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Abstract

The last few decades have witnessed the emergence of network science aimed at
modelling natural phenomena across a diverse spectrum of disciplines, including bi-
ology, social sciences, and neuroscience, among others. One of the notable advances
in this field is the concept of mutual information rate (MIR), which quantifies the
information flow per unit of time between different components (nodes) within a
network. The MIR framework holds the potential to reveal connectivity patterns in
complex networks using time-series data. A critical challenge in using MIR is the
establishment of appropriate thresholds for successful network inference. We pro-
pose a new method to infer connectivity in networks using MIR, statistical tests and
amplitude-phase modulated surrogate data (APMSD). The method uses MIR and
statistical hypothesis tests to infer network connectivity, introducing a new method
to generate surrogate data, which removes the correlation of amplitude and synchro-
nisation of the phases in the recorded signals, by randomising their instantaneous
amplitudes and phases. The APMSD method compares MIRs between the pairs of
nodes of the data from the coupled or stochastic models with those of the APMSD
generated from the data randomising instantaneous amplitudes and/or phases. We
discuss the mathematical aspects of the APMSD method and present numerical
results for Gaussian-distributed correlated data, networks of coupled maps and con-
tinuous deterministic systems, the stochastic Kuramoto system, and for dynamics
on heterogeneous networks. The importance of our method stems from the analytic
signal concept, introduced by Gabor in 1946 and the Hilbert transform, as it pro-
vides us with the quantification of the contribution of amplitude correlation (linear
or nonlinear) and phase synchronisation in the connectivity among nodes within a
network. Our method shows great potential for recovering the network structure in
coupled deterministic and stochastic systems and in heterogeneous networks with
weighted connectivity.
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Chapter 1

Introduction

Complex network theory focuses on the study of relationships among units in a

system, which can be revealed by studying their temporal evolution. These sys-

tems often exhibit highly diverse dynamical behaviours, such as sensitivity to initial

conditions and chaotic behaviour [63]. In a network of interconnected units, nodes

represent the units of the system, and links the interactions among them. With the

increase in computing power, the last few decades have witnessed the rise of complex

network science, aimed at modelling natural phenomena [16].

Network inference has been extensively studied in various fields [1,16] including,

ecology [58], biology [32,48], engineering [47], finance [26,48], neuroscience [50,54], so-

cial sciences [29], epidemiology [40], etc., using correlation methods [6], information-

theoretical approaches [2, 3, 12, 26], phase measures [50], regression-based methods

[58], probabilistic methods [54], and dynamical models [48] to name a few. In their

research, the authors in [58] explored trophic and nontrophic relationships between

species, investigating their impact on population size. Gene regulatory networks can

indicate the interaction between genes, and understanding human biology has po-

tential to improve personalised treatment [33]. The authors in [47] presented recent

findings in the study of complex power grid networks, which are crucial to society, as

1
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they enable the efficient distribution of the electricity infrastructure. Examining the

interaction between a country’s currency and the stock market, the authors in [26]

presented valuable insights for portfolio management. Studying the functional net-

work of the brain through intracranial electroencephalogram (EEG) data, the work

in [50] contributed new information on the interaction between dorsal and ventral

visual streams, strongly linked to human cognition. Introducing a unified Bayesian

inference framework, [29] proposed a method to investigate animal social networks

from observational data. Comparing the Dynamics Bayesian Network, Lasso Re-

gression, and Pearson correlation coefficient methods on species’ presence-absence

data, the authors in [58] concluded that this type of data may not always provide

sufficient information to reveal interactions. Consequently, they emphasised the need

for cautious interpretation of inferred networks. The authors in [40] simulate various

scenarios related to the spread of COVID-19 using network theory.

Exploring interactions between system units across disciplines often involves the

use of networks, a well-studied domain that employs various mathematical approaches

[44]. The authors in [6] introduced an approach that combines correlation with prior

knowledge to select an appropriate cutoff point in network inference, demonstrating

its implementation in untargeted metabolomics and transcriptomics data. Studies

in [3, 12, 60] delved into the properties of MIR, emphasising its efficacy in captur-

ing nonlinear relations in time-series data compared to Pearson correlation. Despite

a slightly higher computational cost, information-theoretical methods, as discussed

in [33], outperform the Pearson correlation in also capturing nonlinear interdepen-

dencies. In brain network analysis, [50] uses phase locking values as a symmet-

ric measure to construct undirected networks and the directed transfer function to

investigate causal interactions between brain regions from intracranial EEG data.

Although Bayesian network analysis focusses on directed acyclic graphs, overlook-

ing self-loop relations, it remains crucial in some research areas [33]. To address
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this limitation, the Dynamic Bayesian Network approach considers the probability

distribution of data. In [48], the authors improved the DYNOTEARS algorithm

using dynamic Bayesian networks on time series data, demonstrating its application

on synthetic and real data from finance and molecular biology. Despite significant

progress in the field of network inference, there are still many open questions.

One of the notable advances in the field of network inference is MIR, which

quantifies the flow of information per unit of time among different nodes in a net-

work [3,12]. As was shown, MIR can successfully infer the structure in various types

of networks and dynamics [12] and real datasets [26]. However, a major challenge in

using MIR is the definition of an appropriate threshold for successful connectivity

inference. The authors in [62], implemented mutual information-based tools to in-

vestigate differences in brain connectivity in post-stroke patients with different levels

of depression. They considered that 10–30 % pairs that have maximum mutual in-

formation are connected, leading to various network topologies. The authors in [26],

introduced a way to address the problem of defining a proper threshold (thresholding

problem), where they proposed the use of an additional directed link to help them

infer the interdependencies between stock indices and financial markets of countries

around the world. However, this involves the use of additional data from chaotic

logistic maps to compare with the recorded data, which brings about the problem of

choosing a system or why choosing a system and not using the dataset itself to define

a threshold. In light of this, the author in [2] proposes another approach to tackle

the thresholding problem: the use of statistical tests based on surrogate data. This

approach considers the source of connectivity as a linear or phase relation among

pairs of nodes by comparing the MIR values of the original data with the MIR val-

ues of random- or twin-surrogate data, which destroy all linear or phase relations

in the signals. However, this does not take into account the different contributions

of amplitude correlation and phase synchronisation in the signals to network con-
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nectivity. In addition, it does not provide information on which surrogate method

to use. To overcome these limitations, in this thesis, we introduce a new method

to generate surrogate data, called the APMSD method, which removes correlation

and phase synchronisation by randomising amplitudes and instantaneous phases in

the recorded signals individually. The method is based on the computation of MIR

and statistical hypotheses tests to infer network connectivity [2] using APMSD. The

proposed method compares MIR between pairs of signals from the network with the

MIR values of pairs of APMSD coming from the signals. In particular, the APMSD

method is based on [13,14], which provides detailed information on the extraction of

phase measures from signals, on [15,16] which discusses how to use the Gabor trans-

form to convert signals into their analytic signal using the Hilbert transform. This

enables one to compute the instantaneous amplitudes and phases of a signal. Past

studies have revealed that signal dependencies are influenced by the relationships

between amplitudes and phases [2, 16]. Building upon this, our method randomises

both the amplitudes and the phases using two percentages, denoted by pc1 and pc2

in the paper, respectively. We show that for all systems and networks studied, the

method was able to find at least one pair of randomisation parameters that leads

to perfect network inference. The novelty of our method is that it can quantify the

contribution of amplitude correlation and phase synchronisation in network connec-

tivity.

This thesis is organised as follows:

Chapter 2 introduces the preliminary concepts of network theory, forming the

basis for the subsequent chapters. We begin with a historical problem in graph the-

ory: the Königsberg bridge, followed by a brief summary of key structural properties

of undirected graphs, including node degree distribution, diameter, and clustering

coefficient. Finally, we generate different types of networks, such as ring lattice,

Erdös-Renyi (ER) random networks, Barabási-Albert (BA) small-world networks,
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and Watts-Strogatz (WS) scale-free networks, to discuss their structural properties

and use them in network inference in Chapter 5.

Chapter 3 is dedicated to the theoretical framework of nonlinear dynamical sys-

tems and chaos theory. In this context, we discuss the numerical integration methods

for ordinary differential equations (ODEs), stability of the deterministic systems,

and the concept of Lyapunov exponents. Additionally, we introduce the discrete

time coupled deterministic systems such as logistic and circle maps, continuous time

deterministic systems such as Hindmarsh-Rose (HR), Lorenz systems and Kuramoto

phase oscillators and a stochastic system, Kuramoto system with Wiener process.

We thoroughly analyse the dynamics of these systems, laying the groundwork for

their subsequent application in network inference.

In Chapter 4, we discuss the concept of synchronisation in chaotic systems. Even

though it may seem controversial, as chaotic systems are sensitive to initial conditions

and synchrony implies harmony between units, it does occur under some coupling

configuration. In this context, we discuss the master-slave and bidirectionally coupled

systems. To analyse the phase synchronisation of chaotic trajectories, we decompose

the signal using the concept of analytic signal introduced by Gabor [23] using Hilbert

transform (HT). Furthermore, we present two examples for complete synchronisation

(CS), phase synchronisation (PS) and imperfect phase synchronisation (IPS) in the

context of a network of 5 nodes. In this context, to quantify the amplitude correlation

and phase synchronisation between nodes in a network, we use three measures: (1)

Pearson correlation (PC), (2) Kuramoto phase order [37], and (3) pairwise phase

order or pairwise phase synchronisation [27].

Chapter 5 is dedicated to discussing the information theoretical approaches in the

context of network inference. Firstly, we compare mutual information with Pearson

correlation in a quick example to encourage the reader. In this context, we show

that mutual information captures both nonlinear and linear relations, whereas PC
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captures only linear relations. We continued discussing the theory of the information-

theoretical approaches with important theorems and their proofs. We also introduced

double normalised MIR, time lag versions of PC, MIR and double normalised MIR.

Next, we present the results of the methods that implement the various dynam-

ics, including Gaussian-distributed data, coupled logistic and circle maps, HR and

the Lorenz systems. Furthermore, to investigate the effect of synchronisation, we

implement MIR on two data sets providing CS, PS and IPS discussed in Chapter 4.

To address the thresholding problem, the author in [2] suggests hypothesis test-

ing using MIR and surrogate data including random surrogate data (RSD) and twin

surrogate data (TWSD). In Chapter 6, we discuss the theoretical framework of the

method employing it in various dynamics and networks, including Gaussian dis-

tributed correlated data, deterministic discrete and continuous systems, and stochas-

tic dynamical systems. The results show that using RSD and TWSD does not allow

to infer the initial network structure successfully in many cases.

Therefore, to improve the performance of statistical tests method, we propose

the hypothesis testing using amplitude-phase modulated surrogate data. Chapter

7 is dedicated to discussing the theory of theAPMSD method and its applications

on various dynamics and network topologies, including the systems discussed in

Chapter 6 for comparison reasons. The APMSD method shows great potential in

recovering the network structure in coupled deterministic and stochastic systems and

in heterogeneous networks with weighted connectivity.

Finally, we conclude our study by establishing connections among the results

discussed in the thesis and by stating possible extensions of this study in Chapter 8.



Chapter 2

Brief Introduction to Network

Theory

2.1 From Graph Theory to Networks

Figure 2.1: The graphical rep-
resentation of the seven bridges
of Könisberg in St. Petersburg,
where uppercase letters denote ver-
tices and lowercase letters connect-
ing lines, referred to as edges, what
is called a graph in mathematics.

The history of graph theory in mathematical prob-

lem solving dates back to 1739 [4]. Swiss-born math-

ematician Leonhard Euler had a significant influence

on various mathematical concepts. Although Euler

is known for his groundbreaking equation eiπ = −1,

which is a special case of the operation of two ir-

rational and one complex numbers equating to an

integer, his work also played a role in the birth of

graph theory.

During his time in St. Petersburg, Euler encoun-

tered a famous question among the locals: Could one visit all the islands using each

bridge exactly once? This problem involved four islands connected by seven bridges

(see Fig. 2.1). Many intellectuals grappled with this challenge for days during that

7
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era. Euler reformulated the question as a graphical problem. He assigned uppercase

letters A, B, C and D to the islands (referred to as vertices or nodes) and lowercase

letters a, b, c, d, e, f and g to the bridges (referred to as edges or links). In 1736,

he proposed a solution, proving that there was no way to traverse all islands while

crossing each bridge only once.

Euler’s solution was both simple and elegant: he counted the number of bridges

connected to each island. For example, there were three bridges connecting islands

B (or C) to others. This meant that the degrees of nodes A, B, C, and D were 5, 3, 3,

and 3, respectively. Although it might have been possible for only two nodes with odd

degrees (representing the start and end points) to visit every island by crossing each

bridge once, the question at hand involved four nodes with odd degrees. Therefore,

there is no way to visit all the islands by crossing the bridges once. This brings us

to the mathematical definition of a graph, given below [18]

Definition 2.1.1 (Graph). A graph G is an ordered triple (V (G), E(G), ψG) con-

sisting of a non-empty set V (G) of vertices, a set E(G), disjoint from V (G), of edges,

and an incidence function ψG that associates with each edge of G an unordered pair

of (not necessarily distinct) vertices of G. If e is an edge and u and v are vertices

such that ψG = uv, then e is said to join u and v; the vertices u and v are called the

ends of e.

We can define the components of the graph, given in the definition, for the prob-
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lem of Könisberg Bridge by,

G = (V (G), E(G), ψG), where

V (G) = {A,B,C,D},

E(G) = {a, b, c, d, e, f, g},

ψG(a) = AB,ψG(b) = AB,ψG(c) = AC,ψG(d) = AC,

ψG(e) = AD,ψG(f) = BD,ψG(g) = CD.

The authors in [52] discussed the distinction between the terms “Graph” and

“Network” that they are commonly used interchangeably in the scientific literature.

However, the difference lies in that the graph refers to the schematic visualisation to

solve a mathematical problem, whereas the network refers to graphical representation

of real-life problem such as transportation maps, social interactions, protein-protein

interactions, etc. Despite their close relationship, we shall henceforth refer to them

as “network” and their components, vertices and edges, as “nodes” and “links”,

respectively.

Networks have been extensively used in various fields [1,16], including ecology [58],

biology [32, 48], finance [26, 48], neuroscience [50, 54], engineering [47], epidemiol-

ogy [40]. In their research, the authors in [58] explored trophic and nontrophic rela-

tionships among species, investigating their impact on population size. Gene regula-

tory networks can indicate the interaction between genes, and understanding human

biology has potential to improve personalised treatment [33]. The network of stock

markets in different countries might provide a useful tool for portfolio managers.

Studying the functional network of the brain through intracranial EEG data, [50]

contributed new information on the interaction between dorsal and ventral visual

streams, strongly linked to human cognition. The authors in [47] presented recent

findings in the study of complex power grid networks, which are crucial to society,
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as they enable the efficient distribution of the electricity infrastructure. The authors

in [40] simulate various scenarios related to the spread of COVID-19 using network

theory. In conclusion, the study of networks spans a wide range of disciplines, high-

lighting their importance and versatility.

There are various ways to represent networks; they can be directed such as the

websites traffic in World Wide Web (www) or undirected such as friendship on Face-

book. In the network of www, one visits a website from another, which constitutes

a directed relation. However, when A is a friend of B, it implies that B is also a

friend of A, indicating an undirected relationship. Networks can also feature multiple

links between any pair of nodes, as seen in the Königsberg Bridge problem, or they

can contain self-links, representing instances such as self-citations of an author in

a citation network or a protein capable of interacting with itself. However, in this

research, we focus on undirected networks with no multiple links and no self-loops,

referred to as simple networks. Therefore, the ensuing discussions will be confined

to this type of network only.

This chapter is dedicated to presenting the structural attributes of networks,

including density, node degree, graph Laplacian, diameter, and clustering coefficient.

Additionally, it aims to introduce the most well-known network types, such as ring

lattices, random graphs, small-world networks, and scale-free networks.

2.2 Structure of Networks

In this section, we will discuss the structural properties of networks using concepts

from graph theory, such as the adjacency matrix, the weighted adjacency matrix,

the density, degree of node, the Laplacian graph, the path length, diameter and

clustering coefficient using the networks given in Fig. 2.2.
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Figure 2.2: Examples of a simple and a weighted network. (a) A simple
network of 5 nodes and 5 links, (b) a weighted network of 5 nodes and 5 links, where
their widths denote the weights of connectivity. Note the numbers on the links denote
the weights of connectivity, which is proportional to the widths of the links.

2.2.1 The Adjacency Matrix and Density of a Network

For a simple network of N nodes, the adjacency matrix is a N × N matrix with 0s

and 1s as entries, for unconnected and connected pairs of nodes, respectively, and is

given by

AN×N =


Aij = 1, if nodes i and j are connected,

Aij = 0, if nodes i and j are unconnected.

For the given simple network in Fig. 2.2(a), we can construct its adjacency matrix,

A5×5 =


0 1 1 0 0
1 0 1 1 0
1 1 0 0 0
0 1 0 0 1
0 0 0 1 0

 .
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The density of a network can be defined as the ratio of the number of existing links to all

possible links in a fully-connected network, where all nodes are connected to each other.

For example, the density of the network in Fig. 2.2(a) is 0.5 as the number of links is 5

and the maximum number of links in a fully-connected network of 5 nodes is 10.

The weighted adjacency matrix of a weighted network is given by,

WN×N =


Wij = wij , if nodes i and j are connected

Wij = 0, if nodes i and j are unconnected,

where wij is the weight of the link between nodes i and j. For the network in Fig. 2.2(b),
its weighted adjacency matrix is

W5×5 =


0 9 7 0 0
9 0 10 5 0
7 10 0 0 0
0 5 0 0 7
0 0 0 7 0

 .

2.2.2 Node Degree and Degree Distributions

The node degree of a node vi, is defined as the number of its neighbours and is denoted by

deg(vi). It can be computed from its adjacency matrix, A, by

deg(vi) =
N∑
j=1

Aij .

For example, we can compute the node degrees of the network in Fig. 2.2(a) as follows

deg(v1) = deg(v3) = deg(v4) = 2,

deg(v2) = 3,

deg(v5) = 1.

The node degree matrix, D, is diagonal, its diagonal elements are the node degrees, and is
given by
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D =


k1 0 . . . 0
0 k2 . . . 0
...

... . . . ...
0 0 0 kN

 , (2.1)

where ki = deg(vi). For example, the node-degree matrix of the network in Fig. 2.2(a) is

D5×5 =


2 0 0 0 0
0 3 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 1

 . (2.2)

Moreover, the probability distribution of the node degrees of a network can be computed

by the probabilities,

p(k) = Nk

N
,

where, p(k) is the probability of nodes with degree k to exist. In particular, Nk is the

number of nodes with degree k and N is the total number of nodes in the network (or the

so-called network size). For example, the probability distribution of degrees of the network

in Fig. 2.2(a) are p(1) = 1
5 , p(2) = 3

5 , p(3) = 1
5 and p(4) = 0. As expected, their sum is

equal to 1. To characterise the large-size networks that we discuss later in Sec. 2.3, the

probability distribution of degrees will be crucial.

2.2.3 The graph Laplacian

In statistical mechanics, particle diffusion can be thought of as the movement of gas par-

ticles from high- to low-pressure areas. In network theory, diffusion refers to the amount

of a quantity that moves along a path between nodes i and j. Consequently, the diffusion

rate is the change of quantity, ψi in a small amount of time and is given by

dψi
dt

= C
∑
j

Aij(ψj − ψi). (2.3)
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In Eq. (2.3), for the constant C (is also called diffusion constant), we can split it two terms:

dψi
dt

= C
∑
j

Aijψj − Cψi
∑
j

Aij = C
∑
j

Aijψj − Cψiki

= C
∑
j

(Aij − δijki)ψj , (2.4)

where ki =
∑
j Aij is the degree of node i, δij the Kronecker delta, which is 1 for i = j and

0 otherwise. We can express Eq. (2.4) in matrix form by

dψ

dt
= C(A − D)ψ, (2.5)

where ψ is the vector of quantities ψi and D the degree diagonal matrix in Eq. (2.1).

Looking at Eq. (2.5), we can define the graph Laplacian, L of the adjacency matrix, A of

the network by

L = D − A. (2.6)

Then, the differential equation in Eq. (2.5) becomes

dψ

dt
+ CLψ = 0.

In particular, computing L from Eq. (2.6), one arrives at

Lij =



kij , if i = j,

−1, if i ̸= j and nodes i and j are connected,

0, otherwise.

(2.7)

2.2.4 Path Length, Average Path Length and Diameter of a

Network

A path in a network is defined as the set of links that connect any two nodes. For instance,

P1 = 1 → 3 → 2 → 4 is a path between nodes 1 and 4 traversing along nodes 3 and 2 in

the network shown in Fig. 2.2(a). The path length is the number of links traversed along
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the path so, the path length is |P1| = 3 for this path. However, this is not the shortest

path between nodes 1 and 4 as there is a shorter one, P2 = 1 → 2 → 4. Thus, the shortest

path length between nodes 1 and 4 is |P2| = 2. We can construct the matrix of shortest

path lengths of the network in Fig. 2.2(a), D5×5,

D5×5 =


0 1 1 2 2
1 0 1 1 2
1 1 0 2 3
2 1 2 0 1
3 2 3 1 0

 .

The average shortest path length, d, is the mean of the shortest path lengths across the

network, given by

d = 1
N(N − 1)

N∑
i ̸=j

Dij .

The diameter, R, of a network is the maximum of the shortest path lengths across all

pairs of nodes so, the greatest entry in matrix, D5×5, which is equal to 3 in our example.

We used the diameter of a network in the estimation of correlation decay time (CDT) from

the itinerary network method in Sec. 5.2.3.

2.2.5 Clustering Coefficient

In literature, there are two types of clustering coefficients: (a) The global clustering co-

efficient, also known as transitivity, considers the number of connected triplets of nodes,

(b) The local clustering coefficient that considers the degree of the neighbours of a node,

which was introduced in [65], to quantify the small-worldness of a network. Therefore, we

will compute the local clustering coefficient, Ci for node i by

Ci = 2li
ki(ki − 1) ,

where ki is the number of neighbours of node i and li the number of links among the

neighbours. Finally, we can define the mean local clustering coefficient as the average of
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all local clustering coefficients in the network,

C = 1
N

∑
i

Ci.

2.3 Network Types

2.3.1 Ring Lattice

Ring lattice (RL) belongs to the family of regular network meaning that all nodes have

constant degree, deg(vi) = k for all i, called k-regular network. Apart from the regular

network, in a ring lattice network, all nodes are connected to k
2 neighbours on both side

such as 6-ring lattice of 16 nodes, shown in Fig. 2.3(a). Each node in this network is

connected to 3 neighbours on the left and 3 on the right. In its degree distribution in Fig.

2.3(b), there is only one column, as degrees of all nodes are equal to 6. The average path

length and diameter of the graph increases as the network size increases, as shown in Fig.

2.3(c).

2.3.2 Random Networks

Random networks, which have been introduced by Paul Erdös and Alfred Rényi in the

early 1960s, have the same probability to draw a link between any two nodes [22]. For a

network with N nodes and n links, the possible number of networks can be constructed is

n choose number of all links, N(N−1)
2 . For example, the number of random networks can

be constructed with 5 nodes and 4 links is
(10

4
)

= 210 as one chooses 4 links from 10 links

of a fully-connected network. Equivalently, we can assign a probability of being connected

for each node, p, in the construction of random graphs where the expected value of number

of edges is E(n) = pN(N−1)
2 . We used p = 0.2 to generate the network with 40 nodes in

Fig. 2.4(a), consequently, we have 159 links in the network which are close to its expected

value 156. The probability of being degree k in a random network with N nodes is given



2.3. NETWORK TYPES 17

Figure 2.3: An example of ring lattice. (a) A network of 6-ring lattice with 16
nodes. (b) Degree distribution of the network. (c) Average shortest path length, d,
and diameter, R, of 6-regular lattice over network size, N .

by,

p(k) =
(
N − 1
k

)
pk(1 − p)N−k−1.

Any node with degree k have to be connected k nodes are chosen from the N − 1 nodes

(all nodes except itself). The probability of being connected of any two pairs is p and

it implies the probability of being connected to k nodes is pk, whereas, the probability

of not being connected to the rest of the nodes is equal to (1 − p)N−k−1. Therefore, the

degree distribution for the network with N nodes and connection probability p follows the

binomial distribution with the parameters N − 1 and p. It is worth noting that although

its distribution becomes a Poisson distribution for large networks, the network we are

working with has only 40 nodes. Therefore, we will consider that it follows a binomial

distribution. We used the built-in R function, erdos.renyi.game(), in igraph package

with the parameter of probability of being connected, p.or.m= 0.2. Finally, we generated
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Figure 2.4: An example of the Erdös-Rényi random network. (a) The Erdös-
Rényi random network with 40 nodes and 0.2 connection probability and (b) its
node degree distribution and the curve of binomial distribution with parameters
N − 1 = 39 and p = 0.2.

the ER network with 40 nodes and 159 links, as shown in Fig. 2.4(a). We presented the

degree distribution of the nodes and the curve of binomial distribution, binom(39, 0.2). In

a general sense, the degree distribution follows the binomial distribution, however, we can

see better fit for the larger networks.

2.3.3 Small World Networks

As we see in the ring lattice, the shortest path length depends on the network size, and it

increases as N rises. However, in most of the real networks, despite their often large size,

they have a relatively short path length in average between any two nodes. This property

is first investigated in a social science network inferred from Milgram’s experiment. In his

experiment, randomly selected individuals in Nebraska were asked to forward a letter to a
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distant target individual if they knew them, based on provided information such as names,

occupation, and approximate location. If they did not know the target, they were instructed

to send the letter to someone who might know the person. Milgram then tracked the path of

the letters and surprisingly found that, on average, the letters reached the target individual

after only 6 deliveries. It shows that a network might have relatively small mean of the

shortest path lengths even if it involves many nodes. This is known as small-wordness of a

network, and it helps one to characterise the network at hand. Brain networks and World

Wide Webs are frequently classified as small world network because some links connects

different clusters within these systems, significantly speeding up information transmission

[16]. Watts and Strogatz conducted research that showed similarities in the neural networks

of Caenorhabditis elegans, the power grid of the western US, and the collaboration network

of film actors [65]. They developed an algorithm to generate small-world (SW) a network

which has 2 parameters, number of neighbours and probability of being connected. This

algorithm starts with an initial network in which all nodes connected to a given number

of nearest neighbours, and the links are reconstructed based on the given probability.

Since some nodes will connect to a distant node, this increase the connectivity of network

and eventually provide the property of small-wordness. We used sample_smallworld()

function in igraph package in R to generate Watts-Strogatz model. The parameters of

the function are that dimension of the lattice, dim= 1, the number of nodes, size = 40,

number of neighbours in the initial lattice, nei = 4, and rewiring probability, p = 0.1,

to generate a small-world network as shown in Fig. 2.5(a) and its degree distribution is

presented in Fig. 2.5(b). Small-world networks show a similar topological structure to

random networks, except for the shortest path lengths.

2.3.4 Scale-Free Networks

Traditionally, ER model has been extensively used to study in complex networks, assuming

an equal connection probability for all nodes. However, the analyses of large real networks

show that the degree distribution of most of them follows power-law instead of binomial

distribution (or Poison distribution for large networks) as shown in Fig. 2.4(b). Albert-
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Figure 2.5: An example of Watts-Strogatz small-world network (a) The
Watts-Strogatz small-world network with 40 nodes and 160 links and (b) its node
degree distribution.

László Barabási and Réka Albert analysed the topological structure of real-world networks

like the www and the citation network of scientific articles, and they showed that the

nodes with higher degrees tend to have a higher connection probability, which is called

“preferential attachment”. Based on this observations, they devise an algorithm to generate

scale-free (SF) network, is known as BA model [5]. There are two generic mechanism

underlying the algorithm: (1) New nodes get involved in the network in each iteration.

(2) the probability of being connected for the nodes depends on their existing number of

connections. In such networks, the probability of nodes being rewired follows a distribution

with a power-law decay, denoted as p(k) ∼ k−γ . We generated a BA scale-free network

using the built-in function in igraph package in R, sample_na(), with 40 nodes, power,

γ = 1 for linear preferential attachment and m=4, which is the parameter for number of

links will be added each step. Consequently, we obtained the network shown in Fig. 2.6(a)

and its degree distribution follows the power law with γ = 1 as shown in Fig. 2.6(b).

To compare the structural properties of the networks discussed above, we presented
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Figure 2.6: An example of Barabási-Albert scale free network (a) Network
structure with 40 nodes and 150 links and (b) its node degree distribution, that
follows the power-law with γ = 1.

some of their measures in Table 2.1. The network size and density are crucial parameters

in the network inference, and we want to compare the networks on dynamics, therefore,

we choose the same network size with comparable density. The diameter, the mean length

of the shortest path, and the mean local clustering coefficient are the highest in RL. The

average shortest path length of SW is expected to be significantly lower than that of

ER, however it is slightly less because of the relatively small network size with 40 nodes.

Considering the computational cost in network inference that we use these networks in

Chapter 5, we kept our analysis limited to networks of 40 nodes.

RL ER SW SF
Number of nodes 40 40 40 40
Number of links 160 159 160 150

Density 0.21 0.20 0.21 0.19
Diameter 5 4 3 3

Average Shortest Path Length 2.95 1.97 1.94 2.00
Mean Local Clustering Coefficient 0.64 0.24 0.21 0.27

Table 2.1: Structural properties of the network topologies.
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2.4 Summary

Network theory facilitates valuable analysis across various fields, from biology to the social

sciences, enabling researchers to explore the interactions among the components of a sys-

tem. The use of graph-theoretical tools in mathematical problems dates back to the 18th

century, when Euler famously solved the “Königsberg bridge problem”, demonstrating that

it is impossible to traverse all seven bridges by crossing each only once. Since then, graph

theory has garnered the attention of researchers aiming to simplify and solve a range of

mathematical problems.

In the 1990s, with advances in technology and computational power, network theory

began to be applied to real-world problems, such as protein-protein interactions, neural

connectivity in the brain, and transportation networks.

In this study, we focus primarily on undirected networks, with occasional references

to weighted networks. As a result, the scope of our analysis is somewhat constrained to

these structures. We also examine the structural properties of networks using concepts

such as density, node degree, graph Laplacian, diameter, and clustering coefficient. Based

on these structural characteristics, we introduce and analyse some of the most well-known

network models, including ring lattices, random graphs, small-world networks, and scale-

free networks.



Chapter 3

Brief Introduction to Nonlinear

Dynamics and Chaos Theory

3.1 Nonlinear Dynamical Systems

Dynamical system theory traces its roots to Newton’s contributions to science in the 17th

century with his book Principia Mathematica that has largely been accepted as one of

the great revolutions in the history of physics. It leads a pioneering physical theory, so

called “classical mechanics”, that study the motion of objects, with three laws of motion

can be explained as follows: (1) If the net force exerting on an object is zero, the object

at rest remains at rest or the object in motion remains in motion with constant speed

in the same direction. (2) The acceleration in a motion depends on the mass of an ob-

ject and the net force applied on the object. (3) Whenever an object A exerts a force

on object B, B also exerts equal and opposite force (reaction) on A. He also developed

and used mathematical theories, which are the fundamentals of calculus today. His works

lead to formulate the natural phenomena by mathematical equations considering infinitely

small changes. Various systems from planetary positions, to air or fluid flows, to chemical

reactions, can be expressed by differential equations to identify past or future states con-

sidering the infinitesimal changes in the variables of systems. In this sense, the systems

23
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whose states change over time are called “Dynamical systems” and their equations of mo-

tion depend on time, whether implicitly or explicitly. The theory of dynamical systems

finds applications across various scientific disciplines, from biology to chemistry. For sim-

plicity, we start with a familiar example from classical mechanics, the simple pendulum,

to conceptualise the equation of motion and dynamical systems as shown in Fig. 3.1. In

this frictionless (or undamped) system, the object with mass m is suspended by a bob in,

with θ representing the angle between the bob and the vertical axis (or equilibrium point),

called “phase”. The position vector of the object, −→st = L
−→
θt , representing the distance

along the arc from the equilibrium axis, where L is the length of the mass-less rod.

Figure 3.1: Simple pendulum.
Forces acting on simple pendulum,
where there is no friction. The figure
is taken from [49].

The velocity vector, denoted by −→v , can be defined as

the rate of change of the position vector with respect to

time, and the acceleration vector, denoted by −→a , can

be defined as the rate of change of the velocity vector

with respect to time, given in Eqs. (3.1) and (3.2)

−→v = ds

dt
= L

dθ

dt
, (3.1)

−→a = d2s

dt2
= L

d2θ

dt2
. (3.2)

When the object is released from its current state, a

force is exerted on the mass, setting it into motion. To

begin, we must establish Newton’s second law of motion

(Eq. (3.3)), which states that the net force, −→
F , is equal

to the product of mass, m, and acceleration, −→a

−→
F = m−→a =⇒ (3.3)

−mgsin(θ) = mL
d2θ

dt2
=⇒

d2θ

dt2
= − g

L
sin θ. (3.4)

where g is the gravitational acceleration. Equation (3.4) is a second-order ODE, whose
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Figure 3.2: Phase portrait of undamped simple pendulum.

solutions determine the system. To find the solution of the system by reducing the degree

of equation, we take x = θ and y = dθ
dt . The equation becomes as follows.

dy

dt
= − g

L
sin(x) (3.5)

where x corresponds to the angle, θ, and y is the angular velocity, dθ
dt . Figure 3.2 visually

portrays the states of the system formulated by ODE in Eq. (3.5) for the pendulum release

from various initial conditions. The trajectories with the angular velocity in [−5, 5] and θ

around 2kπ for k ∈ Z exhibit circular motion in terms of the change in phase and angular

velocity, indicating bounded oscillations. On the contrary, the trajectories centred around

θ = 2kπ + 1 for k ∈ Z deviate from equilibrium by acquiring angular velocity. Due to lack

of friction, the pendulum will oscillate indefinitely.

One of the main purposes of dynamical system’s theory is to study the behaviour of a

system. A deterministic system is a system in which no randomness is involved in its future

evolution. Unlike deterministic systems, a stochastic system does not always generate the
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Figure 3.3: Exponential model for population. (a) Function of time, f(t). (b)
Function of past states, f(xn) (see discussion in the text on f(t) and f(xn)).

same output for a given input. Stochastic systems are represented by stochastic processes

that arise in many contexts, e.g., in stock prices. Based on the problem at hand, time can

be a continuous quantity, such as in the simple pendulum that we discussed before, or a

discrete quantity, such as in the case of populations of species in ecology. In particular, if

we consider an isolated island where the population of rabbits doubles every year, assuming

the mortality rate 0, we can describe mathematically the population as a function of time

by f(t) = A · 2t, where A is the initial population at time t0. Starting with a pair of

rabbits, the population will be 2 pairs of rabbits at year 1 and 4 pairs of rabbits at year 2,

etc. Instead of expressing the population growth as a function of time, expressing it as a

function of previous states is often preferable to see growth rate and to reduce the power

order of the function. As depicted in Fig. 3.3, the population function over time exhibits an

exponential trend, while the function of successive states follows a linear pattern, defined

by xn+1 = f(xn) = 2xn, where 2 is the population growth rate.

In the context of population modelling, the issue with an exponential model is its

tendency to increase indefinitely. This is because natural resources, such as food and living

space, are finite and can support a finite population size. To address this, we need to add

a term in f(t) to constrain the indefinite growth of the population. A classical example of
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this idea is implemented in the Logistic map, given by

xn+1 = rxn(1 − xn), (3.6)

where r is the growth rate in [0, 4] and x is population in [0, 1]. Here, n is a number of

iterations of map and plays the role of discrete time.

The logistic map in Eq. (3.6), that popularised after published as a seminal paper in

1976 by Robert May [41], holds a prominent place in dynamical systems and chaos theory

due to its straightforward structure and various dynamical behaviours that depend on the

growth rate r.

In this model, as the growth rate, r, falls within the interval [0, 1], the population

eventually decays to zero. For instance, consider an initial value of x0 = 0.4 and r = 0.2;

the future states are 0.0480, 0.0091, 0.0018, 0.0004, 0.0001, 0.0000. This sequence of points

is called as a trajectory or orbit, originating from the initial condition x0 = 0.4. For

r = 2 and x0 = 0.4, the trajectory will end with 0.5 called a fixed point. More broadly, a

fixed point is defined as a point that remains unchanged through a trajectory, satisfying

the following equation, f(x) = x. For r = 2, we have two fixed points at x = 0 and x = 0.5

which can be shown as,

2x(1 − x) = x

2x− 2x2 = x

2x2 − x = 0

x(2x− 1) = 0

x = 0 or x = 0.5.

Fix points can be understood as the points where the graph of a function intersects the

line y = x, as illustrated in Fig. 3.4. Although the function gives the same value at the

fixed point, nearby points can diverge or converge to a related fixed point. For example, the

orbit of x0 = 0.4 for r = 2 tends to approach x = 0.5, even if there is another fixed point at
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x = 0. Even when the initial point is selected near 0, the orbit eventually converges to 0.5

after a transient period. Fixed points that attract nearby points are referred to as sinks

or attracting fixed points, while those that repel nearby points are known as sources

or repelling fixed points.

The Cobweb plot serves as a valuable tool to illustrate the behaviour of fixed points.

Figure 3.4(a), (b) show the trajectory starting with the nearby point of x = 0 and the

cobweb plot for this trajectory, respectively. After ten iterations, the trajectory reaches

the sink at the fixed point x = 0.5.
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Figure 3.4: Examples of periodic trajectories and cobweb plot (a) An example
of a trajectory of logistic map with r = 2 and x0 = 0.01 (b) The corresponding
cobweb plot, (c) An example of period 2 trajectories of logistic map with r = 3.4
and x0 = 0.4 (d) The corresponding cobweb plot of the trajectory in panel (c).

We can analyse the stability of fixed points by examining the rate of change in ϵ-
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neighbourhoods.

f ′(0) = lim
ϵ→0

f(0 + ϵ) − f(0)
ϵ

= lim
ϵ→0

2ϵ(1 − ϵ)
ϵ

= 2.

The distance between the nearby point x+ ϵ and the fixed point x = 0 will double in each

iteration, implying that x = 0 repels trajectories starting at the nearby points. However,

the fixed point, x = 0.5, attracts nearby points as the absolute value of its rate of change

is smaller than 1 as shown below.

f ′(0.5) = lim
ϵ→0

f(0.5 + ϵ) − f(0.5)
ϵ

= lim
ϵ→0

2(0.5 + ϵ)(1 − 0.5 − ϵ) − 0.5
ϵ

= lim
ϵ→0

2(0.25 − ϵ2) − 0.5
ϵ

= lim
ϵ→0

−2ϵ2

ϵ
= 0

Then, we conclude the derivative of a function at a point gives the amount of divergence (or

convergence), therefore the absolute value of the derivation at a source should be greater

than 1 to repel trajectories starting at the nearby points and the absolute value of the

derivation at a sink should be less than 1 to attract trajectories starting at the nearby

points, as stated in the theorem [34].

Theorem 3.1.1 (Sink-source theorem). Let f be a smooth function in R and p a fixed

point of function f .

1. if |f ′(p)| < 1, p is a sink,

2. if |f ′(p)| > 1, p is a source.

Proof. 1. Let f ′(p) = a and |a| < 1. We know |a| is the contraction rate of the distance
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between p and p+ ϵ in each iteration,

d(p+ ϵ, p) = ϵ

d(f(p+ ϵ), p) = |a|ϵ
...

d(fk(p+ ϵ), p) = |a|kϵ = 0,

where d denotes the Euclidean distance between two points and fk is the kth iteration

of f . Since |a| < 1, limk→∞ |a|kϵ = 0 so, p is a sink.

2. Similarly, if f ′(p) = a and |a| > 1, limk→∞ |a|kϵ go to infinity, then p is a source.

As r increases, the logistic map demonstrates different types of dynamics, such as the

behaviour of period 2 when r is set to 3.4, as shown in Fig. 3.4.(c), (d), where, following

a transient period, the trajectory jumps intermittently between two points. When r is set

to 3.5, the system exhibits a period 4 orbit, with the trajectory transitioning through four

distinct points. Upon a slight increase in the value of r, the periodicity doubles, resulting

in a period of 8 orbits, and so on. This pattern extends to period 16 orbits and continues,

as illustrated in Fig. 3.5. Remarkably, there is a constant ratio in the bifurcation diagram

of various chaotic maps, known as the Feigenbaum constant, δ, which is equal to 4.6692.

Particularly, if nth period doubling (leading to period 2n trajectories) occurs at r = rn,

δ = limn→∞
rn − rn−1
rn+1 − rn

≈ 4.6692.

This behaviour of period doubling can be depicted by the bifurcation diagram,

shown in Fig. 3.5. This diagram shows the intricate long-term behaviour of the logistic

map. In particular, the logistic map exhibits a diverse range of behaviours. For instance,

orbits rapidly transform into chaos around r = 3.6 after doubling a period. An emergence

of period 3 behaviour is observed around r = 3.84, followed by a rapid escalation of irreg-
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Figure 3.5: Bifurcation diagram for logistic map.

ularity. In Sec. 3.2, we discuss Lyapunov exponents, which is the method that quantifies

the average growth (or shrinkage) of small perturbations to the solution of a dynamical

system. Before that, we discuss some numerical integration methods to solve systems of

ODEs next.

3.1.1 Numerical Integration Methods for ODEs

Systems of ODEs are often challenging to solve analytically; therefore, numerical integra-

tion methods are commonly used to numerically calculate their trajectories from ODE. In

particular, for a continuous system (or flow), the general form of an ordinary differential

equation

ẏ = f(t, y), (3.7)

with initial condition

y(t0) = y0,
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where ẏ is the time derivative of y variable and f(t, y) is the function of differential equation.

Let the analytical solution of the system be Ft and its numerical approximation Yt at time

t. The cumulative error between the analytical solution and its numerical approximation

is called global truncation error,

E(t) = Ft − Yt.

The error between the analytical solution of an ODE system and its approximation in one

iteration is called the local truncation error, and depends on the numerical method

chosen. However, in practise, computers carry out the computation with finite-precision

at each time step, round-off error arises given by

R(t) = yt − Yt,

where yt is actually computed from the given numerical method. This depends on the type

of computer, rounding-off method, etc.

In this section, we introduce several numerical integration techniques to approximate

the solution of an ODE in Eq. (3.7), Ft(y0) presenting pseudocodes for their algorithms [19].

We implemented them to solve ODE of HR system and compared them to find the one

that produces a good quality numerical solution in a reasonable amount of computational

time. This comparison is based on the theory of the numerical methods presented instead

of errors, since there is no simple analytical solution for HR system.

3.1.1.1 The Euler Method

The fundamental approximation technique for a solution of a system of ODEs is the Euler

Method. To approximate further steps, it uses the first order solution of the Taylor series
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expansion, which is given

f(x+ h) = f(x) + hf ′(x) + h2 f
′′(x)
2! + h3 f

(3)(x)
3! + . . .

= f(x) +
∑
n=1

hn
f (n)(x)
n! ,

where f (n) denotes the nth derivation of function f . Using the first two terms of the Taylor

series expansion, we can derive the Euler method for the solution of Eq. (3.7),

yt+1 = yt + hf(t, yt),

where h is the step size. This method computes an approximation of the function over

each step using the previous approximation and the differential value of the equation at

that time step. The algorithm 1 shows the pseudocode for the implementation of the Euler

method.

Algorithm 1 Algorithm for Euler method
1: Define f(t, y)
2: Initial value y = y0
3: Input step size h and number of steps n
4: for <j=1:n> do
5: fn = f(t, y)
6: y = y + hfn
7: t = t+ h
8: end for
9: Return t and y.

3.1.1.2 The 4th-order Runge-Kutta Method

The 4th-order Runge-Kutta (RK4) method stands as the most widely recognised member

of the Runge-Kutta numerical method family. This method approximates the analytical

solution by expanding it to the 4th order of its Taylor series expansion and the derivation

of the coefficients derived by the author in [39]. The pseudocode for the RK4 method is

given in algorithm 2.



3.1. NONLINEAR DYNAMICAL SYSTEMS 34

Algorithm 2 Algorithm for RK4
1: Define f(t, y)
2: Initial value y = y0
3: Input step size h and number of steps n
4: for <j=1:n> do
5: k1 = f(t, y)
6: k2 = f(t+ h

2 , y + h
2k1)

7: k3 = f(t+ h
2 , y + h

2k2)
8: k4 = f(t+ h, y + hk3)
9: y = y + (h6 )(k1 + 2 × k2 + 2 × k3 + k4)

10: t = t+ h
11: end for
12: Return t and y.

3.1.1.3 The 4th-order Adams-Bashford Method

In contrast to the Euler and RK4 methods, the 4th-order Adams-Bashford (AB4) method

belongs to the category of multistep methods. This characteristic implies that the method

requires values at the time steps t − 1, t − 2, t − 3, and t − 4 to estimate the value at

time t. Consequently, three steps after the initial value must be calculated using one of

the single-step methods, as shown in the algorithm 3.

Algorithm 3 Algorithm for AB4
1: Define f(t, y)
2: Initial values t = t0 and y = y0
3: Find the approximation of f1,f2, f3 using a single-step method such as the Euler

method or RK4.
4: Input step size h and number of steps n
5: for <j=1:n> do
6: yn+1 = yn + h

24(55fn − 59fn−1 + 37fn−2 − 9fn−3)
7: t = t+ h
8: end for
9: Return t and y.

3.1.1.4 The Methods of Adaptive Runge-Kutta

The adaptive Runge-Kutta methods are based on the estimation of local truncation error,

considering the methods of p and p + 1 order Runge-Kutta. We implemented 2nd-3rd

order Runge-Kutta (RK23) based on the Bogacki-Shampine algorithm [17], establishing
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the step size by comparing the local truncation error between the RK23 with a predefined

tolerance level [42], and 4th-5th order Runge-Kutta (RK45) based on the Dormand-Prince

algorithm [21], setting the step size by comparing the local truncation error between the 4th

and 5th order Runge-Kutta methods with a specified tolerance level [42], using two Matlab

built-in functions ode23 and ode45 setting the relative tolerance level 10−8. It should be

noted that ode23 and ode45 were configured to compute states at equal intervals, as this

aspect is crucial for the computation of the Lyapunov spectrum. Thus, the computation

time of these methods increases.

3.1.1.5 Comparison of Numerical Integration Methods

In this section, our attention is directed towards the HR system in order to identify differ-

ences between the discussed numerical integration methods. The HR model replicates the

activity of a single neuron, taking into account the disparity in electric potential between

the interior and exterior of neurons. The molecules responsible for the membrane potential

in neurons include Na+, K+, and Ca+2 ions. As a result, the model incorporates the vari-

ations in the quantities of these molecules, as depicted in the mathematical representation

of the model as follows

ṗ = q − ap3 + bp2 − n+ Iext

q̇ = c− dp2 − q (3.8)

ṅ = h[s(p− p0) − n],

with initial conditions,

p0 = −1.30784489 + 0.5ξ,

q0 = −7.32183132 + 0.5ξ,

n0 = 3.35299859 + 0.5ξ,
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where p represents the membrane potential, q is related to the fast current (Na+ or K+),

and n is associated with the slow current (Ca+2). The remaining parameters of the model

are set as follows: a = 1, b = 3, c = 1, d = 5, h = 0.05, s = 4, p0 = −1.6, and Iext = 3.25.

ξ is a uniformly random number generated in [0, 1].

Various numerical integration methods have been used to calculate the states of the

HR system. Calculations were performed for the final integration time tf = 103, and the

step sizes 10−4 for the Euler method, 10−3 for the RK4, AB4, RK23, and RK45. Here, it

is worth noting that we forced the algorithms of adaptive step size, RK23 and RK45, to

output at equal step size to be able to compute Lyapunov exponents later in this chapter.

Among the discussed methods, the family of Runge-Kutta integration methods is ex-

pected to be superior on Euler and Adams-Bashford because they do not consider the

points between steps, therefore, we present the comparison of trajectories generated from

RK4 and others (see Fig. 3.6(a)-(d)) with the cumulative absolute relative error, EC ,

between trajectories (see Fig. 3.6(e)-(h)). The cumulative absolute relative error,

EC =
∑
n=1

|y
1
n − y2

n

y2
n

|,

where y1
n, y2

n are the solutions from the method 1 and 2 in the nth iteration. We used RK4 as

a method 2 in all computations. The discrepancy between trajectories immediately begins

to appear after time 600 in the comparison of RK4 and Euler so, the cumulative error

starts to increase significantly after t = 600 as shown in Fig. 3.6(a), (e). The numerical

solutions using the numerical integration methods, RK4, AB4, RK23 and RK45, have

similar precision since no discrepancy is apparent in their trajectories. However, we can

measure the difference on the microscale using EC . The cumulative relative error of AB4

on RK4 is significantly higher than the EC values of RK23 and RK45 in RK4. Even though

the last two gives similar error functions, we know that from theory, RK45 should be the

most accurate one because it considers the local truncation error between 4 and 5 order

Runge-Kutta methods. The computation time of the integration methods is presented

in Table 3.1. Even if RK4 is the most efficient method in terms of the accuracy of the
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Figure 3.6: Comparison of numerical integration methods. (a)-(d) Compari-
son of the trajectories of p variable of HR system using various numerical integration
methods. (e)-(h) The corresponding cumulative relative error, EC , of the methods
on RK4 as a function of time.

computed trajectories and computational time, we use RK45, unless otherwise stated,

because the chaotic orbits are highly sensitive to initial conditions and we prefer to use the

most accurate method possible.

Method CPU time (in seconds)
Euler 67
RK4 24
AB4 22
RK231 144
RK451 219

1 The method is adapted to output in
constant step size.

Table 3.1: CPU time of numerical integration methods (in seconds).
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3.2 Chaos Theory

As discussed previously, the logistic map demonstrates diverse and intricate dynamical

behaviours at various values of the parameter r. In summary, for r ∈ (0, 1), the trajectories

of the logistic map decay to zero. For r ∈ (1, 3), the trajectories converge to a fixed

point. Beyond this point, as r increases from 3, one observes the emergence of the regular

behaviour including period 2, period 4, period 8, etc. Chaotic behaviour ends up occurring

around r = 3.6. A fascinating pattern emerges where the dynamical behaviours transition

from regular to chaotic and back to regular. For a brief interval around r = 3.82, the

dynamics exhibit regularity with period 3, period 6, and so forth. However, this regular

behaviour is not permanent, and the system quickly returns to chaotic behaviour. The

primary objective of this section is to delve into the concept of the Lyapunov exponent,

which quantifies the degree of irregularity, to provide a precise definition of chaos.

3.2.1 Lyapunov Exponents for 1-dimensional maps

As outlined in Sec. 3.1, the stability of fixed points hinges on the derivative of the func-

tion at those fixed points p. We showed that p acts as a source when |f ′(p)| > 1, and,

conversely, it functions as a sink when |f ′(p)| < 1. We also discussed that the derivation

of the map at a certain point gives the growth (or shrinkage) rate for the nearby points.

Lyapunov exponents is a measure to quantify the average growth (or shrinkage) rate along

the trajectory. The Lyapunov exponent for an 1-dimensional map f with its trajectory

xt = x0, x1, x2, x3, ... can be derived as follows

h(x1) = lim
k→∞

[f ′(x1)f ′(x2) . . . f ′(xk)]1/k,

where h(x1) is called the Lyapunov number which gives the average growth (or shrinkage)

rate and Lyapunov exponent equals to its logarithm, log h(x1),
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λ(x1) = lim
k→∞

log |f ′(x1)f ′(x2)....f ′(xk)|
k

= lim
k→∞

log |f ′(x1)f ′(x2)....f ′(xk)|
k

= lim
k→∞

log |f ′(x1)| + log |f ′(x2)| + ...+ log |f ′(xk)|
k

.

3.2.2 Lyapunov Exponents for Multi-dimensional Systems

In this section, our exploration begins with a study of 2-dimensional linear transforma-

tions to clarify the concept of expansion rate. Subsequently, our focus shifts towards

2-dimensional non-linear transformations. Finally, we consolidate our discussion by eluci-

dating the concept of the Lyapunov exponent and providing a precise definition of Chaos.

3.2.2.1 Matrix Transformation

Let’s start with a linear transformation of f(x, y) = (x+2y, 2y+x), which can be expressed

by a transformation matrix, T=

1 2

2 1

. T has 2 eigenvalues: λ1 = 3 associated with the

eigenvector (1, 1) and λ2 = −1 associated with the eigenvector (−1, 1). In Fig. 3.7(a), the

blue circle shows the initial circular region in a 2-dimensional space with r = 0.1 centred at

the origin. The 1st iteration of the region under the given linear transformation is shown

with a red ellipse. The blue circle expands through its eigenvector (1, 1), as its associate

eigenvalue λ1 = 3 is greater than 1. Since λ2 = −1 and its absolute value equals 1, ellipse

maintains its size along the eigenvector (−1, 1). However, the circle transforms to the

different shape under the nonlinear transformation shown in Fig. 3.7(b). To produce these

results, the function f(x, y) = (x+2xy, 2x+y) is used, which is a nonlinear transformation

because of the term 2xy. Its transformation matrix can be written as T=

1 2x

2 1

 that

depends on x unlike the linear transformation, its eigenvalues and eigenvectors will change

as a function of x. It means that the direction of expansion and the expansion rate change

according to the position of the point, and this implies that the transformation of the circle
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under the nonlinear function is not an ellipse any more. However, when the small circle is

initially chosen, the transformed region is close to an ellipse, as seen in Fig. 3.7(c).
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Figure 3.7: Linear and nonlinear transformation. (a) Linear Transformation.
Blue circle is initial circular region r = 0.1 at (0, 0) centred, red circle is 1st iteration
under f transformation, orange circle is 2nd iteration under f transformation. (b)
Nonlinear Transformation of the same circle. (c) Nonlinear Transformation of the
small size circular region with r = 0.01.

3.2.2.2 Lyapunov Exponents

The idea behind measuring the average expansion (or shrinkage) rate of an orbit under

a nonlinear transformation is to make small perturbations along the trajectory. Only in

this way does the nonlinear transformation act as a linear one and makes it possible to

predict the average expansion. In this subsection, we dive into the details of the algorithm

to compute Lyapunov exponents in multidimensional systems, presented in [7, 8].

The idea behind the computation of the Lyapunov exponents involves the evolution

of the Lyapunov vectors, initially chosen as unit basis vectors, shown in Fig. 3.8(a), (b)

under the Jacobian matrix, J = Df , where D is the partial derivation operator along all

variables. Following evolution of the Lyapunov vectors, the Gram-Schmidt orthogonalisa-

tion process is used to ensure that the Lyapunov vectors are separated enough to not cause

any computational errors, as shown in Fig. 3.8(c). The length of these orthogonal vectors

can be interpreted as the expansion rate in this iteration. To approximate the Lyapunov

exponents, the average of the logarithms of the lengths of these deviation vectors is calcu-

lated as a function of n. It is important to note that theoretically, n goes to infinity. As
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Figure 3.8: Evolution of Lyapunov vectors. (a) Initial Lyapunov vectors (b)
Evolution of Lyapunov vectors (c) Orthogonalisation of the vectors used in the Gram-
Schmidt method (d) Normalisation of the Lyapunov vectors to be used again in the
next iteration

shown in Fig. 3.8(d), it is necessary to normalise the orthogonal vectors before proceeding

to the next iteration. This normalisation step plays a crucial role in maintaining control

over the lengths of the vectors, thus effectively mitigating over expansion.

Definition 3.2.1 (Lyapunov exponents of maps). Let f be a smooth map on RM , let

Jn = Dfn(x0), rnk be the length of the kth longest orthogonal axis of the ellipsoid JnN for

an orbit with initial point x0 and for k = 1, ...,M , n is the length of time series. Then

rnk measures the contraction or expansion near the orbit of x0 during the first n iterations.

The kth Lyapunov number of x0,

hk = lim
n→∞

(rnk )
1
n , (3.9)
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if this limit exists. The kth Lyapunov exponent of x0 is λk = log hk. Notice that we have

built into the definition the property that h1 ≥ h2 ≥ . . . ≥ hM and λ1 ≥ λ2 ≥ . . . ≥ λM .

For continuous systems (or flows), the concept of Lyapunov exponents is the same once

we replace the iteration of discrete map with a differential equation of a flow. Let Ft(y) be

a solution of the Eq. (3.7) so, it should satisfy the equation.

d

dt
Ft(y) = f(Ft(y))

Once we take the derivative of both sides with respect to y, we get the so-called variation

equation.
d

dt
DFt(y) = Df(Ft(y))DFt(y) (3.10)

In order to simplify the Eq. 3.10, we can rename Jt(y) = DFt(y) and Λ(t) = Df(Ft(y)).

Then,

J̇t = Λ(t)Jt. (3.11)

To solve Eq. (3.11), we take J0 = I which corresponds to the unit vectors shown in Fig.

3.8. For the 3-dimensional HR system introduced in Eq. (3.8),

Λ(t) =


−3ap2(t) + 2bp(t) 1 −1

−2dp(t) −1 0

hs 0 −h

 .

Notice that Λ(t) involves the p variable at time t hence, the ODE of a system and its

variation equation in Eq. (3.11) should be solved simultaneously. To control the lengths

of the column vectors of J, we used Gram-Schmidt orthonormalization and recorded the

length of the vectors of J at each step, following the same approach in Fig. 3.8.

Definition 3.2.2 (Lyapunov exponents of flows). Let ẏ = f(t, y) be a differential equation

of a continuous time system, J̇ = ΛJ variation equation where Λ is the Jacobian matrix of

the differential equation with size M×M . Let rnk be the length of the kth longest orthogonal

variation vector of J for an orbit with initial point y0, for k = 1, ...,M . Then rnk measures
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the contraction or expansion near the orbit of y0 during the first n iterations. The kth

Lyapunov number of y0,

hk = lim
n→∞

(rnk )
1
n ,

if this limit exists. The kth Lyapunov exponent of y0 is λk = log hk. Notice that we have

built into the definition the property that h1 ≥ h2 ≥ . . . ≥ hM and λ1 ≥ λ2 ≥ . . . ≥ λM .

After calculating the Lyapunov spectrum, which is the set of Lyapunov exponents, we

can determine whether the system is chaotic. This relies on the following definitions of

chaos for maps and flows stated in [34],

Definition 3.2.3 (Chaotic map). Let f be a map of Rm, m ≥ 1, and let xt = (x0, x1, x2, . . . )

be a bounded orbit of f . The orbit is chaotic if the following conditions are satisfied.

1. It is not asymptotically periodic,

2. No Lyapunov Exponent is exactly zero,

3. There is at least one positive Lyapunov Exponent.

In this definition, we exclude quasiperiodic trajectories with the 2nd condition due to

their high predictability. The authors in [34] present the following example to elucidate

quasi-periodic behaviour.

Example: Let f be a function that iterates the given point in polar coordinates, defined

by the following equation

f(r, θ) = (r2, θ + ψ),

where r is the distance to the origin and θ the angle. For points r < 1, the trajectories

approach the fixed point at the origin. For points r > 1, the region is unbounded and the

trajectories tend toward infinity. Quasi-periodicity arises when r = 1 and ψ is an irrational

number. The trajectories exhibit almost periodic behaviour, while being sensitive to initial

conditions at the same time. The Lyapunov exponents of the trajectories are log 2 and 0.

Definition 3.2.4 (Chaotic flow). Let Ft(y0) be a solution of ẏ = f(t, y) where y0 in RN .

Ft(y0) is chaotic orbit if the following conditions hold:
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Figure 3.9: Bifurcation diagram and MLE. Plot of the bifurcation diagram and
MLE as a function of r for the logistic and circle maps. The red curves show MLEs
as a function of r, and the black curves are the corresponding bifurcation diagrams
of the logistic map in panel (a) and the circle map in panel (b).

1. There is at least one positive maximum Lyapunov exponent (MLE). This implies that

the system is sensitive to the initial condition.

2. Ft(y0) is bounded.

3. The long-term behaviour of the trajectory is not periodic.

We examined previously the dynamics of the logistic map depending on r and provided

the bifurcation graph. In Fig. 3.9(a), the bifurcation graph of the logistic map and MLE

is presented together. It is apparent that the MLE is negative, where the trajectory is

nonchaotic. Similarly, we plot the bifurcation diagram and corresponding MLEs in for the
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Figure 3.10: Simple network topologies. (a) A network of 12 nodes and 14 links.
(b) Network of 16 nodes and 26 links.

circle map in Fig. 3.9(b) is given by,

f(x, r) = x+ r − K

2π sin(2πxn) (mod 1), (3.12)

where r is a parameter in [0, 1], x the input variable in [0, 1] and K = 6.9115. Figure 3.9(b)

reveals various dynamics similar to that observed in the logistic map. For the system to

be chaotic, we have chosen r = 0.35.

In this thesis, we study the interaction among the units of a system whose data are

generated by coupled discrete and continuous dynamical systems, discussed next.

3.3 Coupled Dynamical Systems

We employ coupled discrete and continuous deterministic systems, as well as the Kuramoto

system augmented with a stochastic term. In this chapter, we used two network topologies,

one consisting of 12 nodes in Fig. 3.10(a) and another with 16 nodes in Fig. 3.10(b) to

generate data from coupled models.
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Index Logistic map Circle map Index Logistic map Circle map
1 0.45 1.21 9 0.39 0.96
2 0.44 1.18 10 0.38 0.93
3 0.44 1.15 11 0.37 0.88
4 0.43 1.12 12 0.35 0.83
5 0.42 1.10 13 0.34 0.77
6 0.42 1.07 14 0.31 0.70
7 0.41 1.03 15 0.29 0.62
8 0.40 1.00 16 0.24 0.47

Table 3.2: Lyapunov spectra of 16 coupled logistic and circle maps for coupling
strength α = 0.1.

3.3.1 Deterministic Discrete Systems

3.3.1.1 The Coupled Logistic and Circle Maps

The general equation used to generate trajectories from coupled logistic and circle maps is

given by

xin+1 = f(xin, r)(1 − α) + α

ki

M∑
j=1

Aijf(xjn, r). (3.13)

Here, xin represents the nth iteration of the ith node, M is the number of nodes in the

network whose adjacency matrix Aij , depicted in Fig. 3.10(b). The parameter α stands

for the coupling strength and ki is the total degree of the ith node. The function f(xin, r)

is the map that defines the dynamics on the ith node, can be the logistic or circle maps,

given in Eqs. (3.6) and (3.12), respectively. The initial conditions are randomly chosen in

[0, 1].

The coupling strength is one of the factors that affects the dynamics of the system. In

Table 3.2, the Lyapunov spectra of 16 coupled logistic and circle maps in Eqs. (3.3), (3.6)

and (3.12), where the coupling strength α = 0.1, is presented. We see that both Lyapunov

spectra are positive, indicating that the dynamics is chaotic in both cases.
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3.3.2 Deterministic Continuous Models

3.3.2.1 The Coupled Hindmarsh-Rose System

In addition to the HR system introduced in Eq. (3.8), we use here, a coupling term to

generate trajectories based on interactions among nodes by

ṗi = qi − ap3
i + bp2

i − ni + Iext − gl

M∑
j=1

CijH(pj)

q̇i = c− dp2
i − qi (3.14)

ṅi = h[s(pi − p0 − ni) for i = 1, 2, ...,M.,

where M is the number of neurons, H(pj) = pj , and Cij is the Laplacian derived from

equation C = A − D, where A is the adjacency matrix of the network and D the degree

matrix of A, with its diagonal indicating the degrees of the associated nodes (see more

details in Chapter 2). Finally, gl denotes the coupling strength of the electrical connections

and all other parameters are set as in Eq. (3.8). The initial conditions are chosen as

follows [12]

pi0 = −1.30784489 + 0.5ξi,

qi0 = −7.32183132 + 0.5ξi,

ni0 = 3.35299859 + 0.5ξi,

where ξi is a uniformly distributed random numbers of node i. In Sec. 3.1.1, we explored

the methods employed to numerically solve the HR system. Based on the interactions in

the network of 12 nodes seen in Fig. 3.10(a), we have generated a trajectory (data set)

with the final integration time tf = 104 and step size h = 0.1 for the single and coupled

models.

The algorithm forces ode45 (built-in Matlab function) to produce data with a time step,

h = 0.1 as it is an adaptive step-size numerical integration method. We start recording the

orbit after the MLE stabilises. To do so, we compute the MLE as a function of time and
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Figure 3.11: The dynamics of single and coupled HR systems. Panels (a)
and (d) show the trajectories of node 1 for uncoupled and 0.1 coupled HR model are
respectively shown in 3d space. Panels (b) and (e) show the recorded time series of
variables p, q, n of node 1 for the models. Panels (c) and (f) show the time evolution
of MLE has shown in log scaled y-axes for the corresponding models. The data were
recorded after MLEs got stabilised, indicating by red dashed line.

compute the standard deviation of a sliding time window of 500 MLEs. When the standard

deviation of 500 MLEs in a window is smaller than a predefined threshold, we consider

that the MLE has converged to a value. If this value is positive, it is an indication that the

dynamics is chaotic, and we start recording the time series after the last of these 500 time

points. In this context, we choose the predefined threshold as 10−3 and start recording

time series after the time point indicated by the vertical red-dash line in the panels (c) and

(f) in Fig. 3.11. In panels (a), (d), we plot two trajectories of node 1 in the 3-dimensional



3.3. COUPLED DYNAMICAL SYSTEMS 49

space for uncoupled and coupled systems, respectively. Similarly, panels (b) and (e) show

the p, q and n variables as a function of time. Finally, panels (c) and (f) show the evolution

of MLEs on logarithmic scale for the uncoupled and coupled systems that approach 0.442

and 0.402, respectively, as time increases.

3.3.2.2 The Coupled Lorenz System

With significant advancements in computational power after the 1970s, numerical integra-

tion methods have facilitated the solution of ordinary differential equations. This has led

to good estimations of the future states of a system of ODEs. Consequently, scientists have

been able to determine precise dates for solar and lunar eclipses thousands of years ago or

in the distant future. The application of these methods culminated in the historic landing

of “Apollo 11” on the Moon in 1969.

This progress was driven by the ability of scientists to formulate equations of motion

that encompassed all relevant factors influencing a particular process. During the 1960s,

climate scientists believed that with a comprehensive equation of motion accounting for

all variables affecting weather conditions, they would achieve absolute certainty in weather

forecasts. The belief was that weather prediction could be extended over long time spans,

similar to predicting the movement of celestial bodies.

However, the landscape of scientific thought shifted with the work of Edward Nor-

ton Lorenz in 1963, a mathematician and meteorologist at the Massachusetts Institute of

Technology. Lorenz is widely recognised as the pioneer of “Chaos Theory” due to his

groundbreaking discovery. While he was studying the atmospheric model, included 12 dif-

ferential equations and many parameters that he does not know how to set. The use of

a computer helps him to investigate phase space with various parameters. When he com-

puted the numerical solution of the system for the same initial condition, Lorenz noticed

that it gives quite different solutions after some iterations [25]. Before Lorenz, the common

sense was that if an equation of a deterministic system could be written, it is predictable.

However, it has been destroyed by Lorenz’s finding of the initial sensitive system. Years

later, he derived the three-dimensional system of ordinary differential equations (ODE)
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modelling the convection between two plates parallel to the ground: one cooling uniformly

from above, and the other heating uniformly from below, given by

ẋi = σ(yi − xi)

ẏi = xi(ρ− zi) − yi (3.15)

żi = xiyi − βzi,

where the model parameters are σ = 10, ρ = 28, β = 8/3 that leads to chaotic orbit. The

variable x is proportional to the speed of circulatory convection, y to the horizontal heat

variation and z to the vertical heat variation.

In the discussion of local stability of a logistic map, we define the concept of sink as

an attracting fixed point, meaning that the points in its basin eventually reach the sink.

In more general sense, in the dynamics of Lorenz system, we see a butterfly-shaped curve

in three dimensions that attracts trajectories of many starting points. In other words, the

attractor is a closed set, A, of its phase space, which trajectories of many starting points

evolve to A. Because of the chaotic trajectories attract to this butterfly-shaped close-

set, Lorenz system is also called “chaotic (or strange) attractor”. It is worth noting that

this discussion is valid for only the specified parameters, as Lorenz system has different

dynamics based on the parameters (see [34] for the discussion of the dynamics of Lorenz

system based on the parameter ρ).

In our experiments, we only use the x component coupled Lorenz system in Eq. (3.15)

as the coupling function is present only in the first equation in Eq. (3.16)

ẋi = σ(yi − xi) +K
M∑
j=1

Ai,j(xj − xi),

ẏi = xi(ρ− zi) − yi, (3.16)

żi = xiyi − βzi.

whereK is the coupling strength, A the adjacency matrix ofM connected nodes. The initial

conditions of the system are xi0 = 0.1 + 0.5ξi, yi0 = −0.19 + 0.5ξi and zi0 = −0.27 + 0.5ξi,
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Figure 3.12: Dynamics of the single and coupled Lorenz Systems. (a) The
Lorenz attractor of system (3.15) (single Lorenz system). (b) The time evolution of
the MLE which approaches to 0.9 as time increases (for coupled Lorenz system for
K = 0.6 in Eq. (3.16)) (c) Change in the MLE over the coupling strength of coupled
system (3.16), notice that the curve peaks at 0.94 for K = 0.6.

where ξi is a uniform random numbers in [0, 1] for i = 1, . . . ,M . The system is numerically

solved using the RK45 numerical integration method, which uses internally a variable

time step to keep the local truncation error below a small threshold (we used 10−8 in our

simulation). Since we want the numerical solution at specific time intervals, we “force”

the method (RK45) to report the values at multiples of the time step 0.1 and use as

final integration time, tf = 2×103. Figure 3.12(a) presents the trajectory of the uncoupled

Lorenz model in 3D space, where we can see the butterfly-like shape of the so-called Lorenz

attractor. Figure 3.12(b) shows the evolution of the MLE of uncoupled model over time in

log scaled y-axis, which approaches to 0.9029 as time goes to infinity. We start recording

the orbit after the MLE stabilises. To do so, we compute the MLE as a function of time

and compute the standard deviation of a sliding time window of 500 MLEs. When the

standard deviation of the 500 MLEs in a window is smaller than a predefined threshold, we

consider that the MLE has converged to a value. If this value is positive, it is an indication
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the dynamics is chaotic, and we start recording the time series after the last of these 500

time points. In this context, the trajectory is recorded once the MLE stabilises, under the

assumption of that the standard deviation of 500 MLEs within sliding time windows is

less than or equal 10−2. Thus, first 1935 data points are considered as transient period

indicated by vertical red-dashed line. Figure 3.12(c) illustrates the MLE of the system for

K values ranging from 0 to 1.5. The MLE reaches its peak value of approximately 0.94

around K = 0.6.

3.3.2.3 Deterministic Coupled Kuramoto Oscillators

The phenomenon of synchrony among fireflies in Malaysia, that they flash in unison, has

intrigued travellers for centuries, often described in romantic terms in the travel litera-

ture (see details in Sec. 4.1). The Kuramoto model has contributed significantly to the

understanding of this phenomenon by the following equation [37],

θ̇i = ωi + K

M

M∑
j=1

Ai,j sin(θi − θj), (3.17)

where θi is oscillator phases for i = 1, . . . ,M . M is the number of oscillators, ωi the

intrinsic frequency of the oscillators uniformly random distributed in [−π, π]. K is the

coupling strength of the model, A the adjacency matrix of 12 nodes shown in Fig. 3.10(a).

Having a closer look at Eq. (3.17), it becomes evident that the phases of the oscillators

are influenced by the phases of other oscillators in the network. In essence, if an oscillator

is moving faster, the presence of other oscillators tends to slow it down, and vice versa.

Over time, this interaction can lead to synchronisation between oscillators, depending on

the value of the coupling strength, K.

Figure 3.13(a) shows the MLE over coupling strength, K in [2, 10]. As some MLEs are

less than or equal to zero and the y -axis is in logarithmic scale, there are some missing

values in the plot that correspond to negative MLEs. The MLEs reach their maximum

value, 0.03625, when K = 10, shown by a red dot in Fig. 3.13(a). Figure 3.13(b) shows

the evolution of MLE over time for the trajectory where K = 10. To stabilise the MLE
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Figure 3.13: Dynamics of coupled Kuramoto Oscillators. (a) MLE of the
deterministic Kuramoto system over the coupling strength, K. Negative MLEs are
not shown in the plot because the vertical axis is in log-scale, where K in [2, 10]. (b)
The evolution of MLE for K = 10, the trajectories before red-dash line is considered
as transient period because it gets stabilised falling its standard deviation below
predefined threshold 10−2. (c) Kuramoto phases of first 5 oscillators as a function
of time for K = 10. (d) The instantaneous frequencies of the phases of the first 2
oscillators (see detail in Sec. 4.3.3)

considering the standard deviation of 500 MLEs within a sliding time window, when it

becomes less than the predefined value, 10−2, the trajectory is started to be recorded. The

trajectory until t = 77.2 is considered as a transient period following the data generation

process in Sec. 3.3.2.2. Figure 3.13(c) shows the phases of the first 5 oscillators recorded

after the transient period. Since the phases follow a linear trend, as shown in Fig. 3.13(c),

the instantaneous frequency, defined as the time derivative of the phases, is used as a probe

to investigate the nonlinear relations between pairs of oscillators (see details in Sec. 4.3.3).

The instantaneous frequency has been shown in Fig. 3.13(d) for the first 2 oscillators.
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3.3.3 Stochastic Dynamical Systems

Stochastic differential equation (SDE) have found widespread applications in diverse fields,

from economics to biology, as they allow the consideration of unpredictable influences in

the system. The general form of an SDE is as follows

dxt = F (t, xt)dt+G(t, xt)dWt,

where F (t, xt) is the drift rate function, G(t, xt) is the diffusion function, and Wt is a

Wiener (or Brownian) process. Here, where Wt+1 −Wt ∼ N(0, 1) and Wt are independent

of the previous steps

To solve stochastic differential equations analytically, Ito’s calculus can be used, which

has different rules compared to classical calculus, due to the non-differentiability of these

systems at any given point. Although delving into the details of stochastic calculus is

beyond the scope of this thesis, numerical integration methods such as Euler-Maruyama,

Milstein, or Runge-Kutta can be used to generate trajectories from SDEs. We implement

the Euler-Maruyama method with its algorithm 4 given in [35].

Algorithm 4 Algorithm for Euler-Maruyama
1: Input drift function F (t, xt)
2: Input diffusion function G(t, xt)
3: Input initial values t = t0 and y = y0
4: Input step size h and number of iterations, n
5: for <j=1:n> do
6: Yj+1 = Yj + F (tj, yj)h+G(tj, yj)∆Wj ▷ where ∆Wj = Wj+1 −Wj

7: end for
8: Return t and y.

3.3.3.1 Stochastic Coupled Kuramoto Oscillators

The only difference in the equation of motion for the stochastic Kuramoto model in Eq.

(3.18) compared to the deterministic Kuramoto model is the inclusion of the Wiener pro-

cess, as shown in the following equation
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Figure 3.14: Dynamics of coupled stochastic Kuramoto oscillators in Eq.
(3.18). (a) The evolution of phases of the first 5 oscillators over time for D = 10
and K = 10. (b) The evolution of instantaneous frequency of the first 2 stochastic
oscillators.

dθi = ωidt+ K

M

M∑
j=1

Ai,j sin(θj − θi)dt+DdW i
t , (3.18)

where wi is the internal frequency of the node i, randomly chosen in [−π, π] leading non-

identical oscillators. D is the stochastic strength and W i
t the Weiner process for the ith

node at time t, where Wt+1−Wt ∼ N (0, 1) and Wt are independent of the previous steps. A

is the adjacency matrix of 12 nodes shown in Fig. 3.10. The trajectory has been generated

by Eq. (3.18) with the step size 0.1, D = 10 and final integration time tf = 500. The initial

conditions are randomly chosen in [0, 2π], as shown in Fig. 3.14(a). The fluctuations in the

trajectory are an effect of the Weiner process. However, it will not be enough to infer the

network topology from the phases because of their linearity, therefore, the instantaneous

frequencies will be used as a probe to infer the structure of networks, as shown in Fig.

3.14(b).
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3.4 Summary

This chapter is dedicated to discussing the theoretical framework of the systems we study,

focusing on their dynamics. In particular, we briefly introduce dynamical systems and

chaos theory, with applications including discrete time systems such as logistic and circle

maps, continuous time systems such as the Lorenz, the HR, and the deterministic Kuramoto

systems, and stochastic models such as stochastic Kuramoto oscillators.

Subsequently, unless otherwise stated, we will use a modified version of RK45 with

tolerance level, 10−8, to solve continuous-time systems. This modification entails forcing

the built-in ode45 function in Matlab to compute solutions at an exact time step, as RK45

is an adaptive step size method. This approach enables us to compute accurate solutions of

the systems and track the evolution of Lyapunov exponents at each time step. Furthermore,

we computed the standard deviation of MLE of the trajectory within a sliding window of

500 time steps to ensure that we exclude the transient period from the solution. In the

plot of the trajectories over time, the vertical red dashed line indicates the time when

the standard deviation of MLE calculated over 500 points falls below the predefined level.

Therefore, we consider the trajectory before this line as the transient period.

Since the dynamics of the systems depend on various variables such as network struc-

ture, model parameters, and coupling strength, we will present the maximum Lyapunov

exponents (MLEs) of the systems studied in the following chapters as evidence of chaos.



Chapter 4

Chaotic Synchronisation

4.1 The Concept of Synchronisation

Synchronisation is a natural phenomenon that has been attracting the interest of re-

searchers for a long time. Early discussions about synchronisation can be found in the

scientific literature, such as the case of the synchronisation of wall clocks investigated by

C. Huygens in the 17th century. In a letter he sent to his father, he shared his observation

that the wall clocks hanging on the same platform were moving together after a while.

This was an example of PS of weakly coupled oscillators. Later, he continued his work and

invented more precise clocks for the board of ships, which was a very challenging problem

at that time. He also created a clock for a church, guaranteeing a deviation of at most 8

minutes per week [51].

Another case of synchronisation in the early 1900s was observed in fireflies in Southeast

Asia, as recorded by American travellers in their diaries. The fireflies were seen flashing

together. Initially, this phenomenon was thought to be an illusion and was not investigated

scientifically. With the development of cameras, the reality of synchronised firefly flashing

became undeniable. This phenomenon intrigued researchers, prompting them to explore

the synchronisation of fireflies. There are many questions to ask: “What is the mechanism

behind this peculiar behaviour? How did the fireflies achieve synchronisation? Was there

a “maestro” or alpha individual that others followed?” The reasons for this behaviour and

57
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the underlying biological mechanism remain unclear; however, mathematical models that

simulate firefly synchronisation have been developed over time, with contributions from

mathematicians, such as Wiener and Winfree [61]. In 1975, Y. Kuramoto published his

seminal paper [37], which introduces the so-called Kuramoto model given by Eq. (3.17).

As an interpretation, we can say that there is no “maestro” among the group of fireflies,

which drives all in harmony. Instead, all fireflies have an effect on the ones nearby; if some

run fast, they reduce their speed; otherwise, they speed up. Interestingly, the fireflies’

flashes are synchronised after some time.

While the notion of units in chaotic dynamics reaching synchrony may appear con-

troversial, such synchronisation can be observed under various configurations. Complete

synchronisation represents the simplest form of synchronisation observed in chaotic tra-

jectories in a drive-response system. In this context, one of the variables in the response

system is driven by the variables of the chaotic drive system. If all Lyapunov spectra

are negative in the response system, the observation of CS becomes possible. Addition-

ally, CS manifests in bidirectionally coupled systems, where the dynamics is chaotic. The

authors in [15] investigate various types of synchronisation in chaotic trajectories, includ-

ing PS, IPS, lag synchronisation (LS), intermittent lag synchronisation (ILS), generalised

synchronisation (GS), and almost synchronisation (AS). In PS, the phases of signals may

synchronise even when their amplitudes are weakly correlated. In IPS, signal phases slip

within a synchronous regime. Lag synchronisation involves the locking of amplitudes and

phases in the presence of a time lag τlag. If LS occurs most of the time, but intermittent

burst behaviour exists, ILS is observed. Generalised synchronisation can occur between

entirely different systems if their trajectories can be associated with a function. Finally, AS

occurs if the difference between the trajectories of two systems lies within an asymptotically

bounded region.

This chapter starts by discussing CS in both directional and bidirectional coupling sce-

narios. An example of CS between two nodes in a 5-node network is presented in Sec. 4.2.3

using data generated from a coupled logistic map. Before delving into phase synchronisa-

tion, we explore the concepts of amplitude, phase, and frequency in a signal, accompanied
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by a brief discussion of the Fourier transform, the spectrogram, and the Hilbert transform.

The analytic signal approach, introduced by Gabor in 1946 [23], is employed to derive in-

stantaneous amplitudes and phases from chaotic signals. Subsequently, an example of PS

and IPS is observed in the trajectories of 5 coupled Rössler systems. To quantify amplitude

or phase synchronisation in the trajectories, we used the amplitude order, the Kuramoto

phase order, and pairwise phase order and implemented them in the cases of CS, PS and

IPS.

4.2 Complete Synchronisation

In the realm of CS, it signifies that the trajectories of two systems move together in syn-

chrony under a specific coupling configuration, even as the systems exhibit chaotic be-

haviour and remain sensitive to initial conditions. In the Pecora & Carroll configuration,

a subsystem (referred to as the slave) is driven by a variable from a master system, where

the entire system displays chaotic behaviour. However, for synchronisation to occur, all

conditional Lyapunov exponents of the slave system must be negative. In the case of bidi-

rectional coupling configuration, two chaotic trajectories might be synchronised under the

reciprocal influence of each other.

The mathematical definition of CS is given as follows.

Definition 4.2.1 (Complete Synchronisation). For two time series signals, xt and yt, they

are called “completely synchronised” if the following condition meets.

lim
t→∞

|xt − yt| = 0.

4.2.1 Drive-response Systems

Following [15], the first configuration studied to occur CS is called the drive response

(or master-slave system in Pecora & Carroll configuration, as one of the variables of the

master system drives the variables of the subsystem. We used three variables of the

Lorenz system in Eq. (3.15) as master and two of them, except the driver, as a slave
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system. When we generate the replicas of subsystem with different initial conditions,

Figure 4.1: Scheme of drive-
response System. Plot visu-
alises the directional interaction
between driver and response sys-
tems in (4.1), (4.3) and (4.2)

CS occurred between the variables of subsystem and

its replicas if the conditional Lyapunov exponents of

the subsystem is all negative. When the x variable

is chosen as a driver, the equation of slave system,

ẏ1 = (ρ− z1)x− y1

ż1 = xy1 − βz1, (4.1)

where σ = 10, ρ = 28 and β = 8
3 . In this slave

system, we generate data for the variables y1 and

y2, as well as their replicas y′
1 and z′

1 using different

initial conditions. Figures 4.2(a) and (b) show that

variables y1 and z1 quickly synchronise with their replicas y′
1 and z′

1, respectively. However,

if we choose the z variable as a driver, the equation of slave system,

ẋ1 = σ(y1 − x1)

ẏ1 = (ρ− z)x1 − y1, (4.2)

and Fig. 4.2(c) demonstrates that the absolute difference between x1 and x′
1 as well as

y1 and y′
1 increases so, slave system and its replicas cannot achieve CS. The reason of

that is MLE of the slave system, when it is driven by z variable, is positive as shown

in Table 4.1. By the conditional Lyapunov exponents, we mean that only the evolution

of Lyapunov vectors in the slave system is considered; in other words, we measure the

exponential divergence (or convergence) of the subsystem only. When the subsystem is

driven by y variable, response variables x1 and z1,

ẋ1 = σ(y − x1)

ż1 = x1y − βz1, (4.3)
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Figure 4.2: CS in drive-response system. When the slave system is driven by x
variable, (a) shows that CS occurred between y1 and its replica, y′

1, for different initial
condition, (b) CS occurred between z1 and its replica for different initial condition,
z′

1. (c) When the system is driven by z, the absolute difference between x1 and its
replica x′

1, as well as between y1 and y′
1, increases, indicating that the subsystem

does not achieve CS.

which synchronises with their replicas since there is no positive conditional Lyapunov

exponent.

System Drive Response Conditional Lyapunov Exponents
Lorenz x (y, z) (−2.43,−2.57)

σ = 10, ρ = 28, β = 8
3 y (x, z) (−4.00,−16.00)

z (x, y) (0.0001,−11.00)

Table 4.1: The conditional Lyapunov Exponents of the subsystems (4.1), (4.3), and
(4.2), respectively from top to bottom.
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4.2.2 Bidirectionally Coupled 2-Dimensional System

In addition to the drive-response system, CS can also occur in bidirectionally coupled

systems. Following the discussion in [15], we use all variables coupled Lorenz system given

by

ẋi = σ(yi − xi) +K
2∑
j=1

(xj − xi),

ẏi = (ρ− zi)xi − yi +K
2∑
j=1

(yj − yi),

żi = xiyi − βzi +K
2∑
j=1

(zj − zi),

where σ = 10, ρ = 28, β = 8/3 and coupling strength K = 2, for i = 1, 2. As seen in

Fig. 4.3(a), (c), and (d), all variables of the model are in synchrony after a while, however,

the whole system shows chaotic behaviour with positive MLE, which is about 0.9052. The

three-dimensional phase space of the variables x1, y1, z1 belonging to the 1st oscillator

forms the usual butterfly shape as shown in Fig. 4.3(b).

In this configuration, the strong enough coupling leads the CS of the variables, which

means that the coupling strength, K, should be higher than the MLE of uncoupled model.

Figure 4.3(e) shows that the Euclidean distance between the variables,

e =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2,

as a function of rate of K with MLE. The mean of the Euclidean distance between the

points (x1, y1, z1) and (x2, y2, z2) over time becomes zero when the condition K ≥ MLE

holds.

4.2.3 Multidimensional Systems

In our further investigation, we observe that the CS might occur between some pairs

of a system even if it has more than 2 oscillators, which is the case that we will study

in the network inference later. Therefore, we generate the trajectories from the coupled
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Figure 4.3: CS in all coupled Lorenz system. For K = 2, CS occur between the
variables (a) x1 and x2, (c) y1 and y2 (d) z1 and z2. (b) plot of the phase space of the
1st oscillator in three-dimensional space for K = 2, indicating chaotic dynamics with
usual butterfly-like shape and MLE = 0.9026. (e) The function of mean Euclidean
distance between points (x1, y1, z1) and (x2, y2, z2). The CS occurs if the condition
K ≥ MLE holds where MLE is for the uncoupled system, circa 0.9026.

logistic map using the Eqs. (3.6) and (3.13), with a coupling strength, 0.2, based on the

interaction in the network of 5 nodes in Fig. 4.4(a). Figure 4.4(b) demonstrates that the

evolution of MLE, which converges to a positive value as iterations approach infinity, is

evidence of chaos. After 500 MLEs within the sliding time window is stabilised, becoming

less than the predefined value 10−3, the time series starts to be recorded at the time

indicated by the vertical red dashed line. The time length of the trajectory after the

transient period is 105. Figure 4.4(c) shows the cumulative absolute difference between

the trajectories of some pairs. Around 6 × 104 iteration, the cumulative difference between

pairs of 1 and 3 becomes constant. In Fig. 4.4(d), we demonstrate the log-scaled absolute

difference between the trajectories of these nodes, indicating that the nodes achieve CS

around iteration 6 × 104. In the sense of network inference, due to this synchronisation,

their similarity measures become high, as the two nodes behave as one (see discussion in
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Figure 4.4: CS in multidimensional coupled logistic map. (a) shows the net-
work of 5 nodes used in the coupled logistic map, (b) shows the evolution of MLE
over time in both log-scaled axes, indicating chaotic dynamics, (c) shows the cu-
mulative difference between some pairs, CS occurred between node 1 and 3 around
6 × 104 iteration. (d) The absolute difference between nodes 1 and 3. The zero error
after 6 × 104 iterations is not plotted as a result of the log scale in y-axis.

Sec. 5.4.5.1). This synchronisation hinders the inference of network structure from the

data, necessitating the detection of such behaviour and awareness of its impact on network

inference.

4.3 Phase Synchronisation

Before delving into the details of phase synchronisation, we first define what phase means in

various contexts. In general, from the perspective of signal processing, amplitude, phase,

and frequency are three crucial concepts for characterising a signal. While they gain a

physical interpretation in circular motion (or in a sine wave) in contrast to chaotic trajec-
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tories, we will initially focus on their physical interpretations in such systems. Generalising

these concepts to chaotic signals is useful for signal characterisation, but they are ill de-

fined [13,14,31]. We discuss the amplitudes, phase, and frequency of chaotic signals using

the analytic signal approach introduced by Gabor in 1946. Finally, we define PS and

present an example of PS and IPS using the coupled Rössler system from a network of 5

nodes.

4.3.1 Circular Motion & Sine Wave

The position of an object following a circular path around a centre refers to its phase,

denoted by θ. For example, in Fig. 4.5(c), the red circle represents an object following the

blue circular path centred at the origin with radius 2. In this demonstration, the phase

of the object is π
4 as it is the angle between the line connecting the object to the origin

and the x-axis. The rate of change of θ with respect to time, t, gives its angular velocity,

ω = dθ
dt . The projection of the position on y-axis gives the sine wave as a function of time

in Fig. 4.5(a) and its equation is given by,

x(t) = A sin(2πft), (4.4)

where amplitude, A = 2, frequency, f = 2 and t ∈ [0, 2]. f indicates the number of cycles

per second; therefore, the wave oscillates 4 times in 2 seconds. The period T = 1
f , refers

to the time that passes for one cycle, which equals 1
2 . As phase, θ = 2πft and angular

velocity, ω = dθ
dt at any time t, we can deduce the relation between frequency and phases

as follows

ω = dθ

dt
= 2πf =⇒ f = 1

2π
dθ

dt
. (4.5)

In Fig. 4.5(b), blue lines demonstrates the unwrapped phases of the signal in [0, 2π], as

a function of time, using the fact that θ = 2πft. It is more common to use wrapped phases

to obtain a continuous phase function of time, but here, we prefer to show it in [0, 2π]. On

the other hand, orange line shows the phases deduced from the concept of analytic signal

using HT (see Sec. 4.3.3), we get π
2 radian shifted phases as a result of HT [46].
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Figure 4.5: Phase in circular motion (a) Sine wave as a function of time (b)
Phase of the signal as a function of time, where blue indicates the angle in the sine
function and orange line is the instantaneous phases computed from HT, obtaining
π
2 radian phase shift (c) Circular motion of an object shown by red circle at phase π

4 .

4.3.2 Fourier Transform & Spectrogram

To characterise the signal in the sense of its phase and frequency, it is essential to discuss

Fourier transform before delving into the concept of an analytic signal introduced by Gabor

[23], as they collectively construct a basis. Fourier transform of continuous-time signal

x(t), [45, 46],

X(f) = F{x(t)} =
∫ ∞

−∞
x(t)e−2πiftdt,
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where F{·} is the Fourier operator. By replacing “integral” with “sum”, we can obtain

Fourier transform (FT) for discrete-time signal,

X(f) =
∞∑

t=−∞
x(t)e−2πift, (4.6)

where X(f) is a complex-valued function of frequency, which we can express in rectangular

form,

X(f) = XR(f) + iXI(f) (4.7)

where XR denotes the real part, XI the complex part of X(f). We also express it in polar

form,

X(f) = |A(f)|eiθ(f) (4.8)

where A(f) is called Fourier amplitude in the frequency domain, which is equal to the

modulus of the complex function, |X(f)| =
√
XR(f)2 +XI(f)2 and, θ(f) the Fourier

phase,

θ(f) = tan−1 XI(f)
XR(f) .

The FT is commonly used to identify the dominant frequencies of a signal, reduce any

present noise, and/or filter the frequency to focus on a specific interval. It is also capable

of decomposing a composite signal. For instance, consider a signal composed of three

sinusoidal waves,

x(t) = 0.5 sin(2πf1t) + 0.7 sin(2πf2t) + sin(2πf3t),

where A1 = 0.5, A2 = 0.7 and A3 = 1, are the amplitudes and f1 = 10, f2 = 20, f3 = 30

the frequencies of the sine waves. We introduce Gaussian noise, γ, to the signal, x(t), to

obtain the noisy signal, xs.

xs(t) = x(t) + γ,

where γ ∼ N (0, 4). Figure 4.6(a) and (c) shows the signal, x(t) and the noisy signal, xs(t),

in the time domain, respectively and Fig. 4.6(b) and (d) demonstrate the FT of the corre-
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Figure 4.6: The FT of composite and noisy signal (a) The composite signal of
three sinusoidal waves, x(t), in the time domain. (b) The Fourier amplitude, A(f)
of the signal x(t) as a function of frequency, f . (c) The noisy signal, xs(t), in the
time domain (d) The Fourier amplitude of the noisy signal xs(t), in the frequency
domain. This shows the FT is able to capture dominant frequencies even if the noise
is present.

sponding signal in the frequency domain, where the x-axis shows dominant frequencies, fi

and y-axis the amplitude of the signals, Ai for i = 1, 2, 3, where the amplitudes are equal to

the mean of the modulus of the complex-valued signal, X(f). Despite the significant noise

is present in the data, its dominant frequencies are the same as those of the original signal.

This allows us to eliminate noise from the data by filtering out the small frequencies and

restore the original signal through inverse FT.

Although FT is a useful tool for the frequency analysis of a signal, composed of sig-

nals with constant frequencies, if the frequency is time varying, the FT is not able to

show changes over time. In such a case, FT of the signal in sliding time window can be
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investigated by the spectrogram. A signal with frequency varying over time, xt,

xt = 0.5 sin(2πf1t),

where f1(t) = 0.5t meaning that the frequency of the signal is the half of the current time,

t, and it increases over time as shown in Fig. 4.7(a). The Fourier transform of the signal

cannot capture the variation frequency in the frequency domain (see Fig. 4.7(b)) because

none of the frequencies is superior to others. However, the spectrogram considering the

frequency in the time-sliding window gives a better understanding of the frequency-varying

signal. Figure 4.7(c) demonstrates that the dominant frequency increases linearly over

time, where the power spectra of the signal, |X(f)|2, which determines how the energy

is distributed in the frequency domain, indicated by the colour map, showing that the

dominant frequency lies along the yellow band. The instantaneous frequency computation

from HT using Eq. (4.5), shows similar pattern with spectrogram.

In conclusion, a composite signal with constant frequencies can be decomposed by FT,

proves invaluable in decomposing a composite signal with constant frequencies. This en-

ables the identification of dominant frequencies and facilitates the reduction of noise present

in the system. Such signals are termed “stationary”, as they exhibit consistent statistical

properties, such as mean and variance, over all time intervals. Conversely, frequency-

varying signals are nonstationary, which results in the absence of a dominant frequency.

Next, we will explore frequencies for both regular and chaotic signals.

4.3.2.1 Frequency Analysis of Regular and Chaotic Signals

In this section, we apply FT to analyse both 4-periodic and chaotic dynamics iterated from

the logistic map with r = 3.5 and r = 4, respectively, as seen in Fig. 4.8. We assumed a

sample rate of Fs = 100 Hz (corresponding to a time step T = 1
Fs

= 0.01 seconds) and a

time series length of 104. For the 4-periodic motion, with a frequency of 25 Hz, meaning

that the signal repeats the same pattern 25 times in a second, as shown in Fig. 4.8(a)

and (b). However, unlike the periodic signal, the chaotic signal does not exhibit a single
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Figure 4.7: Frequency-varying signal. (a) The signal as a function of time. (b)
FT of the signal in the frequency domain, where no dominant frequency appears. (c)
Spectrogram of the signal considering the FT in sliding time windows of 100 data
points. Power spectra of the signal in decibels, |X(f)|2, indicated by the colour map.
(d) Instantaneous frequency calculated from the concept of analytic signal using the
HT and Eq. (4.5).

dominant frequency, as shown in Fig. 4.8(c) and (d).

4.3.3 Analytic Signal

Once one tries to generalise the definitions of amplitude, phase, and frequency in circular

motion to nonstationary signals, following the discussions in [13, 14, 30, 31], the physical

interpretation of the concept of instantaneous frequency for chaotic signals becomes blurred.

Let us consider the concept of frequency. In a periodic motion, it refers to the number of

cycles or repetitions in a unit of time. Even if the FT allows us to decompose the signal to

its sine components, nonstationary signals cannot be decomposed well [13]. Even though

there is no clear physical interpretation of the frequency of a nonstationary signal, and it

seems controversial to think in the way of periodic motion, it is still useful to characterise
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Figure 4.8: The FT of regular and chaotic signals (a) 4-periodic signal generated
from logistic map with r = 3.5 and (b) its frequencies. (c) Chaotic signal generated
from the logistic map with r = 4 and (d) its frequencies.

the signal. We use the term “instantaneous” to identify these characteristics of the signal

for nonstationary signals.

To measure instantaneous phases, the authors in [51] employ the concept of Poincaré

Map for systems with nearly circular cross sections within subdimensional space, but this

approach cannot be generalised to all types of signal. The authors in [30] discussed that HT

is superior to FT in chaotic signals in terms of its uniqueness, but introduced an intrinsic

mode function to overcome the issue of negative frequency. Unfortunately, there might be

various ranges of intrinsic mode functions defined. Consequently, we are actually interested

in the information transferred among the nodes in a network through their amplitudes

and phases (see Chapter 5), we will compute them using the concept of analytic signal

introduced by Gabor in 1946 [23] and instantaneous frequency from the instantaneous

phases using Eq. (4.5) as it allows us to reveal connectivity from time-series data.

To obtain the instantaneous amplitudes and phases from a signal, Gabor introduced
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the concept of analytic signal based on the HT in [23],

z(t) = x(t) + iH[x(t)]

= A(t)eiθ(t) = A(t) cos(θ(t))︸ ︷︷ ︸
zR(t)

+i A(t) sin(θ(t))︸ ︷︷ ︸
zI(t)

, (4.9)

where x(t) is the original signal, A(t) the envelope (or instantaneous amplitude) of analytic

signal, i complex unit, and, H[x(t)] is the Hilbert transform of the signal,

H[x(t)] = − 1
π

p.v.
∫ ∞

−∞

x(τ − t)
τ

dτ. (4.10)

where p.v. denotes the Cauchy principle value of integral. The real part of the analytic

signal, zR(t) equals to signal itself, x(t) and one can compute instantaneous phases,

θ(t) = tan−1 zI(t)
zR(t) . (4.11)

The envelope, A(t), is the distance of the analytic signal to the origin in the polar coordinate

and wraps the boundaries of absolute value of the signal. In the Fig. 4.9, the analytic signal

and its components have been presented for the signal x(t) given by

x(t) = A1 sin(2πf1t) +A2 sin(2πf2t),

where A1 = 0.5 and A2 = 0.5 are the amplitudes of the sine waves, f1 = 10 and f2 = 20

are the frequencies. Figure 4.9(a) shows the signal with blue line in the time interval [0, 1]

seconds, which wrapped by its envelope A(t) and −A(t). Figure 4.9(c) demonstrates the

analytic signal in the complex domain at the time that instantaneous phase θ equals to π
6 ,

shown by the orange line segment. The orange line traces the blue closed curve over time;

the length of it shows the instantaneous amplitude, and the angle with the x-axis gives

the instantaneous phases at any time t. Figure 4.9(b) shows its function as a time. From

the instantaneous phases, we compute the instantaneous frequency using the Eq. (4.5),

although other approaches presented in [14].
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Figure 4.9: The concept of analytic signal. (a) The blue line shows the signal
over time, wrapped by its envelope ±A(t). (b) Instantaneous phase of the signal in
the same time interval, obtaining from the analytic signal. (c) the Analytic signal,
z(t), is presented in the polar coordinate, the projection of the orange line segment
on x and y axes gives the real and imaginary part of z(t), respectively.

4.3.4 An example of PS and IPS in chaotic system

As we defined three characteristics of a signal (amplitude, phase, and frequency), we can

now go back to our discussion on phase synchronisation.

Definition 4.3.1 (Phase Synchronisation). Let x and y be signals with the phases ϕ1 and

ϕ2. x and y are called their phase-synchronised signals if the linear combination of the

phases stays bounded, ψm,n = mϕ1 − nϕ2 < c, where c is a constant real number, m and n

positive integers.

Due to simplicity, we consider m : n = 1 : 1 as the authors did in [15, 55] to show

that two nonidentical chaotic oscillators of Rössler system with relatively small coupling

strength, 0.035, achieve PS. We extend this system to five chaotic oscillators of Rössler

system based on connectivity in Fig. 4.4(b). The coupled Rössler system is given by the
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set of differential equations,

ẋi = −ωiyi − zi +K
M∑
j=1

Ai,j(xj − xi)

ẏi = ωixi + ayi (4.12)

żi = f + zi(xi − c),

where wi is the intrinsic frequency randomly chosen in [1 − 0.015, 1 + 0.015], which results

in the non-identical oscillators. We set the parameters as a = 0.15, f = 0.2, c = 10 and

coupling strength K = 0.02, and solved the system with the final integration time 104, and

step size 0.1. We start recording the orbit after the MLE stabilises. To do so, we compute

the MLE as a function of time and compute the standard deviation of a sliding time window

of 500 MLEs. When the standard deviation of 500 MLEs in a window is smaller than a

predefined threshold, we consider that the MLE has converged to a value. If this value is

positive, it is an indication that the dynamics is chaotic, and we start recording the time

series after the last of these 500 time points. In this context, the trajectory is recorded

once the MLE stabilises, under the assumption that the standard deviation of 500 MLEs

within sliding time windows is less than or equal to the predefined threshold, 10−3 so the

first 3730 points are considered as transients. The system exhibits chaotic behaviour, as

evidenced by a positive MLE value, 0.0765.

Fig. 4.10(a) demonstrates the pairs of oscillators achieving PS because the difference

between them stay bounded for m = n = 1 as stated in the definition 4.3.1. We also

observed IPS between the pairs 4 and 5 as their phases slip in synchronous regime. However,

phases of the rest of the pairs do not achieve synchrony as shown in the Fig. 4.10(b) since

the absolute difference between pairs increases over time.

In this example, we explore the phase synchronisation of 1 : 1, but the values of

m : n might be any pair of integers. Therefore, we will introduce metrics to quantify the

amplitude and/or phase order of a signal next.
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Figure 4.10: Phase synchronisation in network of 5 nodes. The figure shows
(a) the pairs that are in 1:1 phase-locking, (b) the pairs that are not in 1:1 phase-
locking.

4.4 Synchronisation Measures

4.4.1 Amplitude Order

CS between pairs of nodes can be observed by plotting the difference between them over

time, but this becomes impractical for large networks due to the number of pairs. However,

[57] proposes a measure that quantifies the order of magnitudes of the whole system of

discrete map. The order parameter R is defined as follows.

R =
[
⟨X2⟩ − ⟨X⟩2][
⟨xi2⟩ − ⟨xi⟩2

] , (4.13)

where Xn = 1
N

∑N
i=1 x

(i)
n is the network average of nth iteration, ⟨·⟩ denotes the time average

and [·] the average over network. In the case of complete synchrony, the numerator and

denominator of R will be equal, as X = xi, implies R = 1. For periodic orbits, ⟨X2⟩ = ⟨X⟩2
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implies R = 0 and R ∼ 0.5 shows the absence of global coherence. We also applied this

metric to quantify the pairwise magnitude order by choosing N = 2 not just for the whole

system.

We show that the orbits generated from the logistic map achieve CS in Sec. 4.2.3, as

the absolute difference between node 1 and 3 became exactly zero after a certain point (see

Fig. 4.4). However, examining all pairs in a very large system can be challenging, and it

is impossible to quantify the level of synchrony without a metric. Therefore, we use the

order parameter R to quantify the magnitude order of all systems in Fig. 4.11(a), (b),

respectively. The magnitude order, R, is approximately 0.4, which is evidence that there

is no global coherence in the whole system; however, we can see that some pairs are highly

synchronised in Fig. 4.11(b) with the highest value between nodes 1 and 3 as greater than

0.8.
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Figure 4.11: Amplitude order of an example of logistic map. (a) The ampli-
tude order of the whole system as a function of time. (b) Pairwise amplitude order
with the highest one between 1-3, since CS occurred between them after 6 × 104

iterations as shown in Fig. 4.4.
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4.4.2 Kuramoto Phase Order

Kuramoto model is a well-known phase-coupled model to investigate the synchronisation

behaviour of the oscillators as given by the equation. 3.17. Kuramoto order parameter, ρ,

measuring the synchronisation level of phase oscillators, was introduced in [37] as follows:

ρ(t) =
∣∣∣∣ 1
N

∑N
j=1 e

iθj(t)

eiΨ

∣∣∣∣, (4.14)

where Ψ is the mean of the phases over oscillators on time, N is the number of oscillators

and θj(t) is the phase of the jth oscillator at time t, | · | denotes the modulus of a complex

number.

4.4.3 Pairwise Phase Order

We use the pairwise phase order as a metric to quantify pairwise phase order by following

[27], which is,

Ci,j(t) = lim
∆t→∞

∣∣∣∣∣ 1
∆t

∫ τ+∆t

τ
ei[θi−θj ]dτ

∣∣∣∣∣ , (4.15)

where ∆t is time period; which is tf = 104 in Rössler system discussed in Sec. 4.3.4 as we

consider the entire duration of time, θi denotes the phase of the ith node.

Although some pairs in the Rössler system achieve phase synchronisation (see Fig.

4.10), the Kuramoto phase order, ρ, remains relatively small at 0.3, as depicted in Fig.

4.12(a). We examined pairwise relations in terms of both PS and PC of the trajectories,

comparing them with those of TWSD generated from the original data. This process de-

stroys the phase relation while recovering the linear correlation between pairs of trajectories

by randomising the Fourier phases. Additional details can be found in Sec. 6.1.2.2. Figure

4.12(b) shows the pairwise phase order of the original phases and TWSD phases. The

phase order of synchronised pairs; 1-2, 1-3, 2-3, and 4-5 (see panel (a) in 4.10), is higher

than 0.8. This shows that it allows us to distinguish synchronised pairs from the others.

The pairwise phase orders in TWSD are very close to zero because it is obtained from

the original data, destroying the entire phase relation using the Fourier transform. Figure
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4.12(c) demonstrates the PC between the pairs in the original data and in the TWSD; the

PC values are exactly the same in both, since TWSD recovers the linear relationship in

the original data. Figure 4.12(d) shows the corresponding p-values of PC, and PC among

all pairs are statistically significant at the level of significance 0.05.
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Figure 4.12: Phase order of an example of Rössler system (a) Kuramoto order,
ρ, of the entire system as a function of time. (b) Pairwise phase order of original
data and its TWSD (c) PC between the pairs in original data and its TWSD and
(d) corresponding p-values.

4.5 Summary

At first glance, chaotic synchronisation may seem controversial, as chaotic systems are

highly sensitive to initial conditions, and synchrony implies moving together in harmony.

However, synchronisation of amplitudes or phases can be observed under certain coupling

configurations. In this section, we present an example of CS between a pair of nodes

of a trajectory iterated from the logistic map. We also discussed examples of PS and

IPS between pairs of trajectories from the Rössler system. To quantify amplitude and
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phase order, we introduce three measures from the literature because understanding the

behaviour of a system with many components is essential. We will revisit these examples

in Chapter 5 to investigate their effects on network inference.

In addition, we delved into frequency analysis of signals ranging from periodic motion

to more complex ones. The Fourier transform is a well-known method for decompos-

ing signals into their sine-wave components and identifying dominant frequencies. It also

enables noise reduction, as it is robust to noise when identifying dominant frequencies.

However, we demonstrate that it cannot provide information for frequency-varying signals,

which are examples of nonstationary signals. As we study network inference methods using

information-theoretic approaches with chaotic data, we will determine instantaneous am-

plitudes, phases, and frequencies using the concept of the analytic signal with the Hilbert

Transform (HT). We will use the FT to generate TWSD in Sec. 6.1.2.2, and the HT in the

concept of amplitude-phase modulated surrogate data in Chapter 7.



Chapter 5

Information-theoretical

Approaches

5.1 Motivation

To assess the similarity between two time series, PC is a commonly used method because

its interpretation is quite straightforward. A positive correlation implies that one variable

is directly proportional to another, while a negative correlation implies that one is inversely

proportional to another. Despite its convenience in obtaining a preliminary understand-

ing of the data, PC has limitations in capturing nonlinear relationships among variables.

However, data from various fields, ranging from biology to finance, often exhibit nonlinear

relationships. Information theory has emerged as a solution to this challenge. In network

inference from time series data, information theoretical approaches are commonly used to

consider not only linear relation but also nonlinear relations between nodes. From this per-

spective, information-based theoretical approaches are superior to PC as shown in a simple

example of the network of 4 nodes where nodes 1 and 2 linearly interact to each other and

nodes 3 and 4 interact non-linearly as seen in Fig. 5.1. As data generation process, 104

uniformly random generated points in [0, 1] have been assigned to node 1 and 3 to create

data x1 and x3, respectively. This results in a weak (or almost no) correlation between x1

80
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Figure 5.1: Linear and nonlinear relation. (a) Network of 4 nodes, nodes 1 and
2 interact linearly, nodes 3 and 4 interact non-linearly. (b) Linear trend between
nodes 1 and 2. (c) Nonlinear relation between nodes 3 and 4.

and x3. The data for node 2 has been calculated from the data of node 1 as x2 = 2x1 +0.2ξ

and for node 4 calculated from the data of node 3 as x4 = −(0.5 − x3)2 + 0.2ξ, where ξ

is a uniformly random number in [0, 1] to account for noise in the system. Eventually, the

structure of the network among the nodes is shown in Fig. 5.1(a). As expected due to the

data generation process, x1 and x2 follow a linear trend as shown in Fig. 5.1(b) while x3

and x4 accumulate around a parabolic curve in Fig. 5.2(c).

Pearson correlation and mutual information (MI) are implemented on the data and

bar plots demonstrate that PC among the pairs on panel (a) and MI on panel (b) in Fig.

5.1. It results in that PC only captures the linear interaction between x1 and x2, whereas

MI captures both linear and nonlinear interaction between nodes 3 and 4. Thereby, we
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Figure 5.2: Pearson correlation vs mutual information. (a) Pearson correlation
captures only the linear relation between nodes 1 and 2. (b) Mutual information
captures not only linear but also nonlinear interactions between nodes 3 and 4.
Note that Pearson correlation and mutual information of other pairs are very small
numbers, so they are barely seen in the plot.

prefer to use information theoretical approaches in network inference to capture nonlinear

interdependencies.

In this chapter, we present the theoretical framework for information-based approaches

and their implementations on different types of data, including Gaussian distributed corre-

lated data, coupled logistic and circle maps, coupled HR model and coupled Lorenz system.

Eventually, we present MIRs among the nodes in two systems, coupled logistic and coupled

Rössler, that we observed synchronisation in Chapter 4.

5.2 Information Theory

5.2.1 Shannon Entropy

In 1948, Claude Shannon published a groundbreaking work on Communication Theory [59],

which laid the foundation for modern communication devices and systems. At that time,

communication methods were relatively primitive and controlling noise in the communica-

tion process was a significant challenge. Shannon introduced the concept of a binary digit
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(or ”bit”) and used Markov processes to model the probabilities of events based on previ-

ous events. He introduced a measure to quantify the amount of information transferring

among the systems using the concept of entropy and formalised it. Here, we will focus

mainly on the concepts of entropy, MI, and MIR, which are the fundamental concepts in

various fields, including information theory, statistics, and signal processing.

Definition 5.2.1 (Shannon Entropy). The Shannon entropy, which measures the amount

of uncertainty in a random event, X is defined by

HX = −
∑
x∈X

px log px (5.1)

= −E
[
log px

]
,

where x is an event that belongs to the set of all possible events, denoted by X and p(x)

is the probability of x to occur. Once the base of the logarithm is 2, the unit of entropy is

bits.

To gain a better understanding of the definition above, we focus on a simple example of

a coin flip. Let X be a set of 2 possible outcomes: heads and tails. The probabilities of the

outcomes are p (or 1 − p) with heads (or tails) occurring. The probability mass function

of the events,

px =


p, when heads occur

1 − p, when tails occur
.

The entropy as a function of p can be derived from Eq. (5.1) and is given by

H(p) = −p log p− (1 − p) log(1 − p).

Figure 5.3(a) demonstrates the relation between probability and entropy, where the entropy

reaches its maximum value when probability p = 1
2 , which means the maximum uncertainty

for a fair coin. In order to ensure continuity, we assume p log(p) → 0 as p → 0. The amount

of uncertainty in the case of two events X and Y occurring together that is the joint entropy
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of X and Y , can be easily defined using the fact that HX = −E
[
log px

]
,

HXY = −E
[
log pxy

]
= −

∑
x∈X

∑
y∈Y

pxy log pxy, (5.2)

where px and py are the marginal probabilities of the variables and pxy is the joint proba-

bility.

0 0.5 1
0

0.5

1

Figure 5.3: Relation among probability, entropy and MI. (a) Entropy as a
function of probability px for the coin flip. (b) The scheme shows the relation between
MI and marginal and conditional entropy.

Lemma 5.2.1. The joint entropy between two events X and Y is symmetric

HXY = HY X .

Proof.

HXY =
∑

x∈X ,y∈Y
pxy log pxy

=
∑

x∈X ,y∈Y
pyx log pyx (where pxy = pyx)

= HY X .
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Definition 5.2.2 (Conditional Entropy). Let px and py be the marginal probabilities, pxy is

joint and py|x is the conditional probability of two discrete events X and Y . The conditional

entropy of Y given X,

HY |X = −
∑
x∈X

pxHY |X=x

= −
∑
x∈X

px
∑
y∈Y

py|x log py|x (from Bayes’ rule)

= −
∑
x∈X

∑
y∈Y

pxy log py|x. (5.3)

Theorem 5.2.2 (Chain Rule). The joint entropy of random events X and Y is equal to

marginal entropy of X and conditional entropy of Y given X as a result of Bayes’ rule,

which is given by,

HXY = HX +HY |X . (5.4)

Proof.

HXY = −
∑
x∈X

∑
y∈Y

pxy log pxy (from Eq. 5.2)

= −
∑
x∈X

∑
y∈Y

pxy log
(
pxpy|x

)
= −

∑
x∈X

∑
y∈Y

pxy log px −
∑
x∈X

∑
y∈Y

pxyp(x|y) (from Bayes’ rule)

= −
∑
x∈X

px log px −
∑
x∈X

∑
y∈Y

pxyp(x|y) (from Eqs. 5.1, 5.3)

Hence HXY = HX +HY |X .
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5.2.2 Mutual Information

Definition 5.2.3. Kullback-Leibler distance (or the relative entropy) between two proba-

bility mass function, px and qx is given by

D(p||q) =
∑
x∈X

px log px
qx
. (5.5)

Definition 5.2.4. Let us suppose that px and py are marginal probabilities and pxy is

the joint probability for two random variables X and Y . Mutual information, IXY , is

the Kullback-Leibler distance between the joint probability pxy and the multiplication of

marginal probabilities, pxpy, can be written as

IXY = D
(
pxy||pxpy

)
=
∑
x∈X

∑
y∈Y

pxy log pxy
pxpy

. (5.6)

From Eq. (5.6), if two random variables X and Y are independent, the joint probability

of them is equal to the multiplication of marginal probabilities, pxy = pxpy. This implies

that MI of two independent variables is equal to zero.

Lemma 5.2.3. MI between the random variables X and Y can be interpreted as the re-

duction in uncertainty of X due to knowledge of Y .

Proof.

IXY =
∑
x∈X

∑
y∈Y

pxy log p(x|y)
px

= −
∑
x∈X

∑
y∈Y

pxy log px −

−
∑
x∈X

∑
y∈Y

pxylogp(x|y)


= −

∑
x∈X

px log px −

−
∑
x∈X

∑
y∈Y

pxy log p(x|y)

 .
Hence IXY = HX −HX|Y .
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Lemma 5.2.4. Mutual information is a symmetric measure.

IXY = IY X .

Proof. We know that

IXY = HX −HX|Y .

From Eq. (5.2.2), if we substitute HX = HXY − HY |X into the previous equation, we

obtain

IXY = HXY −HY |X −HX|Y

= HY X −HX|Y −HY |X (HXY = HY X from Lemma 5.2.1)

= IY X .

In information theory, the concavity of a function is important as it allows showing

some properties of the mutual information, discussed later in this section. The definition

of a concave function is given in the following and is visualised in Fig. 5.4.

Definition 5.2.5 (Concave function). Let I ⊂ R be an interval. A function f : I → R is

a concave function if for every x1, x2 ∈ I and t ∈ [0, 1] we have

tf(x1) + (1 − t)f(x2) ≤ f(tx1 + (1 − t)x2). (5.7)

Lemma 5.2.5 (Jensen’s inequality). For a discrete event X, its probability mass function

with k mass points, p1, p2, . . . , pk. The function f is concave and its expected value is

denoted by Ef(X). The expected value of f(X) is less than or equal to the expected value

of X under the function f , f(EX), and is given by,

Ef(X) ≤ f(EX). (5.8)
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Figure 5.4: Visualisation of the definition of a concave function. Linear
combination of the images of x1 and x2 under the function f is less than the image
of linear combination of the points x1 and x2 under f , as given in Eq. (5.7).

Proof. From the definition of a concave function, we know that inequality (5.8) holds for

two mass points with the equality, p2 = 1 − p1,

p1f(x1) + p2f(x2) ≤ f(p1x1 + p2x2).

We can generalise the inequality to probability distributions with k mass points by us-

ing mathematical induction. Let us assume that the inequality holds for the probability

distributions with k − 1 mass points.

k−1∑
i=1

pif(xi) ≤ f

( k−1∑
i=1

pixi

)
.

We want to show that the inequality holds for the probability distributions with k mass
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points. If we reconstruct the probability values as p′
i = pi

1−pk
, ∀i = 1, 2, . . . , k − 1, then

Ef(X) =
k∑
i=1

pif(xi) = pkf(xk) + (1 − pk)
k−1∑
i=1

p′
if(xi)

≤ pkf(xk) + (1 − pk)f
( k−1∑
i=1

p′
ixi

)
(5.9)

≤ f

( k∑
i=1

pixi

)
= f

(
EX

)
. (5.10)

The first inequality in Eq. (5.9) follows the induction hypothesis and the second inequality

in Eq. (5.10) follows the definition of a concave function.

Lemma 5.2.6. The relative entropy is non-negative with the equality if the random vari-

ables X and Y associated with probability mass functions, px and qx, are independent.

D(p||q) ≥ 0. (5.11)

Proof.

−D(p||q) = −
∑
x∈X

px log px
qx

=
∑
x∈X

px log qx
px

≤ log
∑
x∈X

px
qx
px

(5.12)

= log
∑
x∈X

qx = log 1 = 0. (5.13)

Hence, D(p||q) ≥ 0. Here, in inequality (5.12) is a result of Jensen’s inequality (5.8) as log

is a concave function.

Lemma 5.2.7. Mutual information is a non-negative measure with equality if and only if

X and Y independent.

IXY ≥ 0.

Proof. The mutual information, IXY = D
(
pxy||pxpy

)
and Kullback-Leibler distance be-
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tween the joint entropy and the multiplication of marginal probabilities,

D
(
pxy||pxpy

)
≥ 0,

as shown in Lemma (5.2.6), hence, IXY ≥ 0 with the equality if and only if the events X

and Y are independent.

5.2.2.1 Probability Estimation from Time-series Data

When the probability mass function is unknown for a given time series data, there are

three methods to compute the probabilities involved in Eq. (5.6), namely: (a) the bin

or histogram method [20], (b) the kernel density method [28, 43] and (c) the method of

estimating probabilities from the distance between closest neighbours [36]. All methods

have their own pros and cons, but we use the bin method to calculate the probabilities in

Eq. (5.6) using equally-sized cells in a partition of the probabilistic space Ω of X and Y ,

following [2,12,26] for two reasons: (1) The binning method is straightforward to implement

and interpret the results. (2) We will use information-based approaches to compare pairs

in a system of N nodes. Since the number of pairs, N(N−1)
2 , increases exponentially, we

prefer a method that maintains a balance between computational cost and precise results.

To compute the probabilities in (5.6), we start by assuming that we have the time series

of two random variables X and Y of equal length L. Then, the probabilistic space Ω can be

partitioned into N×N equally sized cells of size ϵ = 1/N . A 5×5 partition of equally sized

cells of two random variables, X and Y drawn from the uniform distribution, is shown in

Fig. 5.5, where X and Y are both translated into the interval [0, 1], to avoid numerical

roundoff errors in the computation of probabilities. For this reason, in the following, we

will be translating all time series in this interval and calculate the marginal and joint

probabilities based on the following definitions

PXY (i, j) = LXY (i, j)
L

, PY (i) = LY (i)
L

, PX(j) = LX(j)
L

. (5.14)
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Figure 5.5: The binning method. Plot of time series X and Y in the plane
[0, 1] × [0, 1] and a partition of N × N = 5 × 5 = 25 cells of equal size ϵ = 1

N
. The

notations LX(4), LY (5) and LXY (1, 2) denote the number of points in the purple
column, red row, and green cell, respectively.

Here, L is the length of the time series, LXY (i, j) is the number of points in cell (i, j),

LY (i) is the number of points lying in the ith row and LX(j) is the number of points

lying in the jth column, where i, j = 1, 2, . . . , N . In this context, IXY depends on the

number of bins, N , to partition Ω into N2 equally-sized cells. Hence, different partition

sizes produce different probability values, thus the probabilities in Eq. (5.14) depend on

N . Consequently, IXY depends on N , which we denote by IXY (N). We follow [2, 12, 26],

to calculate the average IXY across partitions for increasing N by considering all N values

that satisfy
L

N2 ≥ Noc, (5.15)
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where Noc is the total number of occupied cells. Hence, Eq. (5.15) gives the maximum

partition size, Nmax, which guarantees the computations of the probabilities in Eq. (5.14)

are not affected by a large number of poorly occupied or empty cells. By poorly occupied

cells, we mean cells with less than Noc data points.

5.2.3 Mutual Information Rate

Mutual information rate can be defined as the amount of information transferred between

two random variables, X and Y with equal length L, per unit of time,

MIRXY (N) = lim
L→∞

IXY (N)
L

(5.16)

In memoryless systems, such as chaotic systems, pairs of variables lose their correlation

after a CDT, T , meaning they become unpredictable after this time. The authors in [3] have

shown that, in the case of finite length, L, and partition size, N , MIR can be approximated

by

MIRXY (N) ≈ IXY (N)
T (N) , (5.17)

where T (N) is the CDT of pairX, Y in Ω, partitioned in anN×N grid. Following [2,12,26],

we compute IXY (N), T (N) for all N that satisfy Eq. (5.15). This gives the range of N

values, Ñ = (Nmin, Nmax), where IXY (N), T (N) are computed. In our work, we consider

Nmin = 0.1Nmax to guarantee Nmin is small enough compared to Nmax.

The data points of chaotic systems within a closed region spread over the whole prob-

ability space, Ω, after correlation decay time, T . Following [12], we used the itinerary

network model to estimate CDT. In an N × N partition of Ω, each cell is regarded as

a node in an itinerary network, GN , given by the N2 × N2 adjacency matrix G(N) =

{Gij(N)} = {0, 1}, where i, j = 1, . . . , N2. Thus, an entry of 1 in G(N) corresponds to the

case where the points in cell i move to cell j, and 0 when they do not. Consequently, T (N)

can be defined as the diameter of GN as T (N) is the minimum time it takes for the points in

any cell of a partition in Ω to spread to the whole extent of Ω. By definition, the diameter

of a network is the maximum length for all shortest-paths (see the discussion in Sec. 2.2.4),
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i.e., the minimum distance required to cross the entire network. This approach transforms

the calculation of T (N) into the calculation of the diameter of GN . In particular, we use

the built-in Matlab function distances to compute all shortest-path lengths between pairs

in GN and from those, the diameter of GN as the maximum of all shortest-path lengths.

For a pair X, Y , we compute MIRXY (N) using Eq. (5.17) for all N in Ñ , and from

that, MIRXY as the average of MIRXY (N) over N in Ñ . In a network of M nodes,

there are M(M−1)
2 unique pairs X, Y , excluding self-connections and connections Y , X as

MIRXY = MIRY X , i.e. the MIR matrix is symmetric. This results in saving computational

time as one has to compute M(M−1)
2 of X, Y pairs instead of M2 pairs.

5.2.4 Other Methods

To measure similarity between pairs of nodes X and Y , we also use the Pearson correlation,

double normalised MIR(MIR), lagged-PC and lagged double normalised MIR.

5.2.4.1 Double Normalised Mutual Information Rate

As different systems may have significantly different CDTs, resulting in MIR values in

different scales, it becomes necessary to standardise the MIR measure within the interval

[0, 1]. To achieve this standardisation, the authors in [12] propose the double normalised

MIR, denoted by MIR. The normalisation steps are as follows

1. Linear scaling: MIR values obtained in different partitions are firstly scaled to

[0, 1] by preserving the proportion of the distance between pairs.

M̂IRXY (N) = MIRXY (N) − min{MIRXY (N)}
max{MIRXY (N)} − min{MIRXY (N)} .

2. Second normalisation over different partitions: It allows us to obtain only

one MIR value per pair, with the equal effect of different partitions on final result

MIRXY =
∑
i M̂IRXY (Ni)

max{
∑
i M̂IRXY (Ni)}

.
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5.2.4.2 Pearson correlation

As we discussed earlier, PC captures the linear relation but not nonlinear ones. To compare

its results with information-theoretic approaches, we also consider the absolute value of PC

between two time series X = x1, x2, . . . xL and Y = y1, y2, . . . , yL of equal length L,

RXY =
∑L
i=1(xi − x)(yi − y)∑L

i=1
√

(xi − x)2(yi − y)2
,

where x is the mean of vector x. In the context of network inference, we use the absolute

value of PC thereafter.

5.2.4.3 Lagged-PC and Lagged-MIR

The Lagged-PC method considers two time series X and Y with the same length L at

different lags, τ . We can reconstruct the time series based on the time lag, τ , as follows

Xτ = {x1, x2, . . . , xL−|τ |} & Yτ = {y|τ |+1, y|τ |+2, . . . , yL}, τ ≤ 0

Xτ = {xτ+1, xτ+2, . . . , xL} & Yτ = {y1, y2, . . . , yL−τ}, τ > 0.

From the reconstructed Xτ and Yτ , we compute the set of lagged-PC values, P̃Cτ =

{PCXτYτ , for all τ} = {PC−τ ,PC−τ+1, . . . ,PCτ}. Then we select the maximum value

from the elements in the set of P̃Cτ .

5.2.4.4 Lagged double normalised MIR

After reconstructing the time series Xτ and Yτ in the same way, we compute the set of

τ -lagged double normalised MIR, M̃IRτ = {MIRXτYτ , for all τ}. We select the maximum

value from the elements of the set, M̃IRτ , considering the time lags from −τ to τ .

5.3 Applications

In this section, we will discuss the results obtained from discrete, continuous and stochastic

systems using different similarity measures including MI, MIR, double normalised MIR,
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PC, lagged-PC, lagged-double normalised MIR. The results are presented in 4 subsections

as follows

1. We implemented PC and MIR on the data generated from multivariate Gaussian

distributed correlated data based on a given covariance matrix.

2. We used PC, MI, double normalised MIR, lagged-double normalised MIR and lagged-

PC on the data generated from two discrete maps, namely logistic and circle.

3. We used PC, MI, double normalised MIR, lagged-double normalised MIR and lagged-

PC on the data generated from continuous systems, namely, HR and Lorenz.

4. To examine the effect of synchronisation on network inference, we implemented MIR

on the data exhibiting CS, PS and IPS discussed in Secs. 4.2.3 and 4.3.4.

In order to measure the efficiency of the methods, we used the true positive rate (TPR)

and false positive rate (FPR), calculated by

TPR = TP
TP + FN & FPR = FP

FP + TN , (5.18)

where TP represents the number of correctly inferred links that are present in the original

network, FP the number of erroneously inferred links that is actually non-exist in the

original network, FN the number of missing links that is present in the original network,

and TN the number of correctly identified non-existing links.

Inferred Network

1 0

O
ri

gi
na

l

1 TP FN

0 FP TN

Table 5.1: Confusion Matrix to compute TPR and FPR. TP is the number
of links that exist in the original and inferred networks, FP is the number of links
inferred but not existing in the original network, FN is the number of links missed
but existing in the original network, and TN is the number of links not inferred and
not existing in the original network.
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We also used the “ROC distance” which refers to the Euclidean distance between the

point of (TPR,FPR) of an inference and the point of perfect inference, (1, 0) in the plane

of TPR versus FPR, the so-called ROC plane. It can be computed by,

ROC distance =
√

(TPR − 1)2 + FPR2. (5.19)

5.3.1 Gaussian Distributed Correlated Data

We generate the data from a multivariate Gaussian distribution with a given mean vector

and covariance matrix, following d-dimensional probability distribution function,

f(x, µ,Σ) = 1√
|Σ|(2π)d

e− 1
2 (x−µ)Σ−1(x−µ)T

, (5.20)

where d is the number of variables, µ the mean vector of variables. In our case, we

considered d = 9 and µ = 0. The superscript T stands for the transpose of the related

vector. Covariance matrix,

Σ =



3.40 −2.75 −2.00 0 0 0 0 0 0

−2.75 5.50 1.50 0 0 0 0 0 0

−2.00 1.50 1.25 0 0 0 0 0 0

0 0 0 1.00 0.5 0.3 0 0 0

0 0 0 0.5 0.5 0.3 0 0 0

0 0 0 0.3 0.3 0.3 0 0 0

0 0 0 0 0 0 4.40 −2.75 −2.00

0 0 0 0 0 0 −2.75 5.50 −1.00

0 0 0 0 0 0 −2.00 −1.00 3.25



.

As is well-known, the correlation between variables X and Y , denoted as RXY , can

be found by the covariance between X and Y dividing by multiplication of the standard
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deviations of X and Y , given by

RXY = ΣXY√
ΣXΣY

, (5.21)

where ΣXY is the covariance between X and Y , represented by the off-diagonal elements

in Σ, ΣX the variance of variable X, corresponding to the diagonal elements in Σ). Based

on this, we can derive the correlation matrix,

R =



1 −0.64 −0.97 0 0 0 0 0 0

−0.64 1 0.57 0 0 0 0 0 0

−0.97 0.57 1 0 0 0 0 0 0

0 0 0 1 0.71 0.55 0 0 0

0 0 0 0.71 1 0.77 0 0 0

0 0 0 0.55 0.77 1 0 0 0

0 0 0 0 0 0 1 −0.56 −0.53

0 0 0 0 0 0 −0.56 1 −0.24

0 0 0 0 0 0 −0.52 −0.24 1



. (5.22)

As discussed in [26], the dynamics of real-life cases such as currency exchange rates in

financial markets is often not well known. In such cases, data can be generated to reflect

correlations between pairs of variables based on historical data. Therefore, we generate

the data from the covariance matrix Σ using the multivariate Gaussian distribution in Eq.

(5.20) with 105 time length. Figure 5.6(a) shows the plots of xi, xj for all i, j = 1, . . . , 9,

which is consistent with the correlation matrix R in Eq. (5.22). For example, Fig. 5.6

shows that the pair x1, x3 is highly anti-correlated as the points form a cigar-shaped cloud,

falling very close to a line with a negative slope, indicative of strong anti-correlation. This

is supported by R13 = −0.97 in Eq. (5.22). An intermediate case of correlation can be seen

in the case of pair x2, x3, for which its plot in Fig. 5.6 looks like a wider cloud of points

compared to the plot of pair x1, x3 in the same figure. This is a case of weaker positive

correlation and is further corroborated by its corresponding R value in Eq. (5.22), which
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Figure 5.6: Gaussian distributed correlated data. (a) Plot of points of pairs
xi, xj where i, j = 1, . . . , 9, where highly correlated pairs are represented by cigar-
shaped clouds of points, weakly correlated pairs by wider, cigar-shaped clouds of
points and non-correlated ones by circular-like scattered points. The plots of nodes
with themselves (along the diagonal of the figure) show the distribution of points
of nodes xi. Note that highly anti-correlated pairs are represented by cigar-shaped
clouds of points with negative slope and that highly correlated pairs by cigar-shaped
clouds of points with positive slope (b) The absolute values of PC are shown for the
pairs. (c) Correspondingly, the p-values are shown with those below 0.05 indicated
by red circles.
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is 0.57. Finally, an interesting case arises for the pair x8, x9, as its plot in Fig. 5.6 shows

an even wider cloud of points, indicating even weaker correlation among all pairs of nodes

with non-zero correlation. In Fig. 5.6(b), the absolute value of the PC values computed

from the data is shown by a colour map. Correspondingly, in Fig. 5.6(c), the p-values

are shown, with red circles indicating pairs where the p-values are statistically significant,

being less than 0.05.

By the assumption of that the pairs with |R| > 0.5, as we want to test the ability of

the method to exclude weak correlation even if it is statistically significant with p < 0.05,

the network structure has been shown in Fig. 5.7(a). The bar graph in Fig. 5.7(b) shows

MIR values between pairs, with purple bars representing connected pairs and blue bars

representing the unconnected pairs. By selecting a threshold within the grey shaded area,

one can reconstruct the network structure. Similarly, Fig. 5.7(c) shows the results for

PC. Therefore, both MIR and PC achieve to infer network topology for carefully chosen

threshold values. This is evidence that MIR can capture the linear correlation between

pairs in a network inference.

5.3.2 Deterministic Discrete Systems

From the model Eqs. 3.13, 3.6, and 3.12, the data have been generated from 0.03 coupled

logistic and circle maps with the length of time series 105 using the 16 node network struc-

ture (see Fig. 3.10). We implement the methods of MIR, PC, lagged-double normalised

MIR and lagged PC on the data.

Given that we are analysing a chaotic logistic trajectory with a positive MLE, 0.57, we

expect the correlation between pairs to decay over time. Hence, the lag range was restricted

to a limited interval, as lagged versions of the methods select the maximum value across

the lags, τ . Figure 5.8(a) shows that MI and MIR as a function of τ for a connected

pair, and the vertical red-dashed line specifies the interval of [−T, T ], where T is CDT

estimated from the itinerary network method. After the estimated CDT, the trajectory

starts to lose correlation with the past states. Therefore, we consider time delays ranging

from τmin = −10 to τmax = 10 in the lagged methods. The bar graph in Fig. 5.8(b) shows
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Figure 5.7: Network inference from the Gaussian distributed correlated
data. (a) Network structure where links exist between pairs if |RXY | > 0.5. (b)
Network inference using MIR: purple bars represent connected pairs, blue bars rep-
resent unconnected pairs. The horizontal grey band indicates the threshold interval
for perfect network inference. (c) Inference of the network using the absolute value of
PC. Both methods show a range of threshold values for successful network inference.

MIR values between the pairs, where the purple bars are the connected pairs and the blue

bars the unconnected pairs. For a threshold selected within the shaded area interval, one

can reconstruct the network successfully. Figure 5.8(c) illustrates the same content for PC

and there is no threshold to infer the correct network structure. Figures 5.8(d) and (e)

visualise the results of lagged-doubled normalised MIR and lagged-PC for the time lags

from τmin = −10 to τmax = 10 and both methods result in successful network inference.

Consequently, the lagged versions of the methods improve the performance of network

inference, especially in PC.

Similarly, Fig. 5.9 presents the results for the 0.03 coupled circle map whose trajectory

shows chaotic dynamics with positive MLE, 1.32. In Fig. 5.9(a), MI and MIR as a function
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Figure 5.8: Network inference from a system of coupled logistic maps. (a)
The values of MI and MIR from a connected pair of nodes are shown as functions
of lag, τ . (b) Network inference using MIR, (c) using PC, (d) using lagged-double
normalised MIR and (d) using lagged-PC.

of lag, τ are shown, where the vertical red dashed line indicates the interval of [−T, T ].

It is apparent that both MI and MIR decrease significantly after this interval, and lagged

versions of the methods select the maximum value of MIR and PC. Therefore, we use the

lagged versions of the methods in the lag interval [τmin, τmax] = [−10, 10].

Since there exists a range of thresholds applicable in network inference, the double-

normalised MIR method achieves successful network inference, as demonstrated in Fig.

5.9(b). In contrast, no threshold value allows for the reconstruction of the network using

PC, as observed in Fig. 5.9(c). The methods show improvement with lagged MIR, provid-

ing a broader threshold interval compared to MIR. Additionally, lagged-PC permits the

correct inference of network structure, unlike PC.

Next, we investigate the influence of parameters on network inference using trajectories

from coupled logistic and circle maps. The coupling strength, α, and the time length are

two critical parameters that affect the inference of the network. The former impacts the

system’s dynamics, while the latter ensures sufficient information availability for capturing



5.3. APPLICATIONS 102

Figure 5.9: Network inference from a trajectory of coupled circle map. (a)
The values of MI and MIR from a connected pair of nodes are shown as functions
of delay, τ . (b) Network inference using MIR, (c) using PC, (d) using lagged-MIR,
and (e) using lagged PC.

connectivity. Hence, in Fig. 5.10, panels (a) and (c) illustrate the effects of these parameters

on network inference performance, evaluated using ROC distance (see Eq. (5.19)).

For the data generated from the coupled logistic map with r = 4 and 16-nodes net-

work, successful network inference is observed in the dark blue region corresponding to the

mid-level of coupling strength and time length greater than 104 in Fig. 5.10(a). Stated

differently, there is no perfect inference in the interval of coupling strength [0, 0.04] and

[0.12, 0.2], possibly due to the following reasons

1. For low coupling strength or short time lengths, the nodes may not exchange sufficient

information for MIR to detect links accurately. For example, data generated from

the logistic map with a coupling strength of 0.03 and a time length of 105 allow

perfect network inference (refer to Fig. 5.8), while there is no perfect inference for

time lengths shorter than 50, 000 (refer to Fig. 5.10(a)),

2. The dynamics of the system may not be chaotic for some coupling strength, as shown
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in Fig. 5.10(c), where the dynamics of logistic trajectories for the coupling strength

in [0.17, 0.2] are either regular or weakly chaotic. If it is a regular trajectory, the

data points do not cover the probabilistic space Ω, resulting in elevated MIR values

for all pairs. If the trajectory is weakly chaotic, the spreading of data points across

the Ω space may take longer (implying high CDT) so, it might require even longer

time series length to exchange sufficient information.

Figure 5.10(c) shows that the network inference from the trajectories of the circle map has

a wider blue dark area, indicating the perfect inference, compared to the trajectories of

the logistic map. For low coupling strengths in [0, 0.01], MIR may not fully capture the

relationships between pairs, potentially necessitating a longer time-series length. Figure

5.10(d) shows that the trajectories of the circle map consistently exhibit chaotic behaviour

across all coupling strengths considered, α.

5.3.2.1 Additive Gaussian Noise

Real-world data often involve noise, and noise reduction methods cause information loss

in network inference using information-based approaches. Therefore, the method should

be robust to noise to be able to infer the network from real data. We tested MIR under

standard Gaussian noise with mean 0 and variance 1. The noisy data,

xs = fn(xn, r, α) + γξ,

where f(xn, r, α) is a map equation with initial condition, xn, model parameter r and the

coupling strength α. We use coupled logistic and circle maps defined in Eqs. (3.3), (3.6),

(3.12). Here, γ ∈ [0, 1] is the noise strength and ξ is a random number drawn from the

standard normal distribution, i.e., ξ ∼ N (0, 1).

Figures 5.11(a) and (b) show the performance of MIR (based on the ROC distance

in Eq. (5.19)) on the data generated from the coupled logistic and coupled circle map,

respectively, with a time length, 5 × 104. The plots depict the noise strength, γ, on the

x-axis, and the coupling strength, α, on the y-axis. In both cases, the perfect network
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Figure 5.10: Impact of coupling strength and time length on network in-
ference. (a) Inference of the network from the trajectories of the logistic map using
MIR; coupling strengths on the y axis and time lengths on the x axis on the log
scale. The colour map indicates the ROC distance: dark blue colour corresponding
to the perfect inference as the ROC distance is zero. (b) The variation in MLE of
the trajectories of logistic map with respect to the coupling strength, α. (c) Network
inference from trajectories of circle map using MIR across coupling strengths on the
y-axis and time lengths on the x-axis in logarithmic scale. The colour map indicates
the ROC distance: dark blue colour corresponding to the perfect inference as the
ROC distance is zero. (d) The variation in MLE of the trajectories of circle map
with respect to the coupling strength, α.

inference becomes unattainable when γ > 0.5, and the ranges of coupling strength lead-

ing to perfect inference are the same as those without noise. Hence, we conclude that

MIR can accurately capture links under Gaussian noise with γ < 0.5, provided that the

coupling strength allows perfect network inference from noiseless data. However, as the

noise becomes stronger, the performance of the method deteriorates, ultimately resulting

in no perfect inference for all considered coupling strengths when γ > 0.5 as there is no

cell in the panel (b) denoted by dark blue colour after this point (even though it looks

somewhat dark blue for γ > 0.5, those are not for perfect inference but are very close to
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Figure 5.11: Impact of the Gaussian noise on network inference The plots
depicts the performance of network inference based on the ROC distance in a range
of coupling strength, α ∈ [0, 0.2], and noise strength, γ ∈ [0, 1] from the trajectories
of (a) the coupled logistic map and (b) the coupled circle map.

it; we double-checked it with the computed numbers).

5.3.3 Deterministic Continuous Systems

5.3.3.1 The Hindmarsh-Rose System

We generate data from the coupled HR model in Eq. (3.14) with gl = 0.1 using a network

of 12-node as shown in Fig. 3.10, with an integration time, tf = 2 × 104, and a step size

h = 0.1. Among the variables of the HR model, namely, p, q, and n, we selected p as the

variable of interest. We applied the MIR, PC, lagged-MIR, and lagged-PC methods on the

p variable of the trajectory, as demonstrated in Fig. 5.12. Taking into account the decrease

in mutual information over time-lags after CDT, indicated by the vertical red dashed line,

we computed lagged-MIR and lagged-PC across the lag range from −16 to 16.

All methods exhibit similar performance by inferring the network structure within a

comparable range of thresholds. The performance of lagged-MIR and lagged-PC, shown in

Figs. 5.12(d) and (e), does not show improvement compared to MIR and PC, as illustrated

in Figs. 5.12(b) and (c). This lack of improvement is attributed to MI reaching its peak
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Figure 5.12: Network inference from a trajectory of coupled HR system
(a) MI values from a connected pair of nodes are shown as functions of lag, τ . (b)
Network inference using MIR, (c) using PC, (d) using lagged-MIR, and (e) using
lagged PC.

at a time delay of 0, as seen in Fig. 5.12(a).

The coupled HR model consists of 3 variables, p, q, and n for each node in a network.

Although we have previously used p as a probe for network inference, it is also possible

to use other variables or combinations thereof to enhance the method’s performance in

distinguishing connected pairs from unconnected ones. Therefore, we consider the variables

q and n, as well as the time derivative of p and the sine of p, as alternative probes, as shown

in Fig. 5.13(a)-(d), respectively. All of these probes enable successful network inference,

although probes n and sin(p) exhibit slightly better performance.

5.3.3.2 The Lorenz System

We generated data from the coupled Lorenz system in Eq. (3.16) with coupling strength,

K = 0.2, adjacency matrix A, of the network of 16 nodes in Fig. 3.10(b). The system is

numerically solved using the step size h = 0.1 and a final integration time tf = 2×104. The

trajectory is recorded once the MLE stabilises, based on the assumption that the standard
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Figure 5.13: Network inference using MIR from different probes of the
coupled HR system Network inference using MIR from the probes of (a) q variable
(b) n variable (c) time derivative of variable p (d) sine of p variable.

deviation of 500 MLEs within the sliding time windows becomes less than or equal to 10−2.

Thus, the first 2094 data points were considered transients and discarded.

We implemented the methods of MIR, PC, lagged-MIR, and lagged-PC on the x vari-

able, can be seen in Fig. 5.14(b)-(e), respectively. Taking into account the decrease in MI

over time-lags after CDT (see Fig. 5.14(a)), indicated by the vertical red dashed line, we

computed lagged-MIR and lagged-PC over range of time lags from −8 to 8. All methods

exhibit similar performance by inferring the network structure correctly within a compara-

ble range of thresholds. The performance of lagged-MIR and lagged-PC, demonstrated in

Fig. 5.14(d) and (e), does not show improvement compared to MIR and PC, illustrated in

Fig. 5.12.(b) and (c). This lack of improvement is attributed to MI reaching its peak with

a time delay of 0 (see Fig. 5.14(a)). We also used the different probes in network inference:

variable y, and z, the time derivative of variable x and sine of variable x, as presented in
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Figure 5.14: Network inference from a trajectory of coupled Lorenz system
a) MI values from a connected pair of nodes are shown as a function of lag, τ . (b)
Network inference using MIR, (c) using PC, (d) using lagged-MIR, and (e) using
lagged PC.

Fig. 5.15(a)-(d), respectively. However, all probes were unable to reconstruct the network

structure, as the MIR values of the connected and unconnected ones are mixed. Some

probes might improve the performance of network inference. The choice of the best probe

depends on its ability to distinguish connected and unconnected pairs.

5.4 Dynamics on Network Models

We generate the data from the dynamics of coupled logistic and circle maps, coupled

Lorenz system, and coupled Kuramoto phase oscillators based on the network structures

generated from the network models of Erdös-Rényi random, Watts-Strogatz small world

and Barabási-Albert scale free networks as discussed in the previous section. We presented

MLE of the system, Kuramoto phase order, ρ, and ROC distances (see Eq. (5.19)) of the

network inferences using MIR across the coupling strengths. We investigate the question

of how the types of network affect the dynamics of the system and network inference in
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Figure 5.15: Network inference using MIR from different probes of the
coupled Lorenz system Network inference using MIR from the probes of (a) y
variable (b) z variable (c) time derivative of variable x (d) sine of x variable.

relatively small networks of 40 nodes.

5.4.1 Coupled Logistic Map

We generate the data from the coupled logistic map using Eqs. (3.6) and (3.13) based

on the ER network in Fig. 2.4(a), SW in Fig. 2.5(a), and SF in Fig. 2.6(a). The

5 × 105 data points recorded after the transient period in which the standard deviation of

500 MLEs within a time sliding window becomes less than a predefined threshold value

10−3. We consider the coupling strengths at 21 equidistant points in the interval [0, 1].

The dynamics from the ER network shows a regular trajectory at three coupling strengths

where MLE is less than zero, indicated by the horizontal red line, in Fig. 5.16(a). However,

trajectories from the network types, SW and SF, the dynamics of the systems are chaotic
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Figure 5.16: Dynamics of coupled logistic map on network types. Panels (a),
(c), (e) show MLE of the system across coupling strength for the data generated
from ER, SW and SF network types, respectively. Panels (b), (d), (f) show that the
Kuramoto phase order ρ in the same order.

for all coupling strengths considered.

The Kuramoto phase order, ρ, of the regular trajectories is zero, whereas it is high

for chaotic trajectories. However, for coupling strengths, 0, 0.1, and 0.15, the ρ values

are slightly lower at 0.72, 0.90, and 0.94, respectively (see Fig. 5.16(b)). Trajectories

generated from network types such as SW and SF show, in general, a high level of phase

synchronisation with their Kuramoto phase order, ρ values follow a similar pattern for all

coupling strengths of interest, as seen in Figs. 5.16(c) and (e).

As the main assumption in the presented theory of MIR is that the X, Y variables are

random, we need to ensure the deterministic dynamics is chaotic. This is because such a

system loses its memory after some time and behaves as if it is stochastic. Therefore, in the

network inference, we dropped the regular trajectories, which is the reason for disconnection

in the blue dashed line in Fig. 5.17. We consider three probes in the network inference: (1)

the trajectory itself and (2) its instantaneous phases using the concept of analytic signal
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Figure 5.17: Network inference from the coupled logistic map (a) ROC dis-
tance of the network inference using the signal itself as a probe. Results for ER, SW
and SF have been shown with blue, red, and yellow dashed-lines, respectively. (b)
using instantaneous phases as probe. (c) using instantaneous frequencies as a probe.

in Sec. 4.3.3 (3) its instantaneous frequencies derived from the instantaneous phases using

Eq.(4.5), as shown separately in panels (a), (b), (c) in Fig. 5.17, respectively. We show

different types of networks with different colours in all panels, blue for ER, red for SW and

yellow for SF. In all network types and probes, we see that MIR can achieve successful

network inference in the coupling strengths 0.05 and 0.1. For all other coupling strengths,

the trajectories of the three types of network and probes show similar performance in

network inference.

5.4.2 Coupled Circle Map

We generate the data from the coupled circle map (see Eqs. (3.12) and (3.13)) based on the

networks of ER in Fig. 2.4(a), SW in Fig. 2.5(a), and SF in Fig. 2.6(a). The 5 × 105 data

points recorded after the transient period, at the time point at which the standard deviation
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Figure 5.18: Dynamics of coupled circle map on network types. Panels (a),
(c), (e) show MLE of the system across coupling strength for the data generated
from the ER, SW and SF network types, respectively. Panels (b), (d), (f) show that
the Kuramoto phase order, ρ, in the same order.

of 500 MLEs within a sliding time window becomes less than the predefined threshold value,

10−3. We consider the coupling strengths at 21 equidistant points in the interval [0, 1]. All

trajectories for the interest of coupling strengths show similar chaotic dynamics and their

Kuramoto phase order, ρ, in the general sense, increases as the coupling strength increases,

and it takes values in the interval [0.82, 0.99] indicating highly phase-synchronised data.

In network inference, we consider three probes: (1) the trajectory itself, (2) the instan-

taneous phases, and (3) the instantaneous frequencies, as shown separately in the panels

(a)-(c) in Fig. 5.19, respectively. In general sense, we can see that the ROC distances

from different types of network and probes follow a similar pattern. When we consider the

trajectory itself as a probe (see Fig. 5.19(a)), MIR achieves perfect inference in all network

types for the coupling strengths in the interval [0.05, 0.65]. Small-world also achieves a

perfect inference for the coupling strength 0.70, whereas the other two do not. If we use
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Figure 5.19: Network inference from the coupled circle map (a) ROC distance
of the network inference using the signal itself as a probe. Results for ER, SW and
SF have been shown with blue, red, and yellow dashed-lines, respectively. (b) using
instantaneous phases as probe. (c) using instantaneous frequencies as probe.

the instantaneous phases as probe (see Fig. 5.19 (b)), while all of the networks provide

perfect inference for the coupling strength in the interval [0.05, 0.65], SW and SF also infer

the network correctly for the coupling strength 0.70. If we use instantaneous frequencies

as a probe, all types of networks achieve perfect inference in the interval [0.05, 0.60], addi-

tionally, network inference from the SW and SF is successful in the coupling strength 0.65.

Finally, we can conclude that the different types of networks produce similar dynamics,

implying a similar performance of network inference in all probes even if the SW and SF

as network types and the instantaneous phases as a probe perform slightly better.

5.4.3 Coupled Lorenz System

We record 5 × 105 data points as a numerical solution of the system in Eq. (3.16) with

the step size 0.1, after the transient period, that the MLE stabilised based on the standard
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Figure 5.20: Dynamics of coupled Lorenz system on network types. Panels
(a), (c), (e) show MLE of the system across coupling strength for the data generated
from the ER, SW and SF network types, respectively. Panels (b), (d), (f) show that
the Kuramoto phase order, ρ, in the same order.

deviation of 500 MLEs within the sliding time window, becoming less than the predefined

threshold, 10−3. We used the variable x, the instantaneous phases calculated from the

analytic signal of the variable x by HT and the instantaneous frequencies computed from

the instantaneous phases using Eq. (4.5). We dropped the regular trajectories in the

computation of the Kuramoto phase order ρ and the network inference for the same reason.

Using different network types in the data generation from the Lorenz system results

in different dynamics (see Fig. 5.20). The system has positive MLE for the coupling

strengths in [0, 0.3] in ER, whereas, in SW and SF, it has positive MLE values for the

coupling strength in [0, 0.4] (see panels (a), (c), (d) in Fig. 5.21). Kuramoto phase order,

ρ, peaks in the SW for the coupling strength 0.2 as seen in Fig. 5.20 (d). Erdös-Renyi and

SF have similar values ρ (see Fig. 5.20 (b), (f)).

Panels (a), (b), and (c) in Fig. 5.21 show the performance of the network inference

from the variable x, its instantaneous phases calculated from the analytic signal using
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Figure 5.21: Network inference from the coupled Lorenz system (a) ROC
distance of the network inference using the signal itself as a probe. Results for ER,
SW and SF have been shown with blue, red, and yellow dashed-lines, respectively. (b)
using instantaneous phases as probe. (c) using instantaneous frequencies as probe.

HT, and its instantaneous frequencies computed from the instantaneous phases in the

Eq. (4.5), respectively. Using trajectories as probes in all types of networks performs

best for the coupling strength 0.1 with the pair of (TPR, FPR) = (1, 0.0016) (see Fig.

5.21)(a). In overall, SF performs slightly better than the ER and SW. Fig. 5.21(b) shows

that the instantaneous phases perform poorly in all types of networks. Although the

instantaneous frequencies as the probes perform better than the instantaneous phases but

not the trajectories themselves (see Fig. 5.21 (c)).

5.4.4 Coupled Kuramoto Oscillators

We record 5 × 105 data points as a numerical solution of the system in Eq. (3.17) with

the step size 0.1, after the transient period, that the MLE stabilised based on the stan-

dard deviation of 500 MLEs within the sliding time window falling below the predefined
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Figure 5.22: Dynamics of the coupled Kuramoto oscillators on network
types. Panels (a), (c), (e) show MLE of the system across coupling strength for the
data generated from the ER, SW and SF network types, respectively. Panels (b),
(d), (f) show that the Kuramoto phase order, ρ, in the same order.

threshold, 10−3. From the Kuramoto phases, we compute its instantaneous frequencies

from the Eq. (4.5) to use as a probe. There are 24 equidistant coupling strength in [3, 10]

considered. To eliminate the weak chaotic behaviour, we drop the trajectories if their MLE

is less than 0.01, which is shown with a red line in Fig. 5.22(a), (c), (d). The first three

coupling strength are dropped in ER, the first coupling strength is dropped in SW and SF.

Fig. 5.22 shows that the values of ρ fluctuate in [0.15, 0.40], indicating low global phase

synchronisation.

Fig. 5.23 (a), (b) show the performance of the network inference from Kuramoto phases

and their instantaneous frequencies, respectively. It is obvious that the instantaneous

frequencies are considerably superior to the phases; however, none can achieve successful

inference.
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Figure 5.23: Network inference from the coupled Kuramoto oscillators (a)
ROC distance of the network inference using the Kuramoto phases. Results for ER,
SW and SF have been shown with blue, red, and yellow dashed-lines, respectively.
(b) the instantaneous frequencies as probe.

5.4.5 Impacts of CS and PS on Network Inference

We presented two cases of synchronisations in a network of 5 nodes in sections 4.2.3 and

4.3.4, that we observed CS, PS and IPS. In the case of a trajectory from the coupled logistic

map, we observed CS between nodes 1 and 3 after iteration 6 × 104 (see discussion in Sec.

4.2.3). In the case of a trajectory from the coupled Rössler, PS and IPS occur among some

pairs in the network (see discussion in Sec. 4.3.4).

In this section, we investigate the effects of synchronisation on network inference using

MIR in these two cases. In particular, to examine the impact of CS, we compare the MIR

of whole data in Sec. 4.2.3 with MIR of the same data before CS occurs. Furthermore,

to assess the effect of PS and IPS, we compare MIR of phase-synchronised data in Sec.

4.3.4, with MIR of its TWSD, which destroy the phase synchronisation by randomising the

instantaneous phases obtained by FT (see detail in Sec. 6.1.2.2).
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Figure 5.24: The impact of CS on MIR (a) MIR values of the pairs in whole data,
CS between nodes 1 and 3 results in significantly higher MIR value than others. (b)
MIR values before CS occurs. We used first 6 × 105 data points to compute MIR
between pairs. MIR between nodes 1 and 3 is now comparable with others.

5.4.5.1 Complete Synchronisation in the Logistic Map

We observed that nodes 1 and 3 behave as one after 60, 000 iterations (see Fig. 4.4(c) and

(d)), and their magnitude order is the highest among all pairs, as seen in Fig. 4.11(b).

Complete synchronisation between nodes 1 and 3 results in an significantly large MIR value

compared to other pairs as shown in Fig. 5.24(a), whereas Fig. 5.24(b) shows that the

MIR between the pairs 1, 3 is comparable with MIR of other pairs before CS occurs, when

we consider first 6×104 data points. To mitigate the effect of CS on network inference, one

might consider excluding the fully synchronised time interval. However, in this example, it

still does not provide a successful network inference due to high correlation between nodes

1 and 3, even though they are not connected.

5.4.5.2 Phase Synchronisation and Intermittent Phase Synchronisation

in the Rössler System

We observed PS and IPS among some pairs in a trajectory of the Rössler system, while

the rest remained asynchronous, as shown in Fig. 4.10. Furthermore, we found that the

pairwise phase orders of the synchronised pairs are significantly higher than those of the
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others, as seen in Fig. 4.12(b). From previous observations, we also know that although

the phase order is the highest for the synchronised pairs, their PC does not mirror this

relation because it does not consider nonlinear relations (see Fig. 4.12(b) and (c)). For

example, the phases of nodes 1 and 3 are locked but their PC is relatively lower than one

of the asynchronous pairs, 1-4.

Next, we will examine the influence of phase synchronisation on network inference

using MIR. Therefore, we compare MIRs among the pairs in original trajectory with those

in TWSD, which randomises the phases of a trajectory by the Fourier transform while

preserving the linear relations. Lacking the phase relation in the data, we can observe its

influence on the MIR. Figure 5.25(a) demonstrates the MIR among the pairs of original

data and the synchronous pairs, 1-2, 1-3, 2-3, and 4-5, have the highest MIRs among all

implying that the MIR can detect the phase relation. Recall that PC of asynchronous pair,

1-4, was higher than that of the synchronous pair, 1-3. From the comparison of MIRs of

the original data and the TWSD in Fig.5.25(b), we can observe that the MIR of all pairs

decreases when the phase relation is destroyed. This provides further evidence that phase

synchronisation contributes to MIR value.
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Figure 5.25: The impact of PS on MIR (a) MIR values of the phase-synchronised
trajectory of Rössler, discussed in Sec. 4.3.4 (b) MIR values of TWSD generated from
the trajectory of the Rössler system (4.12) by randomising Fourier phases.

Finally, we can conclude that the phase and the amplitude relation affect MIR values.
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The proposed approach, APMSD introduced in Chapter 7, comes from this observation.

5.5 Summary

In this chapter, we reviewed the theoretical background of information-theoretical ap-

proaches. We began by explaining the concept of Shannon entropy and defined mutual

information and mutual information rate. From a computational perspective, we intro-

duced the binning method to compute probability values from time series data.

To infer network topology from the data, we employed MI, MIR, double-normalised

MIR, PC, lagged double-normalised MIR and lagged-PC on Gaussian-distributed corre-

lated data from a given covariance matrix, discrete maps, coupled logistic and circle, con-

tinuous systems, coupled HR and Lorenz. Our findings indicated that lagged versions of

the methods outperform those without lag, if MIR of a connected pair at lag τ is higher.

We also demonstrated the double-normalised MIR is robust to Gaussian noise, enabling

the implementation of information-based approaches on real-life data which are commonly

noisy. Furthermore, we discussed two factors influencing the performance of network infer-

ence, coupling strength, and time length. It is possible to use different probes in network

inference, we used the second and third variables of the HR and Lorenz systems, in addi-

tion to the time derivative and sine of the first variable following [64]. They successfully

inferred the network in the HR but they did not in the Lorenz system. We concluded that

the best choice of probe depends on its ability to distinguish connected and unconnected

pairs.

We have already introduced and generated some of the most well-known network mod-

els, including random graphs, small-world networks, and scale-free networks of 40 nodes

in Chapter 2. Using these different network types, we generated data from coupled dis-

crete (logistic and circle maps) and continuous (the Lorenz and Kuramoto systems) time

models. Regarding their dynamics, we did not observe significant differences across the

network structures; in general, they exhibit similar dynamical behaviour and Kuramoto

phase order. In terms of network inference, we employed the signal itself, its instantaneous
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phases using the Hilbert Transform, and its instantaneous frequencies as probes. However,

we did not observe significant differences in network inference across the network types.

This lack of distinction may be attributed to the relatively small size of our network,

consisting of only 40 nodes. Larger networks often exhibit structural properties, such as

small-worldness, more prominently.

Finally, to investigate the impacts of CS and PS on MIR, we applied it to two trajec-

tories discussed in Chapter 4: one is from coupled logistic map providing CS and another

is from coupled Rössler system providing PS and IPS. Our final conclusion was that both

phase and amplitude relation affect MIR values. This observation forms the basis for the

proposed method, APMSD, which will be discussed in Chapter 7.



Chapter 6

Network Inference combining MIR

and statistical tests

In the context of network inference, the task of thresholding involves converting continuous

similarity measures into binary values, representing 0 for unconnected pairs and 1 for

connected pairs. The authors in [26] propose assigning the midpoint of the first abrupt

change, specifically a 0.1 change, in ordered MIR as the threshold. Because it is very limited

to a few cases only, they propose adding a pair of dummy variables, connected through a

directed link, to compare their MIRs with the other pairs. However, the dynamics of the

dummy pair of nodes may vary, and it affects the MIR values, so it cannot generalise to

a broad range of applications. To address the challenges of thresholding, the author in [2]

proposed a method that involves comparing MIRs of the original data with those of the

surrogate data for the corresponding pairs.

The use of surrogate data is a well-established approach in nonlinear system analysis

to study properties such as phase synchronisation [38]. The author in [2] discusses connec-

tivity sources in terms of amplitude correlation and phase synchronisation. He suggests a

method of hypothesis testing by selecting appropriate surrogate data based on the source

of connectivity present in the system. The fundamental concept behind this method is

to compare the MIR values of pairs in the original data with those of pairs in the surro-

122
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gate data that lack the source of connectivity. If connectivity emerges from the amplitude

correlation, one can use RSD to destroy linear and non-linear relations. If the source of

connectivity is phase synchronisation, one can use TWSD to destroy phase synchronisation

(or non-linear relation) while preserving linear correlations. However, there are two signif-

icant drawbacks to this method. First, it can be challenging to determine which type of

surrogate data is better for a given time series because being highly amplitude-correlated

or highly phase-synchronised does not mean that the nodes are connected through am-

plitude correlation or phase synchronisation. Second, RSD and TWSD tend to eliminate

all forms of correlation and phase synchronisation. This leads to inferring the extra links

(resulting in a high FPR) if the pairs of nodes are indirectly connected (meaning that the

pairs connected through other node/s) are highly amplitude correlated or highly phase

synchronised. To address these drawbacks, we propose a new method in Chapter 7, called

the APMSD method, randomises the amplitude and phase at different levels.

This chapter is dedicated to discussing the methods of statistical tests with RSD and

TWSD, since the novel method is built on them, considering the different levels of contribu-

tions of amplitude correlation and phase synchronisation to MIR. For comparison reasons,

the results of statistical tests using RSD and TWSD, and using the APMSD method ap-

plied to the same systems with the same parameters and network structure, are presented

in this chapter and Chapter 7.

6.1 Statistical Tests and Surrogate Data

6.1.1 Statistical Tests

Hypothesis testing is a well-established method used in dynamical system analysis to deter-

mine nonlinear properties such as phase synchronisation [38]. However, the use of surrogate

data to identify connectivity patterns in complex networks is proposed by the author in [2].

In this study, the author used RSD, which disrupts the correlation between pairs in the

original data. If the connectivity between pairs arises from correlation, employing hypoth-

esis tests with RSD becomes a suitable method to identify links among connected pairs.
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Another approach used in the paper is, TWSD which, destroy the phase relationships

among variables in time series data. This is achieved by generating surrogate data with

randomised phases using the Fourier transform following [53].

Following [2], to infer the connectivity between nodes X and Y from the data using

hypothesis tests and surrogate data, one selects a significance level, α and defines the null

hypothesis, H0, and alternative hypothesis, H1 by,

H0 : There is no connection between nodes X and Y ,

H1 : There is a connection between nodes X and Y .

In this context, the total number of surrogate data, ℵSD, for hypothesis testing should be

ℵSD ≥
[

1
α

]
, where [·] denotes the integer part of a number. In this work, we decided to

choose ℵSD =
[

1
α

]
to reduce computational cost. For example, if we intend to test the

hypotheses at α = 0.1, we produce 10 surrogate data sets. The p-value associated with the

null hypothesis, H0, is,

pXY = ℵ̃SD
ℵSD

,

where ℵ̃SD is the number of surrogate data whose MIRXY is higher than or equal to MIRXY

of the original data set. Following [2], pXY is the probability of obtaining a test statistic

that is equal to or greater than the observed one, assuming that the null hypothesis is true.

For example, if pXY = 0.02, it would mean that if the null hypothesis is true, there would

be a 2% chance of obtaining the observed test statistic or a more extreme one. If this is

less than a predefined significance level, α, then we would reject the null hypothesis and

say that nodes X and Y are connected. In general, if pXY < α, we can reject H0 and

accept H1, which means that nodes X and Y are connected.

For a network of M nodes with adjacency matrix, A, we repeat the above process for

all M(M−1)
2 uniquely defined pairs of nodes X and Y , resulting in M(M−1)

2 independent

hypothesis tests. When k hypotheses are tested simultaneously with a significance level α,

the probability of occurrence of false positives (i.e., rejecting the null hypothesis when in

fact it is true) is equal to 1 − (1 −α)k, which can lead to a high error rate [56]. This would
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lead to accepting many false positive connections. Therefore, to control for multiple-testing

errors, we use the False Discovery Rate (FDR) method discussed in [9–11]. This will result

in an M × M inferred adjacency matrix, Ã, for all X and Y pairs with 0 and 1 (binary

matrix), where 0 (1) mean no connection (connection) between X and Y . Since MIRXY =

MIRY X , Ã is a symmetric matrix with 0s on the diagonal, because we do not consider self

connections. The pseudocode of the process of hypothesis tests and surrogate data is given

in the algorithm 5.

Algorithm 5 Algorithm for statistical tests
1: Input data of M variables and significance level α.
2: Generate NSD = 1

α
chosen surrogate data

3: Compute MIR of original dataset and get M ×M matrix MIRo

4: Initialise adjacency matrix, Ã.
5: for <i=1:M> do ▷ iteration over pairwise comparison
6: for <j=i+1:M> do
7: Initialise ℵ̃SD = 0
8: for <k=1:NSD> do ▷ iteration over NSD surrogate data
9: Compute MIR of surrogate data and get M ×M matrix MIRSDk .

10: if MIRo
ij ≤ MIRSDk

ij then
11: ℵ̃SD = +1
12: end if
13: end for
14: pij = ℵ̃SD

NSD
▷ probability of being not connected

15: if pij < α then
16: Ãij = 1
17: end if
18: end for
19: end for
20: Update Ã based on FDR process.
21: Ã = Ã + ÃT ▷ as MIRXY = MIRY X

22: Return Ã.

Based on the approach used so far, the adjacency matrix Ã can be inferred from the

data. We used TPR and FPR (see Eq. (5.18)) to assess the performance of the method

compared to the adjacency matrix of the original network, A.
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6.1.2 Surrogate Data

One should select the surrogate data that lack the source of connectivity. If the source

of connectivity is amplitude correlation, one can choose the RSD to destroy the linear

and nonlinear relation, while if the source of connectivity is phase synchronisation, one

can choose TWSD to destroy phase synchronisation. In this section, we discuss these two

surrogate data sets.

6.1.2.1 Random Surrogate Data

Random surrogate data is drawn from a uniformly random distribution, independently

of the original data. This method is based on the fact that two random variables, X,

Y theoretically have zero correlation. However, in practice, the correlation is very close

to zero, resulting in a cloud-like shape resembling non-correlated pairs, as shown in Fig.

5.6. This implies that the data has significantly small MIR values, indicating limited

information transfer from one variable to another due to the independence of the variables.

Recall that the MIR of two independent random variables X and Y is theoretically equal

to zero, but in practice, it is a very small positive number due to the finite number of data

and round-off errors in the computation of MIR (see Eq. (5.6)). In this sense, comparing

the MIRs of the original data with those of RSD helps eliminate pairs of nodes whose MIRs

might come from the round-off errors only, in the computation process.

6.1.2.2 Twin Surrogate Data

Information-based measures are capable of capture nonlinear relations as well as linear

relations (see Fig. 5.2). Phase order is one of the characteristics of nonlinear systems

having an effect on MIR as discussed in Sec. 5.4.5, where we showed that one of the

source of MIR is the phase order by using TWSD, which preserves the linear properties but

destroys all phase synchronisation by randomly selecting the phases through FT. Following

the process in [53] and using the algorithm provided in [24], we generate TWSD as follows:
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Let x(t) be a time series and F the finite discrete-time FT operator,

X(f) = F{x(t)} =
N−1∑
n=0

x(t)e2πift,

As discussed in Sec. 4.3.2, FT of x(t) is complex-valued and can be expressed in a polar

form,

X(f) = A(f)eiϕ(f),

where A(f) and ϕ(f) are Fourier amplitudes and Fourier phases of the signal, x(t), in the

frequency domain, respectively. To obtain a phase-randomised signal x̃(t), one can rotate

the phases, ϕ(f), by ψ(f) chosen uniformly in [0, 2π) and TWSD of the signal, x(t),

x̃(t) = F−1{A(f)ei[ϕ(f)+ψ(f)]}

where F−1 is the inverse FT operator.

In the next section, we will present the results from various dynamics, including Gaus-

sian distributed data from a given covariance matrix, discrete-time systems such as logistic

and circle maps, continuous-time systems such as Lorenz and HR systems, and stochastic

Kuramoto, conducting hypothesis tests using RSD and TWSD.

6.2 Network Inference using MIR and statistical

tests

6.2.1 Gaussian Distributed Correlated Data

In this section, we present the results of the statistical test method using RSD on the

data generated from a multivariate Gaussian distribution with a given mean vector and

covariance matrix, following the d-dimensional probability distribution function in Eq.

(5.20) and data are generated in the same way as in sec. 5.3.1.

We demonstrated that PC between variables 8 and 9 is significantly lower (with a value
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Figure 6.1: Statistical tests using RSD in Gaussian distributed correlated
data. (a) Network structure between the variables with the assumption of that the
pairs connected if corresponding PC is higher than 0.5. (b) ROC plane of TPR
and FPR at α = 0.01 (c) Evolution of TPR and FPR over time length at α = 0.1,
represented by blue and red points, respectively. (d) Evolution of TPR and FPR
over time length at α = 0.01, represented by blue and red points, respectively.

of 0.23) than other pairs and remains significant compared to unconnected pairs. Assuming

that there is no link between the pairs whose PC is less than 0.5, we obtain the network

presented in Fig. 6.1(a). Hypotheses testing using RSD at 0.1 and 0.01 significance levels

are implemented on the data and both cannot achieve successful network inference, as seen

in Fig. 6.1 (c) and (d), respectively. Here, the evolution of TPR and FPR over time is

shown by the blue and red circles, respectively. Due to the logarithmic scale of the axes

in the figure, FPR is not plotted if FPR = 0. However, in our cases FPR always exists,

even though TPR reaches to 1, since the method cannot exclude the link between nodes

8 and 9. Therefore, we can conclude that statistical tests method using RSD cannot infer

the network structure correctly. Figure 6.1(b) depicts TPR and FPR values on the plane
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at the significance level, α = 0.01, where the point (1, 0) corresponds to perfect inference

and the green circle appears if there is perfect inference at any considered time length,

however, which is not the case in this example.

6.2.2 Deterministic Discrete Systems

In this section, we present the results of the statistical tests method using RSD on the

coupled logistic and circle maps generated from the Eqs. (3.6), (3.12) and (3.13).

6.2.2.1 Logistic Map

We generate the data using Eqs. (3.6) and (3.13) for the coupling strength α = 0.06 and

the model parameter r = 4 and the adjacency matrix, A, of the network of 30 nodes,

shown in Fig. 6.2(a). The first 1293 iterations, considered as transients and discarded as

the standard deviation of 500 MLEs within a sliding time window becomes less than the

predefined threshold 10−3 (see discussion in Sec. 3.3.2.1). After transients, 105 data points

are recorded, and the system’s MLE converges to 0.51, which indicates chaotic dynamics.

Figure 6.2 (c), (d) shows the evolution of TPR and FPR over time length, represented by

blue and red circles, respectively. We implement hypothesis tests using RSD at α = 0.1 and

α = 0.01. Both cases do not achieve successful network inference, although implementing

the method at α = 0.01 slightly improves performance. Notably, FPR is not plotted when

it is equal to zero, as a consequence of the y axis on logarithmic scale. Figure 6.2(d) shows

the plot of the pairs of TPR, FPR at α = 0.01 significance level, where no points turn

green as an indication of no perfect inference.

6.2.2.2 Circle Map

We iterated the data using Eqs. (3.12) and (3.13) for the parameters α = 0.03 and r = 0.35

based on the network of 16 nodes, shown in Fig. 6.3(a). After 2060 iterations, 105 data

points were recorded, as the standard deviation of 500 MLE within a sliding time window

becomes less than the predefined threshold, 10−3 and MLE converges to 1.33 is an indicator

of chaotic behaviour.
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Figure 6.2: Statistical tests using RSD and coupled logistic maps. (a) Net-
work structure used in data generation by iterating coupled logistic map. (b) The
plot of the pairs of TPR, FPR at α = 0.01 significance level. In the case of perfect
inference, a point would be located in the upper-left corner and indicated by green
circles. (c) Evolution of TPR and FPR over time length at α = 0.1, represented by
blue and red points, respectively. (d) Evolution of TPR and FPR over time length at
α = 0.01, represented by blue and red points, respectively. Notably, FPR disappears
when it equals zero, a consequence of the logarithmic scaled y-axis. If there is a point
corresponds to perfect inference, it is coloured by green.

In Fig. 6.3, panels (c) and (d) show that the hypothesis testing method using RSD

captures links correctly as TPR reaches to 1 and FPR 0 at both significance levels α = 0.1

and α = 0.01. The performance of the method improved at the significance level α = 0.01

comparing to at α = 0.1 because the FPR lowered for shorter time series. Figure 6.3(b)

plots the pairs of TPR, FPR for different time lengths considered with α = 0.01, where

the pair of TPR, FPR corresponds to the perfect inference indicated by a green circle.
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Figure 6.3: Statistical tests using RSD in circle map. Panels (a)-(d) present
similar plots as in Fig. 6.2.

6.2.3 Deterministic Continuous Systems

6.2.3.1 Lorenz System

The Lorenz system, given by Eq. (3.16), is numerically solved based on the network of 16

nodes, shown in Fig. 6.4(a), with step size, h = 0.1, final integration time, tf = 2 × 104,

coupling strength, K = 0.2. Before recording the time series, the first 2094 data points

were considered transient periods since after this point the standard deviation of 500 MLEs

within a sliding time window becomes less than the predefined value, 10−2. The system’s

MLE converges to 0.99, which is evidence of chaotic behaviour. This guarantees that the

points will disperse across the probabilistic space, Ω, during the computation of MIR. The

variable x is used as a probe in network inference.

We implement the method in the data using both RSD and TWSD as shown in Fig.

6.4 and Fig. 6.5, respectively. In the former, we implement the method using RSD on the
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Figure 6.4: Statistical tests using RSD in Lorenz system. Panels (a)-(d)
present similar plots as in Fig. 6.2.

data at two significance levels, α = 0.1 and α = 0.01 (see Fig. 6.4(c), (d)). In both, FPR

reaches to zero for time length around 3 × 104, however, TPR never reaches 1 even though

it continues to improve over the length of the considered time series and eventually reaches

its peak at 0.96 for 2 × 105 data points. Therefore, there is no perfect inference in the

method of hypothesis tests with RSD at both significance levels α = 0.1 and α = 0.01. For

the shorter time length, we can say that the method at α = 0.01 is more conservative in

inferring links because both TPR and FPR are smaller, but they eventually produce the

same pair of TPR, FPR once the whole data is considered.

In the latter, we implement the method of statistical tests using TWSD at α = 0.1 and

α = 0.01 (see Fig. 6.5(c), (d)); In both, when the whole data is considered, TPR and FPR

are significantly high with their values, 0.91 and 0.80, respectively. It shows that the source

of connectivity can be explained by amplitude correlation more than phase synchronisation

in this system. Since, by removing phase synchronisation, the method results in high FPR
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Figure 6.5: Statistical tests using TWSD in Lorenz system. Panels (a)-(d)
present similar plots as in Fig. 6.2.

implying that unconnected pairs also have a high phase synchronisation. This leads to

inferring extra links that are not present in the original network. Figure 6.5(b) plots the

pair of TPR, FPR at 0.1 significance level, that is also an evidence of poor performance of

the method using TWSD.

6.2.3.2 Hindmarsch-Rose Model

We numerically solved the equation of coupled HR model (see Eq. (3.14)), based on the

network of 12 nodes in Fig. 6.6(a), with coupling strength, 0.1. After discarding the first

6641 data points since then, the standard deviation of 500 MLEs within the sliding time

window stabilises after this point, falling below a predefined threshold, 10−3. The time

series was recorded with the final integration time 2 × 104 and the step size 0.1. Maximum

Lyapunov exponent of the system converges to 0.41, which is evidence of chaotic behaviour,

and the variable p is used as a probe in network inference.
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Figure 6.6: Statistical tests using RSD in HR system. Panels (a)-(d) present
similar plots as in Fig. 6.2.

The methods using RSD (see Fig. 6.6) and TWSD(see Fig. 6.7) are implemented on

the data at significance levels α = 0.1 and α = 0.01. Figure 6.6 shows the result of the

method using RSD from the HR system. Panels (b) and (c) show the evolution of TPR and

FPR as a function of time length at significance levels, α = 0.1 and α = 0.01, respectively.

In both, the method using RSD performs poorly because of a high FPR exceeding 0.8.

This implies that connectivity does not arise solely from amplitude correlation, as the

method using RSD, lacking the amplitude correlation in the data, does not achieve perfect

inference. Figure 6.6 (b) shows this poor performance of the method depicting the pairs

of TPR, FPR on the plane, where the points are far from the perfect inference point at

(TPR,FPR) = (1, 0).

Figure 6.7 shows the results of the method using TWSD on the HR system. Panels (b)

and (c) demonstrate that it also performs poorly in network inference at both α = 0.1 and

α = 0.01 because of high FPR. Furthermore, Fig. 6.7(d) plots the pairs of (TPR,FPR) on
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Figure 6.7: Statistical tests using TWSD in HR system. Panels (a)-(d) present
similar plots as in Fig. 6.2.

the plane at α = 0.01, which is also an indicator that the method performs poorly, as the

points are far from perfect inference, TPR= 1 and FPR= 0. A high FPR indicates that

the method infers extra links not present in the original network, implying that destroying

phase synchronisation results in a significantly lower MIR between unconnected nodes and

connected ones. In other words, unconnected nodes in the system exhibit relatively high

phase synchronisation. In conclusion, the source of connectivity is not solely amplitude

correlation or phase synchronisation.

6.2.4 Stochastic Dynamical Systems

6.2.4.1 Stochastic Kuramoto Oscillators

We numerically solved the Stochastic Kuramoto model in Eq. (3.18) using the adjacency

matrix, A of the network in Fig. 6.8(a), using the Euler-Maruyama method following
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Figure 6.8: Statistical tests using RSD in Stochastic Kuramoto. Panels (a)-
(d) present similar plots as in Fig. 6.2.

the algorithm 4 (see Sec.3.3.3), with a step size, h = 0.05, the final integration time,

tf = 25×103, and stochastic strength, D = 0.05. The initial conditions for the θi are chosen

uniformly random from the interval of [0, 2π]. The first half of the data was discarded,

considering a transient period. Therefore, the last 250, 000 data points were used in the

network inference. We used the instantaneous frequency of the data computed from Eq.

(4.5) as a probe in network inference, implementing the method of statistical tests using

both RSD and TWSD.

Fig. 6.8 shows the results of the method using RSD on the stochastic Kuramoto

system. Panels (c) and (d) show the evolution of TPR and FPR as a function of time at

significance levels, α = 0.1 and α = 0.01. Here, TPR eventually reaches to 1 although FPR

stays at 0.06 in both, however, the significance level α = 0.01 improves FPR for shorter

time length. Consequently, the method of statistical tests using RSD cannot achieve the

perfect inference, which is also demonstrated in Fig. 6.8(b).
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Figure 6.9: Statistical tests using TWSD in Stochastic Kuramoto. Panels
(a)-(d) present similar plots as in Fig. 6.2.

We also implemented the method of statistical tests using TWSD on the data. In

Fig. 6.9, panels (c) and (d) show the evolution of TPR and FPR as a function of time

length at significance levels, α = 0.1 and α = 0.01. Here, the method does not achieve

perfect inference due to high FPR. Taking into account the method at the significance

level, α = 0.01 improves its performance as FPR decreases from 0.39 to 0.21 for the full

data set. Panel (b) shows the pairs of (TPR, FPR), which are distant from the perfect

inference (TPR, FPR) = (1, 0). In conclusion, the statistical test using RSD and TWSD

does not result in a perfect inference.

6.3 Summary

In this chapter, we discussed the method of hypothesis tests using RSD and TWSD for

network inference as proposed by the author in [2]. The method is based on the comparison
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of MIR values of the pairs of nodes in the original data with those in the surrogate data.

Using two surrogate data RSD and TWSD, we implemented the method of hypothesis

tests on different systems, namely, Gaussian-correlated data, logistic map, circle map, HR

system, Lorenz system, and stochastic Kuramoto phase oscillators.

mean PC1 std. PC 1 ρ MLE RSD2 TWSD2

Gaussian correlated 0.61 0.20 0.30 - (1.00, 0.03) (0.13, 0.12)
Logistic map 0.03 0.03 0.85 0.51 (1.00, 0.02) (1.00, 0.34)
Circle map 0.01 0.004 0.83 1.33 (1.00, 0.00) (1.00, 0.30)
HR system 0.26 0.18 0.68 0.41 (1.00, 0.90) (1.00, 0.90)

Lorenz system 0.02 0.02 0.24 0.99 (0.96, 0.00) (1.00, 0.91)
Stochastic Kuramoto 0.11 0.12 0.22 - (0.96, 0.06) (1.00, 0.39)

Table 6.1: Summary of the results.
1 PC values corresponding p-values are less than 0.05, are considered.
2 The pair of (TPR, FPR) is given.

Table 6.1 summarises the results of the network inference from the trajectories of the

systems considered by presenting the pairs of (TPR,FPR) once the whole data set is

considered at the significance level, α = 0.01. It also provides the mean absolute PC and

its standard deviation in pairs with statistically significant PC values (with values p less

than 0.05), as well as the Kuramoto phase order, ρ, of the phases, and the MLE of the

trajectory for the corresponding system. In the logistic and circle maps, although their

phases are highly synchronised and the mean absolute PC is quite low, RSD works better

than TWSD. It is possible to give other examples from the results in Table 6.1. These

results imply that the level of mean PC or ρ does not give any information about the

source of connectivity. Finally, we can state two drawbacks of the method of hypothesis

tests using RSD or TWSD:

1. RSD and TWSD destroys all amplitude correlation or phase synchronisation among

the variables, respectively. However, the unconnected pairs of nodes might have am-

plitude correlation or phase synchronisation even at a lower level than the connected

pairs because they are connected through another node. Therefore, a method that

does not destroy all amplitude or phase relation at once but gradually, might be

more successful in network inference.
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2. Identifying the source of connectivity in a network is a subtle task. Their global

phase order ρ and mean absolute PC do not give any information about the source

of connectivity. Therefore, we do not have any sign to select appropriate surrogate

data.

To overcome the drawbacks, we introduce the APMSD method in the next chapter.

It allows us to investigate the source of connectivity and infer network successfully for all

systems presented here. By doing that, APMSD entails foregoing advantage of the present

method that is applicable to time series data without prior knowledge of its network.



Chapter 7

Network Inference using APMSD

In the previous chapter, we studied the method of hypothesis tests with RSD and TWSD

implemented on various network and dynamics topologies and discussed its pros and cons.

We propose the APMSD method to address the two main drawbacks: (1) to identify the

source of connectivity as a contribution of instantaneous amplitudes and phases; (2) to

infer the network structure considering different levels of amplitude correlation and phase

synchronisation by destroying them gradually instead of all at once, as in the use of RSD

and TWSD.

This chapter is dedicated to introducing the method with its theoretical background

and to presenting the results from different dynamics and network topologies.

7.1 Theory of APMSD Method

Here, we introduce a new approach to generate surrogate data sets for network inference,

which we call the APMSD method. Because connectivity can emerge through the contri-

bution of amplitude correlation and/or phase synchronisation, which is a priori unknown,

our method transforms a signal x(t) into the analytic signal, z(t), introduced in 1946 by

Gabor [23], by using the HT (see Sec. 4.3.3). This allows us to compute the instantaneous

amplitude, A(t), and instantaneous phase, ϕ(t), of the real signal, x(t). By introducing

a percentage of randomisation pc1 of the instantaneous amplitude, A(t), and pc2 of the

140
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instantaneous phases, ϕ(t), we can generate a surrogate data set for x(t) by computing

the real part of z′(t), where z′(t) is the analytic signal of the randomised instantaneous

amplitude, A′(t) and the instantaneous phases, ϕ′(t).

In particular, if x(t) is the real signal of time recordings of a variable X, one can

compute its analytic signal, z(t) and its components, the instantaneous amplitudes, A(t)

and the instantaneous phases, ϕ(t) using Eq.(4.9).

Next, we compute the randomised instantaneous amplitudes and phases, A′
pc1(t) and

ϕ′
pc2(t), respectively, using the percentages, pc1, of randomisation of instantaneous ampli-

tudes and pc2 percent of randomisation of instantaneous phases. For instance, pc1 = 10 and

pc2 = 50 mean that we replace 10% of instantaneous amplitudes with uniformly selected

random numbers in xAr and 50% of the instantaneous phases with uniformly selected ran-

dom numbers in xϕr to obtain randomised instantaneous amplitude A′(t) and randomised

instantaneous phases ϕ′(t). In this context, xAr and xϕr are the intervals of real numbers

between the minimum and maximum values in A(t) and ϕ(t) of all N recordings x(t), re-

spectively. In particular, we do this randomly choosing pc1 percent of A(t) and pc2 percent

of ϕ(t), and replacing them with the same number of uniformly random numbers in the

intervals xAr and xϕr , respectively, resulting in A′
pc1(t) and ϕ′

pc2(t). Finally, we compute a

surrogate data set, x′(t), of x(t) by computing

x′(t) = A′
pc1(t) cos(ϕ′

pc2(t)), (7.1)

which is the real part of the randomised analytic signal z′(t) (see Eq. (4.9)). Algorithm 6

summarises the steps in the computation of APMSD.

After generating APMSD at any pair of randomisation percentage, (pc1, pc2) we imple-

ment hypothesis testing as discussed in Chp. 6 (see algorithm 5). The result of hypothesis

tests using APMSD for any pair of percentages, pc1 and pc2, is an inferred adjacency

matrix, Ã. By varying pc1 and pc2 in [0, 100] and comparing the resulting Ã with the orig-

inal adjacency matrix, A, one can identify the best pairs that result in successful network

inference, that is, in Ã = A.
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Algorithm 6 Algorithm for APMSD
1: Input signal x(t)
2: Input randomisation parameters pc1 and pc2
3: Obtain analytic signal, z(t) from x(t)
4: Compute A′

pc1 ▷ A′
pc1 is pc1% randomised of original amplitude

5: Compute ϕ′
pc2 ▷ ϕ′

pc2 is pc2% randomised of original phases
6: z′(t) = A′

pc1e
iϕ′

pc2 ▷ Randomised analytic signal
7: x′(t) = A′

pc1(t) cos(ϕ′
pc2(t)) ▷ Randomised real-valued signal

8: Return x′(t)

Comparing the inferred adjacency matrix Ã with the original adjacency matrix A, we

compute TPR and FPR for any pair of percentages, (pc1, pc2) in [0, 100] × [0, 100] (see

Eq.5.18). We then partition this space into a grid 11 × 11, which results in 121 pairs

(pc1, pc2) at the nodes of the grid. For the entire data set, we represent the values of TPR

and FPR on this parameter space. In particular, TPR values represented by the colour

map (see, for example, the colour map on the panel (c) in Fig. 7.1) and the presence of

FPR is shown by the red circle whose radius is proportional to FPR the value in the given

cell. If the pairs of randomisation parameters lead to perfect inference, which mean TPR

= 1 and FPR = 0, the green circle indicates the corresponding cell.

Finally, for any time length of the data set, we compute the ROC distance (see Eq.

(5.19)) over the parameter space and plot the pair of (TPR,FPR) that corresponds to the

minimum distance. This plot is useful because it gives us the minimum time length of the

data set in which the method can achieve perfect inference in the sense that Ã = A (see,

for example, panel (b) in Fig. 7.1).

7.2 Results

7.2.1 Gaussian Distributed Correlated Data

Here, we present the result of the implementation of the method of hypothesis tests using

APMSD on the same data as in Sec. 6.2.1. Assuming that there is no connection between

nodes 8 and 9 due to the relatively small PC between them, 0.23, the bar graph shows
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Figure 7.1: Statistical tests using APMSD on Gaussian-distributed data.
(a) The plot of the ordered MIRs, where purple bars represent the connected pairs,
blue bars unconnected ones. The grey stripe classifies into connected and uncon-
nected pairs of nodes. (b) Plot of parameter space of pc1 and pc2, where the colour
map illustrates the TPR, with red circles indicating the amount of FPR (size pro-
portional), green circles highlight pairs of parameters leading to correct network
inference. (c) The evolution of TPR and FPR over time length is presented. The
method requires at least 500 data points to find at least one pairs of randomisation
parameters, pc1, pc2 resulting in the perfect inference.

that it is possible to identify a range of thresholds that lead to perfect inference, indicated

by the grey stripe in Fig. 7.1(a). Here, the purple bars indicate MIR values of connected

pairs and the blue bars MIRs of the unconnected pairs.

In Fig. 7.1(b), the colour map shows the values of TPR of the network inference for the

corresponding pairs of randomisation parameters, (pc1, pc2), while the red circle represents

the presence of FPR in any cell of parameter space, with its radius proportional to the

values of FPR. To highlight perfect inference in any cell of the parameter space, in other

words, the pairs of randomisation parameters satisfy TPR = 1 and FPR = 0, we used the

green circle. The x axis represents the randomisation parameters of instantaneous phases,
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pc2, and the y axis represents the randomisation parameters of instantaneous phases, pc1.

Figure 7.1(b) shows that solely fully phase randomised surrogate data (corresponds to

TWSD for pc1 = 0 and pc2 = 100) or fully amplitude and phase randomised surrogate

data (which corresponds to RSD for pc1 = 100 and pc2 = 100) cannot achieve successful

network inference as expected, since RSD and TWSD did not lead to perfect inference in

the previous chapter. However, hypothesis tests using APMSD achieve successful network

inference for some pairs of randomisation parameters that the green circles indicate.

For any time length, we can build a parameter space in the same way. Then, we can

find the best pairs of (TPR,FPR) that give the minimum ROC distance (see Eq. (5.19)).

Figure 7.1(c) shows that there is at least one pair of randomisation parameters, (pc1, pc2),

which leads to perfect network inference for all the time lengths considered. It is important

to note that the y -axis is on the logarithmic scale, so the FPR value does not appear if it

is equal to 0.

7.2.2 Deterministic Discrete Systems

7.2.2.1 Logistic Map

Here, we present the result of the implementation of the method of hypothesis tests using

APMSD on the same data as in Sec. 6.2.2.1. As shown in Fig. 7.2(a), there is a range

of threshold values that leads to the perfect inference. However, in the upper right corner

(corresponds to RSD) and in the lower right corner (corresponds to TWSD) in the param-

eter space, we cannot infer the network successfully, as shown in Fig. 7.2 (b), which is in

agreement with our findings in Table 6.1. However, hypothesis tests using APMSD achieve

perfect inference for the parameters of the randomisation percentages, (pc1, pc2) shown by

green circles. Figure 7.2(c) demonstrates how the pairs of (TPR,FPR) change over time

length; at least 3 × 104 data points are needed to infer the network structure correctly.
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Figure 7.2: Statistical tests using APMSD on the coupled logistic map. Pan-
els (a) plots the ordered MIR values, where the grey stripe classifies into connected
(indicated by purple bars) and unconnected (indicated by blue bars) pairs of nodes,
(b) shows the plot of parameter space of pc1 and pc2, where the colour map illus-
trates the TPR, with red circles indicating the amount of FPR (size proportional),
green circles highlight pairs of parameters leading to correct network inference, and
(c) plots the evolution of TPR and FPR over time length is presented. The method
requires at least 3 × 104 data points to find at least one pairs of randomisation pa-
rameters, pc1, pc2 resulting in perfect inference.

7.2.2.2 Circle Map

Here, we present the result of the implementation of the method of hypothesis tests using

APMSD on the same data as in Sec. 6.2.2.2. As shown in Fig. 7.3(a), it is possible to

find a range of thresholds leading to perfect inference. When we consider the full data

length, while the randomisation parameters in the upper right corner of the parameter

space (corresponds to RSD) achieve the perfect inference, the randomisation parameters in

the lower right corner of the parameter space (corresponds to TWSD) do not allow inferring

the original network successfully, as shown in Fig. 7.3(b). These results agree with our

findings in Table 6.1, that RSD achieves the network inference successfully but TWSD
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do not. However, the hypothesis test using APMSD achieves perfect inference for some

parameters of randomisation percentages, (pc1, pc2) shown by the green circles. Figure 7.3

(c) demonstrates the change in the pairs of (TPR,FPR) over the time length; at least 104

data points are needed to infer the network structure correctly.

Figure 7.3: Statistical tests using APMSD on the coupled circle map. Panels
(a)-(c) present comparable plots as in Fig. 7.2.

Besides the dynamics, network size and its structure, one of the important parameter

affects the performance of network inference is the network density (for density see Sec.

2.2.1). We used networks of 12 nodes with varying numbers of links to test the proposed

method against network density (see Fig. 7.4). The data sets are generated from the

coupled circle maps based on the connectivity of 12 nodes with a varying number of links,

which creates the different density given on the y-axis. We also used different time duration

of the data sets to observe the performance change through it, as shown on the x-axis. The

minimum ROC distance for each network and time length that is obtained using the best

pair of randomisation parameters, represented by the colour map, where the dark blue

region stands for the perfect inference i.e. the ROC distance (see 5.19) equals zero. The
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method of hypothesis tests using APMSD can achieve inference for sparse networks for the

shorter time-series length, whereas it requires longer time series to infer the denser network

successfully.
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Figure 7.4: Density of network vs time-series length. We used networks of 12
nodes with varying number of links leading to different level of density. Colour map
shows the ROC distance of network inference for the corresponding time length and
density.

7.2.3 Deterministic Continuous Systems

7.2.3.1 Lorenz System

Here, we present the result of the implementation of the method of hypothesis tests using

APMSD on the same data as in Sec. 6.2.3.1. When considering the whole length of the

data, it is possible to find a range of thresholds leading to perfect inference, as shown in

Fig. 7.5(a). When we randomise all instantaneous amplitudes and almost all instantaneous

phases, the method can infer the network successfully, as shown in Fig. 7.5(b) by the green

circles. Interestingly, the method of hypothesis tests using RSD cannot achieve perfect
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Figure 7.5: Statistical tests using APMSD on the coupled Lorenz system.
Panels (a)-(c) depict comparable plots as in Fig. 7.2.

inference with TPR = 0.96 and FPR = 0 (see Table 6.1) but the parameters leading to

fully randomised amplitudes and phases (shown in the upper right corner for the pair of

parameters (pc1, pc2) = (100, 100)) infer the network correctly. This difference might come

from the different randomisation processes; RSD randomises all the signals directly, while,

in this method, we compute the randomised signal from the randomised amplitude and

phases using Eq. (7.1). Furthermore, the cell in the lower right corner of the parameter

space, i.e. (pc1, pc2) = (0, 100), shows the result of (TPR,FPR) = (1, 0.16), randomising all

phases similar to the TWSD whose result of network inference is (TPR,FPR) = (1, 0.90)

(see Table 6.1). The difference in the phase randomisation process between this method

and TWSD is that the first is based on the HT while the latter randomises phases through

the FT in the frequency domain (see 6.1.2.2). This difference causes a significant decrease

in FPR. Figure 7.5 (c) demonstrates the change in the pairs of (TPR,FPR) over the time

length; at least 1.5 × 105 data points are required to infer the network structure correctly.
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Figure 7.6: Statistical tests using APMSD on the HR system. Panels (a)-(c)
depict comparable plots as in Fig. 7.2.

7.2.3.2 Hindmarsh-Rose Model

Here, we present the result of the implementation of the method of hypothesis tests using

APMSD on the same data as in Sec. 6.2.3.2. When considering the whole length of the

data, it is possible to find a range of thresholds leading to perfect inference, as shown

in Fig. 7.6(a). When we randomise all instantaneous amplitudes and phases (or only all

instantaneous phases), corresponding to the RSD (or the TWSD), the method of hypothesis

tests with APMSD gives high FPR as expected in Table 6.1 (see Fig. 7.6(b)). There are

some pairs of randomisation parameters, (pc1, pc2), which are shown by green circles, which

lead to inferring the network structure correctly. Thus, we conclude that the source of

connectivity comes from the combination of instantaneous amplitudes and phases. Figure

7.6(c) show the TPR and FPR as a function of time length: we require at least 2 × 105

data points to have perfect inference.
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Figure 7.7: Three trajectories of the coupled deterministic Kuramoto oscil-
lators. The trajectories generated based on the connectivity of 6-RL of 16 nodes in
(a). Kuramoto order of the trajectories, ρs, increases as coupling strength increases
in (b). We choose three trajectories having different level of ρ, shown by red circles.
MLEs of the trajectories have been shown, and the selected trajectories are pointed
out by red circles in (c). As MLE is presented in log-scale and third trajectory is
not chaotic, there are only two circles appear in the plot. (d)-(f) show MLEs as a
function of time (g)-(j) show the instantaneous frequencies of the trajectories for 16
nodes, where the non-chaotic trajectory results in constant frequencies.
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7.2.3.3 Deterministic Kuramoto Oscillators

In this section, we investigate the effect of phase synchronisation on the performance of

our approach. To do that, we implement the method of hypothesis test using APMSD on

three trajectories generated from deterministic Kuramoto phase oscillators. In this sense,

based on connectivity in the 6-RL of 16 nodes (see Fig. 7.7(a) and Sec. 2.3), we generated

the trajectories with 105 data points and 0.1 step size by the coupled deterministic Ku-

ramoto oscillators, using Eq. (3.17), for the coupling strength, K ranging in [2, 16.7]. The

Kuramoto phase order, ρ, tends to increase as K increases. We choose three trajectories

with different levels of ρ, to test our approach in different levels of phase synchronisation,

are shown by red circles in panel (b) and their MLEs are shown in panel (c) in Fig. 7.7.

As the MLEs are presented in log-scale and the third trajectory is not chaotic, we see only

two red circles in this figure. Panels (d)-(e) show MLEs as a function of time; the first two

are chaotic, but the third is a non-chaotic trajectory. As we discussed previously in Sec.

3.3.2.3, instead of phases, we used instantaneous frequencies (as shown in Fig. 7.7(g)-(j))

as probes to infer the network.

It is impossible to assign a threshold clustering the MIR values in two groups as con-

nected and unconnected in all cases (see Fig. 7.8(a), (c), (e)). Therefore, our approach

cannot provide any pairs of randomisation parameters (pc1, pc2) to infer the network suc-

cessfully (see Fig. 7.8(b), (d), (f)). The phase synchronisation of the trajectories increases

from left to right, and we observe that both TPR and FPR of our approach increase as ρ

increases.

7.2.4 Stochastic Dynamical Systems

7.2.4.1 Stochastic Kuramoto Oscillators

In this section, we present the results of our approach on the stochastic Kuramoto phase

oscillators in two parts. Firstly, we employ the method on the trajectory used in Sec.

6.2.4.1. Recall that we cannot successfully infer the network using hypothesis tests using

RSD and TWSD. In the second part, our aim is to investigate the effect of the stochastic
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Figure 7.8: Statistical tests using APMSD on the instantaneous frequen-
cies of three trajectories generated by deterministic Kuramoto oscillators.
Kuramoto phase order, ρ, increases from left to right. Panels (a), (c), and (e) show
that there is no threshold value that gives perfect inference. Panels (b), (d) and (f)
show the results of the statistical test using APMSD in three trajectories. There
are no pairs of randomisation parameters, (pc1, pc2), which allows perfect inference.
Both TPR and FPR increases as ρ rises.

strength, D, network types, and time length on the performance of the method. In this

sense, we used the network of 16 nodes and 26 links, Watts-Strogatz small-world network,

Erdős-Rényi random network and Barabási-Albert scale free network of 30 nodes with

comparable density.

Figure 7.9(a) shows that there is no threshold separating connected pairs from uncon-

nected ones, so thresholding cannot achieve perfect inference for the whole data. As hy-

pothesis tests using RSD and TWSD cannot infer the network successfully, the correspond-

ing randomisation parameters, (pc1, pc2) = (100, 100) to RSD and (pc1, pc2) = (0, 100) to

TWSD do not allow the network to be inferred successfully due to FPR. However, there is
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a pair of randomisation parameters, (pc1, pc2) = (90, 100), leads to the successful inference

as shown by the green circle in Fig. 7.9(b). The values of TPR and FPR in log-scale as

a function of time length are presented in Fig. 7.9(c) so FPR = 0 is absent. The method

requires at least 2.5 × 104 data points to find at least one pair of randomisation parameter,

(pc1, pc2), leading to perfect inference meaning that TPR = 1 and FPR = 0.

Figure 7.9: Results of the stochastic Kuramoto system. Panels (a)-(c) depict
comparable plots as in Fig. 7.2.

We presented the results of a series of simulations of our approach on different types of

networks to assess the impact of stochastic strength D, and time length based on network

types (see Fig. 7.10). We expect to see that the method performs poorly as the randomness

of the system, D, increases. From the simulations so far, we also expect to see better

inference performance as time length increases and that there is not much difference among

the network types with the same size and comparable density (see Sec. 5.4).

Figure 7.10 shows that the ROC distance for each pair of time length and stochastic

strength, D, where dark blue corresponds to perfect inference with zero ROC distance, and

yellow stands for the worst case with (TPR,FPR) = (0, 1) the corresponding ROC distance
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Figure 7.10: Statistical tests using APMSD on the stochastic Kuramoto
over parameter D and time-series length. For each D and time length, the
APMSD method produces 121 pairs of TPR, FPR in an 11×11 parameter space. The
colours indicate the minimum Euclidean distance of these pairs to (1, 0) representing
perfect inference. The results for different network topology are presented in panels,
(a) 16 nodes with 26 links (b) Watts-Strogatz small world network with 30 nodes and
60 links (c) Erdös-Renyi random network with 30 nodes and 55 links (d) Barabási-
Albert scale-free network with 30 nodes and 57 links.
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√

2. In all cases of network types, we see that a higher stochastic strength, D, requires

a longer time to infer the network correctly. In particular, in the case of the network of 16

nodes (see Fig. 7.10(a)), at least 5 × 103 data points are required for D < 0.1, but it is

necessary to have a longer time length for D > 0.1 to infer network successfully. For the

highest D considered, the 105 data points allow the method to infer the network correctly.

Results from all other network types (see Fig. 7.10(b)-(d)), namely, Watts-Strogatz

small world, Erdős-Rényi random and Barabási-Albert scale free networks, respectively,

show similar pattern in the sense of network inference performance since they have the

same number of nodes, N = 30 and comparable density. This supports our findings in Sec.

5.4. In all, for D = 0.2, the longest time length considered, 105 data points, are not enough

to infer the network correctly; however, for D < 0.1, the ROC distance becomes very close

to zero or at zero. Therefore, we can conclude that there are three important factors in

network inference: (1) the network size affects the performance of the method, and we can

see that it shows higher performance in the smaller networks by comparing the results from

the network of 16 nodes and those from the network of 30 nodes. (2) Stochastic strength,

D, has an effect on the dynamics of the system; higher D results in higher randomness

and decreases the performance of network inference. (3) Time length is another factor that

affects the performance of network inference. In general, longer time length helps MIR to

be able to capture the interactions among nodes, especially in the presence of randomness.

7.2.5 Heterogeneous Network

So far, we have been studying the network with binary adjacency matrix but in this section,

we aim to test our approach on the weighted adjacency matrix. Following [57], we obtain

the weighted adjacency matrix,

Wij = Aij(1 + gξij), (7.2)

where A is a binary adjacency matrix with the entries 0s and 1s, g is the stochastic strength

of weighted adjacency matrix, and ξ is M -by-M matrix of a network of M nodes, whose
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Figure 7.11: Statistical test using APMSD on the heterogeneous dynam-
ics and network. The plots show the minimum Euclidean distance of the pair
of (TPR,FPR) to the (1, 0) indicative of perfect inference, d̃, for network types (a)
Watts-Strogatz small world network of 16 nodes and 32 links, (b) Erdös-Rényi ran-
dom network of 16 nodes and 32 links.

entries are randomly selected from the interval [−1, 1]. We previously used Eq. (3.13)

to generate data from coupled maps based on connectivity in the adjacency matrix A.

Replace A with W in Eq. (3.13), one can obtain the coupled map equation based on the

weighted connectivity in W by,

xin+1 = (1 − α)f(ri, xin) + α

ki

M∑
j=1

Wijf(rj , xjn) (7.3)

The system we study in this section also differs from the previous ones in the sense of

dynamics. The dynamics of the nodes of a network in previous simulations were identical

with the same model and parameters; however, we generate the data from the system of



7.3. COMPUTATIONAL ASPECT 157

the coupled circle maps using a randomly assigned parameter, r in [0.01, 0.35], for each

node in the network, resulting in nonidentical dynamics of nodes.

We used the adjacency matrix of the Watts-Strogatz small world and Erdős-Rényi

random networks of 16 nodes and 32 links. After getting the weighted adjacency matrix,

W, from Eq. (7.2), we generate the data using the coupled circle map in Eq. (3.12) as f

in Eq. (7.3) with coupling strength, α = 0.1.

Figure 7.11 shows the ROC distance (see Eq. (5.19)) by colour ranges from dark blue to

yellow, where dark blue represents the zero ROC distance, in other words, perfect inference

for two different network structures, Watts-Strogatz small-world network on panel (a) and

Erdős-Rényi random network on panel (b), both with 16 nodes and 32 links. They show

similar performance in the sense of time length and stochastic strength of the weighted

network g. At least 2×104 data points are required to infer the network structure correctly

for most of the g values. Furthermore, no clear effect of g on network inference is observed.

7.3 Computational Aspect

Although our approach provides a new perspective to infer network structure and be able

to observe contributions of amplitude correlation and phase synchronisation, there are two

main drawbacks of it: (1) If the network structure is a priori unknown, we do not have any

clue about the best pairs of randomisation parameters, (pc1, pc2). (2) Since we consider

all parameter space and it increases the computational cost. For example, we run our

simulation in a parameter space 11 × 11, which means that we repeat the hypothesis tests

121 times for each pair of (pc1, pc2).

We have two main factors influencing computational cost: (1) network size and (2) time

length. Figure 7.12 shows the relation of computational time with the number of nodes,

M , the number of pairs, M(M−1)
2 and the time length, L, for some simulations of the

coupled logistic maps. It shows that the 2nd degree polynomial regression fits well to the

computational time as a function of the number of nodes, but the linear regression fits well

to it as functions of the number of pairs and the time length. To obtain a single equation
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Figure 7.12: Computational time as a function of (a) number of nodes, (b) number
of pairs, (c) and time length.

Estimate SE test-statistics p
Intercept -22.5 1.22 -18.51 3.141e-12

Number of Pairs 0.66 0.01 63.006 1.3265e-20
Time Length 0.79 0.045 17.27 9.0957e-12

Table 7.1: Model output of multiple linear regression.

involving these two factors to estimate computational time, we conducted a multiple linear

regression using the values of number of pairs and time length as independent variables

and computational time as response variable. The model output is given in Table 7.1. R2

value of the model is 0.99 meaning that the 99% of the total variance can be explained by

the model, indicating the model fits the data well. One can estimate the CPU time,

TCPU = −22.5 + 0.66 × M(M − 1)
2 + 0.79L

= −22.5 + 0.33M2 − 0.33M + 0.79L,

where M is the number of nodes and L time length in a thousand unit, i.e. L = 30 for

3 × 104 data points. Note that the computational time is measured in parallel computing

of 20 workers in Matlab on 10 core Apple M2 Pro CPU with 16 GB RAM.
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7.4 Summary

In this section, we introduced a novel method, APMSD, based on the randomisation of pc1

percent of instantaneous amplitudes and pc2 percent of instantaneous phases to generate

surrogate data. This approach allows us to test connectivity among nodes using hypoth-

esis tests and gain a better understanding of the source of connectivity in terms of both

the amplitude and phase of a given signal. For some pairs of (pc1, pc2), it can also infer

the network structure correctly in a wide range of applications, including deterministic

discrete-time systems, deterministic or stochastic continuous-time systems. We evaluated

the method in the sense of not only dynamics, but also network topology. We applied the

method to the data generated based on various network types, including Watts-Strogatz

small world, Erdös-Rényi random and Barabási-Albert scale free networks. For networks

with 30 nodes and comparable density, the method consistently produced similar results,

suggesting that the network type does not significantly influence network inference. How-

ever, for larger networks, the method incurs significant computational effort, as CPU time

is proportional to the square of the network size. Regarding network topology, we found

that network size and density affect the method’s performance. Specifically, the method

can capture connectivity more accurately for smaller and more sparse networks.

In conclusion, the APMSD method considers the combination of amplitude correla-

tion and phase synchronisation as sources of connectivity. It provides information on their

contributions to network connectivity and achieves perfect inference for certain pairs of

randomisation parameters (pc1, pc2). However, applying this method to real-life data is

challenging unless the initial network is known beforehand, as determining the randomisa-

tion parameters remains an open question.



Chapter 8

Conclusion & Outlook

8.1 Conclusion

In this thesis, we suggested a novel method, APMSD, to infer the network topology from

synthetic data generated from various dynamics and network types. It also allows us to

investigate the source of connectivity in a network in terms of combination of instantaneous

amplitudes and phases.

In Chapter 2, we introduced the definitions and properties of bidirectional and weighted

networks, along with well-known network models such as ring lattice, random, small-world,

and scale-free networks. This foundation sets the stage for the discussion of network

inference in the subsequent chapters.

In Chapter 3, we briefly discussed the non-linear dynamical system and chaos theory

to elaborate the dynamical behaviours of models used in the subsequent chapters. In this

sense, we discuss the numerical integration methods for ordinary and stochastic differential

equations to solve the model equations. We used Lyapunov exponents to measure the

average exponential divergence (or convergence) through the trajectory using the approach

in [8].

Chapter 4 discusses the dynamical behaviour of the system in terms of synchronisation.

Although chaotic synchronisation may seem paradoxical due to the sensitivity of chaotic

systems to initial conditions and the idea of synchrony implying harmony among system

160
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units, it can occur under certain coupling configurations. We illustrate this phenomenon

through examples of CS, PS, and IPS within a network context. We delve into the concepts

of phases, amplitudes, and frequencies, as well as the analytic signal, using the HT as

introduced by Gabor [23]. Furthermore, to assess phase and amplitude order within a

network, we employ three measures from the literature. This comprehensive approach

allows us to thoroughly investigate the synchronisation behaviour of the systems examined

subsequently.

Chapter 5 is dedicated to discussing information-theoretic approaches with applica-

tions. In the context of network inference, we find that information-theoretic approaches

outperform PC in capturing nonlinear and linear relations. Additionally, we explored var-

ious probes such as the sine of the signal, time derivative, etc., and concluded that the

effectiveness of a probe depends on its ability to differentiate between connected and un-

connected pairs. We discussed the effect of structural behaviour on network inference, such

as random, small-world, scale-free networks. We did not observe any significant effect of

network types with forty nodes and comparable density on network inference.

After some discussion on the dynamical behaviour of the systems in Chapters 3 and

4 and structural properties of a network in Chapter 5, we focused on the thresholding

problem in the last two chapters of this thesis. Chapter 6 is dedicated to discussing network

inference through statistical tests using RSD and TWSD, proposed by the author in [2].

While the former destroys all linear and nonlinear relationships in the data, the latter

destroys the phase synchronisation but preserves the linear correlation by randomising the

phases using the FT. However, there are some degree of amplitude correlation and phase

synchronisation present among the nodes even if they are not connected because they are

actually connected through some other node/s. When the surrogate data destroy all linear

and / or non-linear relations, the method captures the extra links in many simulations that

results in high FPR.

To address this issue, we presented a novel method in network inference: the method of

statistical tests using APMSD. In this approach, we introduced two percentage parameters

to randomise instantaneous amplitudes and phases, partially using the concept of analytic
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signal derived by HT. This approach allows us to infer the network structure successfully

for some pairs of randomisation parameters (pc1, pc2), while also providing information

about the source of connectivity as a combination of amplitude correlation and phase

synchronisation.

8.2 Outlook

As a further investigation built on the APMSD method introduced in this thesis, it is

possible to train a machine learning algorithm to establish a relationship between the

dynamics of the system and the pairs of percentages, (pc1, pc2), leading to perfect inference

because we found no straightforward relation between them. This approach allows our

method to become applicable to time series data without prior knowledge of the initial

network.

Furthermore, in this thesis, we explored network inference via hypothesis testing using

surrogate data, which lacks information about the source of connectivity. Alternatively,

one can address the same problem of network inference without thresholding by framing it

as a classification problem in multidimensional space. Such a classification algorithm may

consider various factors that influence network inference, such as amplitude correlation and

phase synchronisation.

For example, we plotted pairs of pairwise phase order, as defined in Section 4.4.3, and

the absolute value of Pearson correlation (PC) for both the HR system (see Fig. 8.1(a))

and the circle map (see Fig. 8.1(b)), using the same data discussed in Chapters 6 and

7. In this plot, connected and unconnected pairs are represented by blue and red circles,

respectively. Panel (a) demonstrates a clear distinction between the groups, while panel

(b) exhibits less pronounced separation. Consequently, it is feasible to investigate network

inference as a classification problem, taking into account factors that influence network

inference.

Another potential extension of network inference could involve considering causal rela-

tions using methods such as transfer entropy and/or Granger causality after inferring the
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Figure 8.1: Classification problem. Network inference discussed in this thesis
can be re-framed as a classification problem. Here, we demonstrate this concept
using two factors influencing network inference: amplitude correlation and phase
synchronisation. Plots of the pairs of pairwise phase order (defined in Sec. 4.4.3)
and PC are shown for the trajectories from (a) HR system utilised to produce Fig.
6.6 and (b) circle map utilised to produce Fig. 6.3. Here, connected and unconnected
pairs are indicated by blue and red circles, respectively.

skeleton of the network. Although this thesis focuses primarily on bidirectional network

inference, causal interactions are also crucial in many scenarios. They can be investigated

through the aforementioned methods after inferring the bidirectional network. However,

this approach may incur significant computational costs.
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Inferring the connectivity of coupled oscillators from time-series statistical similarity
analysis. Scientific Reports, 5(1):10829, 2015.

[65] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks.
Nature, 393(6684):440–442, 1998.


	Dedication
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Brief Introduction to Network Theory
	From Graph Theory to Networks
	Structure of Networks
	The Adjacency Matrix and Density of a Network
	Node Degree and Degree Distributions
	The graph Laplacian
	Path Length, Average Path Length and Diameter of a Network
	Clustering Coefficient

	Network Types
	Ring Lattice
	Random Networks
	Small World Networks
	Scale-Free Networks

	Summary

	Brief Introduction to Nonlinear Dynamics and Chaos Theory
	Nonlinear Dynamical Systems
	Numerical Integration Methods for ODEs

	Chaos Theory
	Lyapunov Exponents for 1-dimensional maps
	Lyapunov Exponents for Multi-dimensional Systems

	 Coupled Dynamical Systems
	Deterministic Discrete Systems
	Deterministic Continuous Models
	Stochastic Dynamical Systems

	Summary

	Chaotic Synchronisation
	The Concept of Synchronisation
	Complete Synchronisation
	Drive-response Systems
	Bidirectionally Coupled 2-Dimensional System
	Multidimensional Systems

	Phase Synchronisation
	Circular Motion & Sine Wave
	Fourier Transform & Spectrogram
	Analytic Signal
	An example of PS and IPS in chaotic system

	Synchronisation Measures
	Amplitude Order
	Kuramoto Phase Order
	Pairwise Phase Order

	Summary

	Information-theoretical Approaches
	Motivation
	Information Theory
	Shannon Entropy
	Mutual Information
	Mutual Information Rate
	Other Methods

	Applications
	Gaussian Distributed Correlated Data
	Deterministic Discrete Systems
	Deterministic Continuous Systems

	Dynamics on Network Models
	Coupled Logistic Map
	Coupled Circle Map
	Coupled Lorenz System
	Coupled Kuramoto Oscillators
	Impacts of CS and PS on Network Inference

	Summary

	Network Inference combining MIR and statistical tests
	Statistical Tests and Surrogate Data
	Statistical Tests
	Surrogate Data

	Network Inference using MIR and statistical tests
	Gaussian Distributed Correlated Data
	Deterministic Discrete Systems
	Deterministic Continuous Systems
	Stochastic Dynamical Systems

	Summary

	Network Inference using APMSD
	Theory of APMSD Method
	Results
	Gaussian Distributed Correlated Data
	Deterministic Discrete Systems
	Deterministic Continuous Systems
	Stochastic Dynamical Systems
	Heterogeneous Network

	Computational Aspect
	Summary

	Conclusion & Outlook
	Conclusion
	Outlook

	Bibliography

