ANM CAM FCI FGES LINGAM NOTEARS NOTEARS_MLP PC

(a) linear SEM with Gumbel noise

10 20 50
graph_p

0

10

20

30

40

SH
D

graph_type = sf | graph_d = 1 | data_n = 200

10 20 50
graph_p

0

10

20

30

40

50

60

graph_type = sf | graph_d = 1 | data_n = 1000

10 20 50
graph_p

10

20

30

40

50

60

10 20 50
graph_p

0

10

20

30

40

50

60

165

170

175

180

185
graph_type = sf | graph_d = 4 | data_n = 200

120

140

160

180

graph_type = sf | graph_d = 4 | data_n = 1000

(b) nonlinear (GP) SEM with Gaussian noise

Figure B.2: Best performances against SF graphs. Error bars are standard errors.

B.1.2 Large Graphs with Large Sample Size
Previous results showed that p = 50 graphs are much more challenging than

smaller ones. Figure B.3a demonstrates that with enough data samples, even

such larger graphs are possible to solve accurately. As presented in subfigure (b),

increased sample size can also help with robustness. Note also how the degree

of the benefits varies between algorithms.

Figures B.4, B.5 and B.6 further extend the results to performance distributions

over all hyperparameters (SHD, FP, and FN respectively). Notice how a larger

sample size increases the proportion of good performances (the lines shift to the

left and hit higher proportion numbers for lower metric values). If the improvement

trend remains for even larger sample sizes, one can wonder if the HP misspecification

issue could be solved entirely by larger quantities of data alone.
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Figure B.3: Performances for ER1 p = 50 graphs.
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Figure B.4: Distribution of SHD performances across all hyperparameters (ER1 p = 50
graphs). A vertical line at SHD = 0 is desirable.
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Figure B.5: Distribution of false positives (FPs) across all hyperparameters (ER1 p = 50
graphs). A vertical line at FP = 0 is desirable.
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Figure B.6: Distribution of false negatives (FNs) across all hyperparameters (ER1
p = 50 graphs). A vertical line at FN = 0 is desirable.
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B.1.3 Performance vs. Hyperparameter Quality
Figures B.7, B.8 and B.9 complement Figure 5.4 from the main content by showing

the results for other types of DGPs.

In Figure B.7, we can see that default HPs perform well across all settings (orange

and green bars are close to the blue ones). Furthermore, sparse graphs with 10

and 20 nodes are recovered with good accuracy by most algorithms, but 50-node

graphs become much more challenging with the current sample size. Recovery of

dense graphs (right half of the figure) is generally unacceptably inaccurate with

current tools no matter the size of the graph and learning method.
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Figure B.7: SHD performances depending on the quality of selected hyperparameters
(colours), grouped by DGP properties such as number of nodes (graph_p), edge density
(graph_d) and SEM type (data_sem; gumbel is linear, gp nonlinear).



B. Supplementary Material for Chapter 5 211

In Figure B.8 that is concerned with false positives, it can be observed that the

main conclusions derived from Figure 5.4 still hold across most DGP settings –

that FPs can be almost completely reduced given well-specified HPs. A closer

examination of the figure suggests that certain DGP properties do play a role here.

First, there is a higher chance of reducing FPs in nonlinear cases than in linear

ones (gp vs. gumbel). Second, specifically in linear settings, dense graphs are

considerably more challenging than sparse ones. Interestingly, in nonlinear cases,

neither graph size nor density seems to affect FP reduction.
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Figure B.8: FP (false positive) performances depending on the quality of selected
hyperparameters (colours), grouped by DGP properties such as the number of nodes
(graph_p), edge density (graph_d) and SEM type (data_sem; gumbel is linear, gp
nonlinear).
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As for Figure B.9 and false negatives, only sparse linear cases seem to have acceptable

levels of prediction mistakes. As we move to more dense and nonlinear settings,

FN errors grow considerably. The latter observation combined with FPs reduced

mostly to zero in Figure B.8 suggests that the majority of prediction mistakes

in general come from undetected edges (FNs).
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Figure B.9: FN (false negative) performances depending on the quality of selected
hyperparameters (colours), grouped by DGP properties such as the number of nodes
(graph_p), edge density (graph_d) and SEM type (data_sem; gumbel is linear, gp
nonlinear).
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B.1.4 Performance Distribution Across Hyperparameters
Figures B.10, B.11 and B.12 complement Figure 5.3 from the main content by

showing the results for other types of DGPs. They generally confirm the main

claim based on Figure 5.3 – that on average no algorithm dominates the others.

The only minor exceptions from this statement can be seen when analysing large

graphs (p = 50) and different SEMs (gp vs. gumbel), but only to a limited extent.
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Figure B.10: Distributions of SHD performances across all hyperparameters, grouped
by SEM types (data_sem), sample size (data_n), edge density (graph_d), graph type
(ER or SF) and number of nodes (graph_p).
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Figure B.11: Distributions of false positive (FP) performances across all hyperparame-
ters, grouped by SEM types (data_sem), sample size (data_n), edge density (graph_d),
graph type (ER or SF) and number of nodes (graph_p).
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Figure B.12: Distributions of false negative (FN) performances across all hyperparame-
ters, grouped by SEM types (data_sem), sample size (data_n), edge density (graph_d),
graph type (ER or SF) and number of nodes (graph_p).

B.1.5 Winning Algorithms vs. Simulation Properties
Figure B.13 complements Table 5.1 from the main content but removes hyperpa-

rameters from the picture in order to analyse how DGP properties alone affect the

winning odds of the algorithms. The results presented here involve the use of the

best hyperparameter values. From this perspective, it is clear that no algorithm

is the best under all conditions, and that SEM types involved and edge density

have the strongest impact on the winning odds.

B.1.6 Winning Algorithms vs. Hyperparameter Quality
Figure B.14 forms the basis for Table 5.1 from the main content. It presents

winning percentages of algorithms across different DGP types, from which Table

5.1 was derived.
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Figure B.13: Percentage of wins per algorithm depending on DGP properties.
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Figure B.14: Percentages of winning algorithms under different data, graph and
hyperparameter conditions.
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B.2 A Guide To Algorithm Selection

B.2.1 General Recommendations
• Current algorithms seem to work reasonably well for sparse graphs of up to

20 nodes. Bigger graphs (50 nodes) are also possible to solve, but more data

might be required (10, 000 samples) to achieve good accuracy. The accuracy

of recovered causal structures drops dramatically for dense graphs.

Recommendation: Stick to sparse graphs with up to 20 nodes

(moderate amount of data) or up to 50 nodes (a lot of data). Avoid

dense graphs.

• No single algorithm is the best option for all problems. Some perform the

best under very specific conditions.

Recommendation: Choose an algorithm that is the most likely to

accurately solve the problem at hand based on assumptions derived

from data.

• The best choice of an algorithm may depend not only on graph and data

properties but also on the availability of quality hyperparameters. This is

because algorithms vary in robustness to misspecified hyperparameters.

Recommendation: When selecting the best algorithm for the prob-

lem at hand, take into account the type of hyperparameters that

are available and algorithm’s robustness to misspecified hyperpa-

rameters.

B.2.2 Hyperparameter Selection Strategies
Optimal hyperparameters are almost never available in causal structure recovery

problems due to inaccessible ground truth. Some methods provide scores that

can be used to decide whether a set of hyperparameters is better than others for

the same algorithm. However, this strategy cannot be used to compare different

algorithms to each other, as they are likely to use different score metrics (while some
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use none at all). In addition, in order to use those scores, an algorithm’s internal

code must be modified in most cases, creating a substantial barrier to practitioners.

Thus, default hyperparameters might be a reasonable selection strategy as they

often work almost as well as the optimal ones. This is especially the case if the

recommended defaults have been derived from data problems similar in nature

to the problem at hand.

If, however, the problem to solve is believed to be fairly unique, blindly using default

hyperparameters without considering other factors might not be safe. In this case,

the best course of action (assuming hyperparameter tuning is not an option) might

be to still use default hyperparameters but choose the algorithm that is the most

robust to hyperparameter misspecification under specific graph and data conditions

that are believed to apply to the problem at hand.

B.2.3 How to Select Algorithms
Figure B.15 summarises the best algorithm choices based on Figure B.14, which

takes into consideration data and graph properties as well as the types of hy-

perparameters available.
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Figure B.15: Recommended algorithm choices based on the number of graph nodes,
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B.3 Experimental Details

B.3.1 Hyperparameters
We attempted to explore the hyperparameters as thoroughly as possible to make our

findings general enough, while at the same time managing computational demands

that increase with each added hyperparameter and explored value. In addition,

some methods are considerably more demanding than others, which makes the

exploration even more difficult. With these constraints in mind, we believe our

hyperparameter exploration accurately reflects common practice.

algorithm hyperparameters and values carda (total)
ANM alpha ∈ {0.001∗, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5} 10 (10)
CAM cutoff ∈ {0.001∗, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5} 10 (10)

score = nonlinear
selmethod = gamboost
prunmethod = gam

FCI alpha ∈ {0.001∗, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5} 10 (10)
test = fisher-z-test

FGES penaltyDiscount ∈ {0.001, 0.01, 0.1, 0.25, 0.5, 0.75, 1, 1.5∗} 8 (8)
score = sem-bic

LiNGAM thresh ∈ {0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5∗} 10 (20)
max_iter ∈ {100∗, 1000} 2

NOTEARS lambda1 ∈ {0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2∗, 0.3, 0.5} 10 (200)
max_iter ∈ {100∗, 1000} 2
w_threshold ∈ {0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2∗, 0.3, 0.5} 10
loss_type = l2
h_tol = 1e− 8
rho_max = 1e+ 16

NOTEARS MLP lambda1 ∈ {0.001, 0.01∗, 0.1} 3 (81)
lambda2 ∈ {0.001, 0.01, 0.1∗} 3
w_threshold ∈ {0.1, 0.3, 0.5∗} 3
hidden_layers = 1
hidden_units ∈ {8, 16∗, 32} 3
max_iter = 100
h_tol = 1e− 8
rho_max = 1e+ 16

PC alpha ∈ {0.001, 0.002∗, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5} 10 (10)
indepTest = gaussCItest

Table B.1: Hyperparameter search spaces defined per algorithm. Note that hyperpa-
rameters are in most cases continuous, but we explore a discrete space of values. ∗Found
to perform best on average across all simulations (sim_mean). aCardinality of the
hyperparameters considered in the experiments.
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B.3.2 Summary of Algorithms
algorithm default hyperparameters package paper
ANM alpha = 0.05 gCastle [51]
CAM cutoff = 0.001 cdt [55]

score = nonlinear
selmethod = gamboost
prunmethod = gam

FCI alpha = 0.01 tetrad [201]
FGES penaltyDiscount = 2.0 tetrad [202]
LiNGAM thresh = 0.3 gCastle [50]

max_iter = 1000
NOTEARS lambda1 = 0.1 gCastle [56]

max_iter = 100
w_threshold = 0.3
loss_type = l2
h_tol = 1e− 8
rho_max = 1e+ 16

NOTEARS MLP lambda1 = 0.01 gCastle [36]
lambda2 = 0.01
w_threshold = 0.3
hidden_layers = 1
hidden_units = 10
max_iter = 100
h_tol = 1e− 8
rho_max = 1e+ 16

PC alpha = 0.01 pcalg [200]

Table B.2: Summary of incorporated algorithms and their sources. Recommended
default hyperparameters have been derived from respective papers as much as possible. If
necessary, they have been further supplemented with defaults suggested within respective
packages.

B.3.3 Summary of Packages
package paper link
gCastle [224] https://github.com/huawei-noah/trustworthyAI/tree/master/gcastle

cdt [225] https://fentechsolutions.github.io/CausalDiscoveryToolbox

tetrad [226] https://cmu-phil.github.io/tetrad/manual/

pcalg [227] https://cran.r-project.org/package=pcalg

Table B.3: Summary of incorporated algorithm packages.

https://github.com/huawei-noah/trustworthyAI/tree/master/gcastle
https://fentechsolutions.github.io/CausalDiscoveryToolbox
https://cmu-phil.github.io/tetrad/manual/
https://cran.r-project.org/package=pcalg
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