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Abstract
The global decline of biodiversity, driven by habitat degradation and climate breakdown, is a significant concern. 
Accurate measures of change are crucial to provide reliable evidence of species’ population changes. 
Meanwhile citizen science data have witnessed a remarkable expansion in both quantity and sources and serve 
as the foundation for assessing species’ status. The growing data reservoir presents opportunities for novel and 
improved inference but often comes with computational costs: computational efficiency is paramount, 
especially as regular analysis updates are necessary. Building upon recent research, we present illustrations of 
computationally efficient methods for fitting new models, applied to three major citizen science data sets for 
butterflies. We extend a method for modelling abundance changes of seasonal organisms, firstly to 
accommodate multiple years of count data efficiently, and secondly for application to counts from a snapshot 
mass-participation survey. We also present a variational inference approach for fitting occupancy models 
efficiently to opportunistic citizen science data. The continuous growth of citizen science data offers 
unprecedented opportunities to enhance our understanding of how species respond to anthropogenic 
pressures. Efficient techniques in fitting new models are vital for accurately assessing species’ status, 
supporting policy-making, setting measurable targets, and enabling effective conservation efforts.
Keywords: biodiversity change, citizen science, concentrated likelihood, generalized abundance index, occupancy 
models, variational Bayes
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1 Introduction
An existential crisis of our time is the alarming decrease of biodiversity, due to anthropogenic 
factors such as climate breakdown and loss of habitat. Producing robust measures of change is 
vital for evaluating species’ status, understanding rates of change, and monitoring responses to 
pressures, as well as progress of conservation actions, such as towards biodiversity targets 
(Butchart et al., 2010). Both data and appropriate statistical models are critical for measuring 
biodiversity change. Citizen (or community) science (CS) data, where information is gathered 
by voluntary participants, are increasingly used for this purpose (Chandler et al., 2017; 
Silvertown, 2009).

CS data from systematic, designed surveys and monitoring schemes, collected by skilled and 
committed volunteers, have long been used to produce estimates of species’ status, whereas 
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observations of species from less structured, opportunistic or mass-participation sampling, attract
ing contributions from wider society, are increasingly gathered (Pocock et al., 2017), broadening 
the scope to measure changes in populations from extensive geographic areas and for a variety 
of taxa. The many sources of CS data provide vast opportunities for biodiversity monitoring, 
but require suitable analytical approaches, for example to deal with sources of bias (Isaac & 
Pocock, 2015). Johnston et al. (2023) outlined a diversity of challenges for biodiversity monitoring 
using CS data, relating to dealing with observer behaviour, data structures, statistical models, and 
communication. This paper focuses upon one such key challenge, which is in the computational 
cost of analysing CS data, particularly with increasing data and complex models, leading to the ‘ne
cessity to identify and develop suitable modifications to improve computational efficiency and scal
ability, adapting traditional (and developing new) methods to big data’ (McCrea et al., 2023).

In this paper, we present illustrations of computationally efficient methods for analysing CS 
data. Our work is motivated by applications to data for British butterflies, to model changes in 
both abundance and distribution, but the methods and overall need for efficiency apply to CS 
data for a range of taxa and locations. The global decline of insects has been widely reported, par
ticularly in western Europe and North America (Wagner et al., 2021), yet there is an ongoing need 
for robust data and rigorous analysis methods (Didham et al., 2020; Thomas et al., 2019). Many 
taxa and geographic regions are lacking in sufficient data to appropriately assess trends, but there 
is a wealth of data gathered on butterflies in the UK. Butterflies are the most comprehensively 
monitored invertebrate taxon and their population status provides a valuable indicator for 
changes in biodiversity as they respond rapidly to environmental change.

We demonstrate efficient analysis methods for three sources of CS data for UK butterflies: (i) 
The UK Butterfly Monitoring Scheme (UKBMS) began in 1976 and is one of the longest-running 
insect monitoring schemes in the world. Counts of butterflies are made each year by recorders 
walking transects for six months from 1 April, according to a strict protocol (Pollard & Yates, 
1993). (ii) The annual Big Butterfly Count (BBC) launched in 2010 and is a UK-wide mass- 
participation CS project in which members of the public record how many individual butterflies 
are seen for 15 min periods during 23–24 days in late July and early August. It is the largest CS 
project of its kind in the world, with almost 95,000 participants in 2023. (iii) The Butterflies 
for the New Millenium (BNM) data base collates opportunistic records of where butterflies are 
seen, and consists of over 14 million records (Fox et al., 2023). These data are unstandardized, 
and more than 80 similar recording schemes exist for various taxa in the UK (BRC, 2022; 
Pocock et al., 2015) and are typically used for describing changes in species’ distributions.

Analyses of UKBMS and BNM data feed in to regular reporting such as the ‘State of the UK’s 
Butterflies’ (Fox et al., 2023), Red List assessments of extinction risk (Fox et al., 2022), govern
ment biodiversity indicators (JNCC, 2022), and multitaxa outputs such as the State of Nature 
(Burns et al., 2023), all of which contribute to providing robust evidence for conservation, policy 
development, and the wider state of biodiversity.

During a time of biodiversity change, frequent analysis updates are essential for monitoring spe
cies’ populations, and for understanding responses to both pressures and conservation action. 
Efficient computational methods are therefore vital, especially in CS surveys, which typically in
volve data sets that are large and continuously growing in size.

We are motivated by the need to measure population changes, by modelling abundance and dis
tribution using the data sets mentioned above. In this paper, we summarize our recent research, 
describe new methods and applications, and suggest avenues for future development. We start 
with models for abundance, where we demonstrate how in certain circumstances it is possible 
to greatly reduce the dimensionality of the effective model parameter space, considerably reducing 
computation time. We then consider opportunistic data, where we show how variational inference 
(VI) can provide an efficient alternative to Markov chain Monte Carlo (MCMC) for Bayesian in
ference when fitting occupancy models.

2 Generalized abundance index
Models for abundance data, such as from the UKBMS, need to account for two key features: sea
sonality and missing data. Seasonality results in counts that vary throughout the season according 
to the emergence of one or more generations of adult insects over time in any year. Missing data 
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arise in two ways. Firstly, some visits are missed by volunteers. UKBMS transects are sampled by 
committed and skilled volunteers, walking transects weekly across six months of the year, but in
evitably some weeks are missed: Dennis et al. (2013) estimated that this occurs for roughly 8 of 26 
weeks of the transect season. Secondly, there is turnover in transects sampled each year; for example 
transects may cease to be monitored, and new transects continue to be introduced to the scheme.

A variety of methods have produced analyses of these data. Dennis et al. (2013) presented a 
method based on using generalized additive models (GAMs) to model seasonality, followed by 
a generalized linear model (GLM) analysis to account for the annual variation in the transects 
sampled. This approach produced annual indices of abundance for each species, which can be 
used to estimate time trends in abundance. Alternatively, Matechou et al. (2014) proposed a stop
over model approach, which enables estimation of within-season survival probabilities. Dennis 
et al. (2016) then proposed the generalized abundance index (GAI) approach, which provides a 
framework for both of these types of models, as well as a third alternative, which describes season
ality parametrically using an appropriate mixture of distributions, such as Normal (see Dennis 
et al., 2022, for examples).

In outline, for a given species, in any year we suppose that counts are obtained at S sites, each 
visited on at most V occasions. Each count, ys,v, for site s and visit v is regarded as the realization of 
a random variable, such as Poisson, with expectation λs,v = Nsas,v, where the likelihood then takes 
the form

L(N, θ; y) ∝
􏽙S

s=1

􏽙V

v=1

exp( − Nsas,v)(Nsas,v)ys,v . (1) 

Here the Ns are parameters describing site abundance, and as,v denotes a function determined by 
parameters, θ, describing seasonal variation. Here and later the product over visits only includes 
terms corresponding to when visits are made. Background is provided by Dennis et al. (2016), who 
derive a concentrated-likelihood approach that substantially reduces the number of parameters to 
estimate via maximum likelihood. Briefly, using maximum likelihood, the site parameters can be 
estimated by

Ns =
ys,.

as,.
, (2) 

where we use the dot notation to indicate summation corresponding to visited sites. The total ob
served count for each site is therefore rescaled to account for incomplete sampling within the sea
son. Substitution of the estimates of equation (2) into equation (1) results in a Poisson likelihood 
which can be maximized with respect to only the parameters θ. Counts can be expected to be over- 
dispersed relative to the Poisson and/or contain additional zeros, for example due to small counts 
at the ends of the season. Alternative discrete distributions such as negative binomial and 
zero-inflated Poisson, respectively, may then be appropriate, as described in Dennis et al. (2016).

3 Two adaptations of the GAI
We now provide two new adaptations of the GAI. Firstly, the model is extended to include appro
priate site and year effects using an annual model integrated within the GAI, combined with the 
use of concentrated likelihood. Secondly, we adapt the GAI to improve the analysis of BBC 
data, a ‘snapshot’, mass-participation CS scheme.

3.1 An extended GAI with site and time effects
The basic GAI, described above, is a static model, where data for each year are analysed separately. 
However, to deal with the turnover of sites surveyed in the UKBMS each year, the Poisson GLM 
stage of Dennis et al. (2013), based on the annual model of ter Braak et al. (1994), is typically used. 
Here the abundance estimates {N̂s,r}, for sites s and now year r, are the dependent values for an 
additive model with year and site effects and the estimated year effects are then used to form abun
dance indices. Use of log-linear regression in this way is widely used in ecology, for example using 
TRIM (Trends and Indices for Monitoring Data, Bogaart et al., 2020; van Strien et al., 2004). This 
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two-stage GAI approach is now a valuable tool for analysing seasonal count data in the UK (Fox 
et al., 2021, 2023; JNCC, 2022; UKBMS, 2023) and beyond (Schmucki et al., 2016; Van Swaay 
et al., 2020). In practice, the proportion of the species’ flight period surveyed for a given site and 
year is typically included as a weighting in the GLM stage, such that better sampled sites have a 
higher contribution to the estimated species’ abundance indices (Brereton et al., 2018).

A drawback of the two-stage GAI approach is the need to bootstrap to account for variance 
propagation between the two model stages. Bootstrapping is time consuming for large data 
sets, and can also be problematic when resampling small data sets, for example for rare species. 
We now describe an alternative approach which effectively incorporates the annual model within 
the GAI, extending the model to consider all years at once, and thus solving the issue of variance 
propagation.

In brief, we expand the Poisson likelihood of equation (1) to counts ys,v,r where r denotes one of 
Y successive years, with a corresponding expansion to as,v,r. We then incorporate the expression 
for the annual model Ns,r = eαs+βr - see ter Braak et al. (1994) - which results in the following ex
pression for the log-likelihood, ignoring an additive constant.

ℓ(α, β, θ; y) =
􏽘

r

􏽘

s

􏽘

v

{ − e(αs+βr)as,v,r + ys,v,r(αs + βr) + ys,v,rlog(as,v,r)}. (3) 

Here {αs} and {βr} are respectively site and year effects to be estimated. As above, we use a concen
trated likelihood approach to form maximum-likelihood parameter estimates efficiently, by con
centrating out the parameters α, resulting in the log-likelihood

ℓ(β, θ; y) =
􏽘

r

􏽘

s

􏽘

v

−
ys,.,.eβr as,v,r
􏽐

j eβj as,.,j
+ ys,v,r{βr − log(

􏽘

j

eβj as,.,j)}

􏼢 􏼣

, (4) 

which we can maximize efficiently with respect to the parameters θ and β. Full details are given in 
Section S1 of the online supplementary material.

The aim here is to produce a new model which can be fitted efficiently and produce estimates of 
uncertainty. From the above modelling, estimates of error result from inverting the estimated 
Hessian at the maximum-likelihood estimates, which is far more efficient than bootstrapping. 
Profile confidence intervals are also easily obtained.

We illustrate this extended GAI approach with application to UKBMS data spanning 1976– 
2022 for two species: Chalk Hill Blue Polyommatus coridon and Gatekeeper Pyronia tithonus. 
Chalk Hill Blue is a species confined to calcareous grassland in southern England, with UKBMS 
counts of around 900,000 individuals from ∼ 460 sites, whereas Gatekeeper is a widespread 
butterfly species across southern Britain, with UKBMS counts from more than 4,300 sites, count
ing over 3.3 million individuals.

Options for describing seasonal variation (parameters associated with θ) are flexible, as in the 
original GAI, but here we use a Normal distribution, since both species are univoltine (one gener
ation per year), and thus parameters {μr} and {σr} are estimated for each year, which describe the 
mean flight dates and length of the flight period, respectively (see Figure S1, online supplementary 
material where we see the tendency for earlier emergence over time). Flight periods are thus as
sumed to be fixed over sites within each year.

Figure 1 shows the estimates of {βr} from the extended GAI, with 95% confidence intervals (CI) 
produced from the estimated Hessian at the maximum-likelihood estimates. Error estimates were 
scaled to account for overdispersion in the Poisson GAI formulation.

In order to estimate a linear trend over time, the parameters β may also be expressed by a linear 
form, where we set βr = γr, ∀ r, in equation (4) and maximize the resulting log likelihood with re
spect to the parameters θ and γ. The intercept parameter for a linear regression on year cannot be 
estimated due to confounding. This is also the case for the annual model (McCullagh & Nelder, 
1989, p. 63, van Strien et al., 2004), where we therefore set β1 = 0. Trend lines based on the ex
tended GAI with the linear form are shown in Figure 1(i), and due to the lack of intercept, for 
ease of comparison we equate the ordinate at the middle year to that from a posthoc linear regres
sion (also shown).
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Abundance indices produced from the extended GAI are virtually indistinguishable from indices 
produced from the two-stage GAI (Figure 1(ii)). The two-stage GAI was based on the implemen
tation used for annual analyses of UKBMS data, where a GAM is used for the first stage. Despite 
the similarity in the indices, the 95% CI produced from bootstrapping the two-stage GAM are 
much wider than those estimated from the Hessian for the extended GAI. This difference is due 
to differences between the models, rather than due to differences in the methods of error estima
tion. For example the extended GAI does not make a distributional assumption (Poisson) about 
the site abundance estimates, N, as is the case in the GLM of two-stage GAI. The standard errors 
from the extended GAI may also be underestimated if the data are overdispersed relative to the 
Poisson distribution assumed, which could be explored in future work using alternative discrete 
distributions.

The implementation of the two-stage GAI includes a weighting in the GLM, accounting for the 
proportion of the flight period sampled, whereas the extended GAI does not. Interestingly, the 
close resemblance of the two indices in Figure 1(ii) implies that the new extended GAI effectively 
has this weighting built-in, by modelling the counts directly so that better-sampled sites have a 
greater contribution to the likelihood.

The extended model took 42 min to run for the Chalk Hill Blue, whereas the nonparametric 
bootstrap (with 1,000 replicates) for the two-stage GAI took 98 min. For the more widespread 
Gatekeeper, the extended GAI took 1.3 hr, whereas the two-stage GAI bootstrap took approxi
mately 7 hr, but based on only 200 replicates. Analyses were parallelized across four CPUs on a 
computer equipped with Intel Core i7-8,700@3.2 GHz with 32 GB of RAM. Clearly, there are 

Figure 1. Results from applying the extended (generalized abundance index) GAI to two species: Chalk Hill Blue a) 
and Gatekeeper b). Plots (i) show the estimates of {βr } (black) with 95% confidence intervals (CI). Linear trend 
estimates for {βr } from the extended GAI are shown in green (with 95% CI). The trend line from a posthoc linear 
regression through the estimates of {βr } is also shown (purple dashed line). Plots (ii) compare abundance indices 
from the extended GAI (black) and two-stage GAI (blue), with 95% CI produced from the estimated Hessian at the 
maximum-likelihood estimates and from nonparametric bootstrapping respectively. Abundance indices correspond 
to {βr } converted to the log10 scale with a mean of 2, as is standard practice for UK Butterfly Monitoring 
Scheme indices.
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substantial time savings to be had for the 59 UK butterfly species, and potentially far more for 
more numerous taxa. We have seen that the advantages of the extended GAI are not confined 
to efficiency, but may also involve greater parameter precision provided the model and distribu
tional assumptions are appropriate. In the Discussion, we outline the potential contributions of 
future work on the extended GAI.

3.2 Analysis of big butterfly count data
The Big Butterfly Count (BBC; https://bigbutterflycount.org) is an annual survey of common 
butterfly species which encourages wide participation particularly from members of the general 
public. The BBC has a high media profile and attracts a large number of participants, many of 
whom may have limited or no prior experience of biodiversity monitoring. The sampling protocol 
is minimal: participants simply count numbers of individuals seen of widespread butterfly (and 
day-flying moth) species for 15 min from any location.

The BBC generates a large amount of data for the UK’s widespread butterfly species - more than 
11 million butterflies have been counted since 2011- but to date few analyses have been under
taken and annual reporting of BBC results is based on simple comparisons with respect to the pre
vious year only. Using data for 2011–2014, Dennis, Morgan, Brereton, et al. (2017) demonstrated 
that estimates of change in abundance from BBC were comparable to those estimated from stand
ardized monitoring (UKBMS data), but that the short snapshot sampling period of three weeks 
results in bias caused by the inter-annual variation in species’ flight periods.

This is demonstrated in Figure 2a which shows the estimated flight period for Marbled White 
Melanargia galathea for four example years. This species is a univoltine (single-generation), 
summer-flying species, which is therefore likely to be particularly susceptible to phenological 
bias (in the estimation of timing) with respect to the BBC sampling period. Flight periods were es
timated from UKBMS data using the GAI with a spline formulation for {av}, which is fixed across 
sites within a given year. The timing of peak emergence varies year-to-year, and thus the propor
tion of the flight period sampled by the BBC varies annually (see Figure 2b). For example in 2011 
the BBC only captures the tail end of the flight period, whereas in 2012 more than half of the flight 
period is captured.

Here we describe a modification of the GAI for producing abundance indices and trends from 
BBC data. The GAI was developed for standardized monitoring data, typically collected along 
transects, where sites are clearly defined and revisited many times within and across years. 
Mass-participation CS data such as from the BBC does not have such a structure; it consists of 
many locations, which often only have one count undertaken. Hence we define a BBC ‘site’ to 
be a 1km × 1km square and pool BBC data to this spatial scale. BBC sites may then have counts 
across multiple days within the BBC sampling period, and potentially multiple entries (15 min 
counts) on a given day.

To accommodate these multiple entries, the GAI likelihood for a given year now takes the form

L ∝
􏽙M

m=1

􏽙V

v=1

exp( − Nmam,vκm,v)(Nmam,v)ym,v,. , (5) 

where κm,v is the number of entries for site m and visit v, and ym,v,. =
􏽐

κ ym,v,κ is the sum of the 
counts over those entries.

The number of sites in a mass-participation CS dataset such as BBC is high, and we adopt a 
concentrated-likelihood approach to reduce the functional size of the parameter space, as in the 
previous section, where equation (2) becomes

Nm =
ym,.,.

􏽐V
v=1 am,vκm,v

(6) 

The BBC sampling period represents just a snapshot of most species’ flight periods, therefore 
accurate flight period estimation from applying the GAI to BBC data is not possible for all 
species. Instead, for each species and year, we produce estimates of {Nm} for each BBC site 
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(1km × 1km square) from equation (6) using daily flight period estimates of {av} from the GAI 
applied to UKBMS data, where flight periods are assumed to be the same across sites. The aver
age of {Nm} provides an overall measure of BBC abundance per year and species (Dennis et al., 
2016).

Figure 2c demonstrates the benefit of the phenology adjustment approach for the Marbled 
White butterfly. Fluctuations in the BBC abundance index produced without phenology adjust
ment (Figure 2c(i)) largely reflect year-to-year variation in the proportion of the flight period cap
tured by the BBC each year, whereas adjusting for phenology produces an index that shows a 
pattern more similar to the UKBMS abundance index (Figure 2c(ii))). Applying the phenology ad
justment approach is less influential for a multivoltine species such as the Comma Polygonia c-al
bum (Figure S2, online supplementary material), for which the BBC sampling period covers a 
smaller, and less variable, proportion of the overall flight period each year.

Dennis et al. (2024) describe the new phenology adjustment approach for snapshot citizen sci
ence data in full, including the use of bootstrapping to estimate uncertainty. The approach is ap
plied to BBC data for 17 species and explored further via simulation. The method enables data 
from snapshot CS schemes such as BBC to contribute to monitoring biodiversity. BBC results 

Figure 2. Demonstration of the phenology adjustment approach for the Marbled White butterfly: a) flight period 
curves estimated from UK Butterfly Monitoring Scheme (UKBMS) data for 4 yr. The blue shaded areas represents 
the Big Butterfly Count (BBC) sampling period each year. b) the proportion of the Marbled White flight period 
covered by the BBC sampling period each year. c) relative abundance indices produced from the generalized 
abundance index applied to UKBMS data (black), from BBC data without phenology adjustment (i, blue squares), and 
from BBC data with phenology adjustment (ii, green triangles). Indices are on the log10 scale with a mean value of 2 
(indicated by the horizontal dashed lines).
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receive high-profile media coverage and are already beginning to reflect the advantages of the new 
analyses outlined here.

4 Efficient occupancy model fitting
Occupancy models (Altwegg & Nichols, 2019; MacKenzie et al., 2018) are widely used for infer
ring species distributions from presence/absence data at multiple sites, across a single or multiple 
seasons. They have been employed to extract meaningful species distribution trends from oppor
tunistic citizen science data, addressing challenges associated with nonsystematic sampling and 
variable observation effort (Isaac et al., 2014; Kéry et al., 2010). However, as the size of the cor
responding presence/absence data increases, occupancy models can be computationally demand
ing, especially in a Bayesian framework.

We start by defining the standard occupancy model that we fit in this section. We assume that 
there are n sampling units, where each sampling unit corresponds to a site in a specific year. In each 
sampling unit, we have a set of observations yi, equal to 1/0 if the species was detected/not de
tected. The sampling unit to which observation i belongs is denoted by ki. The hierarchical model 
representation is

logit(ψj) = Xψ
j βψ

z j ∼ Be(ψj)
logit(pi) = Xp

i βp

yi ∼ Be(pi) if zki
= 1

0 if zki
= 0

􏼚

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(7) 

where zj is the occupancy state of sampling unit j; βψ are the covariate coefficients of the occupancy 

probability ψ; βp are the covariate coefficients of the detection probability p; Xψ
j and Xp

i are the 
available covariates for sampling unit j and observation i, respectively.

Similar versions of this model have been considered in Diana et al. (2023) and in Doser et al. 
(2023), who employed Gaussian processes to account for spatio-temporal autocorrelation in the 
occupancy probability. Bayesian inference for these occupancy models can be easily performed us
ing Markov chain Monte Carlo (MCMC) (see Diana et al., 2023; Doser et al., 2023, who employed 
a Pólya-Gamma sampling scheme for logistic regression models Polson et al., 2013). In this MCMC 
framework, the z terms from equation (7), indicating species presence/absence at each site, are 
treated as latent variables and hence inferred and updated, typically at each MCMC iteration. 
Inferring the latent variables z allows us to easily write the complete data likelihood—see for ex
ample King (2014) and Newman et al. (2023)—for the observations in y, as shown in equation 
(7). However, when the number of sites is large, this leads to a computationally intensive 
MCMC, even when efficient model-fitting approaches, such as the Pólya-Gamma scheme, are em
ployed for updating the model parameters. In addition when the complete data likelihood is used 
there may be correlations between estimators which can also slow down MCMC—see Newman 
et al. (2023) and Borowska and King (2022), where a subset of latent states are not treated as aux
iliary variables but are integrated out numerically to reduce the correlation between latent varia
bles. Therefore, MCMC-based inference can be prohibitively slow, which limits its application 
to large data sets such as CS data. For example, for the data sets considered in Diana et al. 
(2023), obtaining acceptable effective sample sizes from the posterior distributions of all parame
ters requires running times of around 19 hr (on an Intel Core i7-10610U@1.8 GHz). An obvious 
alternative is to use classical inference to fit occupancy models since it can be much faster (see 
for example the approach of Dennis, Morgan, Freeman, et al., 2017). In this case, the likelihood 
function is written by marginalizing over the z variables and hence the observed data likelihood 
is used for inference. Expressions for the complete and observed data likelihood for occupancy 
models are given in Section S2 of the online supplementary material. However, quantifying uncer
tainty around functions of parameters can sometimes be computationally intensive, relying on 
bootstrap methods when closed form expressions of variances are not available. Bayesian inference 
also offers the potential to more readily account for spatio-temporal autocorrelation in the occu
pancy probabilities.

648                                                                                                                                                Dennis et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssa/article/188/3/641/7811367 by guest on 07 N
ovem

ber 2025

http://academic.oup.com/jrsssa/article-lookup/doi/10.1093/jrsssa/qnae105#supplementary-data


Variational inference (VI) has been proposed as an alternative tool to overcome the computa
tional issues of MCMC (Jordan et al., 1999). VI is traditionally faster than MCMC-based ap
proaches because it transforms the problem from sampling (from a posterior distribution) to 
optimization. Therefore, VI combines the speed of classical inference, with the interpretability 
of Bayesian inference. However, while MCMC-based inference always recovers the true posterior 
(given enough MCMC iterations), in VI the true posterior distribution p(θ | y) is approximated 
using an appropriate flexible family of distributions, which is called the variational family. We 
denote the variational distributions by qλ(θ), where λ is the set of variational parameters, the ob
served data likelihood by p(y | θ) and the prior distribution by p(θ). The parameters λ correspond
ing to the optimal variational distribution can be found by minimizing the Kullback–Leibler (KL) 
divergence between the true posterior distribution p(θ | y) and the variational distribution qλ(θ). It 
can be proved that this is equivalent to finding the qλ(θ) that minimizes the quantity

Eθ∼qλ(θ) log p(y, θ) − log qλ(θ)
􏼂 􏼃

(8) 

which is known as the Evidence Lower BOund (ELBO), and forms the basis of VI inference. We 
note that log p(y, θ) = log {p(y | θ)p(θ)} and more details on VI can be found in Blei et al. (2017).

In VI, it is common to assume that parameters are a-posteriori independent, which is equivalent 
to assuming a variational family of the form q(θ) =

􏽑
j qj(θj) (the mean-field assumption) since this 

assumption considerably simplifies the inference. However, if the assumption is not valid, then 
posterior variance is underestimated (Wang & Titterington, 2005). In the case of occupancy mod
els, occupancy and detection probability are independent conditionally on z, but not independent 
of z. Hence, assuming (according to the mean field assumption) that they are independent of z im
plies that ψ and p are independent of each other a-posteriori, which clearly does not hold. If the 
dependence structure of the model is ignored, then it leads to underestimation of the posterior vari
ance of the occupancy and detection probability parameters, (βψ, βp) (Clark et al., 2016).

However, if the observed data likelihood is used for inference, instead of the complete data like
lihood, with the latter being common practice in a Bayesian framework, then we do not need to 
assume that (βψ, βp) are independent of z, or of each other. In the observed data-likelihood 
case, we assume, as is standard in VI (Titsias & Lázaro-Gredilla, 2014), that qλ(θ) is a multivariate 
normal distribution, that is, if θ = (βψ, βp) are the model parameters, we assume 
θ ∼ qλ(θ) = N(μ, Σ), where the variational parameters are λ = (μ, C), with μ the mean of the vari
ational distribution and C the Cholesky factor of the covariance matrix Σ.

We perform inference using stochastic gradient descent. Computing the gradient of equation (8) 
with respect to λ is complicated by the fact that λ itself appears in the expectation. To overcome this 
issue, we use the reparameterization trick (Rezende et al., 2014), which is a cornerstone of vari
ational inference as it allows us to easily obtain these types of gradients. More details on the infer
ence are presented in Section S2 of the online supplementary material.

To investigate the efficacy of our novel VI approach, we have performed a small preliminary 
simulation study to assess the coverage of Bayesian credible intervals generated using our proced
ure. Across the simulations, we varied the number of sites and the average occupancy and detec
tion probability. We have chosen n, the number of sites, to be 500, 1,000, and 2,000 and ψ and p to 
be 0.25, 0.5, and 0.75. For each simulation, we ran 500 replications. The coverage was computed 
across 4 covariate coefficients for occupancy and 4 covariate coefficients for detection, with the 
coefficients randomly set to be either −1 or 1. Results are reported in Table 1 where it is seen 
that the 95% posterior credible intervals have the nominal coverage.

We also analysed the dataset of Ringlet butterflies collated through the Butterflies for the New 
Millennium (BNM) recording scheme run by Butterfly Conservation, using records collected be
tween 1970 and 2014, which is also used in Diana et al. (2023). The data set consists of > 2 million 
records from ∼ 140,000 unique 1 km2 (defined as sites), of which > 218,000 detections of Ringlet 
have been made, and nondetections were produced using observations of other butterfly species 
(Kéry et al., 2010). In this case, we do not account for spatial autocorrelation, but we model 
year as a factor variable and assume independence between sites, a point which we discuss in 
the next section. We also use relative list length, obtained by dividing the list length, which is 
the number of species recorded for a given site/date, divided by the maximum recorded list length 

J R Stat Soc Series A: Statistics in Society, 2025, Vol. 188, No. 3                                                          649
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssa/article/188/3/641/7811367 by guest on 07 N
ovem

ber 2025

http://academic.oup.com/jrsssa/article-lookup/doi/10.1093/jrsssa/qnae105#supplementary-data


in a neighbouring square area of 50x50 km, as a covariate for detection probability and model the 
effect of the day of the year using a second-order polynomial of Julian date.

In this case, convergence was determined by assessing when parameter updates were smaller 
than a prespecified tolerance, which required approximately 1 hr of computation time (results 
were again obtained on an Intel Core i7-10610U@1.80 GHz). In Figure 3, we present the posterior 
distribution of the occupancy index, which is the year-specific occupancy probability, here as
sumed the same for all sites. The increase in precision over time reflects the growth of the under
lying opportunistic CS data set, which has shown ongoing expansion, particularly since the 
mid-1990s (Fox et al., 2023).

The occupancy probabilities show similarities with results presented in Diana et al. (2023), in 
particular an increasing trend in recent years reflecting an expansion in the range of Ringlet in 
the UK and similar drops in the species’ prevalence in mid-1970s and early and late-1990s are 
identified. However, in this case, the pattern is less smooth, as expected, since the effect of year 
is not constrained in any way. Furthermore, a direct comparison cannot be made, since Diana 
et al. (2023) fit a more complex model accounting for spatio-temporal correlation, and plot an oc
cupancy index rather than the annual occupancy probabilities.

In Figure 4, we present the posterior distribution of the detection probability throughout the 
year which can be interpreted as an estimate of species’ flying time. Unlike in Diana et al. 
(2023), in this example detection probability does not vary with year, and thus represents an aver
age for 1970–2014. We also note here that we do not account for spatial effects on the probability 
of detection. However, the species’ flight patterns are likely to vary in space, and hence the curve in 
Figure 4 represents a mixture of spatially varying curves. Additionally, we note that the peak of 
detection probability in this case is lower than that obtained by Diana et al. (2023), which is 
due to the different model structure for detection and occupancy probabilities, as discussed above. 
The 95% posterior credible interval of the coefficient of relative list length is (0.881, 0.883).

We have shown that using a VI framework to fit occupancy models efficiently to CS data shows 
promising results, with various avenues for future development-some of which we discuss in the 
next section.

5 Discussion
CS data have an important rôle in the future of biodiversity monitoring, but the ongoing growth of 
such data requires novel statistical models along with efficient inference methods and available 
computer code. In this paper, we have built upon recent work and demonstrated that concentrated 
likelihoods can greatly reduce the dimensionality of the effective model parameter space and that 
variational inference can substantially reduce computational time for large CS data sets. The ap
proaches proposed in this paper address computational problems, but also lead to model develop
ments for CS data.

The GAI is efficient due to the use of concentrated likelihood (Dennis et al., 2016). There is a 
broad analogy here with the efficiency that can result from adopting a hidden Markov model, 
when appropriate, and forming a forward algorithm for likelihood construction; see for example 
Cowen et al. (2017). We have shown concentrated likelihood to be useful in the new extension of 
the GAI to incorporate the annual model which conveniently allows for formal variance propaga
tion, negating the need for time-consuming bootstrapping. A similar approach is given in 
Bravington et al. (2021), where the two stages for density surface models, one involving a detec
tion probability and the other a GAM, are combined into one.

Table 1. Coverage of the 95% Bayesian credible intervals generated using variational Bayes, for varying n, the 
number of sites, and values of ψ and p

n / ψ = p 0.25 0.5 0.75

500 0.950 0.949 0.961

1,000 0.961 0.953 0.952

2,000 0.951 0.948 0.951
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The extended GAI has been introduced in this paper, with application to two univoltine species, 
but future work will test wider application to more species, in particular with varying quantities of 
data and life histories, including species with two or more generations per year, requiring more 
complex functions to describe seasonal variation (Dennis et al., 2016). As mentioned, alternative 
distributions to the Poisson may also be explored, in particular to assess for effects of overdisper
sion and the associated impact on estimates of uncertainty.

In both adaptations of the GAI presented, species’ flight periods were assumed to be the same 
across sites within each year, as is typical in the production of abundance trends for UK butterflies 
(UKBMS, 2023). However, greater flexibility in the seasonal variation function a can be readily 
accounted for through the inclusion of appropriate spatial covariates. For example this is done 
by Schmucki et al. (2016) and Dennis et al. (2022). This is similarly a future direction to explore 
for occupancy models, accounting for spatial variation in detection probabilities, for example due 
to spatial variation in species’ phenologies, via spatial covariates or spatial effects. See also for ex
ample Clark and Altwegg (2019) and Dennis et al. (2019) for models with spatial variation in 
occupancy.

The extended GAI also provides a basis for further extensions within this computationally effi
cient approach, such as formal data integration by maximizing a joint likelihood; see Besbeas et al. 
(2002) and Schaub and Kéry (2021). For example, UKBMS (count data from standardized mon
itoring) and BBC (mass-participation CS data) could be used to produce new urban butterfly in
dicators. Integrated modelling approaches can optimize the use of available CS data sets, but 
present outstanding questions and challenges (Isaac et al., 2020; Johnston et al., 2023; Zipkin 
et al., 2021), including the need for computationally efficient approaches for data integration.

We have introduced the basic occupancy model within a VI framework and have discussed the 
use of the observed, instead of the complete, data likelihood for avoiding the standard issue of 
underestimated posterior variances when parameters are assumed to be independent. In this 
case, the dependence structure in the model parameters and latent variables was such that the 
use of the observed data likelihood allowed us to use VI without having to assume that parameters 
are a-posteriori independent. Intuitively, the same approach could be employed in other ecological 
models within a VI framework, although at the moment this is only an intuition and future work 
would need to explore the quality of inference for different types of data and corresponding models.

We believe that VI provides a powerful and versatile framework for efficiently fitting a wide 
range of ecological models. The advantage of VI is that it combines the speed of classical inference 

Figure 3. 95% posterior credible intervals of the occupancy probabilities of each year for Ringlet. The dots represent 
the posterior medians.
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with the interpretability of Bayesian inference. VI relies on the ability to obtain the gradient of the 
likelihood function, which might seem like an obstacle. However, it is possible to take advantage 
of recent developments of deep learning methodologies such as the use of automatic differenti
ation, which can automatically compute gradients of this type (as long as the likelihood function 
is tractable), such as for example using the package TMB (Kristensen et al., 2016). We envisage 
that analyses currently based on hidden Markov models for likelihood computation—see for ex
ample Cowen et al. (2017), Besbeas and Morgan (2019, 2020) and McClintock et al. (2020)—can 
be a fruitful research avenue, since automatic differentiation engines would allow us to compute 
gradients by differentiating through the forward recursion used to compute the likelihood in this 
case. The use of automatic differentiation also enables us to consider highly nonlinear extensions, 
such as neural networks, to be introduced in the model. However, as discussed, particular atten
tion needs to be paid to the chosen variational family, since that will determine the accuracy of the 
approximation.

We have considered a simple occupancy model, in comparison to models that have been em
ployed previously for data of this type, as a means of discussing VI and the use of observed 
data likelihood within the VI framework. The flexible spatio-temporal models, for example based 
on Gaussian processes (Diana et al., 2023; Doser et al., 2022), which have been developed within 
an MCMC framework could be considered within this VI framework in future work. However, 
since this leads to a regression with as many covariates as the number of support of points, assum
ing a variational approximation with a full covariance matrix is computationally prohibitive, since 
the number of parameters of the Cholesky factor C scales quadratically with the number of cova
riates. One option to overcome this problem is to induce sparsity on the inverse of the covariance 
matrix by zeroing elements of the Cholesky factor C (Tan & Nott, 2018). For example, it is pos
sible to assume a variational approximation where the covariate coefficients for the spatial ap
proximation are independent in the posterior. Although this step can potentially reintroduce 
bias in the model, since it assumes a-posteriori independence of parameters, it leads to a substantial 
reduction in the number of parameters, making the model feasible to estimate. Finally, in cases 
where the observed data likelihood cannot be obtained, for example in complex data-generating 
processes or models with individual random effects, then the complete data likelihood and efficient 
MCMC inference (see for example King et al., 2023, who devise an importance sampling ap
proach for ecological models with random effects) may provide the only viable alternative, at least 
at the moment.

Figure 4. Posterior median and 95% posterior credible intervals of the detection probability in each week for 
Ringlet.
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To some extent formal design considerations do not arise with the data that we have considered, 
however there is an issue of nonrandom sampling (Boyd, Powney, et al., 2023; Johnston et al., 
2023) and the need to account for issues such as preferential sampling and spatial and temporal 
biases (Altwegg & Nichols, 2019; Boersch-Supan et al., 2019; Conn et al., 2017; Pati et al., 2011). 
See for example papers by King et al. (2023) and by Lahoz-Monfort et al. (2014), respectively on sam
pling the data, and on how to design studies when resources are limited.

We have demonstrated efficient analysis methods for sources of CS data for UK butterflies, but 
efficient statistical inference methods are needed for understanding population changes from CS 
data for a wide range of taxa and locations. For example the GAI approach, or related models, 
has been applied to moths, bees and beetles (Dennis et al., 2021; Fox et al., 2021; Matechou 
et al., 2018). Development of efficient inference for occupancy models is also vital given their ap
plication to various taxa (for example Boyd, August, et al., 2023; Burns et al., 2023; Outhwaite 
et al., 2019). The need for efficiency will continue to increase with the growth of data sets such 
as the Global Biodiversity Information Facility (GBIF), which has amassed more than 2.5 billions 
occurrences of more than one million species (GBIF.org, 2023).

CS data are increasingly ‘big’, not only in terms of volume, but also involving characteristics 
such as variety. Farley et al. (2018) and McCrea et al. (2023) discuss the ‘Four Vs Framework’ 
in which data may be characterized as ‘big’. Analysing CS data for biodiversity monitoring 
presents various challenges (Johnston et al., 2023), but methods also need to be suitably scalable 
for these increasingly large data sets.

The examples in this paper are based upon analyses of data featuring observations of species 
submitted by citizen scientists, but computational challenges also arise from other data types, 
for example with the growth of data from technological advances such as automated interpret
ation of images submitted by citizen scientists (Terry et al., 2020; van Klink et al., 2022).

It may be argued that high performance computing (HPC) and cloud computing can be used to 
address the challenge of fitting computationally demanding models to CS data (Farley et al., 2018). 
For example, a supercomputer has enabled the production of occupancy trend estimates for thou
sands of UK species using Bayesian occupancy models (Boyd, August, et al., 2023; Outhwaite 
et al., 2019). However ultimately, as data sets continue to grow, and models become increasingly 
complex, we argue that a trade-off is needed, and that using more and more computing resources is 
not a simple solution. Fitting computationally demanding methods can make appropriate model 
validation and inference difficult: for example variable selection may become impractical 
(Johnston et al., 2023), as well as suitable goodness-of-fit assessment. Achieving model conver
gence for all parameters in MCMC may also become difficult (Boyd, August, et al., 2023; 
Outhwaite et al., 2019).

Furthermore, to maximize the use of CS data in biodiversity monitoring, there is a need for stat
istical approaches that are appropriately disseminated and accessible for use in practice. Johnston 
et al. (2023) suggest that ‘accessible communication of novel methods could democratize analysis 
of these data and thus enable CS data to reach their broadest potential’. Statistical methods that 
depend upon HPC may be a barrier for analysis to those without easy or affordable access to 
such resources, thus hindering the potential of biodiversity monitoring with CS data globally 
(Pocock et al., 2018).

Efficient methods are also crucial for producing frequent analysis updates for reporting on the 
status of species, particularly as time lags in data availability continue to reduce. The need for ac
curate reporting is ever necessary in monitoring species’ status, measuring against biodiversity tar
gets, supporting policy-making and guiding effective conservation effort. This paper has presented 
examples for fitting computationally efficient models to CS data, but, as also suggested by 
Johnston et al. (2023), with the growth of such data and its importance for biodiversity monitor
ing (Callaghan et al., 2021; Pocock et al., 2018), there is an ongoing need to develop efficient stat
istical inference methods, with the potential to learn from developments in mainstream statistics.
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Abstract
Citizen science databases that consist of volunteer-led sampling efforts of species communities are relied on 
as essential sources of data in ecology. Summarizing such data across counties with frequentist-valid 
prediction sets for each county provides an interpretable comparison across counties of varying size or 
composition. As citizen science data often feature unequal sampling efforts across a spatial domain, 
prediction sets constructed with indirect methods that share information across counties may be used to 
improve precision. In this article, we present a nonparametric framework to obtain precise prediction sets 
for a multinomial random sample based on indirect information that maintain frequentist coverage for each 
county. We detail a simple algorithm to obtain prediction sets for each county using indirect information 
where the computation time does not depend on the sample size and scales nicely with the number of 
species considered. The indirect information may be estimated by a proposed empirical Bayes procedure 
based on information from auxiliary data. Our approach makes inference for under-sampled counties more 
precise, while maintaining area-specific frequentist validity for each county. Our method is used to provide 
a useful description of avian species abundance in North Carolina, USA based on citizen science data from 
the eBird database.
Keywords: categorical data, conformal prediction, empirical Bayes, exchangeability, frequentist coverage, 
nonparametric
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1 Introduction
Understanding species abundance across heterogeneous spatial areas is an important task in ecol
ogy. Citizen science databases that consist of observations of species counts gathered by volunteers 
are increasingly regarded as one of the richest sources of data for such a task. One of the largest 
such data sources is the eBird database in which citizen scientists throughout the world input 
counts of bird sightings (B. Sullivan et al., 2009). In addition to its use for describing avian species 
abundance, eBird is a principal resource for understanding global biodiversity and is widely used 
in constructing and implementing conservation action plans (B. L. Sullivan et al., 2017).

More generally, analyses from such databases may be used for informing policy, conservation 
efforts, habitat preservation, and more, for which understanding species prevalence for non- 
overlapping geographic areas, such as counties across a state or country, is important. In practice, 
species abundance from citizen science data are commonly summarized within areas such as coun
ties by empirical proportions from a sample, as in, e.g. Arnold et al. (2021) and Camerini and 
Groppali (2014). Such proportions can be used to construct a prediction set for each county 
that provides a description of species prevalence for that county with guaranteed frequentist 
coverage.
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Given the impact on policy design, corresponding uncertainty quantification is of particular im
port (Lele, 2020), and so it is desirable that precise prediction sets maintain a target coverage rate 
regardless of the county’s size or composition. This is challenging as a common feature of citizen 
science data is unequal sampling efforts that results in some counties with large amounts of data 
information and others with very little. Using direct procedures that only make use of within- 
county information, a prediction set may be imprecise in these counties with low sampling efforts. 
This suggests using indirect information such as data from neighbouring counties to improve pre
diction set precision for a given county.

In this article, we describe species abundance across sampling areas such as counties with 
frequentist-valid prediction sets that are constructed to contain an unobserved bird with 1 − α 
probability. That is, a valid prediction set for a given county is a set of avian species such that 
an unobserved bird will belong to one of those species with 1 − α probability in a frequentist sense. 
We develop a valid nonparametric prediction method that allows for information to be shared 
across counties. Specifically, our approach results in prediction sets with guaranteed frequentist 
coverage for each county that are constructed with the incorporation of indirect or prior informa
tion. We detail and provide code for an empirical Bayes procedure to estimate such prior informa
tion from auxiliary data such as neighbouring counties. If this indirect information used to 
construct the prediction sets is accurate, the prediction sets will be smaller than direct sets that 
only make use of within-county information.

Identifying avian species that are present across a spatial domain is of general interest in ecology 
(Lebrun et al., 2012; Shanahan & Possingham, 2009; Twedt et al., 2010). To this aim, in Section 4, 
we detail the usefulness of the proposed approach in summarizing the eBird citizen science data. 
For this task, frequentist-valid prediction sets provide useful summaries of the data that may be 
used to compare information across subregions and better inform policy. In particular, a 
frequentist-valid prediction set consists of species that are likely to be present in a given area 
and can be used to draw statistically robust conclusions regarding future observations. Such a pre
diction set is constructed based on observed species counts, and, by maintaining a specified fre
quentist coverage rate, reflects the uncertainty in the data. Commonly reported summaries of 
observed species abundance data, such as a list of observed proportions or counts do not reflect 
the uncertainty in the data. Moreover, the approach we propose constructs frequentist-valid pre
diction sets with the incorporation of auxiliary information. This is desirable as sharing informa
tion across counties generally results in smaller prediction sets as compared to direct prediction 
approaches, particularly so in counties with low sampling efforts. In contrast, indirect approaches 
constructed with auxiliary information such as a Bayesian prediction set may reflect uncertainty in 
the data, but are not calibrated.

2 Methodology
2.1 Background and notation
For county j ∈ {1, . . . , J}, let X j be a vector of length K where Xj,i = x j,i is the observed count of 
species i over some set sampling period that may vary across counties. We model X j with a 
K-dimensional multinomial distribution with Nj =

􏽐K
i=1 x j,i trials and population proportions 

vector θj,

X j ∼ MNK(θj, Nj). (1) 

We construct a prediction set Aα(X j) for an observation of a new bird arising from the same 
distribution, Y j ∼ MNK(θj, 1), where Y j ∈ Y for Y = {(y1, . . . , yK) :

􏽐K
i=1 yi = 1, yi ∈ {0, 1} 

(i = 1, . . . ., K)}. Let y(k)
j ∈ Y denote a prediction of category k, that is, let y(k)

j be a vector of length 
K with a one at index k and zeros elsewhere. In particular, we are interested in a prediction set for 
Y j that maintains frequentist validity for some error rate α. Formally, we refer to this as an α-valid 
prediction set:
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Definition (α-Valid Prediction Set). An α-valid prediction set for a predictand Y j ∈ Y is 
any subset Aα of the sample space Y that contains Y j with probability greater 
than or equal to 1 − α,

Pθ Y j ∈ Aα(X j)
( 􏼁

≥ 1 − α, ∀ θ, (2) 

where the probability is taken with respect to Y j and X j.

Additionally, small or precise α-valid prediction sets are of particular interest, where prediction 
set size is measured by expected cardinality, that is, expected number of the K categories in the 
sample space included in the prediction set.

2.2 Order-based prediction for a single area
A standard approach to construct α-valid prediction sets for each county or area is with a direct 
method that only makes use of within-area information. As such, we first consider construction 
of a prediction set for a single area j, using only data from area j. For ease of notation, we drop 
the area-identifying subscript in this subsection.

For multinomial data in general, if the event probability vector θ is known, an α-valid prediction 
set is any combination of categories such that their event probabilities cumulatively sum to be 
greater than or equal to 1 − α. Equivalently stated, an α-valid prediction set may be constructed 
by excluding categories such that the cumulative sum of the excluded categories’ event probabil
ities is less than α. Such a prediction set may be constructed by admitting categories in some pre
specified order into the prediction set until the cumulative sum of their event probabilities is at least 
1 − α. The resulting prediction set will have 1 − α coverage regardless of the ordering used to admit 
categories. In fact, the class of all α-valid prediction sets may be constructed by following this pro
cedure for non-strict total orderings of categories.

Perhaps intuitively, constructing such a prediction set by including categories with the largest 
event probabilities will result in the smallest α-valid prediction set. In the terminology of ordering, 
this corresponds to constructing a prediction set based on an ordering of categories that matches 
the ordering of the elements in θ. We refer to this optimal ordering as the oracle ordering:

Theorem 1 (Oracle order-based prediction). Let Y ∼ MNK(θ, 1) for θ known. Then, 

1. the class of all α-valid prediction sets for a given θ consists of prediction 
sets of the form,

Aθ,o
α = y(k) ∈ Y :

􏽘K

l=1

1 ok ≥ ol
( 􏼁

θl

􏼢 􏼣

> α

􏼨 􏼩

, (3) 

for some vector o ∈ RK, and
2. the oracle ordering is that which corresponds to the increasing order sta

tistics of θ,

oθ = o : θm < θn ⇒ om < on ∀ m, n ∈ {1, . . . ., K}, m ≠ n{ }, 

and Aθ,oθ

α has the smallest cardinality among all orderings.

In practice, θ is unknown, but a prediction set may be constructed based on an observed sample 
X = x. It turns out, in fact, that any conditional α-valid prediction set can be written similarly to the 
previous construction (equation (3)), where the cumulative sum is computed with respect to the 
empirical proportions given by x and y. This is a generalization of the conformal prediction frame
work, a popular machine learning approach to construct prediction regions based on measuring 
conformity (or non-conformity) of a predictand to an observed sample (Vovk et al., 2005).
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Theorem 2 (α-valid order-based prediction). Let X ∼ MNK(θ, N), Y ∼ MNK(θ, 1). 
Then, every conformal α-valid prediction set based on observed data x 
can be written

Aα(x) = y(k) ∈ Y :
􏽘K

l=1

1 ok ≥ ol
( 􏼁xl + y(k)

l

N + 1

􏼢 􏼣

> α

􏼨 􏼩

, (4) 

for some vector o ∈ RK.

Note that the prediction set depends on the vector o only through the order of its elements. Such 
a vector may be defined based on the data, or otherwise. We elaborate in the remainder of this 
section.

For any ordering of the K categories, constructing a prediction set following Theorem 2 results 
in a prediction set with guaranteed finite-sample 1 − α frequentist coverage. The choice of order
ing, however, will impact prediction set precision, that is, the set’s cardinality. For inference for a 
single area, a natural approach is to order the categories with respect to their empirical propor
tions. The empirical proportions are unbiased for population proportions, so, if the area has a 
large sample size, an ordering based on the empirical proportions will approximate the oracle or
dering well. It turns out this approach is well-motivated by classical prediction approaches. 
Specifically, a standard direct prediction method constructs a prediction set separately for an 
area based on an area-specific conditional pivotal quantity (Faulkenberry, 1973; Tian et al., 
2022). For a multinomial population, Y |X + Y is such a quantity that follows a multivariate hy
pergeometric distribution which does not depend on the event probability vector. See Thatcher 
(1964) for work on prediction sets of this type for binomial data. A prediction set constructed 
to contain species belonging to a highest mass region of this pivotal distribution is obtained by in
cluding species with the largest empirical counts until their cumulative proportion sum exceeds 
1 − α,

AD
α (x) = y(k) ∈ Y :

􏽘K

l=1

1 xk + y(k)
k

􏼐 􏼑
≥ xl + y(k)

l

􏼐 􏼑􏼐 􏼑 xl + y(k)
l

N + 1

􏼢 􏼣

> α

􏼨 􏼩

. (5) 

This direct prediction set based on an ordering of the empirical proportions is appealing as it is 
easy to interpret and has finite-sample guaranteed 1 − α frequentist coverage. For an area with 
low sampling effort, though, the empirical proportions will not precisely estimate the true propor
tions. As a result, a prediction set may have prohibitively large cardinality such that it is not prac
tically useful. For such an area, incorporating indirect information from neighbouring counties 
can improve the estimates of the county proportions and thereby increase the precision of a pre
diction set.

2.3 Order-based prediction for multiple areas
In general, in analysing small area data, that is, areal data featuring small within-area sample sizes 
in some areas, it is common to utilize indirect methods that share information across areas (Rao & 
Molina, 2015). The eBird database is a rich data source, and inference in any given county may be 
improved upon by taking advantage of auxiliary data using an indirect method. In this subsection, 
we detail how information from neighbouring counties may be used in estimating an ordering of 
categories to improve prediction set precision.

As opposed to a direct prediction set based on an ordering corresponding to within-county em
pirical proportions, an indirect prediction set can be constructed similarly whereby species are ad
mitted into the prediction set based on an ordering corresponding to empirical posterior 
proportions estimated from a hierarchical model. Such an estimate may be obtained based on a 
conjugate Dirichlet prior distribution parameterized with a common concentration hyperpara
meter for the J areas,

θ1, . . . , θJ ∼ DirichletK(γ). (6) 
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Given a hyperparameter γ ∈ RK, the posterior expectation of the proportions θj in county j is 
x̃ j/(Nj +

􏽐K
i=1 γi), where x̃ j = xj + γ. In this way, x̃ j may be interpreted as a posterior vector of 

counts for county j. Then, an α-valid prediction set based on x̃ j is,

AI
α(xj) = y(k) ∈ Y :

􏽘K

l=1

1 x̃ j,k + y(k)
k

􏼐 􏼑
≥ x̃ j,l + y(k)

l

􏼐 􏼑􏼐 􏼑x j,l + y(k)
l

Nj + 1

􏼢 􏼣

> α

􏼨 􏼩

. (7) 

By Theorem 2, AI
α(xj) is an α-valid procedure, and it is constructed based on prior information. 

Specifically, it differs from the direct set given in equation (5) in that categories are admitted 
into the prediction set based on an ordering determined by posterior counts that incorporate in
direct information γ, as opposed to an ordering based on the observed sample. Moreover, it has 
been shown that if the indirect information used is accurate, AI

α(xj) may be more precise than a 
direct prediction set with the same coverage rate (Bersson & Hoff, 2024; Hoff, 2023).

In total, AD
α (xj) and AI

α(xj) are both α-valid prediction procedures. They differ in the order in 
which species are admitted into the prediction sets, as species are admitted into the direct set in 
terms of decreasing empirical proportions and into the indirect set in terms of decreasing posterior 
counts. As a result, for an area with a small sample size, incorporating accurate prior information 
can result in an ordering used to construct a prediction set that more accurately approximates the 
oracle ordering as the empirical proportions might be too unstable. Of note, these two approaches 
are equivalent for a uniform prior γ = c1, for any constant c. This includes, for example, a standard 
noninformative prior c = 1, a standard objective Bayes Jeffrey’s prior c = 1/2, and an improper 
prior c = 0.

2.4 Empirical Bayes estimation of indirect information
To obtain an α-valid indirect prediction set for county j ∈ {1, . . . , J}, all that is required is an es
timate of the prior concentration parameter γ. We propose an empirical Bayesian approach where
by values of γ to be used for county j are estimated from data collected in neighbouring counties. 
Specifically, we use the maximum likelihood estimate of the marginal likelihood based on the con
jugate hierarchical model given by equations (1) and (6),

γj = arg max
γ

log p
􏽛

l∈Lj

X l

􏼌
􏼌
􏼌γ

⎛

⎝

⎞

⎠

= arg max
γ

log
􏽙

l∈Lj

Γ(
􏽐K

i=1 γi)

Γ(
􏽐K

i=1 xl,i + γi)
×
􏽙K

i=1

Γ(xl,i + γi)
Γ(γi)

􏼢 􏼣

,

(8) 

where Lj ⊆ {1, . . . , J}\{j} is a non-empty set containing the indices of counties neighbouring county j. 
Information is shared across neighbouring counties to inform an estimate of the prior for county j, 
and, when estimated in this way, the prior concentration represents an across-county pooled prior 
concentration. This optimization problem can be solved numerically with a Newton–Raphson algo
rithm. See Appendix B for details and derivation of such an algorithm. Code to implement this pro
cedure in the R Statistical Programming language is available online, see Section 5.

When γj is estimated using data independent of area j and used to construct AI
α(xj), the finite- 

sample coverage guarantee of AI
α(xj) holds regardless of the accuracy of the estimated prior hyper

parameter. If the estimated vector γj is accurate, then AI
α(xj) may also be more precise than direct 

prediction approaches.

3 Simulation study
To illustrate how the incorporation of indirect information can affect precision of prediction sets, 
we compare expected set cardinality obtained from the indirect and direct prediction methods for 
a single simulated area. In contrast to the eBird data, for example, the analysis of this section cor
responds to that of one county. Because citizen science data such as these often feature unequal 

662                                                                                                                                        Bersson and Hoff
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssa/article/188/3/641/7811367 by guest on 07 N
ovem

ber 2025



sampling efforts across counties, we are particularly interested in demonstrating the difference in 
cardinality between these two approaches for a range of sample sizes N = 10, 100, 1,000. 
Moreover, we compare results for varying number of categories K. Throughout, we consider a 
low entropy regime in which ⌈K/4⌉ categories unequally split nearly all of the probability mass, 
and the rest of the categories have nearly probability 0. While we do not necessarily expect real 
populations in practice to have such a distribution, it is chosen to clearly demonstrate the benefit 
of including indirect information in the construction of prediction sets that maintain frequentist 
coverage.

In one construction of indirect prediction sets, we consider a prior based on full information 
with moderate prior precision γ = θ × 10. We compare with direct prediction sets given by equa
tion (5), or, equivalently, indirect prediction sets constructed with a uniform prior γ = 1. Finally, 
we compare the approaches to α-valid order-based prediction sets obtained based on an oracle or
dering. Results comparing Monte Carlo approximations of the expected prediction set cardinality 
ratios between the various approaches obtained from 25,000 replications are displayed in 
Figure 1.

As all methods considered are α-valid procedures, the crucial difference between them is the in
corporation of indirect information. Utilizing accurate prior information in the construction of 
prediction sets generally results in prediction sets distinctly smaller than direct sets, particularly 
so if there are a large number of categories relative to the sample size. This is evidenced by the 
red dashes in Figure 1 showing the expected cardinality ratios of the indirect to direct prediction 
sets are always at or below a value of 1. An accurate prior may be one that approximates the true 
probability mass vector well with large precision relative to sample size, as seen in the left plot of 
Figure 1 for sample size N = 10. More generally, though, all that is needed is a prior that results in 
posterior counts that accurately approximate the oracle ordering of categories. We discuss the 
three sample size regimes in detail below.

For a small sample size of N = 10, the prior γ used to construct the indirect prediction sets is an 
informative prior with strong precision in that the scale used is equal to the sample size in this case. 
As a result, the posterior distributions contain notably more information than what is in each si
mulated dataset. As a result, the ordering of categories induced by the posterior counts, used to 
construct the indirect prediction sets, are accurately approximating the oracle ordering of categor
ies. This is evidenced by the nearly identical behaviour of the two cardinality ratios explored. In 
conjunction with the instability of the direct method in the presence of such a small sample size, 
this results in notably smaller cardinality of the indirect set as compared to the direct set, even 
for relatively small total numbers of categories. At its best, the indirect prediction set is about 
80% smaller than the direct set.

For a moderate sample size of N = 100, the prior precision used to construct the indirect predic
tion sets is not overwhelming as compared to the sample size, and hence the posterior counts do 
not approximate the oracle ordering as well as in the regime with a smaller sample size. This is 
evidenced by the divergence of the red and blue dashes in the middle plot of Figure 1. Still, particu
larly as the number of categories increases for fixed N, the benefit of utilizing prior information of 

Figure 1. Monte Carlo approximations (±1 standard deviation) of the expected cardinality ratio of indirect method 
based on an accurate prior with moderate precision to direct method, and expected cardinality ratio of α-valid 
prediction set given the oracle ordering to direct method.
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this type is highlighted by the decline of the cardinality ratio of the indirect to direct prediction sets 
(red lines). For example, in the case of N = 100 and K = 150, the indirect prediction set con
structed with γ is about 15% smaller than the direct prediction set.

A similar but less pronounced pattern is seen in the presence of a larger sample size of N = 1,000. 
For this sample size with K ≤ 150, all methods considered perform relatively similarly. However, 
as the number of categories increases, there is a distinct gain in prediction set precision given the 
input of indirect information in prediction set construction.

3.1 Comparison with Bayesian prediction sets
For multi-group count data such as we are considering, a standard Bayesian prediction set may be 
constructed from the posterior predictive distribution (see, for example, Gelman et al., 2014
Section 1.3) based on the hierarchical model given by equations (1) and (6). Specifically, the pos
terior predictive distribution for group j is a multinomial distribution for a single trial with pro
portions vector x̃ j/(Nj +

􏽐K
i=1 γi). Then, a Bayesian prediction set AB

α may be taken to be the 
categories corresponding to the highest mass region of this predictive distribution such that the 
categories’ cumulative predictive probability sum exceeds 1 − α,

AB
α (xj) = y(k) ∈ Y :

􏽘K

l=1

1 x̃ j,k ≥ x̃ j,l
( 􏼁 x̃ j,l

Nj +
􏽐K

i=1 γi

􏼢 􏼣

> α

􏼨 􏼩

. (9) 

Such a prediction set may have smaller cardinality than the indirect or direct approach, but it will 
not be α-valid. In fact, the frequentist coverage may arbitrarily be nearly zero under a misspecified 
prior parameter with a large scale.

To illustrate the relationship between cardinality and coverage, we compare the Bayesian pre
diction method to the proposed indirect approach (7) in simulation. We follow the same simula
tion set-up as before and, for both methods, consider a prior based on full information with 
moderate prior precision γ = θ × 10. Results for a moderate sample size of N = 100 are plotted 
in Figure 2. By construction, the indirect approach is α-valid and maintains frequentist coverage 
rates at or above the nominal level. In contrast, the Bayesian prediction sets may be narrower 
than the indirect sets, but, correspondingly, the frequentist coverage rate of the Bayesian sets 
may fall below the nominal rate.

Figure 2. (Left) Monte Carlo approximations (±1 standard deviation) of the expected cardinality of the indirect 
α-valid prediction set (indirect) and Bayesian posterior predictive set (Bayes), both constructed with prior 
concentration γ = θ × 10. (Right) Monte Carlo approximations (with 95% Clopper–Pearson intervals) of the 
frequentist coverage rate of each method, both constructed for an error rate of α = 0.15.
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4 Summarizing eBird species abundance data
In this section, we describe avian species abundance in North Carolina, USA from eBird data ob
tained from citizen-uploaded complete checklists of species observations in the first week of May 
2023. Across the 99 counties, 393 unique species were identified. Some species such as the 
Northern Cardinal, Carolina Wren, and American Robin were identified frequently. Many others 
like the Northern Saw-whet Owl and the Solitary Sandpiper were rarely seen; in fact, 50% of spe
cies were seen fewer than 100 times each across the entire state. Moreover, within-county sample 
sizes vary drastically (Figure 3) from approximately 50,000 individual birds identified in Wake 
County, one of the most populous counties in NC that contains the state’s capital, to only 8 in 
Pasquotank County, a small coastal county consisting of about 1/30th of the human population 
of Wake County.

As motivated in Section 1, describing such data with α-valid prediction sets for each county pro
vides a useful summary with unambiguous statistical interpretation. That is, with at least probabil
ity 1 − α, an unobserved bird in a given county will belong to a species contained in the specified 
prediction set, where the probability is taken with respect to the random sample and the predic
tand. Here, we demonstrate the usefulness of this approach in gaining better understanding of spe
cies abundance. Moreover, we elaborate on the benefit of utilizing indirect information in the 
construction of practically useful sets that are precise, particularly for counties with small within- 
county sample sizes.

For each county in NC, we construct an indirect prediction set based on a prior hyperparameter 
estimated from data in the five nearest neighbouring counties, following the procedure described 
in Section 2.4. The eBird data consist of independent samples collected across the state, so samples 
are independent across counties. As a result of this independence, finite-sample coverage of the in
direct prediction approach is guaranteed. We compare the cardinality of these indirect prediction 
sets to that of direct prediction sets, both of which maintain at least 95% coverage for each county. 
The cardinality ratios of the indirect to direct prediction sets across the counties in NC are plotted 
in Figure 4. To highlight the impact of within-county sample size, the lower quantile sample sizes 
are overlaid on their respective county.

In general, the incorporation of indirect information in the construction of prediction sets re
sults in notably smaller cardinality of the indirect prediction sets as compared with that of the dir
ect prediction sets. Of the 99 counties in NC, indirect sets have smaller cardinality in 65, and the 
two approaches result in the same cardinality in 20 counties. The improvement in cardinality is 
particularly conspicuous in counties with small to moderate sample sizes, as evidenced by the sam
ple sizes of counties corresponding to the smallest cardinality ratios, seen in Figure 4. Moreover, 
10 counties have trivial direct sets consisting of all K species, while only two counties with the 
smallest within-county sample sizes, 8 and 14, have trivial indirect prediction sets. For the county 
with the third smallest sample size (24), the indirect prediction set only includes 80 species, or 
about 20% of all possible species, while the direct prediction set is the trivial set.

Overall, even in counties with larger sample sizes, it is most common for the indirect and direct 
prediction sets to contain a different set of species. In fact, the indirect and direct prediction sets 

Figure 3. Within-county log sample size.

J R Stat Soc Series A: Statistics in Society, 2025, Vol. 188, No. 3                                                          665
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssa/article/188/3/641/7811367 by guest on 07 N
ovem

ber 2025



disagree for nearly every county in NC. They are equivalent for only six counties where they are 
not both trivial sets. Commonly, this discrepancy corresponds with smaller indirect sets, and hence 
highlights the benefit of inclusion of indirect information in the construction of prediction sets.

4.1 Order-based prediction in Robeson County
To further compare the two approaches and elucidate the role of the ordering of the species, we 
elaborate on the construction of indirect and direct prediction sets for Robeson County. 
Robeson is located near the southeastern border of NC and features a moderately small within- 
county sample size of 247 birds observed, with species-specific observation counts ranging from 
zero to ten. The two prediction sets have nearly the same cardinality but contain differences in spe
cies inclusion. Specifically, the indirect prediction set contains 33 species, and the direct set con
tains 32, with an overlap of 27 species.

To illustrate the role of the ordering used in the construction of α-valid prediction sets, the em
pirical proportions based on the observed sample [maximum likelihood estimate (MLE)] and pos
terior proportions (Post.Pred) are plotted in Figure 5 for the union of included species in the two 
sets. In the figure, the species are sorted by increasing posterior proportions. The indirect and dir
ect sets include species based on the posterior and empirical distributions, respectively. 
Discrepancies between the indirect and direct sets occur when these two distributions disagree. 

Figure 4. Cardinality ratio of indirect to direct prediction sets. Prior hyperparameters estimated with an empirical 
Bayesian procedure based on five nearest neighbours for each county. The lowest quantile sample sizes are overlaid 
on their respective counties.

Figure 5. Empirical probability masses of species included in only the indirect (Prothonotary Warbler, Eastern 
Towhee, Summer Tanager, Red-eyed Vireo, Pine Warbler, and Chipping Sparrow), only the direct (Double-crested 
Cormorant, Eastern Meadowlark, Downy Woodpecker (Eastern), Eastern Kingbird, and Red-headed Woodpecker), 
or both (all remaining species) prediction sets, sorted by the posterior proportion (Post.Pred). The empirical 
proportion (MLE) and the posterior proportion based on a prior estimated from data in nearest five neighbouring 
counties are plotted.
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From Figure 5, it is easy to see the indirect prediction set consists of the species with the 33 largest 
posterior predictive proportions. In contrast, the direct set consists of species with the largest sam
ple probability mass. Naturally, the ordering of these two estimates agree for species common to 
the region, and, as such, there is a fair amount of overlap of species inclusion.

As a result of our estimation procedure for the prior hyperparameter γ for Robeson County, the 
disparity between inclusion or exclusion of a species among the two prediction set methods is fur
ther elucidated by examining species presence in neighbouring counties. In short, species with 
more frequent occurrence in neighbouring counties will have a larger estimated prior count 
than those seen rarely in neighbouring counties. Species occurrences in neighbouring counties 
are displayed in Table 1 for a select few species along with the estimated γ for Robeson County, 
obtained by solving equation (8) using data in these neighbouring counties.

Intuitively, species that are seen in neighbouring counties with some relative frequency, such as 
the Chipping Sparrow or Pine Warbler, are probably also present in Robeson County, and hence 
should be included in a prediction set. In practice, these species have a comparatively high esti
mated prior of about 5 and 4, respectively, and hence are included in the indirect prediction set 
even though they were not recorded as being observed in Robeson County in the dataset. 
Alternatively, consideration of indirect information yields the conclusion that species like the 
Eastern Kingbird and Cormorant may be rare in the area in general, as reflected by small γ values, 
and thus these species are not included in the indirect prediction set.

4.2 Inference among species with tied observed counts in Haywood County
In species abundance data, particularly for areas or counties with small sample sizes, it is common 
for multiple species to have the same observed count. A feature of the construction of the direct 
order-based prediction approach as presented is that species with the same observed counts will 
either be jointly included or excluded from the prediction set. As a result, a direct prediction set 
constructed from a sample with tied species counts may have increased cardinality over an indirect 
prediction set that does not necessarily jointly admit all species with tied observed counts. If the 
direct set has increased cardinality for this reason, the direct set will also have increased coverage 
over the indirect set.

When constructing a prediction set based on the empirical proportions without consideration of 
indirect information, as in the construction of the direct set, this may commonly occur, and there is 
no clear approach to choose among the species with tied counts without further information than 
what is provided in the sample in that county. One could randomly choose to include one of the 
species from the set of species with tied counts, for example, but a more principled manner is to 
utilize indirect information to determine which species should be included. This is the mechanism 
used by the indirect prediction approach when the prior hyperparameter is a real-valued vector 
estimated from indirect information. As such, a more nuanced benefit of utilizing indirect infor
mation in the construction of a prediction set is the capacity to include a select few categories 
with tied empirical proportions.

Table 1. Percentage of all birds observed within each respective county, for select species included in either the 
indirect set (Pine Warbler and C. Sparrow) or the direct set (D. Cormorant and E. Kingbird)

D. Cormorant E. Kingbird Pine Warbler C. Sparrow

Robeson 0.81% 0.4% 0.00% 0.00%

NC-017 0.00% 2.85% 1.97% 2.63%

NC-047 0.00% 0.00% 1.29% 0.64%

NC-051 0.00% 0.68% 2.62% 5.59%

NC-093 0.00% 0.00% 1.09% 0.55%

NC-165 0.00% 0.86% 2.58% 5.16%

γ 0.00 1.33 3.42 4.69

Note. Estimated prior hyperparameter γ for Robeson County recorded in the last row.
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To demonstrate, we elaborate on species inclusion in the indirect and direct prediction sets in 
Haywood County. Haywood is popular destination in the Blue Ridge Mountains, located near 
the western border of North Carolina. It features a moderately large within-county sample size 
of roughly 4,000 birds observed. In Haywood County, the indirect prediction set contains 70 spe
cies, and the larger direct set contains 74. In the construction of these prediction sets, the ordering 
of species with regards to the posterior proportions and the empirical proportions agree for most 
species. As a result, all 70 species included in the indirect set are also included in the direct set. The 
disparity in species inclusion occurs primarily as a result of tied counts of species occurrence in the 
sample.

Empirical proportions in Haywood and neighbouring counties are reported in Table 2 for the 
five species included in Haywood County’s prediction sets with the smallest posterior proportions. 
The species with the four smallest posterior proportions are included only in the direct set, and the 
other species, the Bobolink, is included in both the indirect and direct sets. The Bobolink was ob
served nine times in the sample from Haywood County, or about 0.24% of the Haywood sample. 
For an ordering determined by either the empirical counts or the posterior counts, this species is 
required to be included in the order-based prediction set to guarantee 1 − α coverage. Two of the 
other species, the Red-shouldered Hawk and Eastern Kingbird, were each also observed nine times 
in the sample from Haywood, and, by construction of the order-based prediction approach, must 
also be included in the direct set. When admitting the species into a prediction set by posterior 
counts based on the real-valued prior hyperparameter γ estimated from data in neighbouring 
counties, as in the indirect approach considered, the ‘tie’ among these three species is broken, 
and only one, the Bobolink, is included in the indirect prediction set.

4.3 Comparison with Bayesian prediction sets
The α-valid prediction approaches may also be compared to the Bayesian prediction method de
tailed in equation (9). As the Bayesian method and the indirect method are constructed based on 
the same hierarchical working model, the Dirichlet prior parameter in (9) may be estimated fol
lowing the same empirical Bayes approach used for the indirect prediction method. While the 
Bayesian sets may be smaller than the direct or indirect sets, the Bayesian sets are not α-valid, 
and thus the frequentist coverage of a set for any given county may fall below the nominal level.

As conveyed in the cardinality comparison between the indirect and direct prediction sets, in
corporating auxiliary information in the construction of the prediction sets results in improved 
cardinality overall. Specifically, the Bayesian prediction sets are smaller than the direct sets in 
59 of the 99 counties in North Carolina. In comparing the two methods that utilize auxiliary in
formation, the Bayesian sets are smaller than indirect sets in 33 counties, and they have the same 
cardinality in 15 counties. Overall, the indirect method outperforms both the Bayesian method 
and the direct method in terms of minimizing prediction set cardinality. Moreover, the Bayesian 

Table 2. Percentage of all birds observed within each respective county for species included in either both prediction 
sets (Bobolink) or only the direct set (L. Flycatcher, R. Hawk, C. Yellowthroat, and E. Kingbird)

L. Flycatcher R. Hawk C. Yellowthroat E. Kingbird Bobolink

Haywood 0.21% 0.24% 0.21% 0.24% 0.24%

NC-021 0.06% 0.29% 0.18% 0.43% 0.14%

NC-099 0.00% 0.08% 0.16% 0.00% 0.00%

NC-115 0.07% 0.14% 0.21% 0.28% 0.00%

NC-173 0.18% 0.18% 0.66% 0.09% 1.41%

NC-175 0.00% 0.30% 1.00% 0.54% 0.84%

γ 0.4 1.29 2.43 1.49 2.15

Note. Estimated prior hyperparameter γ for Haywood County recorded in the last row. Species are sorted by posterior 
proportion.
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approach is not α-valid, and thus the frequentist coverage rates of the Bayesian prediction sets may 
fall below the nominal level.

5 Discussion
Species abundance data collected across heterogeneous areas is increasingly important in 
understanding biodiversity. Some of the largest sources of such data are citizen science data
bases for which volunteers spearhead the data collection. As a result of the civilian-led sci
entific effort, such data often feature unequal sampling across a spatial domain where 
some areas have large within-area sample sizes and others have much smaller within-area 
sample sizes.

In this article, we propose summarizing species abundance data of this type with valid prediction 
sets that are constructed by sharing information across areas. Utilizing indirect information may 
result in smaller prediction sets than otherwise achievable with direct methods. Meanwhile, main
taining validity of the prediction sets for each area allows for an accessible interpretation that en
ables a straightforward comparison across areas. In particular, maintaining interpretable 
statistical guarantees on a descriptor of such data is important as analyses from such data often 
have far reaching policy implications. Smaller prediction sets may be attainable based on 
Bayesian inference of a spatial hierarchical model such as that presented in Tang et al. (2023), 
for example, but these approaches introduce bias and a resulting prediction set would not retain 
the nominal frequentist coverage rate guarantee for each county.

The usefulness of our approach for summarizing citizen science data is motivated in part to 
combat the common problem of varying sampling efforts across areas. We detail how α-valid 
prediction sets can be constructed with the incorporation of indirect information to improve 
within-county prediction set precision and propose an empirical Bayes procedure to do so. 
Incorporation of accurate indirect information results in a narrower prediction set for a given 
county than a direct prediction set by exploiting data in nearest neighbouring counties. The pro
posed empirical Bayes procedure is based on a standard hierarchical model that is straightforward 
to understand, and the authors provide code for implementation.

There may, however, be a benefit to utilizing a more structured prior that incorporates indir
ect information in a more complex manner such as a prior that weights data from different 
parts of the state differently. For example, a model based on a learned intrinsic distance be
tween counties was shown in Christensen and Hoff (2022) to fit a subset of the eBird data better 
than standard methods based on geographic adjacency structure. In the sample analysed in 
Section 4, we found an indirect prediction set constructed with a hyperparameter estimated 
from five nearest neighbours results in overall narrower prediction sets than a direct approach, 
but it would be valuable to explore if this can be further improved upon with a more detailed 
prior. More broadly, different applications may warrant an alternative information sharing 
prior if, for example, there is no notion of spatial distance across the different areas. For ex
ample, it may be of interest to compare species abundance variation across different time 
frames for a given county.

All replication codes for this article, including functions to implement the empirical Bayes esti
mation procedure for the prior hyperparameter, are available at https://github.com/betsybersson/ 
FreqPredSets_Indirect.
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Appendix A: Proofs

Remark 1 (Concerning Theorem 1). We first elaborate on the construction of an order- 
based prediction set following equation (3). To test if an element y(k) in the 
sample space Y is included in a prediction set for a given vector o and known 
event probability vector θ, the cumulative sum of event probabilities of the cat
egories corresponding to the minimum element of o up to element k, following 
the ordering of o, is computed. If this cumulative sum is greater than the error 
rate α, then element k is included in the prediction set. As a result, all elements 
with such cumulative sums greater than α are included in the prediction set. 
The elements with such cumulative sums less than or equal to α are not in
cluded. Therefore, by construction, P(Y ∉ Aθ,o

α | θ) ≤ α. Consequently,

P(Y ∈ Aθ,o
α | θ) = 1 − P(Y ∉ Aθ,o

α | θ) ≥ 1 − α, 

so Aθ,o
α is α-valid.

Proof of Theorem 1. (1): Note first that o enters equation (3) only through the ordering of 
its elements. As such, without loss of generality, consider vectors of 
the form o ∈ {0, 1}K. When constructing a prediction set following 
equation (3) based on such a vector o, the category space is effective
ly divided into two disjoint subsets,

Y0 = {y(k) ∈ Y : ok = 0}

Y1 = {y(k) ∈ Y : ok = 1}, 

such that, by construction,

Aθ,o
α = Y if

􏽘

{j : y(j)∈Y0}
θj > α

Y1 else

􏼨

.

For a given error rate α, clearly any α-valid prediction set may be 
constructed under considerations of permutations of the vector o 
of the form o ∈ {0, 1}K.

(2): We wish to show no other ordering results in an α-valid 
prediction set with strictly smaller cardinality than oθ. In words, 
consider switching the ordering of one element at a time. This 
will always result in a prediction set with the same cardinality 
or greater cardinality than that under oθ. More formally, let 
õ = {oθ

1, oθ
2, . . . , oθ

k∗ , oθ
k∗−1, oθ

k∗+1, . . . , oθ
K}, that is, equivalent to oθ 

with the (k∗)th and (k∗ − 1)th ordering flipped. But, by construc
tion, θk∗ ≥ θk∗−1, so |Aθ,oθ

α | ≤ |Aθ,õ
α |.                                           □

Proof of Theorem 2. Let Y1, . . . , YN+1 ∼ i.i.d.MNK(θ, 1). Then, we wish to construct a 
conformal prediction set for YN+1 based on an observation of 
X =

􏽐N
i=1 Y i, and some conformity measure C.

To determine if a candidate category k ∈ {1, . . . , K} is included in 
a 1 − α conformal prediction set, the conformal algorithm proceeds 

670                                                                                                                                        Bersson and Hoff
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssa/article/188/3/641/7811367 by guest on 07 N
ovem

ber 2025



as follows, see Section 2.1 of Bersson and Hoff (2024) for more 
details: 
1. Set yN+1 = y(k) where y(k) is a vector of length K with a 1 in the 

kth index and 0s elsewhere.
2. For j = 1, . . . , N + 1, compute conformity scores 

cj = C(x − yj + y(k), yj).
3. Set

pk =
{#j ∈ {1, . . . , N + 1} : cN+1 ≥ cj}

N + 1 

More compactly, and by symmetry in the problem, this conform
al p-value may be equivalently written as:

pk =
􏽘K

l=1

1(o∗k ≥ o∗l )
xl + y(k)

l

N + 1
, 

where o∗k = cN+1 and o∗l = cj for a j ∈ {1, . . . , N} such that 
yj = y(l). Then, for prediction mis-coverage rate α, the category 
k is included in the prediction set if pk > α. A prediction set con
structed from this procedure may be concisely written as follows:

Aα(x) = y(k) ∈ Y :
􏽘K

l=1

1 ok ≥ ol
( 􏼁xl + y(k)

l

N + 1

􏼢 􏼣

> α

􏼨 􏼩

, 

for some o ∈ RK.                                                                 □

Appendix B: Maximization of the Marginal Multinomial-Dirichlet 
Likelihood
In this section, we detail a Newton–Raphson algorithm to maximize the log marginal likelihood of 
a conjugate multinomial-Dirichlet model, sometimes referred to as the Dirichlet-multinomial com
pound distribution:

X j ∼ MNK(θj, Nj), independently for j = 1, . . . , J

θ1, . . . , θJ ∼ DirichletK(γ).

The log likelihood of the marginal likelihood is as follows:

L(γ) ∝
􏽘J

j=1

logΓ
􏽘K

i=1

γi

􏼠 􏼡

− logΓ Nj +
􏽘K

i=1

γi

􏼠 􏼡􏼢

+
􏽘K

i=1

logΓ(x j,i + γi) −
􏽘K

i=1

logΓ(γi)

􏼣

.
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Define

Ψ(s) =
d
ds

logΓ(s) = −ξ +
􏽘∞

n=0

1
n + 1

−
1

n + s

􏼔 􏼕

, 

where ξ is the Euler–Mascheroni constant. Then, it is straightforward to obtain the first and second 
derivatives of the marginal log likelihood,

d
dγk

=
􏽘J

j=1

Ψ
􏽘K

i=1

γi

􏼠 􏼡

− Ψ Nj +
􏽘K

i=1

γk

􏼠 􏼡

+ Ψ(x j,k + γk) − Ψ(γk)

􏼢 􏼣

d
dγ2

k

=
􏽘J

j=1

Ψ′
􏽘K

i=1

γi

􏼠 􏼡

− Ψ′ Nj +
􏽘

i

γi

􏼠 􏼡

+ Ψ′(x j,k + γk) − Ψ′(γk)

􏼢 􏼣

d
dγkdγk′

=
􏽘J

j=1

Ψ′
􏽘K

i=1

γi

􏼠 􏼡

− Ψ′(Nj +
􏽘K

i=1

γi)

􏼢 􏼣

, 

where Ψ′ is the trigamma function. Let g be the gradient vector of length K and H the Hessian 
matrix. Finally, Newton’s method updates γ as follows:

γ(t+1) = γ(t) − H−1(γ(t))g(γ(t)), 

where the algorithm is iterated until convergence.
Solving for the MLE of the unknown parameter in the Dirichlet-multinomial compound distri

bution is covered in literature dating back to at least (Mosimann, 1962), and it is stated in Wallach 
(2008) that the likelihood is concave. For a detailed overview of the Dirichlet-multinomial com
pound distribution, see Ng et al. (2011). For derivations and comparisons of various algorithms 
to solve the maximization problem, including computational expense and initialization sensitivity, 
we refer the reader to Minka (2000) and Wallach (2008).
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Abstract
Citizen science mobilizes many observers and gathers huge datasets but often without strict sampling 
protocols, resulting in observation biases due to heterogeneous sampling effort, which can lead to biased 
predictions. We develop a spatio-temporal Bayesian hierarchical model for bias-corrected estimation of 
arrival dates of the first migratory bird individuals at their breeding sites. Higher sampling effort could be 
correlated with earlier observed dates. We implement data fusion of two citizen-science datasets with 
fundamentally different protocols (Breeding Bird Survey, eBird) and obtain posterior distributions of the 
latent process, which contains four spatial components endowed with Gaussian process priors: species 
niche; sampling effort; position and scale parameters of annual first arrival date. The data layer consists of 
four response variables: counts of observed eBird locations (Poisson); presence–absence at observed eBird 
locations (Binomial); BBS occurrence counts (Poisson); first arrival dates (generalized extreme-value). We 
devise a Markov chain Monte Carlo scheme and check by simulation that the latent process components 
are identifiable. We apply our model to several migratory bird species in the northeastern US for 2001–2021 
and find that the sampling effort significantly modulates the observed first arrival dates. We exploit this 
relationship to effectively bias-correct predictions of the true first arrivals.
Keywords: Bayesian hierarchical model, bias correction, bird phenology, opportunistic data, sampling effort, species distribution
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1 Introduction
1.1 The rise of citizen science
Defining citizen science and its boundaries is difficult (Haklay et al., 2021). Broadly, the field in
volves a collaborative approach to scientific inquiry that engages volunteers and nonprofessionals 
in the collection, analysis, and interpretation of data. This participatory model is not new. 
Friedrich Wilhelm Herschel, a musician by training, discovered the planet Uranus in 1781 using 
his telescopes. Charles Darwin conducted crowd-sourcing projects in the 19th century by recruit
ing acquaintances and travellers to write to him about their observations (Browne, 1996). The 
longest-running citizen science initiative is the annual Christmas Bird Count (Bock & Root, 
1981), a census administered by the National Audubon Society of wintering birds in the 
Western Hemisphere by volunteer birdwatchers since 1900.
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Citizen science has gained significant traction over the past two decades, spurred on by growing 
world literacy levels and the advent of technological devices and infrastructures for gathering, re
porting, sharing, and storing data (Newman et al., 2012; Wynn, 2017). These datasets are often col
lected at relatively low cost and sometimes with unconventional funding sources (Silvertown, 2009). 
Zooniverse,1 the world’s largest platform for volunteer-based research, has seen a surge to over 1.9  
Million registered volunteers since its inception in 2009. Climateprediction.net runs climate modelling 
experiments using the home computers of thousands of volunteers. There is now a peer-reviewed jour
nal (Bonney, Cooper, et al., 2016) dedicated to disseminating research on citizen science, and the 2019 
Citizen Science Association biannual conference attracted 818 registered delegates from 28 countries.

Citizen science is expected to grow in importance. Technological progress continually improves 
how machines and citizen science work together; for example, volunteer-classified training sets 
have already been used to improve the performance of machine learning approaches in astronomy 
(Marshall et al., 2015). Fraisl et al. (2020) note that traditional data sources are not sufficient for 
measuring the United Nations Sustainable Development Goals (UN, 2015), and sources from citi
zen science are required to better inform policies and actions. Citizen-science initiatives can also 
have community-level impacts on the participants (Jordan et al., 2012), such as by empowering 
them, giving them a voice in local environmental decision-making (Bonney, Phillips, et al., 
2016), and increasing public awareness of the scientific process. Though citizen science’s global 
economic value has been estimated to exceed 2.5 billion USD annually, the majority of data col
lected through citizen-science initiatives has not yet reached analysis in peer-reviewed literature 
(Theobald et al., 2015). There is a need to develop and disseminate statistical methods that facili
tate wider scientific use of these datasets.

1.2 Analysis of data for species monitoring
Much of the recent growth in citizen science has occurred in the ecological and environmental sciences 
(Fraisl et al., 2022; McKinley et al., 2015; Pocock et al., 2018). A prominent example in ecology is the 
eBird project (Cornell Lab of Ornithology, 2022), launched in 2002, which has led to a database of 
over 200 Gigabytes providing information on over 600 million bird observations. Another important 
bird monitoring program within the scope of citizen science is the North American Breeding Bird 
Survey (BBS). It was launched in 1966 for official monitoring purposes and engages large numbers 
of trained volunteers in collecting standardized data on bird populations according to a rather strict 
sampling protocol along several selected routes and during each year. BBS data can be considered 
of high quality but sampling is relatively sparse in space and occurs only during fixed periods in the 
year, whereas the sampling of eBird data is much more heterogeneous but provides a generally denser 
spatio-temporal coverage, as we will detail in Section 2. We exploit these two data sources in this work. 
Regarding nonavian species, another recent example, among many others, is the deployment of cam
era traps for mammal monitoring (Hsing et al., 2022).

Many observation data in ecology are opportunistic, i.e. they were collected incidentally or 
without a predefined research question in mind, so information on the criteria applied by the ob
server for sampling and reporting observations is limited. However, opportunistic data often al
low for a spatio-temporal coverage of species monitoring that would not be attainable with 
protocol-based data collected by professionals at relatively sparse and preselected sampling loca
tions. Citizen-science data are particularly valuable for statistical inference on low-probability 
events (e.g. the presence of rare species individuals, or unusual or extreme phenological events) 
and on occurrence times of events, such as the arrival of migratory birds at their breeding site 
in spring. The general data quality from citizen-science initiatives is high (Kosmala et al., 2016), 
although the need for statistical methods to account for different data biases prevails. Isaac 
et al. (2014) discuss bias-correction approaches for ecological trend estimates, and conclude 
that opportunistic data would be further enhanced if information on the sampling effort at the 
data collection points could be captured. They further identify four key dimensions of biases in
duced by volunteer sampling: uneven sampling in time and space, uneven effort per visit, and un
even detectability of species individuals, which can vary by observer, species, and land cover. For 
example, detectability could be higher in open landscapes than in dense forests. Moreover, the ex
pertise of individual observers for detecting and identifying species may increase over time due to 

1 https://www.zooniverse.org/
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increasing training, experience, and knowledge-sharing with other observers, thus reducing obser
vation biases (Johnston et al., 2018; Kelling et al., 2015).

Using eBird, statistical modelling of sampling effort expressed through various criteria was dis
cussed by Tang et al. (2021). More generally, a large body of literature has emerged to characterize 
heterogeneous sampling effort and quantify it from available data (e.g. Fink et al., 2020; Gelfand 
& Shirota, 2019; Johnston et al., 2021, 2023).

Another problem arises when only the presence of species is reported in a nonexhaustive way 
but not their absence (presence-only data). Then, areas and times without any reported occur
rences could correspond either to the true absence of the species or to the presence of the species 
but the absence of any observer. The BBS and eBird datasets do not explicitly report absences, but 
both rely on observation protocols requiring that all species detected at the sampled location and 
identified by the observer be reported, leading to exhaustive sampling for detected and identified 
bird individuals. In eBird, data entries satisfying this protocol are known as checklist data, with a 
unique space–time coordinate associated with each checklist; these account for the vast majority of 
eBird entries. Checklist data in eBird are quality-controlled by experts, and nonexpert observers 
can train in birding with resources offered by eBird, such as tutorials, online courses and bird iden
tification apps. Observer skill for detecting and correctly identifying various bird species still varies 
across observers, even for experts. Due to the large number of observers contributing to the eBird 
dataset, our model will capture an observation effort that represents the average observation skill.

We adopt the common approach of considering species not reported within a checklist as being 
absent from the space–time location of the checklist. By systematically adding such 
pseudo-absence information to the dataset, we obtain a binary observation for each combination 
of checklist and species, with 1 corresponding to the presence and 0 corresponding to (pseudo-) 
absence of the species. We can then estimate the species presence probability using available pre
dictors with a binomial likelihood.

1.3 Extreme-value analysis for migratory bird arrivals
Extreme-value theory (EVT, Coles, 2001) is a branch of probability theory and statistics that origi
nated in the first half of the 20th century. It provides a theoretically justified framework to model ex
treme events, i.e. the tails of data distributions. It has been extensively used in fields such as finance and 
environmental sciences, especially for climate data. Applications in ecology have so far mostly focused 
on extremes of abiotic environmental processes (Gaines & Denny, 1993; Katz et al., 2005) which can 
have a strong influence on biotic processes, for example when very low winter temperatures contribute 
to limiting the extent of outbreaks of forest pests (Thibaud et al., 2016). However, direct applications 
of EVT to biotic variables in ecology are scarce, due perhaps to the strongly discretized nature of spe
cies observation data, often collected in the form of presence–absence information or relatively small 
occurrence counts. By contrast, standard EVT is more focused on variables measured on a continuous 
scale. Regarding human biology, some extreme-value studies exist and have considered extreme sports 
performances (e.g. for professional swimming competitions, Spearing et al., 2021) and longevity 
(Belzile et al., 2022). Recent ecological studies leveraging EVT aim to model species accumulation 
curves (Borda-de Água et al., 2021), extremes of species movements (Wijeyakulasuriya et al., 2019) 
or the first arrival dates of migratory birds (Wijeyakulasuriya et al., 2024). However, the aforemen
tioned approaches do not explicitly consider the specific observation biases inherent to ecological data
sets, which is the focus of our work.

The first arrivals of migratory birds at their destination for a given year are an example of pheno
logical events, i.e. of recurring life history events of species, such as migration or breeding. Bird 
migration is a complex phenomenon taking place over large geographic scales (Somveille et al., 
2015), with possible temporal trends in migration patterns resulting from changes in climate, 
land cover and other ecological and evolutionary factors (Conklin et al., 2021; Cotton, 2003). 
The study of migration patterns, and particularly of arrival times at the breeding site, has attracted 
strong interest (e.g. Linden, 2011; Youngflesh et al., 2021). Approximately 20% of all bird species 
are concerned by migration, which allows birds to adapt to seasonal cycles in climatic stresses and 
in the availability of resources such as food, especially during their breeding period.

Previous studies often used rather complex approaches to define and estimate a date that can be 
viewed as representative of the arrival of birds at their breeding site. Throughout this paper, we 

676                                                                                                                                              Koh and Opitz
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssa/article/188/3/641/7811367 by guest on 07 N
ovem

ber 2025



will simply write ‘first arrival’ to refer to the calendar date of first arrival. Youngflesh et al. (2021)
based the representative date for a given area and year on both the first arrival of an individual bird 
and the first local maximum of the species’ detection probabilities estimated from eBird data. In 
our approach, we focus only on the first arrival for each pixel of a spatial mesh covering the study 
area, i.e. we model the minimum of all dates of occurrence of the species during the year. We use 
the generalized extreme-value (GEV) distribution motivated by EVT to model this sample extreme 
of all observed occurrence times in the year, similar to Wijeyakulasuriya et al. (2024). We treat 
dates as a continuous variable, which is sensible since the distribution of observed first arrivals 
spans over a long enough period so that the discretization effects inherent to dates have a weak 
influence; Figure 1 suggests that observed dates span over several months. Although distributions 
for discrete extremes have been proposed in the literature (e.g. Hitz et al., 2024; Prieto et al., 2014; 
Ranjbar et al., 2022), they usually come with overhead for numerical computation and modelling. 
Moreover, asymptotic theory is limited to heavy-tailed variables, by contrast with our setting 
where tails have a natural finite bound and are therefore light-tailed.

In the northeastern US, birds arrive during spring from more southern regions where they have 
spent overwintering. Our goal is to analyse how the probability distribution of the first arrivals 
varies across bird species and space in this region, and in response to factors related to climate 
and land cover. The mapping of the arrival at breeding sites should be restricted to locations where 
birds are present during the year, i.e. locations that provide a suitable environment for birds to 
breed, and so the considered locations must be part of the spatial area forming the ecological niche 
occupied by the bird species for breeding. We thus design our statistical model to predict both the 
niche and the first arrivals. At locations where the species presence probability is very low accord
ing to the niche model, we will not map arrival times.

To our knowledge, the modelling approach developed here is the first that aims to appropriately 
capture the interplay of the niche, the sampling effort and the observed first arrivals to provide 
bias-corrected predictions of the true first arrivals. Wijeyakulasuriya et al. (2024) used only 
eBird data and focused on modelling the spatial dependence among the first arrivals for each 
year using the class of max-infinitely divisible models, so that first arrivals at locations without ob
servations during certain years can be predicted. We extend their approach and consider the niche 
and the sampling effort when predicting first arrivals, and we focus on revealing spatial patterns 
that remain stable across the whole study period. The approach of Youngflesh et al. (2021) is 
based on a different metric for the arrival dates, with a less direct and intuitive interpretation, 
and it does not account for sampling effort except for choosing a study area with a relatively 
high overall sampling effort in eBird.

1.4 Bayesian hierarchical modelling of complex ecological data
Observation data in ecology often do not directly measure the latent (i.e. not directly observed) 
processes of interest, such as the ecological niche, the sampling effort and the timing of a pheno
logical event in our case. This is due to observation biases and complex interactions among such 
processes. Moreover, different data sources (e.g. eBird and BBS) can contribute complementary 
information about the same latent process (e.g. the ecological niche). The data we use here provide 

Figure 1. Scatterplots of the logarithm of positive checklist counts (x-axes) and first arrivals (y-axes, with later dates 
corresponding to lower values) observed at each pixel-year combination for Chimney Swift (left) and Chestnut-sided 
Warbler (right). The larger dots show 20 binned estimates, the black line a smooth fitted curve, and the shaded 
region the 95% pointwise confidence intervals of the curve.
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a concrete illustration. The eBird checklists are available for spatio-temporal locations chosen by 
the observers and provide generally good spatio-temporal coverage of the study area, especially for 
the most recent years in the study period. By contrast, the BBS observations are only available 
along predefined routes around 40 km long, with up to 50 stops separated by around 800 m at 
which observers can report occurrence numbers of detected bird species. Time intervals for obser
vation are also imposed by the study protocol. Therefore, observation always takes place at pre
specified spatio-temporal locations in BBS, with the land-cover type at those locations marked by 
the presence of a usually relatively large road. As a consequence, BBS data may be less represen
tative of all possible land-cover types in comparison to eBird, and also provide no direct informa
tion about events taking place outside the prescribed observation time interval, such as first 
arrivals. On the other hand, within BBS many routes have been sampled during each year since 
the 1970s, so the temporal coverage of BBS over the full study period is more homogeneous 
and complete than eBird. Combining information from both datasets offers the possibility of im
proved inferences for properties of the niche and of phenological events of bird species.

With Bayesian hierarchical models (BHMs, Banerjee et al., 2003), data are assumed to be gen
erated conditional on latent processes, which in turn are conditioned on hyperparameters (e.g. the 
variance or the spatial correlation range). This makes it possible to account for spatial patterns, 
complex relationships, and uncertainties. Using Bayes’ Theorem, the combination of prior infor
mation based on expert knowledge and the data likelihood results in posterior distributions for 
latent processes and hyperparameters that reflect updated beliefs about the processes of interest 
given the observed data (van de Schoot et al., 2021).

An interesting application of BHMs in ecology is the fusion of presence-only data, available 
through large datasets but with strongly heterogeneous and unknown sampling effort, with pres
ence–absence data, available through smaller datasets but with known sampling effort, to infer 
species distribution maps (e.g. Gelfand & Shirota, 2019) using so-called integrated species distri
bution models. An often important element of such approaches is the inclusion of a latent 
Gaussian field that represents spatial heterogeneity in preferential sampling, similar to the founda
tional work of Diggle et al. (2010).

To infer the complex BHM, we design for mapping the niche, observation effort, and first arriv
als, we devise a Markov chain Monte Carlo (MCMC) scheme with Vecchia likelihood approxima
tions (Katzfuss & Guinness, 2021; Vecchia, 1988) and Metropolis-adjusted Langevin algorithm 
(MALA, Roberts & Rosenthal, 2001) updates for the latent Gaussian fields. Our approach marks 
the first use of the Vecchia approximation in Bayesian hierarchical modelling for spatial extremes, 
extending other recent approaches in EVT (Huser et al., 2023; Majumder et al., 2024).

1.5 Outline of the paper
Section 2 presents the datasets and extensive preprocessing steps. In Section 3, we recall the basics 
of EVT and introduce the BHM, we use to identify the spatial variability of three aspects (sampling 
effort; niche of a given species; date of arrival of the first individuals during spring migration for a 
given species). Details of latent Gaussian process models and MCMC inference are presented in 
Section 4, together with a simulation study that confirms the statistical identifiability of the model 
components. Results for estimated first arrivals and other model components are presented for 
several species in Section 5. A discussion and an outlook towards future research related to our 
approach and to citizen-science data more generally concludes the paper in Section 6.

2 Datasets and preprocessing steps
2.1 Bird observation data
We extracted bird observation data from eBird and BBS databases for the study period 2001– 
2021. Both databases provide separate data files for each state in the selected study area in the 
northeastern US composed of the nine following states: Connecticut, Maine, Massachusetts, 
New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont. We merged 
the extracted data into a single dataset. We used the full observation record of the eBird Basic 
Dataset, where each entry reports the observation of one or several individuals of a species, and 
retained the following attributes: name of species, count of observed individuals, longitude, lati
tude, date, duration of observation (i.e. what we consider as temporal sampling effort), and a 
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flag indicating if the observation is part of a so-called checklist. Recall that a checklist is an obser
vation event where observers report all species they observe, provided they succeed in identifying 
the species. For BBS, we extracted information about observed species at the level of the survey 
route and year.

The first arrivals of migratory birds in the study area are known to take place at the earliest to
wards the end of March. We identify migratory species as having no observations during the win
ter months of December and January in eBird. For the migratory species characterized by this 
property, we remove a few February occurrences that are understood as carryovers from the pre
ceding autumn season. Only migratory species that had at least 200 occurrences in eBird for 2021 
and were also observed in BBS are kept. This selection procedure led us to consider around 50 spe
cies as migratory, and we apply our modelling approach to the 10 species with the largest number 
of reported presences in eBird: Red-eyed Vireo, Eastern Wood-Pewee, Chimney Swift, Great 
Crested Flycatcher, Warbling Vireo, Veery, Chestnut-sided Warbler, Magnolia Warbler, Purple 
Martin, Blackburnian Warbler, in decreasing order of occurrence entries.

The following two data tables were generated from eBird: 

• eBird checklists: each row corresponds to one checklist in eBird, with attributes longitude, 
latitude, year, and duration of observation;

• eBird species occurrence: for each migratory species, the table contains the same number of 
rows as there are checklists, and each row contains the attributes of the checklist, the name 
of the species, and the binary presence–absence flag to indicate if the species was observed. 
Species observations flagged as ‘flyover’ in eBird (i.e. where birds did not nest or breed near 
the observation location) were declared as absences.

We define four response variables for the components of our regression model based on BBS 
species counts and eBird data aggregated to a regular pixel grid of 20 km width. This pixel 
size is similar to the spatial mapping unit used for most official eBird communications and 
provides a good compromise between relatively noisy data behaviour at very small scales 
and the intended modelling of spatial variability at relatively small scales. Our response 
variables are: 

• BBS species counts: the number of observed birds, available for each combination of migra
tory species, route, and year, where only routes surveyed during the specific year are consid
ered; we use the Poisson distribution for this variable;

• eBird checklist count: the number of available checklists, calculated for each configuration of 
year and pixel; we use the Poisson distribution for this variable;

• eBird occurrence count: the number of checklists (among all available checklists) for which 
the species was reported present, calculated for each configuration of species, year, and pixel; 
we use the binomial distribution for this variable;

• eBird first arrivals: the minimum date of observation, expressed as the number of days since 
1st January, calculated for each configuration of species, year, and pixel where at least one 
observation of the species occurred; we use the GEV distribution for the negated variable, 
which therefore represents a maximum.

Some of the above datasets and their components are illustrated in Figure 3.

2.2 Effect of observation effort on first arrivals
Figure 1 shows observed first arrivals plotted against positive checklist counts, for each pixel-year 
combination and two species. Observed dates tend to occur later during the year when fewer 
checklists are available, i.e. when sampling effort was lower in space. This gives strong motivation 
for modelling the influence of sampling effort on observed dates, and then using the estimated re
lationship to bias-correct predictions of true dates by setting the sampling effort to a very high, 
saturating value during the prediction step.

Figure 2 further explores whether the duration of observation during a checklist helps explain 
the residuals obtained after fitting a local regression curve in Figure 1. We detect a slight effect of 
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duration for the two example species in Figure 2, with relatively earlier arrivals arising for longer 
durations. This suggests that both the number of checklists and the duration of observation per 
checklist are relevant components of the overall sampling effort modulating the distribution of 
the observed first arrival of birds at their breeding sites, with higher effort associated with earlier 
observation of the first arrival.

To explain the remaining variability in the residuals in Figures 1 and 2, we conjecture that other 
factors related to spatial variation in bird phenology and in species presence are relevant. We con
struct our model to estimate spatial effects for these properties and then use them to correct pre
dicted first arrivals.

2.3 Climate and land-cover data
The North Atlantic Oscillation (NAO) index describes changes in the strength of two recur
ring pressure patterns in the atmosphere over the North Atlantic: a low near Iceland, and a 
high near the Azores Islands. Positive NAO indicates that these features are strong, creating 
a big pressure difference between them. Strongly positive values are linked to warm condi
tions across the Eastern US and Northern Europe, and cold conditions across Southern 
Europe. Negative NAO indicates that these features are relatively weak, and the pressure 
difference between them is smaller. Strongly negative NAO is linked to cold conditions 
in the Eastern US and Northern Europe, and warm conditions in Southern Europe. As a 
covariate at annual temporal resolution, we use the average NAO for March, which was 
already identified as a relevant climate predictor for bird migration timing by 
Wijeyakulasuriya et al. (2024).

We use the 2021 National Land Cover Database (NLCD) of the US to extract land-cover infor
mation. To facilitate model construction and identifiability, we will not use land-cover variables as 
covariates within our BHM. Instead, we will compare posterior maps of the niche, observation 
effort and components of the first arrival distribution with land cover maps to detect and interpret 
significant correlations between these model components and land cover. Land cover proportions 
for the pixel grid are reported in the Appendix (Figure A1) for four land-cover types, defined by 
merging original NLCD categories: Developed areas (including all areas with buildings and infra
structure such as roads); Forest; Vegetation (excluding forest but including planted and cultivated 
land); Water (including wetlands).

Figure 3 shows a schematic summarizing the different data sources and preprocessing steps of 
our approach, and the overall workflow of the model. The plot in Panel 1 illustrates a strong in
crease in eBird checklists and in spatial coverage between the beginning and the end of the study 
period; the plot in Panel 2 highlights that the median duration per checklist varies substantially in 
both space and time. In 2001, we see relatively longer durations in specific spatial regions, while in 
2021 the durations are more homogeneous across larger areas and also generally longer. The dis
play in Panel 3 shows the occurrence dates of observations of a species pooled together for a pixel- 
year, and we extract the minimum day of the year, which will serve as an observation for the GEV 
response variable in our BHM. Finally, the figure in Panel 4 shows the number of BBS stops in 
2001 and 2021.

Figure 2. Scatterplots of the residuals (in days) of the smooth local regression fitted to first arrivals in Figure 1 (with 
later dates corresponding to lower values) as a function of the logarithm (with base 10) of duration (in minutes) of 
observation (x-axis), for Chimney Swift (left) and Chestnut-sided Warbler (right). To improve readability, the range of 
values shown for the residuals does not include all points.
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3 Bayesian hierarchical model
3.1 General setting and notations
Figure 3 highlights the four components in the data layer of the BHM we propose, and we here 
detail its notations and structure.

We write S × T for the space–time study domain, and denote by Ai, i = 1, . . . , D × T, the set of 
nonintersecting space–time cells based on a division of the study area S into D = 1,268 pixels, re
plicated over T = 21 years. We identify each cell Ai with a representative location (si, ti), such as its 
barycenter, where si ∈ S and ti = 1, . . . , T.

Let Nckl
i be the number of eBird checklists in Ai. If Nckl

i > 0, then Nspc
i ∈ {0, 1, . . . , Nckl

i } denotes 
the sum of the binary indicators of detecting a given species from each of the Nckl

i checklists. Binary 

indicators equal 1 if the species was detected and 0 otherwise. Given Nspc
i > 0, we write Y i = 

(Yi,1, . . . , Yi,Nspc
i

) ∈ [1, 365]Nspc
i to denote the corresponding first arrivals in si within the year ti 

from the Nspc
i observed species occurrences. Based on these arrival dates, we calculate 

Z′i = − min
Nspc

i
j Yi,j = max

Nspc
i

j ( − Yi,j), the first arrival in year ti within si. We set Zi = 
− log ( − Z′i/366) to reflect that Z′i has a natural lower bound at −366, and model Zi > 0 instead.

3.2 Extreme-value distribution for first arrivals
Provided that the partitioning of S provides enough ‘effectively independent’ arrival times within 
each pixel-year Ai, EVT (Coles, 2001) motivates using a GEV to model the transformed first 

Figure 3. Schematic summarizing the data sources, the data preprocessing steps and the four components in the 
data layer of the BHM (panels labelled with numbers 1–4). The dashed lines illustrate our modelling choices and how 
model components interact, but they need not show the chronology of how these components are estimated, since 
the whole model is estimated jointly using a fully Bayesian approach. The plots in the panels numbered ‘1’, ‘2’, and 
‘4’ show the number of available eBird checklists, the median duration spent per checklist in each pixel, and the 
number of stops along a route from the BBS data, respectively, in 2001 (left display in each panel) and 2021 (right 
display).
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arrivals in Ai. Invoking EVT, we assume convergence in distribution of each Zi to a limiting GEV 
as Nspc

i →∞.
Let Mn denote the maxima of independent and identically distributed random variables 

X1, . . . , Xn. If Mn converges in distribution to a nondegenerate distribution after linear renormal
ization, then this distribution must be a GEV; this theoretical result was further extended and 
shown to hold for maxima over dependent data, although under technical assumptions that are 
difficult to formally validate in applications. In practice, for fixed n large enough (where n = 
Nspc

i in our setting), one uses the approximation

Pr(Mn ≤ z) ≈
exp −exp −

z − μ
σ

􏼐 􏼑􏽮 􏽯
, ξ = 0,

exp − 1 + ξ
z − μ

σ

􏼐 􏼑􏽨 􏽩−1/ξ
􏼚 􏼛

, ξ ≠ 0,

⎧
⎪⎨

⎪⎩
(1) 

where the right-hand side of (1) is the distribution function of the GEV, defined on {z : 1 + ξ(z − 
μ)/σ > 0} with location μ ∈ R, scale σ > 0 and shape ξ ∈ R. The shape parameter determines the 
tail behaviour of the GEV: for ξ > 0, the GEV has support with a finite lower endpoint and an 
upper heavy tail of power-law form; for ξ < 0, the GEV has a finite upper endpoint but is unbound
ed below; for ξ = 0, the support of the GEV has no finite bounds, and the upper tail exhibits an 
exponential decay rate. In our application, some sample sizes Nspc

i can be very small and dates 
Yi,j, j = 1, . . . , Nspc

i can be dependent, but the three-parameter GEV remains a flexible model to 
accommodate relevant distributional properties of the maxima Zi, even in cases where the theor
etical asymptotics are not reached. The transformation from Z′i to Zi is very close to linear in a 
large neighbourhood of Z′i = 100 (corresponding to approximately mid-April), so it does not sub
stantially modify the shape ξ but the parameters μ and σ. We incorporate linear predictors into the 
GEV regression equation used to model Zi in our BHM: one for the location μ and another for the 
scale σ.

3.3 Data layer of the BHM
We construct a system of four regression equations with latent Gaussian processes used in the lin
ear predictors. We denote the response variables, as described in Section 2.1, as follows: Nckl

i — 
eBird checklist count per pixel-year i; NBBS

j —BBS counts of the species of interest per year-route 
j; Nspc

i —eBird occurrence count for the species of interest per pixel-year i; Zi—transformed ne
gated first arrivals for the species of interest in eBird per pixel-year i.

For the response variable Nckl
i reporting the checklist counts, we weight the Poisson intensities 

according to the surface areas Ai of the pixels (i.e. we use an offset of logAi in the linear predictor), 
since some pixels at the boundary of the study region have smaller area. For the response variable 
NBBS

j reporting the BBS occurrence counts, observations are made along a subset of 50 equidistant 
stops along each of the routes, and we weight the Poisson intensities accordingly with the number 
of stops (between 1 and 50) that were visited. To alleviate notations in the predictor formulas be
low, we do not explicitly write down these weights related to pixel surface areas and road lengths. 
Moreover, routes can span across several pixels, so we construct the Poisson intensity parameters 
as a weighted mean of the parameters for the involved pixels, with weights wk defined as the per
centage length inside each of the cells Ak.

The hierarchical system of the four regression equations is

NBBS
j ∣ λBBS, θbbs ∼ Pois

􏽘

k∈routej

ωkλBBS(sk; θbbs)

⎧
⎨

⎩

⎫
⎬

⎭
,

Nckl
i ∣ λckl, θckl ∼ Pois λckl(si, ti; θckl)

􏽮 􏽯
,

Nspc
i ∣ Nckl

i , pspc, θspc ∼ Bin{Nckl
i , pspc(si, ti; θspc)},

Zi ∣ μ, θμ, σ, θσ ∼ GEV{μ(si, ti; θμ), σ(si; θσ), ξ}, 
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where

θbbs, θckl, θspc, θμ, θσ ∼ Hyperpriors 

are hyperparameters for the random predictors λBBS, λckl, pspc, μ, and σ that govern the different 
model components; we discuss their specifics next. Checklist occurrences form a point pattern, 
and due to the structure of the Nckl

i -related model component, we model them as a spatio-temporal 
log-Gaussian Cox point process (Møller et al., 1998), discretized according to the cells Ai.

3.4 Structure of latent Gaussian processes
We write X(•) to denote any latent Gaussian effect, here either indexed by pixels s ∈ S or years 
t ∈ T . We use Gaussian process priors for all latent effects. We further use the exponential covari
ance function to parametrize the spatial effects, given as follows for two locations s1 and s2:

Cov{X(s1), X(s2)} = σ2exp( − ‖s1 − s2‖/κ), σ, κ > 0, 

with Euclidean distance ‖†‖, standard deviation σ > 0 and range parameter κ > 0.
The four spatial Gaussian process priors included in our model are

Xpref(†) ∼ GP(ω1), Xniche(†) ∼ GP(ω2),
XGEV−μ(†) ∼ GP(ω3), XGEV−σ(†) ∼ GP(ω4),

(2) 

where ω1, ω2, ω3, and ω4 contain individual range and standard deviation parameters that control 
the spatial dependence of each process. These hyperparameters are assigned identical joint penal
ized complexity priors (Fuglstad et al., 2018). We also impose sum-to-zero constraints on all spa
tial effects to aid with identifiability. Spatial patterns of the niche of the species are captured by 
Xniche, whereas spatial patterns of the sampling effort are modelled through Xpref. Moreover, 
we include a temporal latent effect Xyear to capture the variability in checklist counts across years, 
and set the prior Xyear(†) ∼ GP(ω5), where ω5 contains the range and standard deviation param
eters of a temporal exponential covariance function.

The structure of link functions and linear predictors, explained in detail subsequently, is:

log λBBS(si) = βBBS
0 + Xniche(si),

log λckl(si, ti) = βckl
0 + Xyear(ti) + Xpref(si),

cloglog{ pspc(si, ti)} = βspc
0 + Xniche(si) +

βact

dsi,ti

,

μ(si, ti) = g{βGEV−μ
0 + XGEV−μ(si) + βGEV−μ

1 NAOti

+ θniche−GEVXniche(si), xeffort(si, ti)},

log σ(si) = βGEV−σ
0 + XGEV−σ(si).

The climate covariable, i.e. the NAO value for year ti, is denoted as NAOti , and we include it inside 
the link function g (detailed below) as a fixed effect modulating the upper bound of the GEV lo
cation parameter. The scaling parameter θniche−GEV controls the sharing of the niche spatial effect. 
All scaling hyperparameters and intercepts in the model, along with ξ, are given flat normal prior 
distributions with mean 0 and variance 100. The complementary log-log link function 
cloglog(p) = log ( − log (1 − p)) for binomial probabilities allows interpreting them as the prob
abilities of observing at least one count in a Poisson model, which is equal to 1 − exp( − λ), 
with Poisson intensity λ = exp(x). This ensures consistency with the Poisson model for the BBS 
counts.

We differentiate between two dimensions of sampling effort that we combine into xeffort. The 
first one is modelled through the space–time intensity λckl of checklists, which we call the 
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preference. We hypothesize that it influences the first arrivals Zi, where a higher preference likely 
leads to more and thus earlier sightings in the year. The second dimension of sampling effort that 
we consider here is the median duration of observation per checklist in a pixel-year dsi,ti , which we 
call the activity. This effect could influence both the binomial probability of observing the species 
of interest in a checklist, and again the first arrivals. A higher activity could increase the probability 
of observing the species in a checklist, which could also induce an earlier observed first arrival. We 
combine the two effects preference and activity into

xeffort(si, ti) = θeff+θpref log λckl(si, ti) +
θact

dsi,ti

(3) 

with real-valued scaling hyperparameters θpref (typically expected to be positive) and θact (typically 
expected to be negative), and an intercept θeff representing a baseline sampling effort that is modu
lated according to the checklist abundance and observer activity. With this structure, setting an 
infinite duration dsi,ti causes the activity term to vanish.

The next subsection explains the choice we make for the nonlinear link function g of the GEV 
location parameter.

3.5 Saturated sharing towards the GEV predictor
Sharing latent processes across carefully chosen regression equations, as implemented in 
Section 3.4, enables us to leverage data from several response variables to identify the 
four latent processes. Specifically, we want to identify the effect of spatio-temporally het
erogeneous sampling effort and correct it in predictions, such as those of the true first 
arrivals.

The most often used approach of sharing latent effects between regression equations is via a 
linear structure where the linear predictor of one regression equation has an additive compo
nent X(†), while another has an additive component β × X(†), with a scaling factor β ∈ R. This 
yields models akin to the preferential-sampling framework of Diggle et al. (2010) and Pati et al. 
(2011), and to Koh et al. (2023) and Yadav et al. (2023) in the context of joint modelling of 
occurrences and sizes of wildfires or landslides. However, such linear sharing is not flexible 
enough for sharing the sampling effort towards the linear predictor of the μ parameter of 
the GEV for first arrival dates. Letting the effort tend to infinity with linear sharing would 
lead to first arrivals tending to 1st January, the smallest possible value. As illustrated by the 
exploratory data analysis in Figure 1, the observation effort effect on first arrivals saturates 
at very high levels. Therefore, we share xeffort with the μ component of the GEV through the 
following upper-bounded function:

g(xbound, xeffort) =
exp(xbound)

1 + exp( − xeffort)
, (4) 

where the first argument determines the upper bound in the GEV location parameter, which is 
modulated by the sampling effort in the second argument and can be attained with unlimited 
(i.e. infinite) effort. The g-function is always positive, which is appropriate here when consid
ering as response the transformed dates Zi > 0. Figure 4 illustrates that the class of functions (4) 
is bounded and monotonically increasing, therefore allowing the effect of the sampling effort 
on the first arrivals to saturate with high effort.

The structure we put into (4) is also inspired by species accumulation curves in ecology 
(Colwell et al., 1994), but here we replace the species abundance with the first observed arrival 
dates. To our knowledge, such an approach has not yet been considered in the literature. It es
tablishes a representation that is both parsimonious and ‘physically meaningful’, a feature that 
is desirable in statistical modelling in various contexts such as landslide prediction (Opitz 
et al., 2022) or temperature extremes (see the 2024 preprint "Integration of physical bound 
constraints to alleviate shortcomings of statistical models for extreme temperatures" from 
Noyelle et al.).
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4 Simulation-based Bayesian inference
Fast and relatively accurate off-the-shelf implementations of Bayesian hierarchical inference exist, 
such as the INLA framework (Rue et al., 2017). However, due to certain specifics of our model, 
such as the nonlinear sharing of latent spatial effects and the inclusion of linear predictors in sev
eral parameters of the GEV, it is not feasible to use them here. Instead, we develop an MCMC sam
pler for simulation-based inference.

4.1 Vecchia approximation for Gaussian components
Due to the large number of spatial cells in our case study (D = 1,268), keeping spatial latent 
Gaussian effects and their conditional distributions numerically tractable is challenging. 
Various solutions have been proposed to tackle this fundamental problem in spatial statistics 
with large-dimensional data, including Gauss–Markov random fields used to approximate certain 
types of covariance functions based on stochastic partial differential equations (SPDE approach, 
Lindgren et al., 2011), or nearest-neighbour Gaussian processes (NNGPs, Datta et al., 2016). 
Here, we use another flexible and popular option to construct approximate Gauss–Markov rep
resentations of any Gaussian covariance function through the Vecchia (1988) approximation, 
which leads to a sparse Cholesky factor of the precision matrix. We write {x1, . . . , xD} for the 
set of observations of a Gaussian field X evaluated at locations s1, . . . , sD ∈ S, and we consider 
a permutation m : {1, . . . , D}→ {1, . . . , D} defining a reordering of the observations. Based on 
this reordering, we can write H(i; m) = {j ∈ {1, . . . , D} : m(j) < m(i)} for the ‘history’ of the ith in
dex based on the permutation m, with xH(i;m) denoting the corresponding subvector of observa
tions. For a chosen permutation m, the exact joint density of the observations can be written as 
the product of conditional densities, i.e.

f (x1, . . . , xD) = f (xm(1))
􏽙D

i=2

f (xm(i) ∣ xH(i;m)).

The Vecchia approximation still represents a valid Gaussian process, but assumes that

f (x1, . . . , xD) ≈ f̂ (x1, . . . , xD) = f (xm(1))
􏽙D

i=2

f (xm(i) ∣ xS(i;m)), (5) 

where S(i; m) ⊆ H(i; m) and |S(i; m)| = k. The approximation reduces the conditioning history in 
the conditional densities, which decreases the computational complexity of evaluating the density 
from O(D3) to O(Dk3). This reduction is considerable if k ≪ D, as in our setting with D > 1,000. 
An active research area (Katzfuss & Guinness, 2021) is to understand how one should choose the 

Figure 4. Plots of the nonlinear sharing function g in (4) for varying xeffort (x-axis) and xbound (colours).
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permutation m and order the conditioning variables in (5) to obtain approximations that satisfy 
certain criteria of optimality. Vecchia (1988) suggested to order the conditioning variables lexico
graphically based on their spatial coordinates, but this approach has been shown to be inefficient 
(Guinness, 2018). Instead, we follow the ordering proposed by the latter study, which ensures that 
points are ordered in a quasi-random fashion. We select k = 5 conditioning locations in our case 
study to make inference feasible. The simulation study detailed in Section 4.3 confirms that esti
mation works well.

4.2 Proposal scheme for MCMC
We draw posterior inference on the parameters using a general MCMC sampling scheme with cus
tomized Metropolis–Hastings (MH) updates. The hyperparameters are updated using Gibbs sam
pling. The most computationally intensive part of our scheme involves sampling from the latent 
Gaussian components, which are updated jointly through a MALA (Roberts & Rosenthal, 
2001) designed to speed up mixing of the chains. We write x for the current state of the latent 
Gaussian component of interest, x⋆ for a proposal for that component, and y for the data vector. 
A discrete approximation of the Langevin diffusion implies that MALA is an MH algorithm with 
proposal distribution

(x⋆ |x) ∼ Np x +
δ2

2
∇θ log π(x | y), δ2 Wp

􏼒 􏼓

, (6) 

where tuning parameters are the prewhitening matrix Wp, used to account for the correlation be
tween parameters within the component, and the stepsize δ. For example, if we set 
x = {Xniche(s1), . . . , Xniche(sD)}, the gradient in (6), when updating this component, is

∇x log π(x | y) ≈ ∇x log πBBS(NBBS ∣ x) + ∇x log πspc(Nspc ∣ x)

+ ∇x log πGEV(Z ∣ x) + ∇x log πVecchia(x), 

where the first three terms represent the gradients of log-likelihoods for the model components 
that Xniche is included in, and

∇x log πVecchia(x) = −Σ̃−1
ω2

x, 

where the D × D precision matrix Σ̃−1
ω2 

is the Vecchia-approximated the precision of the Gaussian 

field prior assigned to Xniche, as detailed in §4.1 and implied by (5). The precision matrix is para
metrized by the vector ω2 = (σ, κ), see §3.4, to which we assign a hyperprior.

For our data application, we parallelize and run separate chains for each species. We generate 
80, 000 posterior samples and discard the first 60, 000 as the burn-in period. We then perform a 
thinning operation of the Markov chains and keep one of four consecutive samples, thus obtaining 
5, 000 samples overall to perform posterior inference. We divide the number of posterior samples 
and the burn-in period by two for our simulation study for computational reasons. We monitor 
the convergence and mixing of the chains through trace plots and by assessing the effective sample 
size. Code implemented for the MCMC procedure is available at https://github.com/kohrrelation/ 
mcmc_birds. To obtain a shorter burn-in period and to avoid having initial values too far from the 
region where posterior mass concentrates, we ran test chains that model each model component 
separately first (where we can estimate all parameters except the sharing parameters). When pos
sible, we then used the last values of those chains as starting values when fitting the full model. 
Calculations were performed on UBELIX,2 the HPC cluster at the University of Bern, and the com
putational time of our algorithm there is roughly 6 s per iteration.

2 https://www.id.unibe.ch/hpc
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4.3 Simulation study
We check by simulation that the model parameters are identifiable and can be estimated appropriately 
through posterior mean estimates obtained from the above Bayesian inference procedure. We espe
cially wish to check whether the spatio-temporal field of first arrivals and the niche of the species 
are identifiable. This verification is important for the proposed models owing to their high structural 
complexity with a relatively large number of parameters. For the simulation study, we mimic our data 
application and choose the same spatial domain and temporal replicates, i.e. we simulate datasets at 
the D = 1,268 pixels over the T = 21 years from 2001 to 2021 with the same covariates and data 
structures, including the climate covariate (NAO), the number of BBS stops and the median duration 
in each pixel-year. The values we set for latent Gaussian processes and hyperparameters are similar to 
those obtained when having fitted this model to the species Chimney Swift. To test model robustness, 
we allow for potential model misspecification and overdispersion in the checklist counts. We thus add 
another layer of randomness to the count component, giving

Nckl
i ∣ Λckl

i , θckl ∼ Pois(Λckl
i ),

Λckl
i ∼ Γ{r, rλckl(si, ti; θckl)}, 

where Γ(a, b) is the Gamma distribution with shape a > 0 and scale b > 0. As a result, Nckl
i has a nega

tive binomial distribution with mean λckl(si, ti) and an inflated variance λckl(si, ti) + λckl(si, ti)
2/r. We 

set r = 10 and estimate all the parameters for 100 independent replicates of such data.
The different model components are generally well identified and reproduced by our estimation 

procedure. The results in the Appendix (Figure A2) suggest that the posterior means of the median 
first arrivals estimated with this procedure are indeed essentially unbiased, and the truth is mostly 
well recovered. Importantly, the temporal evolution and spatial patterns are also captured satisfactor
ily. For example, in our simulation setting, we have spatially more homogeneous and later first arriv
als for the earlier years such as 2003, and the estimated posterior means reproduce this property. The 
boxplots in Figure A2 suggest that first arrivals for certain pixels are harder to estimate than others, 
but the truth falls within the predicted interquartile ranges in most cases. We obtained similar simu
lation results in the setting where there is no model misspecification (not shown), i.e. r = ∞.

5 Results
We apply the model constructed and checked in Sections 3 and 4 to the bird data described in 
Section 2, where we run separate models for the 10 species with largest occurrence numbers in 
eBird. We report a selection of results for four species: Chimney Swift, Great Crested 
Flycatcher, Chestnut-sided Warbler, and Purple Martin. The MCMC trace plots in the 
Appendix (Figure A3) for one of the aforementioned species indicate that the chains are mixing 
relatively well, although some parameters like θact and βGEV−μ

0 still display autocorrelation after 
the burn-in period and thinning.

To compare our approach with a simpler one where only the first arrivals are considered but 
without modelling the niche or sampling effort, we also report results for a model using only 
the Zi-variables but not NBBS

i , Nckl
i , and Nspc

i . We fit this model separately and call it the 
GEV-only model, for which θniche−GEV is null and xeffort set to a constant.

Figure 5 illustrates that there have been more checklists in recent years, and the model captures 
these temporal differences and also the spatial pattern in observed checklist numbers.

The posterior means of the sharing parameters are all positive for θpref and mostly negative (or 
positive with 95% posterior credible interval including zero) for θact (see Table 1), which corrob
orates our exploratory findings from Section 2 that higher sampling effort leads to earlier observed 
dates of first arrival.

Table 1 indicates that the sharing parameter θniche−GEV often has posterior credible intervals that 
do not contain zero, with most posterior means in the range [0, 0.15]. This means that birds tend 
to be observed earlier in areas where they are relatively abundant. For βGEV−μ

1 , posterior means are 
generally hovering around [0.01, 0.03] but often not containing 0 in its credible intervals, indicat
ing that first arrivals can take place slightly earlier in years with high NAO. Higher NAO and tem
perature anomaly correspond to warmer weather, which could explain earlier arrivals. However, 
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for the majority of the species, we investigate these slightly positive NAO coefficients appear not to 
be significant, as their credible intervals include zero. We conclude that the slight NAO effect on 
first arrivals could be present for some species but there is no strong signal of a significant NAO 
effect across all species; Wijeyakulasuriya et al. (2024) obtained a similar result when applying 
their analyses to the Magnolia Warbler.

The estimated GEV shape parameters are negative for all species and have posterior means 
around −0.6 to −0.9, indicating that the estimated first arrival dates have a fixed lower bound.

5.1 Excursion sets of latent spatial fields
We study the spatial patterns in the posterior estimation of the four latent spatial fields in (2) for the 
sampling effort, the species niche, and the μ and σ parameters of the distribution of the first arrivals.

To identify areas with very high or low values of the spatial random effects, we utilize credible sets for 
excursion regions (Bolin & Lindgren, 2015). We evaluate where the fields exceed or fall below certain 
thresholds. To visualize excursion sets simultaneously for all values of the probability level α ∈ (0, 1), 
Bolin and Lindgren (2015) introduced the positive and negative excursion functions F+

u (s) = 1 − inf {α ∣ 
s ∈ E+

u,α} ∈ [0, 1] and F−
u (s) = 1 − inf {α ∣ s ∈ E−

u,α} ∈ [0, 1], where E+
u,α is the subregion with maximal 

surface area in which the spatial field fully exceeds the threshold u with probability α (with an analogous 
definition of E−

u,α for threshold deficits below u). Figure 6 highlights these excursion functions for the spe
cies Purple Martin. Sampling effort is high in the southeastern areas near the ocean and strongly decreases 
in the further northwestern areas. The niche of the species tends to concentrate in southwestern areas. The 
fields related to first arrivals show more fragmented spatial patterns for this species.

5.2 Correlation of latent spatial fields with land cover
To further explain the patterns in the four latent spatial fields, we calculate the correlation of their 
posterior means with the land-cover maps described in Section 2 and shown in the Appendix 

Figure 5. Observed numbers of checklists, Nckl
i (left) against model-based posterior mean estimates of the Poisson 

mean number of checklists, λckl(si , ti ) (right), using the model fitted to Chimney Swift in 2001 (top) and 2021 
(bottom).
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(Figure A1). This can improve our understanding of the land-cover types that drive the four latent 
processes for a given species.

Figure 7 shows these correlations for four species. The correlations between the estimated latent 
field for sampling effort and land-cover proportions are very similar across species, which is ex
pected since the checklist count data for the corresponding regression equation are the same in 
the four models. Sampling effort has strong positive correlation with Developed (built) areas, 
weaker correlation with Water-dominated or Vegetation-dominated areas, and negative correl
ation with Forest. Regarding the latent field for niche, it shows different patterns for different spe
cies, for example with positive correlations with Forest for species that are known to breed in 
forests (e.g. Chestnut-sided Warbler), and with Developed land cover for species known to breed 
in Developed areas (e.g. Chimney Swift). The latent fields describing the spatial variability in first 
arrivals show generally weaker correlations with specific land-cover types. For example, Chimney 
Swift tends to settle earlier in Developed and Vegetation areas than in Water- and 
Forest-dominated areas.

5.3 Predicting true first arrivals
To illustrate the utility of our model, we predict the true first arrivals in all pixels. Firstly, Figure 8
shows that the model reproduces generally well the spatial variability in the probability of observ
ing species presence in eBird, with some differences in empirical and model-predicted probabilities 
due to the additional information provided by BBS data. We use this component of the model to 
avoid predicting first arrivals at locations where the presence of the species is uncertain in terms of 
the estimated niche. Therefore, we do not map predictions of first arrival dates at pixel-years where 
the estimated presence probability pspc{(si, ti)} is smaller than 1%. This feature of our model avoids 
making predictions in areas where data give no clear signal of a species’ breeding activity.

For the prediction of the true first arrivals, we set λckl(si, ti) and dsi,ti to be close to infinity to 
mimic infinite sampling effort, so we expect to retrieve the true and unbiased dates of the first ar
rival. This approach is illustrated in Figure 9 for the Great Crested Flycatcher, where we also show 
that the model captures the spatial pattern in the observed first arrivals.

Table 1. Examples of predictions related to first arrivals for two pixel-years in 2022

Species Chimney Swift Great Crested 
Flycatcher

Chestnut-sided 
Warbler

Purple Martin

θ̂pref 0.191 (0.184,0.202) 0.204 (0.199,0.21) 0.187 (0.183,0.191) 0.2 (0.178,0.217)

θ̂act −0.15 
(−0.217,−0.061)

−0.818 
(−0.911,−0.696)

−0.548 
(−0.619,−0.454)

−0.03 
(−0.269,0.236)

θ̂niche−GEV ( × 10−2) 4.9 (4.664,5.134) 4 (3.894,4.133) 0.2 (0.17,0.278) 6 (5.541,6.443)

βGEV−μ
1 ( × 10−1) 0.1 (−0.083,0.204) 0.2 (0.125,0.331) 0.3 (0.295,0.409) 0 (−0.384,0.526)

Observed NA NA NA NA

Predicted (GEV only) 28/05 27/05 01/07 18/06

Predicted 09/05 03/05 21/05 07/06

Debiased 03/04 13/04 03/05 28/03

Observed 01/05 04/05 04/05 29/06

Predicted (GEV only) 25/05 20/05 15/05 19/05

Predicted 09/05 15/05 12/05 12/05

Debiased 22/04 05/05 03/05 07/04

Note. The first five rows report the species and the posterior mean estimates of selected parameters, with 95% credible 
intervals in brackets. The next rows give the observed, predicted (with the GEV-only model, and with the full model), and 
debiased (with the full model) median first arrivals (in day/month format) at the two pixels indicated by the two triangles 
in Figure 8); the first four rows here correspond to the pixel in the southeastern area, the last four rows to the pixel located 
in the middle of the study region. An ‘NA’ value in the Observed row indicates that there were no observations within that 
pixel in 2022. The strikethroughs over the dates indicate that our full model estimates a species presence probability of 
less than 1% for that pixel-year.
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To expand on our prediction procedure, we focus on two pixels, marked with triangles in 
Figure 8. The first pixel is chosen near the southwestern boundary of our study region and has 
83% Forest cover but only 6% Developed land cover. It is located in a rather secluded region 
with generally low sampling effort. In 2022, there were no reported sightings of the four species 
of interest in this pixel. Table 1 highlights that the model can extrapolate and draw posterior pre
dictive samples for that pixel-year. The second pixel is chosen in the central area of the study re
gion. For example, a first arrival was observed in 2022 for the Purple Martin on the 29th of June, 
but Table 1 (last two rows) shows that our model flags this pixel as being uncertain to be located in 
the species’ niche; it is thus possible that in general no breeding activity takes place in this pixel. 
This illustrates the capability of our model to prevent inaccurate extrapolation to spatial regions 
with very low species presence probability. Table 1 also shows that the GEV-only model generally 
estimates a later first arrival than that from the full model after correcting biases. The former pre
dictions usually fall outside of what is expected of the four species’ phenology in our study region, 
i.e. late spring/early summer rather than early spring.

6 Discussion and outlook
6.1 Statistical learning from participatory data
Participatory data and citizen-science programs advance and share scientific knowledge, thanks par
ticularly to the data’s large volume, diversity, and spatio-temporal coverage. However, sampling pro
tocols for these data sources are usually lenient, with different levels of observer expertise. Statistical 
techniques are required to correct for heterogeneous sampling effort and observation biases.

In this work, we developed a BHM in which the sampling effort and its influence on the obser
vation bias of a phenological event can be quantified and then corrected during prediction. Our 
results show that the required corrections are often substantial. We could also estimate spatial 
probabilities of species presence, and then filter out implausible regions when predicting the 
phenological event, since it might never occur.

Figure 6. Excursion set analysis for the four latent spatial fields X effort (top left), X niche (top right), X GEV−μ (bottom 
left), and X GEV−σ (bottom right) estimated by the model fitted to the Purple Martin. Thresholds are fixed at 2, 1, 0.1, 
and 0.1 for the four fields, using the same order.
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6.2 Ecological data fusion using latent processes
We carefully constructed statistical models to infer and interpret latent components based on in
complete and biased observations of the true ecological processes. BHMs have many advantages: 
they allow us to identify various latent processes and their interactions, to separate the process de
scribing how data are observed from the latent ecological processes we seek to reveal, to keep track 
of uncertainties and assess them through posterior sampling, and to incorporate expert knowl
edge. The Bayesian framework is also relatively robust to noisy data and overdispersion in count 
data thanks to the inclusion of appropriately designed random effects. Data fusion in Integrated 
Species Distribution Models (e.g. Miller et al., 2019, and the 2023 preprint "The Point Process 
Framework for Integrated Modelling of Biodiversity Data" of Adjei et al.) combining opportun
istic and protocol-based data, is facilitated by shared latent components. Further extensions to bet
ter consider temporal dynamics are very actively explored in the current literature but are 
challenging since very complex ecological and observational dynamics must be disentangled.

Machine learning and deep learning tools are used in ecology for their skill in predicting ob
served data, though they may be less effective at capturing complex latent processes. Further de
velopments are needed to allow such algorithms to predict the processes of interest when these are 
not directly observed, to extrapolate beyond the range of observed data (as we have done by set
ting the observation effort to a very high level in predictions), and to avoid propagating or even 
reinforcing biases from the input data when generating predictive outputs (Dunson, 2018). 
Future research could devise mechanisms similar to the sharing of random effects in BHMs but 
implemented within the architectures of general machine learning and deep learning approaches.

6.3 Modelling sampling effort
The eBird sampling effort has various dimensions. We have here considered the annual number of 
visits to an area (using checklists) and the median duration of each of those visits. Understanding 
how the combination of these two aspects influences the number of detected species individuals is a 
complex task (e.g. see Tang et al., 2021), and would merit exploration beyond the additive 

Figure 7. Correlations of land-cover proportions (x-axis) with posterior means of the latent fields X effort, X niche, 
X GEV−μ, and X GEV−σ (y-axis), for four species: Chimney Swift (top left), Great Crested Flycatcher (top right), 
Chestnut-sided Warbler (bottom left), and Purple Martin (bottom right).
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structure of xeffort that we posed in (3). Other relevant attributes that we did not consider here are 
partially available for eBird checklists, such as the surface of the area where observations took 
place, or the distance over which the observers moved during the checklist event. Such information 
could be further studied for a more complete characterization of the sampling effort and its impact 
on observation biases for species distributions. Identifying sampling effort through BHMs could 
also be of interest in other domains, for example for reports of hail events and damages, and 
more generally for citizen-science data in climate science.

In cases where the performance of data fusion of opportunistic data with protocol-cased data 
could be improved by collecting additional exhaustive field data, it would be instrumental to con
duct simulation studies using BHMs to explore how new sampling locations can be placed in an 
optimal and cost-efficient way.

6.4 Detectability of species
Observation biases related to the detectability of species remain a major challenge since they are dif
ficult to identify with available data, i.e. it is possible that individuals of a species were present but not 
observed. This risk of nondetection can vary with land cover, species behaviour, observer experience, 
and other factors. In our model, detectability can be viewed as being included in the niche process, 
which could more precisely be called the detectable niche. It is difficult to devise a general statistical 
approach to further disentangle the niche and the detectability. Expert knowledge about the conditions 
of detectability could provide further insights and improve models, but including it was beyond the 
scope of this work. It would also require designing models adapted to species-specific properties, 
and could hinder simple intercomparison of models for different species.

Figure 8. Empirical mean probability (left displays) of observing the species Great Crested Flycatcher (top) and 
Purple Martin (bottom) in checklists aggregated over all years; posterior mean probability (right displays) of 
observing the species from the presence model by using the mean checklist duration aggregated over all years as 
covariate. The two triangles are the two pixels used in the predictions of first arrivals detailed in Section 5.3.
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6.5 Validation of results
Validation of modelling results is inherently challenging with data that are obtained through het
erogeneous sampling efforts and ridden with unknown biases. We can only validate directly 
whether the model appropriately reproduces data as they have been observed. For example, we 
performed such checks for checklist counts and observed first arrivals in Section 5. However, 
the latent processes of interest, as well as sampling effort and observation biases, can be entangled 
in complex ways. Direct validation of inferences on the latent processes of interest is thus difficult. 
Careful construction of interpretable models and appropriate inference algorithms is paramount.

External protocol-based data sources not suffering from these drawbacks can be used, but they often 
have much smaller spatial, temporal, and species coverage. The fusion of data sources, such as in our 
study with BBS and eBird data, can not only improve the estimation of certain model components, but 
could also be used for validation purposes at space–time locations covered by both datasets.

Data collection projects are increasingly initiated with advanced sensing technologies that re
quire no human observers, therefore providing opportunities to collect large amounts of data 
obeying strict sampling protocols. For instance, one could track bird arrivals with radar data 
(e.g. Nussbaumer et al., 2021, or the vogelwarte.ch project). Camera traps combined with artifi
cial intelligence for species identification can provide near-continuous temporal coverage, al
though with rather limited spatial coverage.

6.6 Possible extensions of our approach
We focused on identifying past and present spatio-temporal trends in ecological processes. In spe
cies distribution modelling, important research concerns the potential impact of climate change 

Figure 9. Maps for the species Great Crested Flycatcher: Observed first arrivals of Great Crested Flycatcher in 2022 
(top left), posterior mean of the GEV median first arrivals in 2022 (top right), bias-corrected mean of the GEV median 
first arrivals in 2022 (bottom left), and the same plot as before though with indications (in white rectangles over the 
corresponding pixels) for where the model estimates a presence probability of less than 1% for the species (bottom 
right). The grey pixels in the top left display indicate where no species occurrences were recorded in 2022, or where 
no checklists and therefore no median durations were available in that pixel.

J R Stat Soc Series A: Statistics in Society, 2025, Vol. 188, No. 3                                                          693
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssa/article/188/3/641/7811367 by guest on 07 N
ovem

ber 2025

https://vogelwarte.ch


and its interplay with other dynamic processes (e.g. land use change). Our modelling approach 
could be refined to establish more detailed relationships between ecological dynamics and climate 
variables, to then be used for projecting first arrivals under future climate simulations, similar to 
Wijeyakulasuriya et al. (2024).

We have fixed the spatial pixel mesh using a size similar to that routinely used in modelling re
sults published by the eBird project. One could explore the influence of the mesh size on the prop
erties of the observed first arrivals. For example, a larger mesh size leads to larger numbers of 
observations within each pixel. This could reduce the observation bias. On the other hand, it 
would also decrease the spatial resolution of predictive maps and hamper the identification of re
lationships between ecological processes and land cover. Further research could investigate the 
role of the mesh choice, or how to optimally combine results from different mesh sizes.

Regarding temporal trends, the seasonal variation of sampling effort and of the species presence 
probability, along with how these properties interact with first arrivals, could also be modelled 
more precisely.

If some spatio-temporal domains are visited at high frequency, the corresponding sampling ef
fort could be regarded as being exhaustive, and the structure of the model, e.g. the g-function in 
(4), could be modified accordingly to improve the identifiability of model components.

Another extension consists of studying interactions among different species in terms of their 
niche and phenological events, e.g. to infer which species groups show similar spring migration 
patterns. One could implement joint species distribution models with each having a set of regres
sion equations and with the possibility to share certain spatial random effects between several spe
cies; this could be feasible with our current approach for a small number of species. Alternatively, 
one could fit models separately for each species as we have done here, and then apply classification 
approaches on the posterior estimates of latent model components to group species that show 
similar model behaviour.

6.7 Ecological extreme-value analysis
EVT could play a more prominent role in ecological science. An important domain of application 
is the analysis and probabilistic prediction of extreme climatic and environmental events, which 
can strongly influence population dynamics and biodiversity. Here, the tools from EVT could 
pave the way towards ecological analyses focusing not only on long-term climate averages but 
also on the influence of specific extreme weather events. A second domain of application, of which 
the present work is part, concerns the analysis of extreme phenological events using EVT. 
Although analyses of this type are still in their early infancy, we hope that our work will motivate 
more widespread applications of extreme-value techniques.
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Appendix
A.1 Land-Cover Plots
Figure A1 shows plots of the four land-cover covariates defined as proportions of certain land- 
cover categories in the pixels of the study area.
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A.2 Plots from the Simulation Study
Figure A2 shows plots assessing the identifiability of the observed first arrivals in our simulation 
study.

Figure A2. Simulation study: Truth vs. posterior means for the median first arrivals in 2003 (left) and 2020 (right), 
shown with spatial maps (for three different seeds in the simulation study), and with boxplots of the differences in 
days between true and predicted arrival dates, based on 100 simulations. The boxplot shows results for 150 
randomly chosen pixels, marked with black boxes in the spatial plots.

Figure A1. Land-cover proportions in the study area (NLCD, 2021) according to four types described in Section 2.
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A.3 Further Plots of MCMC Results
Figure A3 shows trace plots from the MCMC run of the model on the species Great Crested 
Flycatcher. Figure A4 shows spatial plots of the four latent spatial fields from the model estimated 
for the species Chimney Swift.

Figure A3. MCMC trace plots for some fixed effect and sharing parameters (top left to bottom right): βact, βspc
0 , βBBS

0 , 
θniche−GEV, θpref, θact, βGEV−μ

0 , βGEV−σ
0 , and ξ from our model for the species Great Crested Flycatcher. The dashed line 

indicates the burn-in period.

Figure A4. Posterior means plots of the four spatial random effects in (2) for the model fitted to the species 
Chimney Swift.
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1 Introduction 
Data are a vital part of statistical inference, grounding and calibrating statistical models, and sup-
porting prediction and forecasting. Whilst data are routinely collected for analyses, they can be 
very expensive and/or resource intensive to collect. This can lead to prohibitively small-scale sam-
pling, making it hard to draw conclusions at a population level. Citizen science (CS) data, how-
ever, can provide an alternative that has the potential to provide data at spatial and/or 
temporal resolutions that would not otherwise be feasible. These data utilize a network of highly 
skilled amateurs who routinely observe and make record of personal sightings. 

Due to the often nonstructured nature of data collection, it is particularly important with CS 
data to model the observation process in which these data are observed and recorded to help ac-
count for the lack of randomized sampling and potential structural biases. This is particularly im-
portant given that they often feed into important national and international monitoring schemes, 
underpinning legal obligations of conservation policy, for example, Newson et al. (2017). 

A particular challenge with CS data is the potential for a large range of biases in them, including 
from oversampling (that is rare or noteworthy events being more likely to be reported, spatial bias 
in high-population regions, visiting ‘good’ locations with a higher chance of successful observa-
tions); miss-identification; partial observations or checklists being submitted; and multiple obser-
vations of the same individuals. In order to alleviate these potential biases, rich metadata needs to 
be collected to help explain the process in which the data were collected, recorded, and submitted. 

Other challenges include high data resolution leading to ‘big data’ computational challenges, 
including hardware demands, a need for efficient algorithms and multiple heterogeneities across 
the population and data sources. In addition, communication and interaction with domain experts 
or nonstatisticians are common due to the nature of both data collectors and the end users. A lack 
of statistical involvement in the design and implementation of data collection can make many of 
these issues further challenging to overcome. 

It is, therefore, particularly welcome to comment on the three novel approaches presented here. 
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2 Efficient statistical inference methods for assessing changes in species’ 
populations using citizen science data 
The two main developments of this paper are, firstly, to incorporate time and site effects through 
an annual model integrated within the generalized abundance index. A concentrated likelihood 
framework is proposed to significantly reduce the dimension of the parameter space. The ap-
proach is fitted to both data from the UK Butterfly Monitoring Scheme and the Big Butterfly 
Count. Secondly, the authors propose the use of variational inference to speed up the efficiency 
of fitting the occupancy model framework. Using the observed data likelihood, required assump-
tions of independence between model parameters are avoided and a reparameterization provides 
an approach for efficient stochastic gradient descent. A small simulation study is implemented to 
study coverage probabilities of credible intervals for the parameters, with the intervals having 
nominal coverage. The approach is also applied to a common species of butterfly from the 
Butterflies for the New Millennium recording scheme. 

2.1 Comments and questions 
It seems the new development of a two-stage model offers differing estimates of uncertainties, 
however, which of these is correct is uncertain. Some simulations would be advantageous to de-
termine which of these is more realistic. Wald-type standard errors from the Hessian will likely 
be unreliable in rarer species and/or small studies. 

An advantage of the approach is that some very simple adjustments to the model, such as chan-
ging the discrete family distribution, can be made to determine impacts on uncertainty propaga-
tion. For example, a negative binomial or quasi-Poisson distribution could be compared using 
simple (quasi-)information criteria to select between these. There is an advantage in allowing dif-
ferent levels of variation across different levels of heterogeneity in the population. Global disper-
sion parameters from these alternative families can determine species-level variation across spatial 
and temporal regions, with additional variation allocated to the random effects in a hierarchical 
manner. 

Furthermore, species populations and associated distribution are inherently spatial phenomena. 
This paper, amongst others, paves the way for accounting for the spatial correlation beyond inde-
pendent site effects, combined with efficient inference for binomial models (e.g. Belmont et al., 
2024; Held & Holmes, 2006). An alternative without quite as much computational overhead 
would be to incorporate spatial covariates that may account for much of the correlation. 

Finally, as there are many species, some very rare, some discussion of multispecies approaches to 
learn across similar species would be fruitful, perhaps in conjunction with integrated population 
models that are already discussed in the paper. A common species with a similar ecological niche 
could be highly informative of the distributions of an undersampled species. 

3 Frequentist prediction sets for species abundance using indirect 
information 
The authors develop a frequentist-valid prediction sets framework for eBird data in North 
Carolina counties, assuming a nonparametric framework to obtain sets for a multinomial random 
sample. The approach uses data from more sampled counties to better inform undersampled coun-
ties through an integrated approach. An empirical Bayes framework for estimating prediction sets 
uses the maximum marginal likelihood calculated using the Newton–Raphson method to deter-
mine parameter values. The approach utilizes neighbouring counties to indirectly inform esti-
mates, where more data diminishes the impact of neighbouring counties and data-scarce 
counties benefit from updated posteriors from informed neighbours. This has benefits when sam-
pling is comparable and unbiased by reducing the size of the prediction set in most of the species 
tested. 

3.1 Comments and questions 
The authors show that assuming independence of observations across county, frequentist cover-
age probabilities are theoretically guaranteed. As discussed above, the assumption is perhaps 
not valid with CS data due to preferential sampling of observers, incomplete lists and observer  
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heterogeneity. The coverage probabilities are above expected for moderately large K (see Figure 2), 
so some discussion of this in relation to potential over-confident standard errors would be wel-
come. Further attempts to account for the sampling process could alleviate this (e.g. Bird et al., 
2014). Further work could develop a simulation incorporating this heterogeneity to determine 
the impact of preferential sampling on the prediction sets and determine sensitivity to this assump-
tion or how to account for it if not realistic. 

4 Extreme-value modelling of migratory bird arrival dates: insights from 
citizen science data 
The authors study the first arrival dates of migrating birds from the global eBird CS project, and 
the more structured Breeding Bird Survey. Focusing on the northeastern US states, they treat the 
first arrival date as an extreme event, and develop an extreme value theory approach to predicting 
first arrival dates, accounting for survey effort and environmental niche. A complex hierarchical 
Bayesian model incorporating four latent Gaussian process priors to explain the spatial covariance 
in arrival dates across regions, sampling effort, and environmental niches is proposed. The data 
from two sources are fused together with common model structures to alleviate sampling bias 
in the CS data. 

4.1 Comments and questions 
There is evidently difficulty with validating latent variable models such as these. Variation in 
goodness-of-fit tests and information criteria for latent variable models are made more difficult 
in the complex observation process of CS data. More work is definitely needed here, particularly 
in estimating effective numbers of parameters. The suggestion of combining CS with more struc-
tured data definitely shows promise (e.g. Kelling et al., 2019; Robinson et al., 2020) and needs fur-
ther work to determine when and how this should be done and how valuable it is in a specific 
scenario. 

Multivariate extreme approaches are in their infancy but determining marginal dependence, e.g. 
through copulas, multivariate Generalized Pareto Distributions or tensor products of Gaussian 
Processes, would be a worthwhile extension to this approach. This may allow for sharing of infor-
mation across species, where early arrivals of one species may be able to suggest similar species 
may also arrive early. 

The Markov chain Monte Carlo (MCMC) chain mixing shown in Figure 12 shows there is a 
strong correlation between model components that may not be fully alleviated by the 
Metropolis-adjusted Langevin algorithm approach used. The authors highlight that a Gauss 
Markov random field may not be feasible due to nonlinearity of the model, but perhaps some com-
ponents could be embedded within the INLA-SPDE approach with others estimated by MCMC 
(Gómez-Rubio & Rue, 2018)? 

The accuracy of the Vecchia approximation used will also depend on the validity of the sparsity 
assumption, which is linked to the smoothness of the surface. This may work well for some species 
but less well for others with more patchy distributions. 

Finally, all species chosen had almost identical preference parameter estimates for θ̂ pref 

(Table 1). It would be interesting to choose some species that clearly show a very strong or 
weak observer preference, to show these are estimable and not prior-dependent. 

5 Summary and looking forward 
The three papers presented here show a wide computational variability of statistical approaches 
for tackling applied ecological questions using CS data. These include novelties covering a mix 
of computational, methodological, and philosophical approaches to model these complex data. 
Harnessing the power of information contained within CS data, they aim to account for (some) 
of the potential biases or sub-optimality of sampling inherent in their chosen schemes. 

Ecological sciences have made CS data a cornerstone of the domain, giving much opportunity for 
methodological development; however, there remains many other areas of applied sciences where 
the power of these data could be better realized (e.g. epidemiology/infectious disease dynamics; en-
vironmental surveillance; public health). Further computational demands (including methods, hard-
ware integration, and software) are needed to analyse the vast quantities of data that can be obtained  
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from these schemes. As shown in these papers, the combination of differing data sources and their 
associated heterogeneities can provide significant benefits over single sources of data. With those 
benefits comes a greater need for improved methods for relative and absolute goodness-of-fit for 
these data and models, however, to allow for differing resolutions and collection procedures. The 
three contributions here show the potential for further development in analysing CS data and high-
light that further work is still needed from statisticians working in this area. 

It therefore gives me great pleasure to propose the vote of thanks. 

Conflicts of interest: None declared. 
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Thank you for the opportunity to second the vote of thanks at this meeting. I want to start by say-
ing that after reading the three papers presented in this session, it’s such a wonderful time to be a 
statistician! There are three reasons for saying this.  
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The first is that, as we all know, we are in the best of professions. Statistics is currently one of the 
most in-demand professions globally, in no small part due to the need to ‘do something’ with the 
wealth of data that is now available. This creates an ideal space for us to flourish as researchers and 
practitioners. The high profile of statistics as a trusted ‘data-whisperer’ is in no small part due to 
the great efforts of our professional societies, and the RSS is one of the global leaders in this en-
deavour, so thank you. 

The second reason is that we not only have a fantastic new range of tools thanks to the rise of 
statistical machine learning, but we also have the compute power to implement our methods and 
shift the horizon. Models and algorithms that were ‘nice but not practical’ a decade ago are now 
common tools and established research directions. Emerging algorithmic enablers—such as foun-
dation models and quantum computing—promise to open even more doors, creating again a new 
round of challenges and opportunities for statisticians as we formulate, validate and integrate 
solutions. 

The third reason is that we now have a huge range of new data sources available to us, to 
wrangle, model and understand. Data from digital sensors, cameras, satellites, social media, 
and—yes—citizen science provide rich information in their own right and as a complement to 
more traditional sources of data. As statisticians, we have an obligation to embrace these new 
data sources and be the trusted voice for researchers, practitioners, managers, and the public 
regarding their benefits and deficits. If the data are rubbish, then we can—and should—say so. 
However, if there is merit, we have an opportunity—indeed a responsibility—to contribute to 
research, tools, and applications that enhance the utility of these data, extract information in a 
rigorous manner and merge the resultant insights with other sources of knowledge, thereby creat-
ing a true data-informed learning and decision-making environment. 

Which brings me to the three papers under discussion at this meeting. In accord with the theme 
of the meeting, the common ambition of these papers is to enhance the utility of citizen science 
data. Although all three papers focus on applications in ecology, the methodological innovations 
are generalizable to a wide range of other contexts. 

Within this broad remit, the three papers take slightly different directions. Two papers focus 
primarily on improved models for estimation and inference which correct for sampling bias. 
Elizabeth and Peter articulate a two-stage approach, with neighbourhood information entering 
as ‘indirect information’ through the concentration parameter of the Bayesian prior in one of 
the stages. In contrast, Jonathan and Thomas propose a strictly Bayesian hierarchical spatio- 
temporal model that similarly adjusts for heterogeneous sampling effort. Both papers comment 
on computational efficiency. Emily and coauthors focus primarily on this aspect and propose vari-
ational inference as a solution. 

I have so many comments and questions about each of these papers, but in this forum I would 
like to make just three points. 

First, all three authors deal with what I would call ‘well-behaved’ citizen science data. That is, 
the data are sourced from large, public studies with an underlying design, albeit not to the standard 
of a randomized controlled study. This is great, and the contributions are very worthwhile. 
However, there is more to be done: there are other biases in these data that need to be addressed 
to increase their trust and utility, and there are citizen science data from more ‘wild’ studies that 
also have great value. So keep going! 

Second, the papers advance the practice of data fusion. Elizabeth and Peter focus on one study— 
the eBird survey—and fuse information across the geographic sites; Jonathan and Thomas ‘see this 
and raise it’ to the merger of two separate studies with different protocols, the eBird study and the 
North American Breeding Bird Survey. Emily and coauthors raise the ante again to the merger of 
three butterfly datasets. This work touches on a large literature that rectifies biases and gaps in this 
way—I call out earlier work of Sylvia Richardson in epidemiology, and the United Nations Global 
Platform for enabling the use of different types of remotely sensed data to monitor the Sustainable 
Development Goals, as examples. 

The papers also advance the practice of model fusion. In particular, Elizabeth and Peter suggest 
a merger of frequentist and Bayesian methods to achieve the desired improvement in the size and 
precision of the area-specific species prediction sets. This ‘smooshing’ of models and philosophies 
is now commonplace and potentially very effective, but again as statisticians we need to ensure 
that this is undertaken in a rigorous manner, that all of the properties of the resultant approach  
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are understood, that comparisons with other approaches are thorough and fair, and that ‘edge 
cases’ are carefully considered. Furthermore, we should be actively stepping into the space of fus-
ing machine learning and statistical models, particularly for the analysis of citizen science data. I 
think that there is much more work to be done in this area. 

My third point is that all of the papers work hard to ‘respect’ the citizen science data. That is, 
their new tools aim to address the characteristics of the data rather than ‘make the shoe fit’ with 
existing tools. This is important, and pushes us to consider the relative benefits and drawbacks of 
employing models at all in this context. This is a longer discussion for another time. 

It would be remiss of me to not mention the efforts of colleagues in my part of the world to capitalize 
on the enormous potential of citizen science data. A special call-out to early work by Mark Burgman, 
Hugh Possingham, and Sama Low Choy in eliciting expert information to enhance ecological model-
ling, and more recently Edgar Santos-Fernandez and Julie Vercelloni for their leadership in using 
citizen-contributed classifications of coral cover in underwater images to improve monitoring of the 
health of the Great Barrier Reef. Through Julie, this effort has expanded to the Pacific Islands, which 
are particularly vulnerable to socio-industrial development and climate change. 

In summary, I applaud all of the authors in this session for their very welcome, substantive 
contributions to the three areas that I touched on in my introduction: to raising the profile of sta-
tisticians as ‘data-whisperers’ in the development and application of trusted methods, to extending 
our computational capability, and to advancing the analysis of new data sources—in particular, 
citizen science data. It is with great pleasure that I second the vote of thanks for these stimulating, 
cutting-edge papers.  
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This contribution discusses the papers of Dennis et al., Bersson and Hoff, and Koh and Opitz. 
Paper by Dennis et al. (2024) mentions reducing the functional model parameter space. As a 

mathematician, I wonder which mathematical spaces (such as metric spaces of Banach or 
Hilbert space variety) to use to study citizen science (CS) data. Could inclusion of tensor 
data approaches and tensorial ‘spaces’ be of help? Namely studying CS data leads to high- 
dimensional problems which gives this question a special importance. As the paper uses con-
centrated likelihood functions, I wonder whether using approaches which rely on intractable 
likelihoods (such as indirect inference and in particular approximate Bayesian computation) 
would provide responses to many open problems addressing analysis of CS data. In general, 

This is a discussion contribution to the Discussion Meeting on the ‘Analysis of citizen science data’ at the 2024 Royal 
Statistical Society conference in Brighton, United Kingdom.  
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do you see any special properties of CS data which would give priority to Bayesian over fre-
quentist approaches? 

Paper by Bersson and Hoff (2024) uses borrowing of information, and approach related to empir-
ical Bayes procedures. Interesting could be to refer to and use recent thread of research from Ascolani, 
Prünster, Lijoi, and coauthors (e.g. Ascolani, Franzolini et al. 2024) on nonparametric priors with full- 
range borrowing of information. Also, addressing geographic adjacency structure seems an extremely 
interesting aspect of work with CS data. This immediately leads to spatiotemporal but also random 
matrix perspectives, and it would be great hear more about future possibilities here. 

Paper by Koh and Opitz (2024) mentions development of bird and ecology related applications 
of CS data. Could they be found in economics, in medicine and healthcare, in robotics or in law? 
Could they be fruitfully applied and found in any scientific and sector field? Usage of Gaussian la-
tent random fields bring questions how to study asymptotics of approaches studying CS data—is 
there any aspect to be careful about? Using MCMC and MALA algorithms questions how to ap-
proach computational efficiency for modelling CS data in the future? One also wonders whether 
modelling species behaviour using microsimulation or even agent-based simulation approaches be 
used combined with CS data and how. 

Papers providing mathematical and statistical approaches to study CS data are highly important 
based on the present spread of such initiatives as well as the fact that leading journals reject paper 
using CS data on the ground of their questionable validity. It would be great for all three papers to 
explain how their findings can be used to mitigate such problems in the future. 

Conflicts of interest: None declared. 
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We congratulate Dennis, Diana, Matechou, and Morgan, the authors of ‘Efficient statistical infer-
ence methods for assessing species’ populations using citizen science data’, on an interesting  
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contribution to the literature on computationally efficient algorithms for statistical problems in-
volving citizen science data and thank them for an interesting conversation about their work. 

We start by briefly reviewing the problem set up of the first example. Consider counts Ysvr of 
butterflies where s = 1, . . ., 4,328 denotes sites, r = 1, . . ., 47 denotes years, and v = 1, . . ., 26 de-
notes weeks/visits. Dennis et al. (2024) define the model 

Ysvr ∼ Pois(nsravr),

log nsr = αs + βr,

avr = φ(v; μr, σr), 

where φ denotes the normal density. With independent observations, the log likelihood up to an 
additive constant is 

ℓ(α, β, μ, σ) :=
􏽘

s,v,r

−eαs+βr φ(v; μr, σr) + Ysvr αs + βr + log φ(v; μr, σr)
􏼈 􏼉

.

Let (α̂, β̂, μ̂, σ̂) be maximizers of ℓ. Throughout a ‘†’ in a subscript denotes aggregation 
over that index. Applying the first order condition, Dennis et al. (2024, sec. S1) show that 
eα̂s = Ys††

􏼎􏽐
v,r eβ̂r φ(v; μ̂r, σ̂r) for all s. Thus the log profile likelihood ℓp(β, μ, σ) :=ℓ(α̂, β, μ, σ) 

admits (β̂, μ̂, σ̂) as maximizers. In their data example with Gatekeepers, the sample size is 
n = 527,588, and the (profiled) parameter dimension is p = 141 = 3 · 47 so that n ≫ p. 
Without the profiling step, there would be an additional 4,328 parameters, so profiling results 
in a large reduction. 

Now, we consider a further computational speedup. The parameter α is the only one that varies 
with site s: once it is profiled out to create ℓp, the remaining parameters do not depend on site. The 
following calculation shows that the observations may, therefore, be aggregated over site. 

Proposition 1 Up to an additive constant, 

ℓp(β, μ, σ) =
􏽘

v,r

Y†vr{βr + log φ(v; μr, σr)} − Y††† log
􏽘

v,r

eβr φ(v; μr, σr)

􏼨 􏼩

.

Proof. Denote ‘=· ’ as equality up to additive constants. The log profile likelihood satisfies 

􏽘

s,v,r

−eα̂s+βr φ(v; μr, σr) +Ysvr α̂s + βr + logφ(v; μr, σr)
􏼈 􏼉

=
􏽘

s,v,r

−eβr
Ys††

􏽐
v′,r′ eβr′φ(v′; μr′ , σr′ )

φ(v; μr, σr) + Ysvr log
Ys††

􏽐
v′,r′ eβr′φ(v′; μr′ , σr′ )

􏼨 􏼩

+ βr + logφ(v; μr, σr)

􏼢 􏼣

=·
􏽘

s,v,r

−Ys††

eβr φ(v; μr, σr)
􏽐

v′,r′ eβr′φ(v′; μr′ , σr′ )
+ Ysvr βr + logφ(v; μr, σr)

􏼈 􏼉
− Ysvr log

􏽘

v′,r′
eβr′φ(v′; μr′ , σr′ )

􏼨 􏼩

=
􏽘

v,r

−Y†††

eβr φ(v; μr, σr)
􏽐

v′,r′ eβr′φ(v′; μr′ , σr′ )
+
􏽘

v,r

Y†vr βr + logφ(v; μr, σr)
􏼈 􏼉

−Y††† log
􏽘

v′,r′
eβr′φ(v′; μr′ , σr′ )

􏼨 􏼩

=·
􏽘

v,r

Y†vr βr + logφ(v; μr, σr)
􏼈 􏼉

− Y††† log
􏽘

v′,r′
eβr′φ(v′; μr′ , σr′ )

􏼨 􏼩

. A  

The form of the profile likelihood involves a sum over only visits (denoted by v) and years 
(denoted by r). This reduces the size of the problem from n = 527,588 to 1,222 = 26 · 47, which  
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reduces the run time to evaluate the profile likelihood and, hence, the run time of an algorithm to 
compute associated maximum likelihood estimators. 

This note illustrates that inspecting the form of objective functions can lead to simplifications 
and computational speedups. Separately, if the simplification had not occurred and a sum over 
n = 527,588 observations remained in the objective function, then an algorithm that scales well 
with large n, such as stochastic gradient descent, may be preferred to limited-memory BFGS, the 
algorithm employed by Dennis et al. (2024). 
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The authors highlight the prominent role of occupancy modelling in the context of citizen science 
(CS) data and the need to account for imperfect detection. They comment on the computational 
cost of fitting these models and, consequently, the importance of computational efficiency, which 
they address with a variational inference (VI) approach. 

We suggest considering integrated-nested Laplace approximation (INLA) as an alternative, 
more efficient fitting approach that can be used in the current context since occupancy models 
can now be fitted using the library R-INLA (Belmont et al., 2024), provided detection depends 
on fixed effects only. To illustrate this, we have used INLA to fit the model discussed in the paper 
to the Ringlet butterfly dataset (R code accessible through https://github.com/Ecol-Stats/CS_data_ 
analysis). This took about 30 s on a standard Apple M2 Pro machine, i.e. about 120 times faster 
than the VI approach with very similar estimates, see Figure 1a,b. 

As an additional benefit, it is straightforward to include other complex model structures, such as 
smooth terms or, specifically, spatio-temporal effects as these are readily available in R-INLA. The 
latter are particularly relevant in the context of ecological data as spatial random effects can ac-
count for spatial dependencies not captured by covariates avoiding wrong inference (Wright  
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et al., 2019). In an extended model, we have included a spatially structured random effect using the 
SPDE approach (Lindgren et al., 2011) as implemented in R-INLA, similar to the model in Diana 
et al. (2023), but omitting yearly random effects for the detection probabilities (computation time 
approximately 5 min). Figure 2 shows the estimated probability of occurrence over the whole do-
main for four different years; the results resemble those in Diana et al. (2023). 

We agree with the authors on the need for developing accurate, computationally efficient—yet 
still practically relevant and accessible—methods to address the computational challenges result-
ing from large CS data. The INLA framework, along with the R-INLA package, addresses exactly 
this. Therefore, we believe that the growing community of R-INLA users can greatly benefit 
from its relevance to CS data as well as its general versatility. For instance, the package provides 
goodness of fit and prediction accuracy measures (Adin et al., 2024; Van Niekerk et al., 2023), and 
a straight forward way of combining different data structures into a single global model (Illian 
et al., 2013; Martino et al., 2021; Panunzi et al., 2024). 

Figure 1. (a) Posterior median and 96% credible interval for yearly probability of occurrence. (b) Posterior median for 
the probability of detection. Both results refer to the model in Dennis et al. (2024).  

Figure 2. Posterior median of the probability of occurrence of the Ringlet butterfly (Aphantopus hyperantus) in 
space and across time, for the model including a spatial term.   
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However, we also agree that for some complex data structures, e.g. where detection may have 
to depend on random effects, Markov chain Monte Carlo as a less computationally efficient ap-
proach remains the method of choice for Bayesian inference. Striking the right balance here re-
quires a continuous dialogue between practitioners and method developers to adequately 
analyse CS data and to encourage innovation in tackling complex ecological questions (Illian & 
Burslem, 2017). 
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We congratulate Koh and Opitz for this stimulating piece of work. The complex framework 
adopted by the authors offers crucial insights into migratory patterns and species behaviours 
that simpler models may overlook. Much effort has gone into the model specification to account 
for sampling biases and to ensure interpretability, and it shows. 

Hierarchical Bayesian models are well suited for this type of modelling exercise, but the 
inference is complicated and preprocessing tedious. Assuming separability of space and 
time effects simplifies the problem, and offers the possibility of using leave-one-year-out cross- 
validation, although this is computationally intensive. The sharing of random effects allows 
one to borrow strength across data sources, but may lead to model misspecification without 
great care. Adding covariates, such as land cover, could reduce the residual variability, but 
we acknowledge that their effect may be nonlinear, and suitable smooths would add multiple 
fixed effect parameters. 

One concern is the slow convergence and poor mixing observed in Figure 12, even after thin-
ning. We wonder what the effective sample size is after burn-in. Although standard methods, 
such as adaptive MCMC (Andrieu & Thoms, 2008; Rosenthal, 2011), could help, hyperpara-
meters may be strongly correlated due to shared components, and joint updates may be necessary 
to increase the efficiency of the sampler. The performance of Metropolis adjusted Langevin algo-
rithm (MALA) is highly sensitive to the global tuning parameter or prewhitening matrix; locally 
adaptive schemes could fare better (e.g. Girolami & Calderhead, 2011; Rue & Held, 2005, 
Section 4.4.1). 

Although the Markov chains seem to stabilize eventually, running multiple chains could be used 
to check whether they reach a unique stationary distribution. Model predictions at the data level 
(e.g. Figure 9) look sensible, but it is unclear whether individual model components are identifi-
able. For example, consider the function relating the generalized extreme value distribution loca-
tion parameter μ with the sampling effort, g(xbound, xeffort) = exp (xbound)/{1 + exp (−xeffort)}. The 
functional form of eq. (4) implies that we cannot distinguish between parameters for xbound when 
xeffort is low. Increases in g (and thus in μ) lead to an earlier minimum arrival rate. 

We believe data fusion of related databases observed at different locations or resolutions has 
great potential in the field of spatial extreme value analysis as there is limited information available 
and pooling can help partly alleviate this. 
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We congratulate Jonathan Koh and Thomas Opitz for developing a sophisticated but fully oper-
ational spatiotemporal Bayesian hierarchical model for an explicit bias-corrected estimation of 
arrival dates from combined heterogeneous datasets. An econometrician may have thought, how-
ever, that this problem also belongs to the area of (frequentist) frontier analysis, which provides a 
rather different, and, we hope, useful perspective. More precisely, for a given species of birds and 
each pixel of a spatial mesh covering the study area, let Y represent the arrival date reported by an 
observer and T be the corresponding year of observation. As highlighted in the paper, the condi-
tional distribution of Y given T obviously has a tail bounded to the left. The finite lower extremity 
of the support of Y given T = t defines the frontier point that corresponds to the population left- 
endpoint of all dates of occurrence of the species during the year t. This frontier function of t can 
be estimated by a global envelopment spline smoother under/without shape (e.g. concavity) con-
straints with automatic selection information criteria of the number and location of knots (Daouia 
et al., 2016), or by a local polynomial approach based on local extreme value statistics with adap-
tive selection of the tuning parameters (Jirak et al., 2014). Both approaches are based on the char-
acterization of the yearly first arrival dates as a regression function in a nonparametric regression 
model with one-sided errors. The resulting spline or local polynomial boundary would then de-
scribe the yearly evolution of the desired first arrival date at the local zone considered. This avoids 
setting up a complex Bayesian hierarchical structure, as well as the Generalized Extreme Value 
approach whose goodness-of-fit to the data is not always easy to assess. Furthermore, instead 
of restricting the analysis to each pixel, thus resulting in a discrete geographical differentiation 
of the first arrival date, we suggest using all the data covering the study area and incorporating 
the observation location (i.e. longitude and latitude), as well as exogenous climate, land cover 
and other ecological factors into the estimation procedure as covariates (Wang et al., 2020), which 
would provide spatially smoother predictions of the true first arrivals. Proceeding in this way 
would also implicitly integrate the sampling effort, reflected by both preference and activity di-
mensions, as this would naturally show up in the confidence intervals, whether produced by  
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asymptotics or bootstrapping. We think that this would be a useful complement to the very inter-
esting approach constructed here. 
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This contribution discusses the paper by Dennis et al. (2025). The RSS must be congratulated for 
this timely discussion session, with three great papers. 

The model-based approach adopted in this paper is welcomed. It was particularly pleasing to see 
(observed and unobserved) temporal components presented and discussed in this paper. This pa-
per will certainly be a useful reference for the analysis of archaeologically dated ancient remains we 
are currently contemplating. My contribution to the discussion addresses the possible extension of 
the ideas of this paper to temporal sequences of infinite-dimensional observational processes. 

Locations of occurrences are as relevant as their counts for point pattern analyses. Inhomogeneous 
Poisson processes (IPP) are frequently used as their observational distribution. Their intensity func-
tions are based on two components, as in the paper: one for explaining occurrences and one for ex-
plaining detection of occurrences. This was implemented for presence-only analyses in Moreira and 
Gamerman (2022), also using Bayes, but with no model approximation. Prediction of the locations  
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and the total number of unobserved occurrences are easily provided. This prediction was obtained in 
the multidisciplinary study of the impact of pre-Columbian occupation of Amazonia (Peripato et al., 
2023), and it attracted a sizeable media attention (see Gamerman, 2024). Could the approach of this 
paper be adapted to such scenario or to its temporal generalization when marks (e.g. dates) are asso-
ciated with sequences of point patterns (e.g. archaeological remains)? 

I will not dwell much over computational aspects other than sharing the concern of the authors 
about possible errors associated with approximations to the likelihood and models. I appreciate 
the efforts reported in Table 1. Could the results be expanded to include comparisons against 
the respective true posteriors (e.g. using Markov Chain Monte Carlo as a gold standard), other 
parameters, and their (co)variances? The analyses of Amazonia reported results about the true 
posterior despite the IPP likelihood intractability and despite having to work with databanks 
with millions of rows. 

There are many nice features in the paper by Dennis et al. (2025) and I congratulate the authors 
for all their comprehensive and hard work. 
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We are grateful for the opportunity to discuss the paper entitled ‘Extreme-value modelling of 
migratory bird arrival dates: Insights from citizen science data’ (Koh & Opitz, 2025). We con-
gratulate the authors for conducting such an elaborate data analysis of bird arrivals showing  
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how multiple citizen-science data products of varying quality, completeness, and space-time res-
olutions, can be fused together and modelled jointly using a complex Bayesian hierarchical model. 
The model implements different likelihood functions over a shared latent structure, and accounts 
for the sampling effort to remove systematic biases. 

Our comment focuses on the methods for making inference, and how alternative approaches 
can be used to substantially reduce the computational cost. The authors perform Bayesian infer-
ence using a customized Metropolis–Hastings algorithm, where hyperparameters are updated us-
ing Gibbs sampling, and where the latent Gaussian components are updated using block proposals 
based on the Metropolis-adjusted Langevin algorithm. They report that each iteration takes ap-
proximately 6 sec., so a single model fit obtained by drawing 80 000 posterior samples takes about 
5.5 days. While such an inference time may be acceptable if the model needs to be fitted only a few 
times, it is clearly too expensive if repeated fitting is necessary, e.g., to conduct an extensive cross- 
validation study, to analyse different bird species in different study regions, or to incorporate new 
data, as is often required in citizen science. Recent years have seen the emergence of neural net-
works being used for amortized inference (see Zammit-Mangion et al., 2025, for a recent review), 
both in the context of point estimation (e.g. Sainsbury-Dale et al., 2023, 2024) and full posterior 
inference (e.g., Radev et al., 2022; Radev, Schmitt, Pratz, et al., 2023; Radev, Schmitt, 
Schumacher, et al., 2023) for models with intractable or unavailable likelihood functions. With 
such neural ‘amortized’ approaches, inference with new data can be performed repeatedly at a 
fraction of the time needed using standard Markov chain Monte Carlo methods, after an initial 
computational cost is incurred to train a neural network using training data simulated from the 
model of interest. Amortized methods for complex spatio-temporal Bayesian hierarchical models 
are still in their infancy, but see Zammit-Mangion and Wikle (2020) for an early example. 
Although neural inference methods can be used to estimate model parameters, they will likely 
struggle to make inference on latent variables, which are often numerous and highly correlated 
a posteriori. One solution is to adopt an empirical Bayes approach, where hyperparameters are 
estimated in a first step (e.g., using neural Bayes estimators; see Sainsbury-Dale et al., 2024), 
and latent variables are then inferred in a second step conditional on the estimated hyperpara-
meters, perhaps by using a learning network such as that proposed by Liu and Liu (2020). This 
strategy remains to be tested, especially in cases where the model has a relatively large number 
of hyperparameters (i.e., more than 20, say) and when the trained neural networks need to be 
adaptable to small model changes (e.g., to different covariates values). In principle, however, 
this strategy would allow for fast inference for a wide range of Bayesian hierarchical models, in-
cluding models for data fusion, thus enabling the analysis of citizen-science data at unprecedented 
scale. 
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This contribution discusses the papers of ‘Extreme-value modelling of migratory bird arrival 
dates: Insights from citizen science data’ by Jonathan Koh and Thomas Opitz. 

First of all, I would like to congratulate the authors for modelling such a complex issue as mi-
gratory bird arrival using citizen science data. As mentioned by the authors, citizen science data 
often suffers from inconsistent quality, including a lack of standardization. The modelling be-
comes more complex because the response variables include Generalized Extreme Value distribu-
tions, as well as values distributed according to Binomial and Poisson distributions. Migratory 
bird arrival dates can be influenced by the interaction of various factors, reflecting the complex 
interplay between environmental conditions, biological processes, and ecological interactions. I 
am unsure how many variables the authors have considered; naturally, the model will become 
more complex if additional variables are included. There are several cutting-edge machine learning 
models, such as Artificial Neural Networks and Stochastic Gradient Boosting, which could be ap-
plied to extreme value modelling. The validity of the data in these models can be tested by dividing 
the data into training and testing sets, which is particularly crucial in the context of citizen science 
data. I am curious whether the authors have compared the validity of their predictions using 
Bayesian hierarchical models with these machine learning models.  
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I applaud Drs. Bersson and Hoff for the paper ‘Frequentist Prediction Sets for Species Abundance 
using Indirect Information’ for bringing to attention data collected by citizen scientists. These data 
are particularly important because they increase the spatial and temporal extent for many bird 
monitoring surveys conducted by trained researchers. I have a couple of concerns and a suggestion.  

1. Detection error occurs when a bird species that is present is not detected because of various 
factors such as season, time of the day, rainy day, and such. Correcting for detection error is a 
major issue in ecological studies. How do authors take into account detection error?  

2. Structural zeros occur when a species may not be present at a location due to specific habitat 
characteristics. How do authors take into account such structural zeros? In their presentation, 
the number of species K is assumed to be the same in every location. This assumption does not 
seem realistic.  

3. I would like to draw attention to a hierarchical model approach described in Lele and Allen 
(2006) that calibrates expert opinion or soft data such as collected by E-bird with hard obser-
vations collected by trained researchers. Florio et al. (2004) combined satellite data with large 
spatial extent and ground truth data with smaller spatial extent using a similar approach. In  
Lele and Allen (2006) formulation, the weight of the soft data in the analysis is automatically 
determined. As was illustrated, sometimes soft data can, in fact, deteriorate the quality of in-
ference. The moral was that not all soft data are informative and hence should not be used 
without checking its usefulness and relevance. Could one conduct similar analysis to get pre-
diction sets that combine not just the citizen science data from neighbouring counties but also 
data systematically collected by bird researchers?  
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Koh and Opitz present an impressive piece of modelling that covers a far larger geographical area 
than our own reporting of first-arrival dates (Reese & Tucker, 2019), which by comparison equa-
tes to some 9 by 9 20 km pixels. Our data, however, covered more than 130 years (1880s–2010s). 
We speculated on sources of bias, some of which are corroborated in the new work, and how these 
may have changed over time. Koh and Opitz’s work would usefully be made more accessible to 
ornithologists, with the mathematics simplified and more biological interpretation. 

One minor point is the coding of dates. The crude day number within a year introduces a small 
anomaly: each date after February is larger by one in leap years. This effect is easily removed by 
coding March 1 as Day 1, using negative values for January and February—which do not anyway 
occur in these data. The authors could also check for ‘weekend bias’, which we found in more re-
cent (post-1950) reports. 

Most studies, including our own, consider first arrival dates in a strict sense: ‘the first Cuckoo of 
spring’. The definition here, ‘first arrivals of migratory birds at their destination’ is more obviously 
a latent variable. Many migrants may stop in a suitable habitat and, for example, sing before con-
tinuing their journey. The second definition, ‘a date that can be viewed as representative of the ar-
rival of birds at their breeding site’, smacks more of a population average than the earliest pioneer. 
The span of dates in Figure 1 may reflect sampling variation, but also the large geographical 
spread. Surely one should be modelling the contours of the northward progress? The pixels appear 
to be coded with a single index (i = 1,…,1,268) rather than in rows successively northward. 

Our paper looked briefly at ‘effort’ based on the estimated number of observers, with equivocal 
results. For me, Figure 1 needed some decoding, and I would advise revising the labels and the cap-
tion. Values of log(N)—I assume base e—do not easily convey a magnitude: the value of 10 equa-
tes to 22,000 observations in a pixel-year. I zoomed in on the PDF, and the observations appear to 
extend to at least 9 (8,000). If these were spread randomly across the year (e.g. not just wildfowl 
counts in winter), there is an extremely small Poisson probability of a day without data. Labelling 
with natural numbers, including the minimum and maximum number of observations, would be 
more understandable. Nor is it obvious why the Y-axis is inverted. Plotting the day number as-
cendant leads to the more natural description: more observations in an area lead to earlier dates 
with smaller variance. I would try a curve with a single inflexion and an asymptote. 

A final point is that the interest in first dates is generally in relation to change. If the sources of 
bias and the direction of effect are largely unchanged, then changes in arrival dates have import-
ance and need interpretation.  

Conflicts of interest: none declared. 

Reference 
Reese R. A., & Tucker J. J. (2019). Descriptive models for first arrival dates of migrants in an inland UK county. 

Ringing & Migration, 34(1), 63–69. https://doi.org/10.1080/03078698.2019.1759896 

https://doi.org/10.1093/jrsssa/qnaf019 
Advance access publication 11 February 2025   

718                                                                                                                  Discussion Paper Contribution 
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssa/article/188/3/641/7811367 by guest on 07 N
ovem

ber 2025

mailto:allan@eurolyme.uk
https://doi.org/10.1080/03078698.2019.1759896
https://doi.org/10.1093/jrsssa/qnaf019


Stefano Rizzelli’s contribution to the 
Discussion of the ‘Discussion Meeting  
on the Analysis of citizen science data’ 
Stefano Rizzelli 
Department of Statistics, University of Padova, Padova, Italy 
Address for correspondence: Stefano Rizzelli, Department of Statistics, University of Padova, Padova, Italy.  
Email: stefano.rizzelli@unipd.it 

This contribution discusses the paper ‘Extreme-value modelling of migratory bird arrival dates: 
Insights from citizen science data’ by Koh and Opitz, whom I congratulate on this work. Of par-
ticular interest is their use of Generalized Extreme Value distributions for modelling maxima Zi of 
(transformed) birds arrival times, performing parameter inference, and point prediction through a 
Bayesian approach. One of its advantages is the possibility of incorporating field knowledge 
through prior distributions. Since the variables Zi plausibly have an upper bound, it would be in-
teresting to incorporate this information by assigning ξ a prior supported on negative values, and 
to assess the sensitivity of the proposed method in moving from a vague to an informative prior 
specification. Another advantage is the possibility of issuing forecasts of maxima through predict-
ive distributions, as remarked in Coles and Pericchi (2003) and Padoan and Rizzelli (2022, 2024). 
Expanding the analysis in §5.3 to include predictive median (or mode), checking how much pre-
dictive distributions concentrate around it and whether predictive intervals cover truly observed 
arrival times, would also be interesting. 

As the authors remark, fitting models grounded on extreme value theory (EVT) to extremes of 
biotic processes is a rare practice, which may seem surprising given the relevance of extreme events 
in life sciences. Besides EVT primary focus on continuous variables, this may be due to a relative 
inflexibility of the more established extreme value models, arising from EVT fundamental theo-
rems (de Haan & Ferreira, 2006). While they allow to successfully account e.g. for spatial depend-
ence (Davison et al., 2012), there are as yet no commonly agreed-upon assumptions to derive 
extreme value models in the presence of covariates. The need for extensions of classical EVT in 
this sense is evidenced by the plethora of applications for which traditional extreme value models 
have been expanded in different ways, according to problem-specific desiderata, without, how-
ever, dwelling with probabilistic foundations of such extensions and mathematical guarantees 
on the proposed methodologies, which is far from trivial but crucial to establish how reliably 
they can be used in other areas. Some efforts in this direction have been made by Bobbia et al. 
(2021), Chernozhukov (2005), Daouia et al. (2022), and Dombry et al. (2023), among others. 
Rigorous attempts to also account for time heterogeneity can be found in Bücher Jennessen 
(2024) and Einmahl et al. (2016, 2022). 

Recent progress is remarkable, but there is still a long way to go to develop and consolidate rich, 
interpretable and mathematically sound models. Bridging the gap between theory and practice re-
mains a key challenge for the advancement of extreme value analysis, making its toolbox increas-
ingly usable and trustworthy for practitioners among different fields. 
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1 Comments and suggestions 
I enthusiastically congratulate the authors on a stimulating article that provides a cutting-edge 
technology for implementing data fusion of heterogenous datasets and may inspire many follow- 
up works. 

The paper develops a spatiotemporal Bayesian hierarchical model for bias-corrected estimation 
of arrival dates of the first migratory bird individuals at a breeding site, devises an MCMC scheme, 
and checks by simulation that the latent process components are identifiable. The proposed model 
is used to several migratory bird species and resulted in an interesting finding that the sampling 
effort significantly modulates the observed first arrival date. The relationship is effective in making 
bias-correct predictions of the true first arrivals. 

Here are three comments: 
First, the article develops a spatiotemporal Bayesian hierarchical model with two levels. The 

level-1 model is with the hierarchical system of the four regression equations in Section 3.3 on  
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pages 7 and 8, 

NBBS
j ∣ λBBS, θbbs ∼ Pois

􏽘

k∈routej

ωkλBBS(sk; θbbs)

⎧
⎨

⎩

⎫
⎬

⎭

Nckl
i ∣ λckl, θckl ∼ Pois λckl(si, ti; θckl)

􏽮 􏽯

Nspc
i ∣ Nckl

i , pspc, θspc ∼ Bin{Nckl
i , pspc(si, ti; θspc)}

Zi ∣ μ, θμ, σ, θσ ∼ GEV{μ(si, ti; θμ), σ(si; θσ), ξ}.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(1) 

At level-2 model, the level-1 hyperparameters λBBS, λckl, pspc, μ, and σ become outcomes: 

log λBBS(si) = βBBS
0 + Xniche(si)

log λckl(si, ti) = βckl
0 + Xyear(ti) + Xpref(si)

cloglog{pspc(si, ti)} = βspc
0 + Xniche(si) + βact

dsi ,ti

μ(si, ti) = g βGEV−μ
0 + XGEV−μ(si) + βGEV−μ

1 NAOti

􏽮

+θniche−GEVXniche(si), xeffort(si, ti)
􏽯

log σ(si) = βGEV−σ
0 + XGEV−σ(si).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2) 

In practice, the existence of such citizen science data with hierarchies is neither accidental nor 
ignorable, it is a common phenomenon. To ignore this, hierarchical data structure risks over-
looking the importance of group effects and may also render invalid many of the traditional 
statistical analysis techniques used for studying data relationships. On the other hand, 
hierarchical models take hierarchical data structure into account and have also many applica-
tions in statistics. However, the aforementioned level-2 model fails in taking into account 
the inherent association among the four regression equations at level-1. So, it needs to impose, 
for example, some strict constraints on the joint distribution of the latent effect vector 
(Xniche(si), Xyear(ti), Xpref(si), Xniche(si), XGEV−μ(si), XGEV−σ(si)). Obviously, it is not suitable to 
assume that these latent effects be assigned independent and identical distribution, see, for ex-
ample, Amini et al. (2021), Li et al. (2014), Ma and Tian (2024), Rotejanaprasert et al. (2023),  
Yu et al. (2022), and Tian and Yu (2024). 

Second, what are the conditions for the identifiability of the model? There are seven hyperpara-
meters βBBS

0 , βckl
0 , βspc

0 , βact, βGEV−μ
0 , βGEV−μ

1 , and βGEV−σ
0 as the fixed effects to estimate. Whether so 

many hyperparameter estimators will lead to the superposition of errors and the failure of the 
method. Refer to Yu et al. (2022) and Tian and Yu (2024). 

Third, how to monitor the convergence of Markov Chain Monte Carlo algorithm for the pro-
posed spatiotemporal Bayesian hierarchical model at each step? See, for example, Gnecco et al. 
(2024). 
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Emily Dennis is unable to comment on the issues raised by the Discussion due to maternity leave. 
We are grateful for the wide-ranging comments on our paper, which have given us encourage-

ment and provide pointers to future research. 
We have focused on providing analyses of data provided by Butterfly Conservation in the UK. 

For both abundance and distribution data, analyses are repeated regularly on sets of 59 species of 
butterflies and a subset of the approximately 900 species of larger moths. What we need therefore 
are efficient, flexible methods, where citizen-science records typically contain minimal covariate 
information. 

Ben Swallow 
We thank Ben Swallow for his wide-ranging comments covering citizen-science data, and for the 
particular comments relating to our paper.  
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He mentions the importance of modelling the observation process, which resonates with the pa-
per by Moreira and Gamerman (2022), mentioned below. We note here one way in which this is 
not possible in comparison with planned surveys conducted by known individuals. In the latter 
case, there is often information available regarding the observers themselves, for instance regard-
ing age and experience, and these are typically not available with citizen-science data. 

As we say, the extended Generalised Abundance Index (GAI), incorporating the annual model, 
is at a preliminary stage of development. However, the examples that we have shown are prom-
ising, and we are in the process of undertaking a wider study. The annual model is much used 
in ecology and we believe that our new approach should have wide-ranging applications. This 
ties in also with the comments of Ben Baer and our responses to these given below. It is not uncom-
mon for fitted models in ecology to result in parameter estimates which are then analysed further, 
for example using Generalised Linear Models (GLMs). In order then to account for error 
propagation some form of timeconsuming bootstrapping is used. Differences in the estimation 
of uncertainty are mentioned, requiring more research, however incorporating an annual model 
within the GAI avoids the arbitrariness of a post hoc analysis which might, for example, depend 
upon the use of a particular GLM. 

The attraction of the GAI family of models is that it allows for a range of different discrete 
distributions for the analysis of count data, and for comparisons to be made using information 
criteria—see Dennis et al. (2016). In addition relevant covariates, such as northing, easting and 
relating to land cover, are easily included. Northing and easting can reveal spatial features; an il-
lustration is given in Dennis et al. (2022), showing how the Common Blue butterfly, Polyommatus 
icarus, moves from having two broods in the south of Britain to having only one in the north, 
where the colder climate only allows one brood to be completed each year. More complex inclu-
sion of spatial covariates results in the occupancy maps in Diana et al. (2023), which are repro-
duced in the Discussion contribution by Jafet and coauthors using Integrated nested Laplace 
approximations (INLA), which also incorporate spatial correlation. 

The possibility of multi-species modelling is a good one, and applications are mentioned in  
McCrea et al. (2023) and Moreira and Gamerman (2022). The benchmarking used in the paper 
to produce presence–absence data uses observations on species other than target species to induce 
absences, and so is a particular type of multi-species analysis. UK butterflies are generally classified 
as habitat specialists, migrants, and wider countryside; specialists are only found where the habitat 
is favourable to them. This point is relevant to the utility of multi-species analyses, related to the 
construction of indicators which describe how groups of individual species behave. Indicators are 
widely used to summarize complex, multi-species analyses. However, indicators are only useful if 
they describe relatively homogeneous groups of species. Methods of cluster analysis and ordin-
ation are used to check this, and illustrations using functional principal component analysis are 
in Dennis et al. (2019), which illustrate in a two-dimensional plot the relationships between butter-
fly occupancy indices. It is an interesting point that modelling of data on specialists might benefit 
from appropriate analyses of data from wider countryside species with overlapping ranges. 

Kerrie Mengersen 
We welcome Kerrie’s mention of relevant work in other areas and also the citizen-science research 
taking place in the antipodes. We very much endorse the need for rigor in model fusion, empha-
sized also in McCrea et al. (2023). As a comment on integrated modelling, in our paper, we analyse 
both count and distribution data on British butterflies, but separately, using different models in 
each case as abundance and distribution are inherently different. Typically data in the first case 
relate to individuals while in the second case they refer to species. As we mention in the 
Discussion to our paper, we are developing a new urban butterfly indicator based on an integrated 
analysis of UKBMS and BBC data, building on the material of Section 3 of the paper. 

Citizen-science data are increasing in size, spatio-temporal coverage and species monitored, es-
pecially with the emergence of new technologies, such as cameras, acoustic, and DNA-based ap-
proaches. Therefore, they provide considerable opportunities for species’ monitoring and timely 
intervention. At the same time, the unstructured, often opportunistic and biased process by which 
such data are collected presents modelling challenges, many of which remain open. For the data 
sets considered in our paper, reporting preferences, observer differences and spatial bias  
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(Johnston et al., 2023) are just some of the known and unavoidable biases in the data generating 
process. To maximize the benefit of citizen-science data for reliable and timely monitoring, these 
biases have to be addressed within a modelling framework, and we agree with Kerrie that more 
work is needed in the area. 

Machine learning methods, especially deep models, are some of the most flexible and scalable 
tools currently available to us, and therefore it is indeed beneficial to incorporate them within stat-
istical models of the type we present in our paper. For example, deep models can be used in place of 
logistic regression models to increase the flexibility of our framework. Variational inference ap-
proaches, such as the one we developed, provide a natural way forward for this task, thanks to 
the now widely available automatic differentiation tools. 

Andrej Srakar 
We thank Andrej for the interesting and thought-provoking ideas. 

Our use of concentrated likelihood is a simple way of reducing the effective size of parameter 
spaces for particular survey data. More generally, the approach has been found to be useful in 
time-series analysis for example; see Durbin and Koopman (1997). 

As we have shown, complex models in ecology may well have many parameters, and one way to 
deal with this is to use appropriate random effects. Dennis (2015) compared this approach with 
using concentrated likelihood and found the latter to be preferable for our models. In his contri-
bution to the paper Discussion, Ben Baer both simplified the expression for a likelihood and com-
puted a dimension reduction in one application from 527588 to 1222; further discussion with him 
has shown that additional concentration of the likelihood in this case allows us to go even further. 
Thus for the GAI-based models in particular, and the data being analysed, we can probably 
achieve the efficiency that we need at present. In terms of efficiency, Ben also suggests using sto-
chastic gradient descent (which is used in the paper), and we need to look into the value of that 
for the GAI-based models. The potential of using Banach, Hilbert, or tensor spaces for our 
work is as yet unknown. However data and models are becoming more extensive and complex— 
McCrea et al. (2023)—and these suggestions may well gain traction. 

In some of our work, likelihoods are not intractable, when methods of indirect inference may not 
be the best approach. Approximate Bayesian Computation, ABC, now has a wide literature—see for 
example Beaumont (2019) and Gutmann and Corander (2016) as an illustration of efficiency in 
computing. Each application requires its own simulators and data-matching functions, in both cases 
with the potential for time-consuming computation. One of the drivers for our work has been the 
need for methods to analyse data arising from established surveys, which can be used by ecologists 
with limited computational power. The main issues with ABC are that it relies on identifying sum-
mary statistics, which can be challenging with large spatio-temporal data and models with many pa-
rameters, of the type we consider here. ABC also does not scale well as the number of parameters 
increases (the curse of dimensionality, Cranmer et al., 2020). Instead, we think that when the like-
lihood is tractable, as is the case for the data and corresponding models of this paper then likelihood- 
based inference and efficient computational tools, such as variational inference, hold considerable 
promise. However, we expect that Andrej’s suggestions are highly relevant for the new data that 
are regularly appearing, as with the use of autonomous machines for data collection for example. 

In our paper, we have used both classical inference and variational inference. The two classical 
inference illustrations are easily performed and described. In general, the value of Bayesian meth-
ods for certain data analysis is evident from examples: for instance the variational inference illus-
tration and also Diana et al. (2023), combining a Pólya-Gamma scheme and spatio-temporal 
random effects using Gaussian processes, the exact Bayes method of Moreira and Gamerman 
(2022), the extension of INLA to occupancy problems by Belmont et al. (2024), and the sampling 
approach of King et al. (2023) combined with importance sampling. 

Dani Gamerman 
The approach proposed in Moreira and Gamerman (2022) is particularly useful for presence-only 
data. However, the data and model considered in our paper occupy an intermediate position be-
tween presence-only and presence–absence data. While it is true that observations are initially re-
corded as presence-only data, observers document all species they encounter. This allows absences  
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to be inferred whenever an observer records a different species but not the one under consider-
ation. This process, known as benchmarking, enables the identification of absences in addition 
to presences, distinguishing the data from typical presence-only data. We note that if observers 
were to report on only one species, the data would indeed be presence-only. We do recognize, how-
ever, that the data are not pure presence/absence data either, since that would require observers to 
explicitly document absences whenever no species is recorded, which is not the case here. We be-
lieve that in this case it is preferable to infer non-detections for each species using records of other 
species (assuming that all species share the same reporting probability, i.e. their detections are 
equally likely to be reported) than to ignore that information all together and treat the data as 
presence-only. 

We note with interest the approach of Moreira and Gamerman (2022), of assuming a latent pro-
cess of unobserved occurrences as a way to mitigate preferential sampling. Our approach does not 
account for potential preferential sampling, which is a known issue in citizen-science surveys since 
observers might tend to visit sites that are more likely to be occupied, which leads to the sampled 
sites being a biased sample of all sites. Preferential sampling is a well-known but open problem 
when modelling citizen-science data; see Section 3.1 in Johnston et al. (2023), who comment 
that ‘… (preferential sampling is) particularly a challenge if the drivers of observer site selection 
are aligned with the ecological process of interest, and if there are no variables that describe 
this preference in the model.’ To the best of our knowledge, preferential sampling has not been 
considered in models of abundance or occupancy of the type we develop and use in this paper— 
though see Conn et al. (2017)—so this is certainly an exciting future research direction. 

The approach of Moreira and Gamerman (2022) relies on the presence of relevant covariates, 
and may not apply to various types of citizen-science data. For example in the UK, a recorder using 
iRecord is required to add a location to a submitted presence entry. We do not think that in general 
there is information on other covariates. As also observed in Moreira and Gamerman (2022), ob-
server information in citizen science data can be difficult to obtain. Another feature might relate to 
sample sizes, as data can be very large; see for example Diana et al. (2023). 

Finally, on the question regarding (co)variances, simulation results in our paper show that 
the marginal posterior distributions of parameters from our variational inference approach 
and Markov chain Monte Carlo (MCMC), are very similar. In response to the question about 
the posterior covariances, we have run a new set of simulations to compare the posterior covarian-
ces of the parameters (βψ

1 , . . ., βψ
p1

, β p
1 , . . ., β p

p2
) obtained by variational inference against those ones 

obtained by MCMC (which should be the true ones). We have used 2 covariates for both detection 
and occupancy (including the intercept). Across 50 simulations and the 6 posterior covariances, 
the average relative error was 38%. It is likely that the bias is still due to the low number of rep-
lications or to the lack of convergence of the variational inference procedure, since the estimator of 
the posterior covariance matrix tends to exhibit slower convergence for the off-diagonal elements. 

Benjamin R. Baer 
The extended GAI presents a way of including the main-effects, annual, model within the standard 
GAI framework. This simple idea allows the GAI to be applied in a true dynamic fashion, for ana-
lysis of count data over time. It is preferable to the current approach in which the static GAI is ap-
plied separately to each year, followed by a Poisson GLM in order to obtain time trends, as 
explained. Having a dynamic model avoids the need for time-consuming bootstrap analyses in or-
der to deal with the variance propagation resulting from the GLM applying to estimated values. It 
is also desirable to remove reliance on a particular GLM. This new approach is preliminary, and 
we plan extensive checking on simulated data to investigate performance and properties, building 
on the initial good results presented for real data. We thank Ben for his useful development of the 
model. We focused on using concentrated likelihood to estimate the α parameters to reduce the 
dimensionality of the parameter space for maximum likelihood. Ben has taken this work further, 
for a particular submodel in which the phenological function a(., ., .) is not a function of site. This 
restriction is in fact one that is often used in practice—see Dennis et al. (2013). He then proceeds to 
derive an analytical form for the likelihood which will also enhance computational efficiency. We 
have discussed this work with Ben which has resulted in an additional simplification due to the 
concentrated likelihood for the β parameters also resulting in explicit parameter estimates. This  
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in turn provides a further improvement in efficiency which we look forward to examining in detail 
in the near future. The point about stochastic steepest descent is an interesting one, as it has in fact 
been used in Section 4 of the paper. We shall certainly explore its wider relevance. 

Jafet Belmont, Sara Martino, Janine Illian, and Håvard Rue 
The flexibility and speed of R-INLA provides considerable modelling opportunities for spatio- 
temporal data, such as those considered in our paper. It is interesting to see how observation error, 
in the form of the probability of detection given presence in occupancy models—accounting for 
false negative observation error—can now be accounted for within R-INLA, and undoubtedly 
this will be widely used by practitioners to model their data in the future. 

We agree with the reviewers that in the specific case of an occupancy model, using INLA is 
more efficient than the variational inference approach. However, we believe that the advantage 
of variational inference is its greater flexibility in considering potentially more complex sam-
pling scenarios that arise in citizen-science data, since the approach only requires us to be 
able to express the likelihood in closed analytic form (potentially having to integrate over dis-
crete variables if these are present). Moreover, using variational inference, it is possible to take 
advantage of the developments on automatic differentiation and potentially model occupancy 
and detection effects using deep models, as we discuss in response to Kerrie’s comments. 
Although in the specific case study considered there are more efficient approaches, as shown 
by the reviewers, we think that in the complex observational processes that give rise to different 
types of citizen-science data there would be considerable scope to perform Bayesian (variation-
al) inference. 
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To begin, we would like to thank all discussants for their insightful comments on our article, and 
congratulate Dennis, Diana, Matechou, Morgan, Koh, and Opitz on their contributions to the 
discussion meeting that enabled such an enriching conversation on analysis of citizen science 
data. Much of the discussion comments pertain to how our proposed framework coincides with 
unique concerns of citizen science data. In what follows, we group common themes that arose 
in the discussion and respond. 

1 Assumptions and applicability to citizen science data 
Our work presents methodology to construct a prediction set based on avian species abundance 
count data from a given county. Moreover, we present an empirical Bayesian framework to in-
corporate indirect information to improve prediction set precision using auxillary data from  
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neighbouring counties. The prediction set for a given county will have guaranteed frequentist 
coverage if two primary assumptions are upheld: The data are exchangeable within the 
county and are independent from the auxiliary data. To this end, Swallow, Mengersen, 
Srakar, and Lele each commented on some unique aspects of citizen science data that require 
particular attention in any statistical methodology, which opens a discussion on the practicality 
of the assumptions required for our approach. 

1.1 Within-county exchangeability 
For the frequentist coverage guarantee to hold, our proposed method relies on an assumption of ex-
changeability of samples. Swallow points out that this may be a concern as sampling bias is a war-
ranted concern with citizen science data. Some concerns of biases with citizen science-collected 
data may be alleviated by pre-processing data such that only entries collected with some sufficient lev-
el of effort are used in an analysis. In the eBird database, data entries may be filtered using some of the 
ample meta-data available regarding the data collection session. For example, utilizing data from 
complete checklists (eBird, 2020) and from checklists uploaded by frequent contributors can ensure 
only data with a sufficient level of skill and effort are being utilized in an analysis (Horns et al., 2018). 

More generally, for the coverage guarantee of our approach to hold, the sum of the count 
vectors obtained from each birding session must follow a multinomial distribution when condi-
tioning on the total number of observed birds. This assumption will be violated, for example, 
if repeated samples are uploaded from individuals in a group who collected data together. 
These entries will be correlated, and the sum of the corresponding count vectors will not follow 
a multinomial distribution. In the eBird database, there is meta-data identifying if separate check-
lists were uploaded from a group birding session, and duplicate lists may be excluded from an 
analysis using this information. There is recent work that relaxes the exchangeability assumption 
in conformal prediction (Barber et al., 2023), and extending our method in this direction may be 
useful for citizen science datasets with more prevalent biases. 

1.2 Between-county independence 
In this work, we are motivated by utilizing auxiliary data from neighbouring counties to improve 
prediction set precision for a given county. This is accomplished via a hyperparameter that may be 
estimated from data that is independent from the sample in the county of interest. 

As Srakar highlights, geographic adjacency structure is an inherently interesting aspect of much 
citizen science data. In our approach, we propose an estimation procedure that estimates the 
hyperparameter with auxiliary data from the nearest neighboring counties. In this way, we allow 
for information to be shared among regions that are geographically near one another. 

Instead, we may aim to share information among counties that exhibit similar ecological 
patterns in a more nuanced manner, perhaps allowing for greater geographical distance. For 
example, in some contexts, it may be more useful to share information across counties with 
similar county-level environmental covariates. Accounting for more complex dependencies be-
tween the counties in this way can be integrated into a more heuristic-based estimation proced-
ure for the indirect information. As an example, the distribution of the transformation of counts 
of observations of a single species can be approximately modelled with a normal distribution 
with a spatial dependence structure, such as a simultaneous auto-regressive (SAR) model 
(Singh et al., 2005) that includes a regression with county-level covariates. Then, the estimated 
hyperparameter may be taken to be an empirical Bayes estimate of the mean from this distribu-
tion. This perspective also pertains to Lele’s suggestion of incorporation of alternative 
expert data. 

1.3 Additional data concerns 
In this work, we analyze eBird data from the state of North Carolina in the United States. For in-
ference on each county, we take the categorical support to include any species seen in the entire 
state during the time frame we analyze. Lele notes this all-encompassing approach may result in 
structural zeros such that a species may have near zero probability of occurrence in a given county. 
While the support is the same in each county, the species’ occurrence probability vector varies 
across state, so this is theoretically coherent.  
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An additional concern with citizen science data, raised by Lele, is detection error that arises 
when species are not detected due to various extenuating circumstances that affect data collection, 
including inclement weather, time of day, and others. Some of these concerns may be alleviated by 
aggregation, however, this solution is dependent upon the inferential question of interest. 

2 Auxillary information 
Lele discusses the nuance around incorporating auxiliary information in an analysis. Although in 
some settings it may be undesirable to incorporate indirect information that is uninformative, our 
approach is adaptable to such a scenario. For example, if many species with small observed counts 
have large hyperparameter values, then this reflects a general uncertainty of knowledge, and, con-
sequently, will result in a large prediction set. Alternatively, if the indirect information is aligned 
with the sample, then a smaller prediction set will be obtained. 

3 Coverage probability 
Swallow points out that the coverage probabilities can be above the nominal rate, as seen in 
Figure 2. Indeed, our method guarantees a lower bound on the coverage rate of a prediction set 
(Eqn 2). The realized coverage rate of the indirect approach depends on, among others, the sample 
size N, as described in Bersson and Hoff (2024). Exact coverage may be achieved by utilizing a 
randomized confidence set algorithm, see Vovk et al. (2022) §2.2.6. In contrast to the α-validity 
guaranteed by the indirect approach, a Bayesian or empirical Bayesian prediction set can have ar-
bitrarily poor coverage, depending on the prior hyperparameter. 

Conflicts of interest: None declared. 
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Abstract 
We respond to the discussion comments of the Proposer and Seconder of the vote of thanks, and to the eight 
other contributions discussing our work. 

We warmly thank the Proposer and Seconder of the vote of thanks, and all discussants. We appre-
ciate their numerous observations, suggestions, and questions on statistics for citizen science (CS) 
data in general, and their insightful and encouraging comments on our work in particular. 

The Proposer raises perspicacious points on the challenges of working with CS data, highlight-
ing the inherent structural biases and lack of appropriately randomized sampling involved with 
data collection. These challenges resonate strongly with the difficulties faced in our work, and 
have guided our considerations when building our model. Besides fostering stronger interactions 
with data collectors and end users of model output, better communication between statisticians, 
domain experts, and citizen scientists should continuously be stimulated, not just to ensure its con-
tinuity by increasing public awareness of the scientific process (Bonney et al., 2016) but also to 
improve data and model quality. As observed by Reese, ‘Koh and Opitz’s work would usefully 
be made more accessible to ornithologists, with the mathematics simplified and more biological 
interpretation’. 

We are inspired by the positive comments of the Seconder. We agree with the sentiment that sta-
tisticians are increasingly being trusted as ‘data whisperers’, and this comes at an exciting time 
with new combinations of models, algorithms, and computing power. Though we acknowledge 
the need to propose methods appropriate for other ‘wilder’ datasets in this domain, we hope 
that our work on a ‘well-behaved’ CS dataset will trigger new extensions and collaborations, 
and can be a reference point for further discussion on this important topic. 

Several key aspects are fundamental for statistical methods to extract useful insights from the 
wealth of data sources and powerful AI tools that should guide new methodological develop-
ments. We have to explain the phenomena and achieve good predictive behaviour by separating 
the ecological signal from the noise and biases, thus allowing for generalization and extrapolation 
of results. Statistical models representing bias and noise explicitly with latent variables (e.g. 
through spatio-temporal random effects) provide interesting paths to this goal. Moreover, we 
should provide decision support through statistical inference (e.g. selecting variables and finding 
significant effects), and provide probabilistic statements to assess remaining uncertainties. We be-
lieve that Bayesian hierarchical models (BHMs) provide an appropriate framework to jointly ad-
dress these aspects. 

Regarding the discussion contributions on our work, we have thematically regrouped their com-
ments along with our responses in the five sections below. Extreme-value aspects are addressed in 
Section 1; Section 2 discusses validating complex BHMs, especially when weakly structured CS 
data are involved. Considerations on model identifiability, efficient estimation algorithms, and  

730                                                                                                                  Discussion Paper Contribution 
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssa/article/188/3/641/7811367 by guest on 07 N
ovem

ber 2025

mailto:jonathan.koh@stat.math.ethz.ch
https://orcid.org/0000-0002-7287-0588
https://orcid.org/0000-0002-5863-5020


the potential of machine learning (ML) techniques follow in Section 3. Possible new applications 
of CS statistics beyond ecology are summarized in Section 4. Section 5 concludes with a discussion 
on the opportunities of CS data and model fusion. 

1 Extreme-value distributions and their priors 
A key focus of our work is the analysis of extreme phenological events (i.e. life-history events of 
individuals of a species) using probability distributions motivated by extreme-value theory 
(EVT). We iterate our hope that this work will spur broader applications of these techniques in 
ecology and other fields concerned with biotic processes where they are still scarce, and we are ap-
preciative of the insightful comments by the discussants on this theme. 

Reese scrutinizes the definition of first arrival dates that we model with the generalized extreme 
value (GEV). It is indeed difficult for an observer to know whether a spotted bird has arrived at its 
destination (i.e. the breeding site) or has just stopped before continuing its journey. Nevertheless, 
we were able to implement some basic data filtering operations using the ‘flyover’ flag in eBird, 
which observers can toggle when they are unsure whether the bird has already arrived at its des-
tination. We also believe that there might be a ‘weekend bias’, though this bias could be evened out 
across pixel-years in our spatio-temporal model. Reese’s idea to model dates consistently over leap 
years, for example by modelling the first date as 1st March, is also interesting; this is easy to im-
plement and would only lead to a location shift for the fitted GEV. We agree that there should be 
more discussion between ecologists and statisticians to better differentiate and estimate both indi-
vidual and populational behaviour of migratory bird arrivals. 

To address Reese’s comments on Figure 1 of our main paper, our reasoning to invert the y-axis 
there is based on the EVT convention of modelling maxima instead of minima; extreme values are 
typically associated with the right tail. In our case, the higher our transformed variable (which we 
later use for modelling), the earlier the date. We also chose to have log (Ni), with Ni the number of 
checklists in pixel-year i, in the x-axes of that figure since we later model the checklist count with a 
log-link function. We appreciate Reese’s suggestion to estimate contours of northward migration 
of birds and will note this for follow-up work. Relatedly, Figure 1 shows a strong dependence of 
the first arrivals on latitude, a feature that has also been detected by our model; see Figure 9 of the 
main paper. 

The Proposer suggests extending our approach to multivariate modelling by using copulas and 
especially multivariate extreme-value distributions, to share information across species and to en-
able joint inference of the first arrivals of multiple species. We agree that multivariate modelling 
would be a natural and worthwhile extension and could provide further insights into bird commu-
nity structure. Regarding our study, we argue that it would pertain to a different modelling phil-
osophy. It may require sacrificing important benefits of mono-specific modelling and of the 
conceptually and computationally useful conditional independence assumption in BHMs. Using 
multivariate probability distributions for the response variable would entail building our model 
components differently, and care would have to be taken not to lose computational tractability 
or omit important model components. A major drawback of the joint modelling approach is 
the inability to simply parallelize computations across tens to thousands of species as we do in 
our work. Choosing the right multivariate distribution also raises questions about choosing the 
copula that can capture the appropriate dependence class for the first arrivals of multiple species, 
and this is an avenue yet to be explored. An alternative approach to share information between 
species, more in line with our current model, would be to keep the conditional independence as-
sumption inherent in our BHM but to additionally incorporate cross-species dependencies into the 
latent processes, for instance using tensor products of Gaussian processes as suggested by the 
Proposer. Multivariate Gaussian processes are already routinely used in joint species distribution 
models, which have their foundations on Chib and Greenberg (1998), with many recent develop-
ments (e.g. Chiquet et al., 2021; Ovaskainen & Abrego, 2020; Tikhonov et al., 2020). We concur 
that using computationally efficient representations (e.g. Gauss Markov random fields) could in-
deed make certain multivariate extensions feasible, even for complex models combining multiple 
response variables for each species. 

Rizzelli advocates for more informative prior distributions for the shape parameter ξ of the GEV, 
which is expected to be negative in our case study due to the finite upper bound of the variable of  
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transformed first arrival days. This is a valid point, and a strategy in this direction is to use penalized 
complexity priors (Simpson et al., 2017), though the choice of the reference distribution when build-
ing this prior remains less clear in our application. Choosing the reference distribution as the GEV 
with ξ = 0, as advocated in Opitz et al. (2018), penalizes relatively heavy or short tails in the GEV, 
and we could truncate this prior such that only negatives values of ξ are possible. However, this would 
problematically push the posterior towards earlier arrivals in our application, especially when obser-
vations are scarce. A different approach is to model ξ̃ = log (− ξ) instead, forcing ξ to be negative. 

Modelling ξ̃ instead of ξ falls under the general strategy of reparametrization, which could also 
be motivated by parameter identifiability and computational reasons; we discuss this more in 
Section 3. One could also directly model the finite upper bound of the GEV as a parameter B = μ − 
σ/ξ with the usual parameter notation, and in our case incorporate the g function on this bound. 
Alternatively, one could avoid estimating this upper bound B but rather fix it to a known value, 
e.g. the value corresponding to 1st January or 1st March, or based on other physical constraints; 
see Noyelle et al. (2024) who develop this approach in the context of temperature extremes. In a 
reparametrized model, one of the three GEV parameters could be equal to the upper bound. 

Rizzelli also discusses the general inflexibility of extreme-value models, especially for modelling 
contexts with biotic processes, and relatedly discusses EVT in the presence of covariates. When work-
ing with Peaks-Over-Threshold models and the resulting asymptotic Generalized Pareto distribution, 
common practice in the covariate setting is to assume conditional independence of the response given 
the covariates, such that the usual asymptotics from the classical ‘i.i.d.’ setting hold after the condi-
tioning (e.g. see Koh et al., 2025). By contrast, deriving theoretical asymptotics for maxima over non-
identically distributed variables is more involved; for example, see the results derived for 
extreme-value limits of upper-bounded distributions with seasonal patterns in Stein (2017), and 
for semiparametric tail estimation (i.e. without a limit probability distribution such as the GEV) in  
Einmahl and He (2023). We agree that rigorous attempts to provide mathematical guarantees in 
the presence of covariates, as done for example in the temporal heterogeneity setting, should be fur-
ther explored. Though asymptotically justified distributions confer more robustness in data-scarce 
contexts, asymptotic properties remain difficult to verify formally in many data applications. 

Daouia and Stupfler propose an interesting approach from econometrics based on fre-
quentist frontier analysis (Daouia et al., 2016), with the frontier defined as the lower bound 
of arrivals, i.e. the first arrival date. They suggest using all data covering the study region and 
incorporating as covariates the spatial coordinates, exogenous climate, land cover, and oth-
er ecological factors into the estimation procedure in a nonparametric regression framework 
with one-sided errors. This could be applied in continuous space without needing a spatial 
pixel discretization. Instead, one would use a kernel with a data-driven choice of its band-
width to pool nearby observations to estimate local parameters. However, as far as we 

Figure 1. Scatterplots of the latitude (x-axes) and first arrivals (y-axes, with later dates corresponding to lower 
values) observed at each pixel-year combination for Chimney Swift (left) and Chestnut-sided Warbler (right). The 
larger dots show 21 binned estimates, the black line a smooth fitted curve, and the shaded region the 95% pointwise 
confidence intervals of the curve.   
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understand, this approach would not attempt to explicitly debias the boundary estimate, 
which is the direction taken in our work and others in ecological statistics that explicitly cap-
ture the observation process (Gelfand & Shirota, 2019). We acknowledge that the sampling 
effort from the preference dimension would be captured indirectly by the width of confi-
dence intervals of the estimated frontier, though it is less clear to us how one should system-
atically incorporate the activity component (i.e. the ‘temporal effort’ of an observer during 
an observation event). Pooling data locally around each prediction location could certainly 
provide spatially smoother predictions of the first arrivals. However, we believe that it 
would also be quite sensitive to the spatio-temporally heterogeneous distribution of sampled 
locations in our application, and it might be ill-adapted to the sharp spatial changes in land 
cover configurations and the corresponding changes in ecological processes. Nevertheless, 
we would be delighted to see future work combining our model with the one proposed. 

2 Validation of inferences and debiased predictions 
A central question when modelling CS data is how models, and the bias corrections for varying 
and unknown observational effort they provide, can be validated. Attenuating the possible biases 
in model-based predictions requires either explicitly identifying the effort or predicting only quan-
tities that are not affected by varying effort under realistic assumptions. This is a challenging and 
fundamental topic of research in CS statistics, and not surprisingly appears as a common theme 
among many of the discussants. 

The Proposer poses questions about validating latent variable models in the presence of com-
plex observational processes. We reiterate that using structured data (i.e. collected by following 
a known predefined sampling design) to define validation datasets, or constructing integrated 
models combining structured and unstructured data sources, remain the best options to reliably 
validate inferences on observation biases. The Proposer also questions how one should estimate 
the effective number of parameters in our setting to assess model complexity and calculate in-
formation criteria that allow comparing different models. This appears challenging, and a rea-
sonable approach could focus on the parameters describing the ecological process by 
integrating out the observational process before estimating the model’s remaining degrees of 
freedom. 

Our model’s debiasing mechanism is based on appropriately identifying the observation process 
jointly with the other model components. An approach to better validate this mechanism is to ran-
domly remove observation days to artificially reduce the observational effort, and then verify the 
observed first arrivals, calculated including the hold-out data, with the model-debiased ones esti-
mated under lower observational effort. Similarly, one could assume that regions with high obser-
vational effort should already be at the saturation point of our g function, and verify whether the 
observed first arrivals in these regions are not significantly different from the model-debiased ones 
under high observational effort. 

Rizzelli highlights the advantages of the Bayesian approach, such as the possibility of using pre-
dictive distributions for forecast evaluation, including using summary statistics like the predictive 
mode and median. We agree that validation schemes holding out recent data to mimic prediction 
with relatively short lead times, along with coverage checks on predictive distributions, are rele-
vant when models are used to forecast into the near future. These approaches have been considered 
in previous studies with BHMs (e.g. in wildfire modelling contexts by Koh et al., 2023). 

Tian emphasizes building hierarchical frameworks with identifiable components. Though we 
verify this for our model with a simulation study, we resonate with his call to explore the condi-
tions that ensure identifiability of parameters in complex BHMs more generally. 

We also agree with Belzile and Yadav that a possible model assessment approach is to use k-fold 
cross-validation designs appropriately stratified for spatial and temporal dependence. This is gen-
erally good practice, but it would be computationally demanding in our setting. 

3 Conducting computations and inference 
We here respond to the numerous comments on how model building, Bayesian computation and 
inference can be conducted for complex models such as ours.  
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Achieving computational efficiency while staying flexible with respect to model structure and 
inferrable quantities remains challenging despite continual progress in computing power and al-
gorithmic efficiency. A recommended practice for BHMs is to structure their latent variables 
and hyperparameters to maximally facilitate their identification, and to keep auto-correlations 
low among the posterior samples from hyperparameters and latent variables. 

3.1 Identifiability of latent spatio-temporal fields 
Belzile and Yadav remark that some components of our latent model may be difficult to identify 
from data. Specifically, they notice that the field xbound(s, t), which is in the GEV location param-
eter μ(s, t) = exp {xbound(s, t)}/{1 − exp ( − xeffort(s, t)}, could be hard to identify at space-time loca-
tions (s, t) where the field xeffort(s, t) representing observational effort is low. We consider the way 
our model works in this situation rather as a feature than a problem: if the effort is low at (s, t), 
then the GEV location parameter will tend to be smaller, which implies that observed first arrivals 
are expected to occur relatively late in the year t, or not at all if observations are missing; this fea-
ture is coherent. Moreover, if the effort is low at (s, t), then the posterior of the field xbound(s, t) will 
be strongly influenced by the behaviour at surrounding locations and its intercept term, i.e. the 
model will borrow information from nearby locations where more data are available and from 
global behaviour. We do not see an identifiability issue here. 

Regarding the identifiability of our latent fields, one could explore alternative parameterizations 
of the GEV that were shown to yield weaker correlations between the posterior samples of these 
three parameters, as outlined in Section 1. Moins et al. (2023) propose a reparameterization that 
reduces the dependence between the posterior samples of the three GEV parameters and improves 
identifiability. Using this alternative parametrization in our BHM could facilitate identification of 
the latent variables and parameters we incorporated into them. Another idea to aid identifiability 
is to impose additional modelling assumptions, e.g. as in Section 2, one could assume that data 
from high observational effort regions should already be the g function’s saturation point, and im-
pose this as a constraint in the model. 

Tian questions whether additional constraints or prior dependencies should be imposed to fur-
ther link the different Gaussian random effects in our model and ensure identifiability. We under-
line that these effects are of quite different nature, characterizing, for example, spatial niche 
variability, interannual variability, spatial preferential sampling, and spatial variation of true first 
arrivals. We do not see strong a priori links between these different effects and their sources of vari-
ability. Therefore, we believe that independent Gaussian process priors are more appropriate for 
our model. 

3.2 MCMC-based inference and alternatives 
Several discussants, including the Proposer, have commented on the relative slow convergence and 
mixing of some of the posterior chains in our model, and have asked (e.g. Tian) how one could 
efficiently monitor convergence of MCMC algorithms for complex hierarchical space-time 
model. Suggestions for algorithmic improvement from Belzile and Yadav include closer 
monitoring of effective sample size (ESS), using adaptive MCMC schemes instead of the global 
Metropolis-adjusted Langevin algorithm (MALA) we implemented, performing joint hyperpara-
meter updates when posteriors of hyperparameters are correlated, and running multiple chains. 
We agree that these techniques could help improve our MCMC algorithm and its diagnostics. 
Another interesting option we see would be to use Hamiltonian MCMC instead of MALA to bet-
ter explore high-density regions of the posterior distribution through the Hamiltonian dynamics 
(Neal, 2011). Moreover, restructuring the model form to improve identifiability, as discussed in 
the Section 3.1, could also aid convergence. 

As the Proposer recalls, Gauss–Markov random field (GRMF) structures facilitate fast calcula-
tions with latent fields in spatial Bayesian frameworks. The INLA-SPDE approach is a well-known 
example (Lindgren et al., 2011; Rue et al., 2009); it uses GMRF approximations of spatial Matérn 
covariance functions based on the stochastic partial differential equation (SPDE) approach, com-
bined with fast and accurate deterministic posterior approximations with the INLA method. The 
Proposer suggested that simulation-based MCMC inference, as implemented in our work, could 
be combined with the INLA-SPDE approach depending on the structure of the components of the  
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BHM. This could leverage INLA for model components where linear combinations of latent var-
iables in GMRF form arise, whereas slower MCMC inference can be used only for parts with 
strongly nonlinear structures. We agree that such extensions bear promise. Combined inference 
of this type has been developed by Gómez-Rubio and Rue (2018), where INLA is run within an 
MCMC algorithm by conditioning on those other variables that would have impeded full 
INLA-based inference. This approach could indeed lead to performance gains for our model, al-
though its implementation appears complex, and further research into such combined methods 
would be welcome in the setting of complex spatio-temporal Bayesian inference. Our main algo-
rithmic difficulty preventing us from using faster inference tools comes from the nonstandard, 
nonlinear and parametric transformation of GMRFs that achieves a saturating effect when the ob-
servational effort increases to infinity, as also recognized by the Proposer. In this respect, the 
inlabru package (Bachl et al., 2019) with its extensions of the classical INLA method could offer 
help through implementation of methods that handle nonstandard nonlinear transformations of 
GMRFs, but to our knowledge, it does not yet cover the parametric transformations we would 
need. In response to Tian, who suspected possible issues with the relatively large number of 
fixed-effect coefficients (e.g. regression constants) in our model, we reiterate that they are endowed 
with Gaussian priors and are part of the linear predictors in the model (i.e. of multivariate 
Gaussian vectors), such that their estimation does not pose specific challenges. 

3.3 Vecchia approximation 
The Proposer questions whether the Vecchia approximation provides a sufficiently accurate re-
presentation of the underlying covariance function. Indeed, differences could arise between the ap-
proximation and the exact covariance function. However, we emphasize that the principal role of 
the Vecchia-approximated Gaussian field in our model is to serve as a rich prior with spatial de-
pendence—what matters is the flexibility it provides for posterior inferences. We do not necessar-
ily want to exactly reproduce the underlying covariance function, but rather obtain a prior that has 
similar and interpretable properties in terms of variance and correlation range. We do not use the 
Vecchia approximation to simulate data directly from the prior model, where stronger deviations 
could arise between the exact and approximated simulations. 

3.4 Likelihood-free amortized inference 
Huser and Zammit-Mangion outline the advantages of likelihood-free inference using neural net-
works (NNs) and recent developments in this area. Neural Bayes estimators are NNs trained on 
large amounts of simulated data to estimate (i.e. predict through the NN) the parameters of a sto-
chastic process. They have emerged as powerful alternatives to likelihood-based estimation 
(Zammit-Mangion et al., 2025). The approach is still limited to models with a moderate number 
of parameters, since the parameter configurations used for simulating training data should cover 
the possible range of parameters to be estimated from real data. While estimating the large number 
of latent variables in a BHM through this approach appears unattainable, the discussants question 
whether hyperparameters, usually of moderate number in a BHM, could be estimated with the NN 
approach. Other parameters, especially the latent variables representing fixed effects and spatio- 
temporal effects, would be estimated separately. Intercepts could be considered as hyperpara-
meters (i.e. estimated by the NN) or as latent variables (i.e. estimated separately). Given the proven 
benefits of neural Bayes estimators for estimating parameters of various spatial stochastic process 
classes, we recognize that they could also facilitate inference for spatial latent-process models. 
They would be especially beneficial in situations where parameters of the same model have to 
be estimated for a large number of different datasets (e.g. for different regions of the globe). 

We comment on possible challenges for developing neural Bayes estimators in the setting of la-
tent models for discrete responses with covariates. Three estimation steps could be necessary: (i) 
covariate coefficients (including intercepts) using a pseudo-likelihood regression technique; (ii) hy-
perparameters using a neural Bayes estimator; (iii) latent variables using a chosen technique (e.g. 
MCMC or INLA with fixed covariate coefficients and hyperparameters, or new NN-based ap-
proaches). Clearly, one would lose the benefits of performing joint inference on all model compo-
nents, but could in turn gain in robustness and speed.  
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Neural Bayes estimators may be more difficult to implement when there are covariates. In latent- 
variable models for discrete response data (e.g. binary or count data), it is not possible to define 
classical standardized residuals, and marginal distributions and the dependence structure cannot 
be fully separated as in copula techniques for continuous margins. Therefore, it is more intricate to 
separate fixed covariate effects acting on marginal distributions from the random spatio-temporal 
effects governed by hyperparameters. For example, with binary and count data, the residuals take 
values outside the discrete support of the response. Recall that this is unlike continuous response 
distributions, such as the normal N (μi, σ2

i ), where we could estimate marginal parameters μi and 
σ2

i in a first step, then generate standardized residuals by normalizing observations yi to (yi − μi)/σi, 
and finally infer dependence hyperparameters from standardized residuals, using methods such as 
the NN estimator for the last step. This is not possible with discrete data, which also explains the 
popularity of fully Bayesian inference (i.e. with joint estimation of the posterior distributions of 
hyperparameters and latent variables) when modelling this data, which are very common in fields 
such as ecology. 

To make the NN approach for estimating hyperparameters feasible in the presence of covari-
ates, one could estimate the fixed-effect part with covariates in a preliminary step and then feed 
it into a NN as one of its inputs used for predicting the hyperparameters. However, there are es-
sentially no constraints on the values of the fixed effect field, which presents a very high- 
dimensional input to the NN. This could make it very challenging to simulate a sufficiently large 
number of NN training instances that ensure good generalization behaviour. 

We would be very interested to see how research on this topic could lead to NN estimators for 
latent-variable models that cope well with the aforementioned challenges. 

3.5 Simplified estimation of shared latent fields 
Instead of estimating certain hyperparameters differently, or separate from the other parameters, 
as suggested by Huser and Zammit-Mangion, one could also simplify the model by separately es-
timating some of the latent variable fields, or some of the regression equations. 

We emphasize that the motivation for our BHM consists of jointly estimating all model compo-
nents to allow for optimal information flow between components and to precisely assess posterior 
uncertainties. However, to alleviate computational cost and improve identifiability, one could in-
stead separately estimate some of the shared fields by using only a subset of the response variables 
for which they appear in the predictor. The species niche field Xniche(s) could be estimated using 
only the BBS data (with its λBBS(s) parameter) and the binary presence–absence indicator for 
each checklist (with its pspc(s, t) parameter). We would not use the GEV response of first arrival 
dates to estimate the species niche field, for which it appears in the GEV location parameter 
μ(s, t). Now, assume we have estimated the species niche field separately from the GEV model 
in a first step. Then, in a second step, posterior means of the separately estimated fields could 
be included as a simple covariate (i.e. as a fixed effect) in the GEV model. We could proceed simi-
larly for other spatial fields (e.g. the observational effort λckl(s, t)) that we share towards the GEV 
response by estimating them separately in a preliminary step. Implementing this simplified model 
structure should drastically reduce computational cost while maintaining identifiability and reli-
able predictions. 

3.6 Using ML algorithms 
The main proposed utility of our model is the separation of the ecological signal from heteroge-
neous observational effort. This is made possible by identifying how the latter modifies outcomes 
when we consider several data sources with different observation design. Disentangling the roles 
of these different latent processes cannot be easily achieved with standard ML algorithms, even 
more so if they have black-box like behaviour. Nevertheless, we believe that ML models can still 
be useful if the predictor and response variables are adapted appropriately, but we are not aware of 
any existing general framework proposed to this end in the literature. 

We provide a specific example where standard ML algorithms could be leveraged. Assume that 
only the presences of the individuals of various species were reported, with non exhaustive and 
varying observational effort, i.e. we have opportunistic presence-only data. Using a point-process 
framework, we can construct a response variable that can be estimated with essentially any  
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classification algorithm as follows: The points of the point process are defined as the reported pre-
sences of a focal species for which we want to make predictions. A set of background points rep-
resenting pseudo-absences of this species are constructed from the reported presences of other 
species for which similar observational effort can be reasonably assumed. Therefore, the back-
ground points represent a proxy for the general observational effort. Any classification algorithm 
trained to classify the points into ‘species’ vs. ‘background’ can then be used to predict the probabil-
ity of species presence conditional on environmental predictors and location. The predicted prob-
abilities can be interpreted as the relative abundances of the focal species with respect to the group 
of background species, which can provide valuable ecological insights. This so-called target-group 
background approach can be deployed even for purely opportunistic data without the need for 
strong assumptions on sampling design (Botella et al., 2020, 2021, Phillips et al., 2009). 

In the above example, and certainly in many other CS models, ML approaches could be highly 
efficient, such as the use of NNs or stochastic gradient boosting techniques advocated by Kumar. 
Crucially, the model and the input data must be appropriately structured, which requires solid as-
sumptions on how data were collected and how ecological and observational processes interact. 

Kumar also encourages using ML models in extreme-value modelling. We concur with this sen-
timent, though this approach is less common when modelling count data; for an example, Koh 
(2023) uses gradient boosting to predict the parameters of discrete generalized Pareto distributions. 

4 Pushing CS beyond ecology 
CS data are commonly exploited in statistical ecology, and especially for species distribution mod-
elling. Consequently, this research community has become a major driver for advancing statistical 
methods for CS purpose. As the Proposer and Srakar suggest, CS-based approaches are promising 
in various other areas of applied science, including epidemiology and public health, environmental 
surveillance, and possibly even in fields such as medicine, robotics, and law. We absolutely share 
this view. Due to its potential for collecting large amounts of diverse data, CS can provide valuable 
contributions to integrated modelling, for instance of entire ecosystems in the One Health perspec-
tive (Destoumieux-Garzón et al., 2018). CS also appears highly relevant for filling data gaps 
through the collection of data using mobile devices, especially in countries with low coverage of 
standardized datasets (e.g. in the Global South), and can help monitor and assess the sustainable 
development goals formulated by the United Nations. 

It is challenging to establish statistical guarantees for reliable CS-based inferences similar to the 
asymptotic results in classical statistics, and no general theory has emerged so far. This is certainly 
due to the wide variety of application-specific data collection processes and the lack of well-known 
sampling designs, especially with opportunistic data. As Srakar highlights, more work should be in-
vested into theoretical guarantees for CS-based approaches. We second this opinion and would like 
to incite statisticians to propose appropriate sampling design frameworks that preserve the simplicity 
and low cost of CS-based data collection while ensuring reliable inferences and predictions. 
Checklist-based approaches are an interesting example in species monitoring: observers must com-
ply to exhaustively report relevant observations. Alternatively, the software interface used to report 
the species occurrences could explicitly ask the observers to confirm the nonobservation of certain 
other species not reported. Datasets collected with this protocol allows modellers to discern the ab-
sence of an observer (i.e. missing data) from the absence, or non detection, of any species individuals. 
One can then define pseudo-absences of individuals, which is crucial for incorporating observational 
effort and reducing bias in species distribution mapping, as highlighted in our case study. 

However, ecological datasets covering past periods often contain only opportunistic presence-only 
data: the absence of a species is not explicitly reported, and the reporting is not exhaustive, i.e. it is 
possible that the observer detects an individual of a species but does not report it, so we are not in 
the convenient checklist setting mentioned before. Then, a strategy is needed to generate useful 
pseudo-absences, for example by using the target-group background approach outlined in Section  
3.6. Given a focal species that one wants to model, the space-time locations where other species 
(the target group) were reported could be declared as pseudo-absences for the focal species. This re-
quires carefully choosing the target group of species and the subsample scheme for its occurrences 
(Botella et al., 2020, 2021, Phillips et al., 2009; Van Strien et al., 2013). Knowledge of ecological  
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experts is indispensable for this step, and it highlights the strong need for interdisciplinary work be-
tween data scientists and domain experts when developing statistical methods for CS data. 

5 Opportunities of data and model fusion 
By developing sampling approaches and models that integrate unstructured CS data with struc-
tured ones, we could benefit from both the often dense spatio-temporal coverage of CS data 
and the precisely known observation design and effort in structured data. The fundamental ques-
tion was asked by the Proposer: When and how should we do this? Regarding spatial species dis-
tribution modelling, recent studies (e.g. Simmonds et al., 2020) highlight considerable added value 
from data integration, provided that models are appropriately structured using spatial random ef-
fects. Ideally, one would need covariates that strongly correlate with observational effort, but not 
with the species presence or abundance. However, such covariate data are typically unavailable in 
practice, except in very specific sampling situations (e.g. distance sampling). Instead, one usually 
needs both dataset-specific and shared spatial random effects to disentangle the observational ef-
fort from ecological effects. The flip side of implementing multiple spatial random effects and re-
gression equations in these approaches is that estimation becomes computationally very intensive, 
and setting up models and algorithms may require considerable expertise and experience. 

The Seconder further encourages statisticians to compare and hybridize statistical and ML ap-
proaches to tackle such complex statistical questions. We are curious how ML techniques could be 
adapted to mimic the estimation of spatial effects; for example, one could try to achieve this by 
feeding the predictor data, spatial coordinates, and response data into the prediction algorithm 
in a specific way. The example we outline in Section 3.6, where the modelling question is trans-
formed into a classification problem for ML algorithms, is an example where combining expertise 
on statistical modelling with ML leverages the simple use of ML. 

We also suggest to investigate how existing large CS datasets with limited knowledge about ob-
servational effort could be efficiently complemented by the additional collection of relatively small 
datasets in controlled surveys. The sampling design for newly collected standardized data would 
have to ensure reliable inferences and identification of observational effort through integrated 
models combining CS and survey data, while the cost of sampling in terms of required human 
and material resources must remain manageable. Modern technology for automated data collec-
tion (e.g. camera traps and other remote sensing devices) could be used for collecting data. 
Principles and techniques of optimal design can be applied (Müller, 2005; Pukelsheim, 2006) to 
develop variants of stratified or adaptive sampling, for example in a model-based perspective. 
BHMs, such as modifications of our model, could be useful for Bayesian optimal design experi-
ments (Ryan et al., 2016) adapted to geostatistical applications (Diggle & Lophaven, 2006). 

Once we have general standardized statistical methods to obtain trustworthy CS-based insights, 
routine publication of scientific results from CS would be facilitated. We are aware of the long 
road ahead, but are optimistic about the future. 
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