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Abstract—Pilot sequence design over doubly selective channels
(DSC) is challenging due to the variations in both the time- and
frequency-domains. Against this background, the contribution of
this paper is twofold: Firstly, we investigate the optimal sequence
design criteria for efficient channel estimation in orthogonal
frequency division multiplexing systems under DSC. Secondly,
to design pilot sequences that can satisfy the derived criteria, we
propose a new metric called oversampled ambiguity function
(O-AF), which considers both fractional and integer Doppler
frequency shifts. Optimizing the sidelobes of O-AF through a
modified iterative twisted approximation (ITROX) algorithm,
we develop a new class of pilot sequences called “oversampled
low ambiguity zone (O-LAZ) sequences”. Through numerical
experiments, we evaluate the efficiency of the proposed O-
LAZ sequences over the traditional low ambiguity zone (LAZ)
sequences, Zadoff-Chu (ZC) sequences and m-sequences, by
comparing their channel estimation performances over DSC.

Index Terms—Ambiguity function, channel estimation, doubly
selective channel, ITROX algorithm, orthogonal frequency divi-
sion multiplexing (OFDM), oversampled ambiguity zone (O-AZ)
sequences.

I. INTRODUCTION

There is a growing research interest in high-mobility and
high-rate wireless communications, such as those utilized in
high-speed train and Vehicle-to-Everything (V2X) communi-
cations, as well as low-earth-orbit satellite networks [1]–[5].
These communications typically occur over doubly selective
channels (DSC), which are challenging due to the time and
frequency selectivity caused by multipath propagation and
Doppler shifts/spread. Interference suppression in DSC is
one of the main challenges faced by modern communication
systems.

Orthogonal Frequency-Division Multiplexing (OFDM) sys-
tems have been successfully incorporated into important stan-
dards like the 3rd Generation Partnership Project (3GPP)
Long Term Evolution (LTE), New Radio (NR), and IEEE
802.11a/g/n/ac/ax due to their excellent spectral efficiency,
robustness to multipath fading, and low implementation com-
plexity [6], [7]. However, in DSC, OFDM systems suffer
from severe inter-carrier interference (ICI), which becomes
more severe with increasing speed and carrier frequency.
This interference negatively impacts the accuracy of channel
estimation and the correctness of data demodulation. Extensive
research has been conducted on channel estimation in DSC
for OFDM systems. For example, researchers have proposed
conditions for the orthogonality between pilot and data sym-
bols at the channel output [8]. Based on this orthogonality
condition, frequency-domain Kronecker delta (FDKD) pilots
have been considered for frequency-domain pilot designs [9]–

[11]. However, these schemes often require specific modifi-
cations to the OFDM frame structure, limiting their practical
application. Although recursive channel estimation algorithms
offer good ICI mitigation capabilities, they typically come
with drawbacks such as high computational complexity and
the need for detailed channel statistical information [12]–[15].
These challenges make it difficult to apply these methods
within LTE/NR standards.

In light of these challenges, achieving ICI suppression and
accurate channel estimation with low complexity, without
altering the existing LTE/NR frame structure, remains a hot
research topic in the industry. This paper focuses on designing
pilot sequences for channel estimation in DSCs to mitigate ICI,
without requiring changes to the frame structure or channel
estimation algorithms in LTE/NR. This approach enhances the
robustness of the proposed sequences for practical engineering
applications.

Zero/Low Correlation Zone (ZCZ/LCZ) sequences and
Zero/Low Ambiguity Zone (ZAZ/LAZ) sequences are among
the traditional sequences in sequence design. Sequences with
good correlation properties have found many applications
in modern communication systems [16]–[18]. In practice,
sequences with zero correlation sidelobes in all delays are pre-
ferred, but achieving this is generally difficult. Given the quasi-
synchronous nature of communication systems, the concept of
ZCZ sequences was first introduced in 1999 [19], followed by
LCZ sequences, where sidelobes within the LCZ region are
bounded by a small positive value. Theoretical bounds for ZCZ
and LCZ sequences under periodic correlation are derived in
[20].

The relative movement between the transmitter and receiver
causes signal distortion, known as the Doppler effect. The
ambiguity function (AF) is used to measure Doppler frequency
shifts and helps determine relative velocity in radar systems.
An AF of a sequence a, denoted by AFa(τ, f), is a two-
dimensional function of the propagation delay (τ) and the
Doppler shift (f ) [21]. The correlation of a sequence gives
the AF of the sequence along the zero-Doppler axis. However,
similar to the correlation function, it is impossible to maintain
zero AF sidelobes for all non-zero Doppler shifts. Therefore,
the concepts of ZAZ and LAZ sequences were introduced
[22], with theoretical bounds derived for these sequences under
periodic correlation [23].

Systematic constructions of sequences with various corre-
lation properties are typically based on algebraic tools [19],
[23]–[31] or optimization algorithms. Algebraic constructions
are straightforward to implement but often result in sequences
with limited parameters. In contrast, optimization-based meth-
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ods offer more flexibility [22], [32], though they generally
come with higher complexity. Notably, in 2004, Deng [33]
proposed an algorithm that combined simulated annealing
with heuristic search to suppress sidelobes of global aperiodic
correlation, marking the start of sequence design based on
algorithmic methods.

Due to the high complexity of heuristic search algorithms,
researchers have developed new sequence generation algo-
rithms based on optimization theory. Examples include the
Cyclic-Algorithm-Original (CAO), proposed in 2008, aim-
ing to reduce periodic/aperiodic correlation sidelobes through
SVD decomposition of the correlation matrix [34]. Subse-
quently Cyclic-algorithm-new (CAN) algorithm [35], [36],
based on alternating minimization techniques, was designed
to synthesize unimodular aperiodic sequences of large length.
However, its drawback is that the solution of the approximate
problem does not always converge to the minimum of the
original problem. The Monotonic minimizer for integrated
sidelobe level (MISL) [37] algorithm utilizes the majorization-
minimization (MM) method to minimize a surrogate function
of the original integrated sidelobe level (ISL) minimization
problem, ensuring convergence to the global minima of the
original problem. Nevertheless, its convergence is slow due
to the double majorization of the original cost function. In
recent years, efficient algorithms for generating unimodular
sequences have emerged, such as Limited-Memory BFGS
(LBFGS) [38], [39], Iterative Twisted Approximation (ITROX)
computational framework [40]–[42], Power Spectral Density
Fitting-based Iterative Approach (PIA) [43], Efficient Gradient
Descent (EGD) [44], Coordinate Descent (CD) [45], Alternat-
ing Direction Method of Multipliers (ADMM), Parallel Direc-
tion Method of Multipliers (PDMM) [46], algorithm based on
neural networks [47]. Most of the algorithms mentioned above
focus on achieving better suppression levels for correlation
sidelobes than the earlier methods could achieve [48]–[52].
Due to space limitation, these methods are not discussed in
details here. In Table I, we give an overview of relevant
sequence design algorithms that can design sequences with
low correlations, for comparison. Here, we only present the
complexity of the correlation optimization problem for a single
sequence of length N and LCZ width Z.

TABLE I
COMPARISON OF LCZ SEQUENCE DESIGN ALGORITHMS

Algorithms Computational
Complexity

Aperiodic
Correlation

Periodic
Correlation

CAO [34] O(NZ2 + Z3)
√ √

CAN [35] O(N2)
√

×
PeCAN [36] O(N2) ×

√

LBFGS [39] O(NZ +N log2 N)
√

×
ITROX [40] O(N3)

√ √

PIA [43] O(N2)
√

×
MISL [37] O(N2)

√ √

EGD [44] O(N2)
√

×

Similar to the generation of ZCZ/LCZ sequences,
optimization-based algorithms are the primary methods
for generating ZAZ/LAZ sequences. Additionally, some
ZCZ/LCZ sequence generation methods can be adapted to
improve ZAZ/LAZ sequence generation algorithms, such as

the AF-CAO [34]. Besides, there are many other optimiza-
tion methods such as Maximum Block Improvement (MBI)
method [53], gradient descent (GD) [54], coordinate iteration
for ambiguity function iterative shaping (CIAFIS) [55], ac-
celerated iterative sequential optimization (AISO) algorithm
[56], [57], Lagrange programming neural network-alternating
direction method of multipliers (LPNN-ADMM) [58], quartic
GD [59], projected GD, manifold optimization embedding
with momentum (MOEM), LBFGS, etc [60]–[62]. Although
GD-based algorithms are generally effective, they tend to be
slow due to the need to calculate gradients at every step. In
Table II, we give an overview of relevant sequence design
algorithms that can design sequences with low ambiguity,
for comparison. Again, we only present the complexity of
the ambiguity optimization problem for a single sequence of
length N and LAZ size Z × F .

TABLE II
COMPARISON OF LAZ SEQUENCE DESIGN ALGORITHMS

Algorithms Computational
Complexity

Aperiodic
AF

Periodic
AF

AF-CAO [34] O((N + Z)Z2F 2)
√ √

MBIL [53] O(N)
√

×
MBIQ [53] O(N3.5)

√
×

GD [54] O(N2F )
√ √

CIAFIS [55] O(N2)
√

×
AISO [56], [57] Not report

√
×

LPNN-ADMM [58] O(N2ZF )
√

×

These ZCZ/LCZ/ZAZ/LAZ sequences offer the advantages
of flexible length and adaptable ZCZ and ZAZ sizes, making
them suitable for various applications, including radar wave-
form design [34], [63]. Channel estimation, which involves
separating time delay and Doppler shift, is conceptually similar
to radar’s velocity and range measurement. Motivated by this
similarity, this paper explores the use of ZAZ/LAZ sequences
as pilot sequences for channel estimation in DSC.

Contributions: To develop efficient preamble sequences in
OFDM, we first analyze the requirements for pilot sequences
in DSC channel estimation. Based on the Jakes’ model of
the Rayleigh fading channel (to be detailed in Section III),
we observe that Doppler shifts in DSC can be non-integer,
which limits the effectiveness of conventional ZAZ and LAZ
sequences. To address this issue, we introduce the concept of
oversampled ambiguity functions (O-AF) for more accurate
estimation of channel responses at both integer and fractional
Doppler shifts. This concept leads to the development of over-
sampled zero/low ambiguity zone (O-ZAZ/O-LAZ) sequences.

Similar to traditional ZAZ/LAZ, we coin the concept of
oversampled zero/low ambiguity zone (O-ZAZ/O-LAZ) if
there is a region in the ambiguity plot with zero/low sidelobes.
Through a series of trial and error (as detailed in Remark 6),
we chose the traditional ITROX algorithm and modify it to
design O-LAZ sequences. We named the modified ITROX
algorithm as oversampled ambiguity ITROX (OA-ITROX)
algorithm. The major difference between OA-ITROX with
the traditional ITROX is that, here we incorporate subma-
trices with frequency offsets and have replaced eigenvalue
decomposition (EVD) with SVD. The proposed OA-ITROX
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algorithm is capable of designing both traditional LAZ as
well as O-LAZ sequences. It is shown that the complexity
of OA-ITROX highly depends on SVD. We further address
the complexity of OA-ITROX by employing the power method
for rank-1 approximation instead of SVD (as shown in Remark
5). Finally, numerical experiments demonstrate that sequences
with low O-AF properties can be effectively used as pilot
sequences for channel estimation in DSC.

Organization: The rest of the paper is organized as follows.
Section II introduces the notations and discusses ZCZ/LCZ
and ZAZ/LAZ sequences, followed by an overview of OFDM
system principles and channel estimation. In Section III, we
revisit the Jakes’ model and analyze its impact on signals,
leading to the derivation of design criteria for pilot sequences
in DSC. Section IV presents the OA-ITROX algorithm and
the designed O-LAZ sequences. Section V evaluates the pro-
posed training scheme through simulations. Finally, Section
VI concludes the paper.

II. PRELIMINARIES

The following notations will be used throughout this paper.
• X∗,XT and XH denote the complex conjugate, the

transpose and the conjugate transpose of matrix X, re-
spectively;

• ⟨a,b⟩ denotes the inner-product between two complex
valued sequences a = [a[0], a[1], . . . , a[N − 1]]T, b =
[b[0], b[1], . . . , b[N−1]]T, i.e., ⟨a,b⟩ =

∑N−1
k=0 a[k]b

∗[k],
where N is the sequence length of a (and b);

• [a]k denotes the k-th element of sequence a;
• [X]i,j denotes the i-th row j-th column element of matrix

X;
• Sτ (a) denotes the right-cyclic-shift of a =

[a[0], a[1], . . . , a[N − 1]]T for τ (nonnegative integer)
positions, i.e.,

Sτ (a) =

[a[N − τ ], . . . , a[N − 1]︸ ︷︷ ︸
the last τ elements of a

, a[0], a[1], . . . , a[N−τ−1]]T;

Similarly,

S−τ (a) =

[a[τ ], a[τ +1], . . . , a[N − 1], a[0], a[1], . . . , a[τ − 1]︸ ︷︷ ︸
the first τ elements of a

]T;

• ⌊n⌋N denotes n (mod N);
• ζN denotes the N -th complex roots of unity, i.e., ζN =
e2πi/N ;

• FN denotes the Fourier matrix of size N , i.e., [FN ]i,j =
1√
N
ζ
−(i−1)(j−1)
N ;

• a⊙b denotes elementwise multiplication, i.e., [a⊙b]k =
a[k]b[k];

• a ⊘ b denotes elementwise division, i.e., [a ⊘ b]k =
a[k]/b[k];

• mean(a) denotes the mean of a, i.e., mean(a) =
(
∑N−1
k=0 a[k])/N ;

• φ(a) denotes the phase of each of the elements of a;
• E(·) denotes the expected value of a random variable.

For two length-N complex-valued sequences a =
[a[0], a[1], . . . , a[N − 1]]T, b = [b[0], b[1], . . . , b[N −
1]]T, ϕa,b(τ) denotes the periodic cross-correlation function
(PCCF) between a and b, i.e.,

ϕa,b(τ) =

N−1∑
k=0

a[k]b∗[⌊k + τ⌋N ] = ⟨a, S−τ (b)⟩. (1)

In particular, when a = b, ϕa,b(τ) is written as ϕa(τ) and
called the periodic auto-correlation function (PACF) of a at
time-shift τ .

For two length N complex-valued sequences a =
[a[0], a[1], . . . , a[N − 1]]T, b = [b[0], b[1], . . . , b[N − 1]]T,
AFa,b(τ, f) denotes the periodic cross-ambiguity function
(PCAF) between a and b at time-shift τ and frequency-shift
f , i.e.,

AFa,b(τ, f) =

N−1∑
k=0

a[k]b∗[⌊k + τ⌋N ]ζfkN = ⟨a⊙ f , S−τ (b)⟩,

(2)
where f = [1, ζfN , . . . , ζ

f(N−1)
N ]T. In particular, when a = b,

AFa,b(τ, f) is written as AFa(τ, f) and called the periodic
auto-ambiguity function (PAAF) of a at time-shift τ and
frequency-shift f .

Remark 1: Note that in (1) and (2), the values of τ and f
are integers, i.e., τ, f = 0, 1, . . . , N − 1.

A. Zero/Low Correlation/Ambiguity Zone Sequence

Next, we give a brief introduction to zero/low correla-
tion/ambiguity zone sequence. Integrated sidelobe level (ISL)
is an important metric, which is used to characterize the
correlation and AF of sequences.

Definition 1: Let a = [a[0], a[1], . . . , a[N − 1]]T be a
sequence of length N , the ISL of correlation is define by

ISLϕ(a;Z) = 2

Z∑
τ=1

|ϕa(τ)|2, (3)

where Z is the size of concerned correlation zone. Similarly,
the ISL of AF is define by

ISLAF (a;Z × Fr) = 2

Z∑
τ=1

Fr∑
f=−Fr

|AFa(τ, f)|2, (4)

where Z × Fr is the size of concerned ambiguity zone.
By the above definition of ISL, we can give the definitions

of zero correlation/ambiguity zone sequence.
Definition 2: A sequence a of length N is called a zero

correlation zone (ZCZ) sequence with ZCZ width Z, if

ISLϕ(a;Z) = 0. (5)

Similarly, a is called a zero ambiguity zone (ZAZ) sequence
with ZAZ size Z × Fr, if

ISLAF (a;Z × Fr) = 0. (6)

Designing sequences which satisfy conditions (5) and (6) are
very challenging. Low correlation/ambiguity zone is general-
ized version of ZCZ/ZAZ. Normally, it is required that ISL
should be as low as possible.
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Definition 3: A sequence a of length N is called a low
correlation zone (LCZ) sequence with LCZ width Z, if

ISLϕ(a;Z) < ε, (7)

where ε is a very small value.
Similarly, a is called a low ambiguity zone (LAZ) sequence

with LAZ size Z × Fr, if

ISLAF (a;Z × Fr) < ε. (8)

B. System Model of OFDM and Channel Estimation

In this paper, we consider an OFDM transmission system
with N carriers. To simplify the system model, we assume
that both the transmitter and receiver have a single antenna.
Fig. 1 shows the transmission frame structure of the OFDM
system. Within a frame, we assume a total of MP pilot OFDM

Fig. 1. The transmission frame structure.

symbols, with each pair of pilot OFDM symbols containing
MD data OFDM symbols. Consequently, an OFDM frame
comprises a total of M =MP+MD(MP−1) OFDM symbols.

For the m-th OFDM symbol, the time-domain received
signal after removing the cyclic prefix can be represented as
ym = [ym[0], ym[1], . . . , ym[N − 1]]T,m = 0, 1, . . . ,M − 1,
and it can be expressed as:

ym[n] =

L−1∑
l=0

hm[l, n]xm[⌊n− l⌋N ] + wm[n],

where xm = [xm[0], xm[1], . . . , xm[N − 1]]T represents the
m-th OFDM symbol in the time-domain. hm[l, n] is the
channel response matrix of m-th OFDM symbol in the time-
domain. Channel estimation is first performed over pilot
OFDM symbols and then discrete prolate spheroidal sequences
(DPSS) interpolation is used to achieve channel estimation
over the data symbols [64].

Without loss of generality, we consider the channel estima-
tion model for a single pilot OFDM symbol by least square
(LS) method. Let x = a be the time-domain sequence trans-
mitted as the pilot OFDM symbols, then the LS estimation is
given by

ĥ = (AH
T AT )

−1AH
T y, (9)

where y is the time-domain sequence received after removing
the cyclic prefix, AT is the cyclic matrix of size N × L (L

is the maximum multipath delay) generated by a, and it is
defined as follows

AT =


a[0] a[N − 1] · · · a[N − L+ 1]
a[1] a[0] · · · a[N − L+ 2]

...
...

...
a[N − 1] a[N − 2] · · · a[N − L]

 .
(10)

From (9), it can be observed that the channel estimation
obtained by the LS method is a vector, representing an estimate
of the true channel response at a certain instant. Mostofi et
al. [65] proved that the channel estimated by the LS method
corresponds to the estimate of the midpoint instant of the true
channel response in the sense of statistical averaging [65].

Lemma 1 ( [65]): Let h[l, n] be the true channel response at
the n-th instant and the l-th path corresponding to an OFDM
symbol, and hn contains the channel response of all the L mul-
tipaths at n-th instant, i.e., hn = [h[0, n], h[1, n], . . . , h[L −
1, n]]T. The average channel response over the OFDM time
duration of n = [0, 1, . . . , N − 1] is closest to the midpoint
instant hmid = hN−1

2
. This can be mathematically described

as follows

E
(
∥havg − hn∥2

)
is minimized for n =

N − 1

2
,

where havg = 1/N
∑N−1
n=0 hn. Furthermore, the channel

estimation values ĥ obtained by the LS method are estimated
of the average channel response, i.e., ĥ = ĥavg. And it is also
close to the midpoint instant of actual channel response,

E
(
∥ĥ− hn∥2

)
is minimized for n =

N − 1

2
.

III. OPTIMAL PILOT DESIGN CRITERION FOR DSC
Jakes model has become a well-established benchmark in

the research community due to its realistic Doppler spectrum
representation, which accurately models the frequency varia-
tions caused by the relative motion between the transmitter
and receiver [66]. In this section, we first revisit the Jakes’
channel model for DSC. Then we derive the optimal pilot
design criterion from the channel model.

Jakes’ Model for DSC: Here we consider the case of a
single OFDM symbol with N subcarriers. The time-domain
received sequence after removing the cyclic prefix can be
represented as y = [y[0], y[1], . . . , y[N − 1]]T which can be
expressed as follows:

y[n] =

L−1∑
l=0

h[l, n]x[⌊n− l⌋N ] + w[n], (11)

where L denotes the number of delay paths, x =
[x[0], x[1], . . . , x[N − 1]]T represents the time-domain trans-
mitted sequence, and h[l, n] is an element of time-domain
channel response matrix, which represents the channel at the
n-th sampling time on the l-th multipath. The improved Jakes’
simulator [66] by sum-of-sinusoids statistical simulation mod-
els is given by

h[l, t] = E0

Q−1∑
q=0

AlC
(l)
q ei(2πfdt cosα

(l)
q +ϕ(l)

q ), (12)
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where

C(l)
q =

eiψ
(l)
q

√
Q
, q = 0, 1, . . . , Q− 1,

α(l)
q =

2πq − π + θ(l)

Q
, q = 0, 1, . . . , Q− 1,

ϕ(l)q = ϕ
(l)
Q/2+q = ϕ̃(l)q , q = 0, 1, . . . , Q/2− 1,

Q denotes the number of Doppler paths of each delay path
and it is assumed to be even, E0 the scaling constant, fd
the maximum Doppler frequency, Al denotes the power of
the the l-th path and follows complex Gaussian distribution
with a mean of zero and a variance of

√
Pl, and ψ(l)

q , θ(l) and
ϕ̃
(l)
q being mutually independent random variables uniformly

distributed over [−π, π).
Note that in OFDM, the received signal is discretely

sampled from the interval [0, Ts], i.e., t = nTs/N , n =
0, 1, . . . , N−1, where Ts denotes the OFDM symbol duration.
Let Fr denote the normalized maximum Doppler frequency,
i.e., Fr = fd/∆f = fdTs, then (12) can be written as

h[l, n] = E0

Q−1∑
q=0

AlC
(l)
q ei(2πFrn/N cosα(l)

q +ϕ(l)
q )

= E0

Q−1∑
q=0

AlC
(l)
q eiϕ

(l)
q e2πi/N(Frn cosα(l)

q )

= E0

Q−1∑
q=0

AlC
(l)
q eiϕ

(l)
q ζ

Fr cosα(l)
q n

N . (13)

By aggregating the random variables and neglecting the
impact of large-scale fading, (13) becomes

h[l, n] =

Q−1∑
q=0

g(l)q ζ
ω(l)

q n

N , (14)

where g
(l)
q = AlC

(l)
q eiϕ

(l)
q , and ω

(l)
q = Fr cosα

(l)
q . Note

that from (14), it can be observed that the range of ω
(l)
q

is in [−Fr, Fr], and they are independently and identically
distributed.

A. Optimal Pilot Design Criterion

In this subsection, we derive the optimal pilot design
criterion over DSC. Substituting (14) in (11), we obtain the
transmission model for OFDM as follows

y[n] =

L−1∑
l=0

Q−1∑
q=0

g(l)q ζ
ω(l)

q n

N x[⌊n− l⌋N ] + w[n]. (15)

Let x = a be the pilot sequence. For the ease of analysis,
(15) can be represented in matrix form as follows:

y =

Q−1∑
q=0

(AT ⊙Ωq)gq +w, (16)

where gq = [g
(0)
q , g

(1)
q , . . . , g

(L−1)
q ]T, AT is the cyclic matrix

of size N × L generated by a, as given in (10) and Ωq is

the Vandermonde matrix of size N × L generated by ω(l)
q , as

follows:

Ωq =


ζ
ω(0)

q 0

N ζ
ω(1)

q 0

N · · · ζ
ω(L−1)

q 0

N

ζ
ω(0)

q 1

N ζ
ω(1)

q 1

N · · · ζ
ω(L−1)

q 1

N
...

...
...

ζ
ω(0)

q (N−1)

N ζ
ω(1)

q (N−1)

N · · · ζ
ω(L−1)

q (N−1)

N

 .
Then the LS estimation is given by

ĥ = (AH
TAT )

−1AH
Ty

= (AH
TAT )

−1AH
T

(
Q−1∑
q=0

(AT ⊙Ωq)gq +w

)

=

Q−1∑
q=0

(AH
TAT )

−1AH
T (AT ⊙Ωq)gq + (AH

TAT )
−1AH

Tw.

(17)

Using Lemma 1, ĥ is an estimate of havg. The correspond-
ing MSE is

MSEavg = E(∥ĥ− havg∥2). (18)

By substituting (17) into (18), we can derive the intrinsic
relationship between MSE and the pilot sequence, given in
(19), where

Γq =


1
N

∑N−1
n=0 ζ

w(0)
q n

N

1
N

∑N−1
n=0 ζ

w(1)
q n

N
...

1
N

∑N−1
n=0 ζ

w(L−1)
q n

N

 . (20)

From traditional channel estimation theory, we know that
the matrix AH

TAT is required to be an identity matrix of order
N [67] for minimum MSE. Hence, we get the first criterion
(CR1) of pilot design over DSC as follows:

argmin
a

∥AH
TAT −NIL∥2F , (21)

where IL is an identity matrix of size L× L.
Furthermore, from (19), the LS estimator is unbiased if the

pilot sequence satisfies

(AH
TAT )

−1AH
T (AT ⊙Ωq)− diag(Γq) = 0L,

for all q = 0, 1, . . . , Q− 1.
Note that an efficient pilot sequence should work in a variety

of channels. Hence, the second criterion (CR2) of pilot design
is as follows:

argmin
a

∥∥(AH
TAT )

−1AH
T (AT ⊙Ωq)− diag(Γq)

∥∥2
F
, (22)

where Γq is given in (20) and ω(l)
q ∈ [−Fr, Fr].

To simplify the optimization algorithm, we replace CR1 and
CR2 comprehensively with ISL of O-AF as follows:

argmin
a

Z∑
τ=−Z
τ ̸=0

∫ Fr

−Fr

|ÃF a(τ, f)|2df, (23)
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MSEavg = E

∥∥∥∥∥
Q−1∑
q=0

(AH
TAT )

−1AH
T (AT ⊙Ωq)gq + (AH

TAT )
−1AH

Tw − havg

∥∥∥∥∥
2


= E

∥∥∥∥∥
Q−1∑
q=0

[
(AH

TAT )
−1AH

T (AT ⊙Ωq)− diag(Γq)
]
gq + (AH

TAT )
−1AH

Tw

∥∥∥∥∥
2
 . (19)

Let us call this CR3. A detail discussion about the relation
between CR1, CR2, and CR3 is given in Appendix I.

Thus a sequence needs to have a low ambiguity sidelobe
within the region [−Z,Z] × [−Fr, Fr], where f ∈ [−Fr, Fr]
is a continuous variable and hence can take fractional values,
to be used as a pilot sequence for optimal channel estimation
in DSC. The sequences which satisfy this condition are termed
as O-LAZ sequences in this paper. In the next section we will
derive some properties of O-LAZ sequences and also propose
a construction using a modified ITROX algorithm.

IV. O-LAZ SEQUENCE: PROPERTIES AND CONSTRUCTION

To design O-LAZ sequences, which are required for opti-
mal channel estimation in DSC, we introduce a new metric
called oversampled ambiguity function (O-AF), as traditional
AF considers only integer Doppler shifts. Before proceeding
further, we formally define O-AF as follows.

A. Oversampled Ambiguity Function (O-AF)

Definition 4: For two length N complex-valued sequences
a, b, let ÃF a,b(τ, f) denote the oversampled periodic cross-
ambiguity function (O-PCAF) between a and b at time-shift
τ and frequency-shift f . The ÃF a,b(τ, f) is defined by

ÃF a,b(τ, f) =

N−1∑
k=0

a[k]b∗[⌊k + τ⌋N ]ζfkN = ⟨a⊙ f , S−τ (b)⟩,

(24)
where f = [1, ζfN , . . . , ζ

f(N−1)
N ]T, τ ∈ Z, f ∈ R. In particular,

when a = b, ÃF a,b(τ, f) is written as ÃF a(τ, f) and called
the oversampled periodic auto-ambiguity function (O-PAAF)
of a at time-shift τ and frequency-shift f .

Remark 2: Since the Doppler shift f is a continuous
variable and delay shift τ is an integer in (23), we only
considered oversampling the Doppler axis while defining O-
AF. This helps us to accurately measure the channel estimation
performance of the pilot sequence, under DSC.

Remark 3: As a generalization of AF, the O-AF has some
special properties.

• When f in ÃF a(τ, f) is taken as an integer, O-AF
becomes traditional AF, i.e., ÃF a(τ, f) = AFa(τ, f) if
f ∈ Z.

• ÃF a(τ, f) is a periodic function with respect to τ , i.e.,
ÃF a(τ + kN, f) = ÃF a(τ, f) for any integer k.

• AFa(τ, f) and ÃF a(τ, f) both have the constant vol-
ume property, i.e.,

∑N−1
τ=0

∑N−1
f=0 |AFa(τ, f)|2 = N3,∑N−1

τ=0 [
∫ N
0

|ÃF a(τ, f)|2df ] = N3.

• For any unimodular sequence a, its O-AF can be deter-
mined on zero delay axis, i.e., |ÃF a(0, f)| = sin(fπ)

sin(fπ/N) .
Sequences with zero/low oversampled ambiguity zone are

very important for practical applications. In order to character-
ize the values of O-AF within the target zone, let us introduce
the definition of the ISL of O-AF similar to (6).

Definition 5: Let a = [a[0], a[1], . . . , a[N − 1]]T be a
sequence of length N , the ISL of O-AF is define by

ISL
ÃF

(a;Z × Fr) =
Z∑

τ=−Z
τ ̸=0

∫ Fr

f=−Fr

|ÃF a(τ, f)|2df, (25)

where Z × Fr is the size of oversampled ambiguity zone.
Similarly, we can define oversampled zero/low ambiguity

zone (O-ZAZ/O-LAZ) sequence.
Definition 6: A sequence a of length N is called a over-

sampled zero ambiguity zone (O-ZAZ) sequence with O-ZAZ
size Z × Fr, if

ISL
ÃF

(a;Z × Fr) = 0. (26)

Similarly, a is called a oversampled low ambiguity zone (O-
LAZ) sequence with low O-LAZ size Z × Fr, if

ISL
ÃF

(a;Z × Fr) < ε, (27)

where ε > 0 is a small constant.
In fast time-varying channel estimation, it is usually nec-

essary to have Z greater than the maximum normalized
multipath delay and Fr greater than the maximum normalized
Doppler frequency shift (Detailed calculations are given in
Section III). For example, let us consider the 5G scenario and
the Extended Vehicular A Model (EVA) channel defined in
3GPP [68], assuming the number of subcarriers N = 128,
the carrier frequency fc = 5.4GHz, the interval of subcarriers
∆f = 15KHz, maximum multipath delay τmax = 2.5100µs,
maximum relative speed vmax = 600Km/h. Then O-LAZ size
need to satisfy Z ≥ 5, Fr ≥ 0.2 (Detailed calculations are
given in Section V).

B. O-LAZ Sequence Design Based on ITROX

In this subsection, we propose a new algorithm, OA-ITROX,
based on the original ITROX algorithm [40]. New O-LAZ
sequences are obtained by minimizing the ISL metric, defined
in (25). The optimization problem can be written as follows:

argmin
a

ISL
ÃF

(a;Z × Fr), (28)

subject to |ak| = 1, k = 0, 1, . . . , N − 1.
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Since (25) contains an integral operation, it is challenging
to directly optimize ISL

ÃF
(a;Z × Fr). Since ÃF a(τ, f) can

be well approximated when f is very small, we can verify that
(28) is equivalent to the following simpler problem:

argmin
a

Z∑
τ=−Z
τ ̸=0

fδ
∑
f∈F

|ÃF a(τ, f)|2, (29)

subject to |ak| = 1, k = 0, 1, . . . , N − 1,

where F = {0,±fδ,±2fδ, . . . ,±Fr} (Without loss of gen-
erality, we can assume that Fr is a multiple of fδ and
Fr = (M − 1)fδ).

Before introducing the OA-ITROX algorithm, let us rep-
resent the O-PAAF of sequences using matrices. We first
define the periodic diagonal elements. The elements of the
k-th periodic diagonal of matrix A are given by

diag(A, k) = [[A]0,k, . . . , [A]i,⌊k+i⌋N , . . . , [A]N−1,k−1]
T,

where k = 0, 1, . . . , N −1. For example, let A be a matrix of
size 4× 4. Then we have

diag(A, 0) = [A0,0, A1,1, A2,2, A3,3]
T,

diag(A, 1) = [A0,1, A1,2, A2,3, A3,0]
T,

diag(A, 2) = [A0,2, A1,3, A2,0, A3,1]
T,

diag(A, 3) = [A0,3, A1,0, A2,1, A3,1]
T.

Let DS(A, k) represents the sum of all the elements of the
k-th periodic diagonal of matrix A, i.e.,

DS(A, k) =
∑

diag(A, k). (30)

By (30), we can calculate the O-PAAF magnitudes by the
following equation:

|ÃF a(τ, f)| =
{

|DS((a⊙ f)aH, τ)|, f ≥ 0;
|DS(a(a⊘ f)H, N − τ)|, f < 0,

(31)

where f = [1, ζfN , . . . , ζ
f(N−1)
N ]T, τ = 0, 1, . . . , N − 1, and

f ∈ R.
Furthermore, we can obtain the complete matrix represen-

tation of the O-PAAF of sequences in (32), where fm =

[1, ζmfδN , . . . , ζ
mfδ(N−1)
N ]T,m = 0, 1, . . . ,M−1, A0,0 = aaH

and Ai,j = (a⊙ fi)(a⊘ fj)
H.

a
a⊙ f1

...
a⊙ fM−1

 [ aH (a⊘ f1)
H · · · (a⊘ fM−1)

H
]

=


A0,0 A0,1 · · · A0,M−1

A1,0 A1,1 · · · A1,M−1

...
...

...
AM−1,0 AM−1,1 · · · AM−1,M−1

 .
(32)

According to (31), the O-PAAF matrix representation can be
divided into three case.
Case I: |ÃF a(τ, 0)| = |DS(A0,0, τ)|;

Case II: |ÃF a(τ,mfδ)| = |DS(Am,0, τ)|;
Case III: |ÃF a(τ,−mfδ)| = |DS(A0,m, N − τ)|.

Let
Λ = {X|X = xyH}, (33)

where both x,y are unimodular sequences of length MN .
In OA-ITROX algorithm, X is always generated by the
unimodular sequence a which is being optimized, so it is
commonly denoted as Xa. Xa is given by

Xa = xay
H
a , (34)

where

xa =


a

a⊙ f1
...

a⊙ fM−1

 ,ya =


a

a⊘ f1
...

a⊘ fM−1

 .
Also, let

ΓZ =

Y|Y =

 Y0,0 · · · Y0,M−1

...
...

YM−1,0 · · · YM−1,M−1


 , (35)

where Y is a matrix of size MN ×MN , containing block
matrices Ym,n each of size N ×N , where Y0,0 satisfies

DS(Y0,0, τ) =

{
N, τ = 0;
0, τ = 1, . . . , Z,N − Z, . . . , N − 1,

Ym,0, Y0,m satisfy

DS(Ym,0, τ) = DS(Y0,m, N − τ)

=

{ ∑N−1
n=0 ζ

mfδn
N , τ = 0;

0, τ = 1, . . . , Z,N − Z, . . . , N − 1.

The proposed OA-ITROX is a cyclic iterative algorithm
that constantly finds the optimal projection (for the matrix
Frobenius norm) between Λ and ΓZ . In the following theorem,
we study the orthogonal projection of an element of Λ on ΓZ .
This process can be described as follows:

argmin
Y

∥Y −X∥2F , (36)

s.t. Y ∈ ΓZ .

Theorem 1: Let Y = X⊥ be the optimal projection of X ∈
Λ on ΓZ , then Y can be constructed through the following
cases:

Case I: For τ = 0, Z + 1, Z + 2, . . . , N − 1− Z,

diag(Ym,0, τ) = diag(Xm,0, τ),

diag(Y0,m, τ) = diag(X0,m, τ),

where m = 0, 1, . . . ,M − 1.
Case II: For τ = 1, . . . , Z,N − Z, . . . , N − 1,

diag(Ym,0, τ) = diag(Xm,0, τ)−
1

N
DS(Xm,0, τ),

diag(Y0,m, τ) = diag(X0,m, τ)−
1

N
DS(X0,m, τ),

where m = 0, 1, . . . ,M − 1.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

Case III: For m ̸= 0 or n ̸= 0,

Ym,n = Xm,n,

where Xm,n = (a⊙ fm)(a⊘ fn)
H,m, n = 0, 1, . . . ,M − 1.

Proof: We have

∥Y−X∥2F =

Z∑
τ=−Z
τ ̸=0

M−1∑
m=0

(
∥diag(Ym,0, τ)−diag(Xm,0, τ)∥2

+ ∥diag(Y0,m, τ)− diag(X0,m, τ)∥2
)
.

Our goal is to minimize ∥Y −X∥2F for Y ∈ ΓZ . Hence, we
can minimize gcolm,τ (Y) := ∥diag(Ym,0, τ)−diag(Xm,0, τ)∥2
and growm,τ (Y) := ∥diag(Y0,m, τ) − diag(X0,m, τ)∥2 for all
m = 0, 1, . . . ,M−1, τ = 1, . . . , Z,N−Z, . . . , N−1. Denote
x
(m,0,τ)
k = [diag(Xm,0, τ)]k and y(m,0,τ)k = [diag(Ym,0, τ)]k,

where k = 0, 1, . . . , N − 1. Then

gcolm,τ (Y) =
N−1∑
k=0

|y(m,0,τ)k − x
(m,0,τ)
k |2,

such that
∑N−1
k=0 y

(m,0,τ)
k = 0. Using the Cauchy-Schwarz

inequality we have that

gcolm,τ (Y) ≥ 1

N

∣∣∣∣∣
N−1∑
k=0

(
y
(m,0,τ)
k − x

(m,0,τ)
k

)∣∣∣∣∣
2

.

Note that the equality holds if and only if y(m,0,τ)k = x
(m,0,τ)
k −

1
N

∑N−1
k=0 x

(m,0,τ)
k . Returning to the matrix representation, we

can infer that the minimum value of gcolm,τ (Y) is achieved at
the point

diag(Ym,0, τ) = diag(Xm,0, τ)−
1

N
DS(Xm,0, τ).

Similarly, we can prove that the minimum value of growm,τ (Y)
is achieved when

diag(Y0,m, τ) = diag(X0,m, τ)−
1

N
DS(X0,m, τ).

In the next theorem, we find the optimal projection of Y ∈
ΓZ in Λ, described as follows:

argmin
X

∥X−Y∥2F , (37)

s.t. X ∈ Λ.

Theorem 2: Let X = Y⊥ be the optimal projection of Y ∈
ΓZ on Λ. Suppose Y has the singular value decomposition
(SVD)

SΣVH = Y, (38)

then X is given by

X =MNsvH, (39)

where s,v are the left and right singular vector corresponding
to the largest singular value of Y, respectively.

Proof: The proof is omitted, as it is similar to the proof
of the optimal rank-1 matrix approximation given in [40].

Note that we cannot construct a from X in Theorem 2.
Hence, the process of generating sequence a from matrix X
is described through the following optimization problem.

argmin
a

∥Xa −X∥2F , (40)

s.t. Xa = xay
H
a ,

X =MNsvH.

It is equivalent to solving the following optimization prob-
lem:

argmin
a

∥xa −
√
MNs∥2F + ∥ya −

√
MNv∥2F . (41)

Theorem 3: The problem (41) has a closed-form solution,
which is given by

a[k] = exp

{
iφ

(
1

M

M−1∑
m=0

√
MNs[k +mM ]/ζmfδkN

+
1

M

M−1∑
m=0

√
MNv[k +mM ] · ζmfδkN

)}
,

where i =
√
−1 is the imaginary unit, k = 0, 1, . . . , N − 1.

Proof: The proof is omitted, as it is similar to the proof
of the optimal approximation in the AF-CAO algorithm [34].

The proposed OA-ITROX for the local minimization of the
ISL metric in (29) can be summarized in Algorithm 1.

Algorithm 1: The OA-ITROX algorithm
Input: Sequence length N ; O-LAZ size Z×Fr ; Maximum iterations
number MaxItrNum; Initial point a0 is a random sequence. Let t =
1.
Step 1: Calculate Xt−1

a = (xt−1
a )(yt−1

a )H and find Yt ∈ ΓZ

according to Theorem 1.
Step 2: Compute the SVD of Yt and find Xt ∈ Λ according to
Theorem 2.
Step 3: Let the left-singular vector and right-singular vector of corre-
sponding to the maximum singular value of Xt be s,v, respectively.
Then the unimodular sequences at is obtained by Theorem 3.
Iteration: Repeat Steps 1-3 until some stop criterion is satisfied,
e.g., ∥at − at−1∥2 ≤ ε, where ε is a predefined threshold, or
t ≤ MaxItrNum. Otherwise, update t = t + 1 and continue the
iterations.
Output: Set the optimized sequence as a.

Remark 4: In the proposed OA-IROTX algorithm, the choice
of the parameter fδ is important. From the principles of
Riemann integrals in mathematical analysis [69], it can be
observed that if fδ is too large, (29) cannot closely approxi-
mate (28). However, if fδ is too small, the complexity of the
algorithm will increase significantly. Taking into account the
two reasons mentioned above, we suggest setting the value of
fδ between 0.1 and 0.2. If the parameter fδ is set to 1, then
the objective function reduces to the traditional AF AFa(τ, f).

Remark 5: The primary computational cost of Algorithm 1
comes from Step 2. Therefore, the complexity of Algorithm
1 is determined by the complexity of SVD decomposition. In
general, for matrix A of size m× n, the complexity of SVD
is O(mn×min(m,n)) [70]. Since we are concerned with the
maximum singular value only, we can employ power method
to reduce the complexity from O(mn×min(m,n)) to O(mn)
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[70]. Hence, in this work, the complexity of OA-ITROX is

O
((

NFr

fδ

)2)
.

Remark 6: ITROX outperforms some other algorithms from
the following perspectives:

• AF-CAO requires the correlation matrix to be a block
diagonal matrix.

• AISO requires the first majorization function to be a real-
valued function.

• GD has excessively high algorithmic complexity and
hence is not suitable for constructing O-LAZ sequences.

V. NUMERICAL EXPERIMENTS

A. Performance Analysis of OA-ITROX Algorithm

Using the proposed algorithm, we have designed an uni-
modular sequence of length N = 128 with low O-AF zone
(Z×Fr) = (32×0.2). The OA-ITROX algorithm is initialized
with random phase sequence. The maximum iteration number
is set to 2× 106 and fδ = 0.2.

To provide a clear description of the performance of OA-
ITROX algorithm within the O-LAZ, we define the ambiguity
level (dB) as follows

ambiguity level = 20 log10
|ÃF a(τ, f)|
|ÃF a(0, 0)|

.

The planform figure of the O-AF of the generated sequence
is shown in Fig. 2. The the O-LAZ is highlighted with a red
solid line box. It can be observed that within the O-LAZ, the
ambiguity level of O-AF is consistently below -40 dB.
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Fig. 2. The planform figure of the O-AF of the o-LAZ sequence generated
by OA-ITROX algorithm.

Fig. 3 shows the ISL value of the objective function with
the number of iterations during the execution of the OA-
ITROX algorithm. In this experiment, the sequence lengths
and O-LAZ size are set as N = 64, 128, 256, 512, 1024, Z =
N/4, Fr = 0.2. This indicates that the proposed modified
ITROX algorithm has good convergence in every sequence
length.
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Fig. 3. Semi-log plot of the ISL with respect to the iteration index.

B. Performance Comparison with Traditional AF

As mentioned in Remark 3, if we set fδ = 1, OA-ITROX
can optimize the traditional AF which leads to traditional LAZ
sequences. In this section, we evaluate the performances of
the traditional LAZ sequences constructed using the proposed
OA-ITROX algorithm and the AF-CAO algorithm [22], [34]
when optimizing the traditional AF.

We consider the sequence length of N = 128, the LAZ
size of (Z × Fr) = (8 × 4), the maximum iteration number
of 3 × 106, and a random sequence as the initial solution.
Fig. 4 shows the planform figure of the traditional LAZ se-
quence constructed using AF-CAO algorithm and OA-ITROX,
respectively. Fig. 5 provides a comparison of ISL changes
with the number of iterations. Fig. 4 and Fig. 5 show that
OA-ITROX algorithm can be employed to design sequences
having good traditional AF magnitudes. Furthermore, OA-
ITROX outperforms the AF-CAO algorithm in terms of AF
sidelobe. Within the LAZ, sequences generated by the AF-
CAO algorithm exhibit uneven sidelobes, with higher values
around the four corners. In contrast, sequences generated
by the OA-ITROX algorithm demonstrate uniform sidelobes
within the LAZ, all about -50 dB.

C. Simulation Results

We assume the number of subcarriers N = 128, cyclic
prefix (CP) length NCP = 32, the IF frequency fc = 3.4 GHz,
the interval of subcarriers ∆f = 15 KHz, maximum relative
speed vmax = 500 Km/h. In addition, we set the power delay
profile according to the EVA channel parameters defined in
the 3GPP standards [6]. From [71], the maximum Doppler fre-
quency fd is calculated as vfc/c = 1.57 KHz. Consequently,
the normalized Doppler frequency is 0.105.

We have designed two simulation experiments. The first
simulation experiment focuses on the channel estimation per-
formance of a single OFDM pilot symbol. As described in
Subsection II-B, a single OFDM pilot symbol provides an
estimate ĥ of the channel response hmid. Therefore, the MSE
of the midpoint instant is defined as follows:

MSEmid = E
(
∥hmid − ĥ∥22

)
.
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(a) AF of sequences generated by AF-CAO [34]
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Fig. 4. The planform figure of the traditional AF of the sequences.
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Fig. 5. Semi-log plot of the ISL with respect to the iteration index.

For benchmarking, we select the following three sequences
as pilot sequences and conduct channel estimation simulation
experiments. The first sequence is a Zadoff-Chu (ZC) sequence
of length N = 128, which is given by

s(µ)zc = [s(µ)zc [0], s(µ)zc [1], . . . , s(µ)zc [127]]T,

where s
(µ)
zc [k] = ζ−µk

2

2N and gcd(µ,N) = 1. The second
sequence is an extended m-sequence of length N = 128,
which is given by

sm = [sm[0], sm[1], . . . , sm[126], 1]
T,

where sm[k] = (−1)Tr(α
k), α is the primitive element of

Galois field GF (2, 7), and Tr(·) is the Trace function over
GF (2, 7). The third sequence is a traditional LAZ sequence,

which is generated by AF-CAO algorithm [34]. We set the
parameters for AF-CAO algorithm are as follows: N =
128, Z = 32, Fr = 1 and maximum iteration number 2× 106.
Note that, since it does not consider the impact of O-AF, this
sequence may serve as a baseline to measure the effective
gain of O-LAZ sequences. The fourth sequence is O-LAZ
sequence which is constructed using the proposed OA-ITROX
algorithm. The input parameters for the algorithm are as
follows: N = 128, Z = 32, Fr = fδ = 0.2 and maximum
iteration number 2× 106.

Remark 7: ZC sequences and m sequences are not unique.
Here, we calculated the ISL of O-AF for 64 ZC sequences
and 18 m-sequences with parameters Z = 32, Fr = 0.2. We
have chosen the sequences with the highest and lowest ISL
magnitude, and denoted them as “The best ZC/m-sequence”
and “The worst ZC/m-sequence,” respectively. Furthermore,
the best ZC sequence is used as the initial seed sequence for
the OA-ITROX algorithm, to construct the O-LAZ sequence.

Fig. 6 shows the MSE of the midpoint instant from five
pilots. The dashed line “CRLB” in Fig. 6 represents the
Cramer-Rao Lower Bound (CRLB) under time-invariant con-
ditions, where CRLB = NCP

N σ2 [31], [72], [73]. From Fig.
6, the O-LAZ sequence outperforms the other four sequences
significantly with respect to channel estimation performance.
From Fig. 6, the proposed O-LAZ sequence exhibits about a
6 dB gain compared to the best ZC sequence. Moreover, the
estimation performance of the O-LAZ sequence is very close
to the CRLB when the SNR is below 20 dB. This indicates that
the O-LAZ sequence can effectively suppress the ICI interfer-
ence caused by DSC, thereby achieving channel estimation
performance close to that of a time-invariant channel.
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Fig. 6. The MSE of the midpoint instant from six pilots.

The second simulation experiment considers channel esti-
mation performance and bit error rate (BER) performance for
multiple OFDM symbols. Here, we adopt the transmission
frame structure as shown in Fig. 1 and use DPSS interpo-
lation to get the channel state information of data symbols.
The detailed process of DPSS interpolation is provided in
Appendix II. We assume a total of MP = 8 pilot symbols,
with each pair of pilot OFDM symbols containing MD = 1
data OFDM symbols. All other simulation parameters remain
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the same as in the previous experiment. In this experiment, the
parameters for generating DPSS interpolation are as follows:
The number of DPSS is 8, and the time half bandwidth is
2.02. As described in Subsection II.C, there are a total of
M =MP +MD(MP − 1) OFDM symbols. Hence, the time-
domain channel matrix h corresponding to the OFDM frame
with CPs should be an L × (N + L)M matrix. And the
MSEframe of the total OFDM frame is defined as follows:

MSEframe =
E
(
∥h− ĥ∥2F

)
(N + L)M

.

Fig. 7 shows the MSE of the OFDM frame from three
pilots. Although the DPSS interpolation process introduces
new errors, the overall estimation performance remains quite
satisfactory. The proposed O-LAZ sequence outperforms the
best ZC sequence, extended m sequence, and traditional LAZ
sequence, significantly in terms of channel estimation MSE.
From Fig. 7, the O-LAZ sequence exhibits about a 3 dB gain
compared to the best ZC sequence.
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Fig. 7. The MSE of the OFDM frame from six pilots.

In Fig. 8, we employed quadrature phase shift keying
(QPSK) as the modulation scheme for data symbols. Fig. 8
shows the BER performance of data symbols with various pilot
sequences. The dashed lines represent the BER at the receiver
with perfect knowledge of the channel state information (CSI).
It is evident from Fig. 8 that the O-LAZ sequences outperform
the best ZC sequence, extended m sequence, and traditional
LAZ sequence, in terms of the BER performance. Moreover,
the performance of the O-LAZ sequences closely approaches
that of the dashed lines.

VI. CONCLUSION

In this paper, we have introduced O-AF and shown that
sequences with low O-AF magnitude are suitable for perform-
ing channel estimation under DSC, without guard subcarriers,
when the channel is approximated through Jakes’ model of
the Rayleigh fading channel. We have then proposed O-LAZ
sequences using a modified ITROX algorithm. Finally, through
numerical experiments we have demonstrated the robustness of
the algorithm and efficiency of the designed O-LAZ sequences
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Fig. 8. The BER of the data symbols using different pilot sequences.

for efficient channel estimation under DSC as compared to the
traditional ZC and m sequences.
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APPENDIX I
Note that (22) has two random variables g(l)q and ω(l)

q . Out
of the two random variables, the randomness of ω(l)

q needs to
be eliminated to ensure that the resultant sequence efficiently
estimates the channel under any channel parameters. Hence,
CR2 is modified from (22) to (42). For efficient channel
estimation over DSC, pilot sequences need to satisfy both (21)
and (42). However, satisfying both (21) and (42) can be a
challenging optimization problem. Hence, we re-design (21)
and (42) using the ISL of the O-AF of sequence a and combine
CR1 and CR2 to a single optimization problem.

Note that minimizing (21) is equivalent to minimizing
|ÃF a(τ, 0)|. Therefore, if we minimize the ISL, CR1 will
also be satisfied. Next, if AH

T AT = NI, then (42) can be
simplified to (43). For the ease of expression, we denote the
integrand function in (43) as:

η1(ω
(0)
q , · · · , ω(L−1)

q ) =

∥∥∥∥ 1

N
AH
T (AT ⊙Ωq)− diag(Γq)

∥∥∥∥2
F

.

(44)
And (43) can be rewritten as:

argmin
a

∫ Fr

−Fr

· · ·
∫ Fr

−Fr

η1(ω
(0)
q , · · · , ω(L−1)

q )dω(0)
q · · · dω(L−1)

q .

(45)
Expanding (44), we obtain (46).
According to the definition of O-AF, (46) can be approxi-

mated by (47).

Hence, (45) can be approximated as follows:

argmin
a

∫ Fr

−Fr

· · ·
∫ Fr

−Fr

η2(ω
(0)
q , · · · , ω(L−1)

q )dω(0)
q · · · dω(L−1)

q .

(48)
Since the values of ω(l)

q , for each l = 0, . . . , L−1 lies within
[−Fr, Fr], the minimization problem of the multiple integral
in (48) can be approximated as the minimization problem of
a single integral [74], as follows:

argmin
a

∫ Fr

−Fr

η3(f)df, (49)

where the integrand η3(f) is given by (50).
The problem of minimizing (49) can be approximately

replaced by the following minimization problem:

argmin
a

∫ Fr

−Fr

1

N

 Z∑
τ=−Z
τ ̸=0

|ÃF a(τ, f)|2

 df. (51)

By exchanging the order of integration and summation, we
have

argmin
a

1

N

Z∑
τ=−Z
τ ̸=0

∫ Fr

−Fr

|ÃF a(τ, f)|2df. (52)

APPENDIX II

We adopt the transmission frame structure as shown in Fig.
2. It is assumed that the midpoint instant channel response
of the pilot symbols is obtained by (9). Let hframe denotes
the channel response of the M OFDM symbols in an OFDM
frame, based on the DPSS representation principle, we have

h
(l)
frame =

B−1∑
k=0

g
(l)
k bk + e(l), (53)

where h
(l)
frame is the channel response corresponding to the l-

th path of hframe, B is the number of DPSSs, bk is the k-th
DPSS, e(l) represents the error in the channel reconstruction
using DPSS. Note that h(l)

frame contains the channel responses
corresponding to M OFDM symbols, and among these, we
only know the values at the midpoints of MP pilot symbols,
i.e., [h(l)frame[p0], h

(l)
frame[p1], . . . , h

(l)
frame[pMP−1]]

T. To solve for
all the coefficients g(l)k , it is generally required that MP ≥ B.
Without loss of generality, we assume that MP = B. Then,
all the coefficients g(l)k can be obtained from (54), and hframe

can also be calculated once g(l)k is obtained, through routine
calculation.
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ÃF a(0, ω

(0)
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