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Grid Evolution for Doubly Fractional Channel
Estimation in OTFS Systems

Xiangjun Li, Pingzhi Fan, Qianli Wang, Zilong Liu

Abstract—In orthogonal time-frequency space communica-
tions, the performances of existing on-grid and off-grid channel
estimation (CE) schemes are determined by the delay-Doppler
(DD) grid density. In practice, multiple real-life DD channel
responses might be co-located within a same DD grid interval,
leading to performance degradation. A finer grid interval is
needed to distinguish these responses, but this could result in
a significantly higher CE complexity when traditional methods
are used. To address this issue, a grid evolution method for
doubly fractional CE is proposed by evolving the initially uniform
coarse DD grid into a non-uniform dense grid. Simulation results
show that our proposed method leads to improved computational
efficiency, and achieves a good trade-off between CE performance
and complexity.

Index Terms—OTFS, grid evolution, channel estimation, sparse
Bayesian learning, fractional delay-Doppler.

I. INTRODUCTION

THE next generation communication systems must sup-
port reliable information exchanges in highly dynamic

environments, e.g., vehicle-to-everything systems, high-speed 
railways, etc. In these environments, one needs to deal with 
the fast time-varying channels incurred by high mobility. The 
orthogonal frequency division multiplexing may be infeasible 
as its orthogonality can be easily destroyed by large Doppler. 
Against this background, orthogonal time-frequency space 
(OTFS) modulation has emerged in recent years due to its 
excellent performance in high mobility channels [1]–[5]. The 
basic principle of OTFS is to send the data symbols over delay-
Doppler (DD) domain to achieve full-diversity.

Channel estimation (CE) plays an important role in OTFS 
system design as it has direct impact to the detection perfor-
mance. A number of OTFS CE schemes have been proposed. 
An embedded frame structure and a threshold CE method are 
proposed in [2]. In [6], [7], the authors leveraged the sparsity 
in DD domain which permits the use of orthogonal matching 
pursuit (OMP) and sparse Bayesian learning (SBL) for CE. 
It is noted that these works assume that the real-life channel 
response is on the grid points. However, this assumption may 
not be valid in practice due to the fractional delay and Doppler 
values in real-world transmission. To address this problem, 
off-grid sparse Bayesian inference (OGSBI) [8] was adopted
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in [9], leading to one-dimensional (1D) and two-dimensional
(2D) off-grid CE scheme. The 1D scheme demonstrates a
good performance, but with high complexity. In contrast,
the 2D scheme strikes a balance between complexity and
performance. Another 2D off-grid scheme was developed in
[10] to eliminate some additional errors. Yet it still suffers from
a high complexity. These CE methods generally set a fixed
initial grid. A denser initial grid usually achieves better CE
performance, but it also brings in a significant computational
burden. Furthermore, multiple real-life channel responses may
be co-located in the same DD grid interval even a denser grid
is used and this could lead to deteriorated CE performance.

In this letter, inspired by the grid evolution (GE) method
in [11], a GE method for doubly fractional CE is proposed
to tackle the above problems. Different from the method
in [11], our proposed GE is a 2D method, whereby the
fission and adjustment of grid points are performed separately
to avoid unnecessary calculations. Compared with the GE
scheme in [12], the number of grid points in the proposed
GE scheme is adjustable and hence it is generic and more
flexible. Specifically, the proposed GE adaptively evolves from
an initial uniform coarse grid to a non-uniform dense grid
without a fixed interval. The GE framework contains three
processes, i.e., the learning, the fission and the adjustment.
The learning process estimates the channel response at the
grid points. The fission process adds new grid points, and
separates multiple real-life channel responses into different
DD grid intervals. The adjustment process combines the
off-grid parameters into the current grid for decreasing the
modeling error. These processes iterate alternately to achieve
adaptive grid refinement and therefore obtain more accurate
CE performance. Compared with the previous schemes using a
fixed uniform grid [7], [9], [10], the proposed GE scheme gives
rise to significantly lower complexity due to smaller number
of grid points. And if similar number of grid points are taken,
the proposed GE scheme shows better CE performance.

II. SYSTEM MODELS

A. Signal Model

The DD channel response can be expressed as [1]–[3]

h(ν, τ) =
P∑

n=1

hnδ (ν − νn) δ (τ − τn), (1)

where P is the number of paths, hn, τn ∈ (0, τmax) and
νn ∈ (−νmax, νmax) are the channel coefficient, delay, and
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Doppler of the n-th path, respectively. The symbol duration
and bandwidth of OTFS system are NT and M∆f , respec-
tively. N , M , T and ∆f are number of time slots, number of
subcarriers, slots duration and subcarrier spacing, respectively.

In this letter, a single pilot xp with Doppler index k′p
and delay index l′p in the DD grid is considered. To reduce
interference between data and pilot, both the guard interval
and the CE region in [9] is used. The sizes of the CE region
are NT = (2kmax + 1) and MT = (lmax + 1) respectively,
where kmax = νmaxNT and lmax = τmaxM∆f . According
to [2], [3], [9], the OTFS input-output relationship is

yDD [k, l] = xp

P∑
n=1

h̃nwν

(
k, k′p, kνn

)
wH

τ

(
l, l′p, lτn

)
+ z [k, l] ,

(2)
where yDD [k, l] is the received signals in the DD domain,
k ∈

{
k′p − kmax, · · · , k′p + kmax

}
, l ∈

{
l′p, · · · , l′p + lmax

}
,

z[k, l] ∼ CN
(
0, λ−1

)
is the noise and λ−1 is the variance,

h̃n = hne
−j2πνnτn , kνn

= νnNT , lτn = τnM∆f , wν (·) =
wτ (·) = F (·). In [9], [10], F (·) is denoted by

F (η, ξ, γ) =
1

Q

e−j(Q−1)π η−ξ−γ
Q

sin (π (η − ξ − γ))

sin
(

π(η−ξ−γ)
Q

)
 ,

(3)
where Q = N for wν (·) and Q = M for wτ (·).

B. Off-Grid Model and GE Model

A finer grid is usually used for sparse representation
as that of [9]. In this case, the grid points of the
initial uniform DD grid are

{{
k̄ν

}
×
{
l̄τ
}}

∈
RLν×Lτ , k̄ν = [−kmax, · · · , kmax]

T ∈ RLν×1,
l̄τ = [−lmax, · · · , lmax]

T ∈ RLτ×1. Therefore, the
initial delay and Doppler resolution are rν = 2kmax

Lν−1

and rτ = lmax

Lτ−1 , respectively. Let the number of grid
points in the sampled DD grid be L = LνLτ . After
vectorizing the DD grid, all DD grid points can be expressed
as S̃ =

{
k̃ν , l̃τ

}
, l̃τ = [l0, l1, · · · li, · · · , lL−1]

T, k̃ν =

[k0, k1, · · · , ki, · · · , kL−1]
T. Let i ∈ {1, · · ·L}, wν (ki) =[

wν

(
k′p − kmax, k

′
p, ki

)
, · · · , wν

(
k′p + kmax, k

′
p, ki

)]T ∈
CNT×1,wτ (li) =

[
wν

(
l′p, l

′
p, li

)
, · · · , wν

(
l′p + lmax, l

′
p, li

)]T
∈ CMT×1. Then, the on-grid model based on Eq. (2) is

y = xpΦI

(
S̃
)
h̃+ z, (4)

where y, z ∈ CNTMT×1, y = vec (Y ), Y ∈ CNT×MT is
the matrix form of yDD [k, l], h̃ ∈ CL×1, ΦI

(
S̃
)

= ψ ⊙
[ϕI (k0, l0) , · · · ,ϕI (kL−1, lL−1)] ∈ CNTMT×L is the on-grid
part of the measurement matrix corresponding to the current
DD grid, ϕI (ki, li) = vec

(
wν (ki)w

H
τ (li)

)
∈ CNTMT×1,

ψ =
[
φ0, · · · ,φL−1

]
∈ CNTMT×L, φi = e

−j2πkili
NM 1,

1 ∈ CNTMT×1 is the all-ones column vector, vec (·) is the
vectorization operation, ⊙ is the dot product.

Since in practice the channel response generally does
not fall exactly on the sampled DD grid points, an off-
grid CE scheme was proposed in [9], [10]. Denote by(
ki ∈ k̃ν , li ∈ l̃τ

)
the i-th grid point which is closest to

(kνn
, lτn) in the discrete DD plane. Then a linear approxi-

mation in [9] can be obtained by first-order Taylor expansion,
i.e,

Φ (kνn
, lτn) = ϕI (ki, li) + ϕν (ki, li)κi + ϕτ (ki, li) ιi

+o (κi) + o (ιi) ,
(5)

where κi = kνn − ki, ιi = lτn − li, o (κi) and o (ιi)
are the modeling errors, ϕν (ki, li) = vec

(
w′

ν (ki)w
H
τ (li)

)
,

ϕτ (ki, li) = vec
(
wν (ki) (w

′
τ (li))

H
)

, w′
ν (ki) and w′

τ (li)

are the partial derivatives with respect to ki and li respectively.
Here, κi and ιi are assumed to follow uniform distributions

κi ∼ U
[
−1

2
r̃ν− ,

1

2
r̃ν+

]
, ιi ∼ U

[
−1

2
r̃τ− ,

1

2
r̃τ+

]
, (6)

where r̃ν and r̃τ respectively represent the Doppler and delay
resolutions between a grid point and its adjacent grid points,
+ and − denote positive and negative directions respectively.

Let κ̃ = [κ0, κ1, · · · , κL−1]
T ∈ CL×1, ι̃ =

[ι0, ι1, · · · , ιL−1]
T ∈ CL×1. Similar to ΦI

(
S̃
)

, ϕν (ki, li)

and ϕτ (ki, li) can be arranged in order to obtain Φν

(
S̃
)

and Φτ

(
S̃
)

, respectively. Then the measurement matrix

Φ
(
S̃, κ̃, ι̃

)
∈ CNTMT×L can be expressed as

Φ
(
S̃, κ̃, ι̃

)
= ΦI

(
S̃
)
+Φν

(
S̃
)
diag {κ̃}+Φτ

(
S̃
)
diag {ι̃} ,

(7)
where diag {·} is the diagonal matrix operator. After absorbing
the approximation error into the noise, the observation model
can be written as

y = xpΦ
(
S̃, κ̃, ι̃

)
h̃+ z. (8)

Note that S̃ is constant in both the on-grid and off-grid
models, meaning that rν and rτ are constants. As mentioned
before, the performance of the on-grid and off-grid models
will deteriorate when multiple real-life channel responses are
located in the same DD interval. Therefore, the proposed GE
scheme uses a varying S to decrease the modeling error, where
S =

{
S̃ini, S̃GE

}
, the S̃ini is the S with rν = rτ = 1, S̃GE

represents the added grid points in the GE scheme. Therefore,
the model in GE is,

y = xpΦ (S,κ, ι)h+ z, (9)

where the sizes of κ, ι and h are corresponding to S.

III. GRID EVOLUTION CHANNEL ESTIMATION

To get the grid points S and estimate h in Eq. (9), GE
method is adopted to increase the local resolution for a more
accurate representation of the sparse channel responses in the
DD domain. As shown in Fig. 1, for the off-grid scheme using
a coarse DD grid, the modeling error will be large. There
are two sources of modeling error. One is that larger off-grid
gaps lead to large o (κi) and o (ιi). The second is because
multiple channel responses are located in the same DD interval
and they may not be distinguished. By using the GE method,
more grid points will be generated around the true responses
by decreasing the off-grid gaps to distinguish the close paths.
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Fig. 1: The fission process for the GE scheme.
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Fig. 2: The procedure of GE channel estimation.

Note that this procedure is different from direct grid refinement
like that of chirp z-transform. The GE method is based on
the compressive sensing thus the coefficients corresponding
to these grid points will have to meet the sparsity constraint,
resulting a sparse representation of the channel responses.

The GE method consists of the learning, the fission and the
adjustment processes, as shown in Fig. 2. The fission process
can distinguish multiple channel responses within the same
initial DD interval. The adjustment process combines the off-
grid parameters into the current grid to reduce the off-grid gap.
The learning process estimates the channel response at the grid
points by SBL. Alternate iterations of the learning-fission and
alternate iterations of the learning-adjustment are performed
sequentially to adaptively refine the DD grid for improving the
local DD resolution and reducing modeling error. To strike a
trade-off between modeling error and computational workload,
stop criteria are proposed for fission and adjustment.

A. Learning Process

OGSBI in [8] is used to estimate the channel parameters
in the learning process. According to [8], [9], the posterior
conditional distribution of h is assumed to be

p (h |y;α,κ, ι, λ ) = CN (h |µ,Σ ) , (10)

where α is the hyperparameter that models the sparsity of h
and follows a Gamma distribution controlled by the parameter
ρ, λ follows a Gamma distribution determined by a and b, The
mean µ and covariance Σ for the (k)-th iteration are

µ(k) = λ(k)Σ(k)ΦH
(
S(k),κ(k), ι(k)

)
y, (11)

Σ(k) = diag
(
α(k)

)
−
(
α(k) ⊙

(
α(k) ⊙C

)T
)T

, (12)

where C = ΦH
(
S(k),κ(k), ι(k)

)
Σ−1

y Φ
(
S(k),κ(k), ι(k)

)
,

Σy = Φ
(
S(k),κ(k), ι(k)

)(
α(k) ⊚ΦH

(
S(k),κ(k), ι(k)

))
+

λ(k)I , α⊚C is the dot product of the elements of the column
vector α with the corresponding rows of C. Different from
the traditional update formulation of Σ, the diagonal matrix
property is considered here to reduce the complexity.

The expectation–maximization algorithm is used to update
each hyper-parameter for the (k + 1)-th iteration, i.e.,

α (i)
(k+1)

=

√
1 + 4ρ

(
Σ (i, i)

(k)
+
∣∣∣µ (i)

(k)
∣∣∣2)− 1

2ρ
, (13)

λ(k+1) =
2a− 2 +MTNT

2b+∆y
, (14)

where i ∈ {1, · · · , L}, ∆y =
(
λ(k)

)−1 ∑L
i=1 1−

Σ(i,i)(k)

α(i)(k) +∥∥∥y −Φ(
S(k),κ(k), ι(k)

)
µ(k)

∥∥∥2, λ > 0, a > 0, b > 0. For
updates of off-grid parameters, please refer to [8], [9]. The

iteration will stop if ∥α
(k+1)−α(k)∥
∥α(k)∥ < δ or the maximum

number of iterations K is reached, where δ is a tolerance.

B. Fission Process

Different from the 1D angular grid in [11], we consider
2D grid in this paper. If the fission is carried as that of [11],
the grid S will become

{{
k̄ν ,knew

}
×

{
l̄τ , lnew

}}
, which is

equivalent to inserting several rows and several columns of
grid points into the initial DD grid. Obviously, except for a
few points which are close to the channel responses, many
grid points may be irrelevant to the channel responses, thus
leading to extra calculation cost.

As shown in Fig. 1, we add grid points around the true
channel responses. Three fission conditions are used like that
of [11] to decide whether a fission of a grid should happen.
For all the grid points i ∈ {1, · · · , L}, grid point with
|µ (i)| > ε

√
λ−1 needs fission for a higher representation

accuracy, where ε is a weight related to miss detection or
false-alarm probabilities. Only the grid point corresponding to
the local maximum value can be selected for fission to prevent
too many fission grid points corresponding to a large channel
response. Finally, r̃ν > rmin or r̃τ > rmin should be satisfied.

When these three conditions are met, the fission needs to be
carried out simultaneously in both the delay and the Doppler
dimensions based on estimated off-grid parameters. Assume
that the chosen grid point χ is (ki, li), and the estimation
result of corresponding off-grid parameter is (κ̂i, ι̂i). The off-
grid parameters can indicate that the channel response is in
a certain direction of grid point χ. Thus two new grid points
χk = (kfission, li) and χl = (ki, lfission) will be generated after
fission, where kfission and lfission are

kfission =

{
ki +

1
2 r̃ν+ , κ̂i > 0

ki − 1
2 r̃ν− , κ̂i < 0

, (15)

lfission =

{
li +

1
2 r̃τ+ , ι̂i > 0

li − 1
2 r̃τ− , ι̂i < 0

. (16)
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If a grid point fissions, it will be necessary to add 1 or 2
elements corresponding to the grid point for κ, ι and h in
Eq. (9). Owing to the OGSBI method we used for estimation,
the fission of prior of h, i.e., α, is needed. Assume that the α
value corresponding to grid points χ, χf , χk and χl are αχ,
αχf

, αχk
and αχl

, respectively, where χf is the grid point χ
version after fission. To keep the prior p (α) unchanged after
fission, p (α) should be a constant [11]. Therefore,

αχf
= αχk

= αχl
=

1

3
αχ, (17)

where αχ is estimated by Eq. (13).
Note that too many fissions may reduce computational

efficiency or even deteriorate the CE performance because of
the high correlation between the grid points. Therefore, beyond
the fission conditions, the fission stop criterion is introduced
that no more fission will happen if the maximum number
of iterations Kf for fission process is reached. Kf may be
larger than log2(1/rmin), which refers to the average iteration
number for reaching a satisfying resolution.

C. Adjustment Process

If a dense grid is used in the uniform grid model, the Taylor
approximation errors would be small. For the GE scheme, after
the fission process, a non-uniform and locally fine DD grid
with better CE performance will be obtained. However, the
off-grid gap of the current DD grid cannot be ignored. This is
because the CE performance may be affected by the fractional
channel. Therefore, Adjustment process is proposed in this
letter to further reduce the approximation errors.

It is not necessary that all grid points are adjusted. For all
the grid points i ∈ {1, · · · , L}, if |µ (i)| > ε

√
λ−1, then we

adjust the grid. The adjustment of a DD grid is given by{
ki ← ki + κi

li ← li + ιi
. (18)

When the adjustment process is completed, the off-grid pa-
rameters ki and li will be reduced, leading to decreased
Taylor approximation errors o (κi) and o (ιi). Since κi and
ιi are integrated into the delay and Doppler values of a grid
point, Φ (S,κ, ι) should be recalculated but this incurs a
higher complexity. In this case, an adjustment stop criterion is
required. The iteration of the adjustment process will stop if∥∥[κ(k), ι(k)

]∥∥ < δa or the maximum number of iterations Ka

for the adjustment process is reached, where δa is a tolerance.
In addition to the above framework, another framework

is that fission and adjustment are performed in the same
iteration or execute iteratively. This letter does not use these
two frameworks because the initial grid in GE scheme is
coarse and it is quite possible that multiple paths are in a
same grid interval. Therefore, a gird point in early iterations
may represent a response of multiple paths and undergo fission
in future iterations. After fission, the grid distribution will be
reset thus the computational workload of adjustment of these
grid point is wasted. In our framework, the paths are assumed
to be distinguishable and represented by different grid points
after the stop of fission process. Then the adjustment process
could decrease the Taylor approximation errors for each path.

TABLE I: Simulation parameters

Parameter Value
DD grid size N = M = 32

Carrier frequency fc = 4 GHz
Subcarrier spacing ∆f = 15 kHz

Number of channel paths P = 5

The channel coefficient hi ∼ CN
(
0,

exp(−0.1lτi )∑
i exp(−0.1lτi )

)
Maximum delay τmax = 8.3× 10−6 s

Maximum relative velocity 500 km/h

IV. COMPLEXITY ANALYSIS AND SIMULATION RESULTS

The proposed GE scheme is compared with the on-grid, 1D
off-grid [9], 2D off-grid-U [9] and 2D off-grid [10]. Table I
presents the simulation parameters. The pilot pattern and guard
interval in [9] are used. The power of single pilot is 30 dB
higher than the average power of data. In GE, a = b = 10−4,
ρ = 10−2, δ = 10−3, δa = 10−1, Kf = 5, Ka = 50, K =
200. If not stated otherwise, the resolution of the uniform grid
scheme is r = rν = rτ = 1

4 . The initial resolution in the GE
scheme is 1, and rmin = 1

4 .
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Fig. 3: Accumulated computational complexity comparison.

The accumulated complexity comparison at different num-
bers of iterations is shown in Fig. 3. The main complexity of
the GE scheme is the same as that of the scheme in [9]. For
the GE scheme, the initial uniform DD grid is coarse and L
is small. The fission process stops at the iteration number in
the black circle and the final L is still small. This leads to
significantly reduced complexity of the proposed GE scheme.

In Fig. 4, the convergence of the different schemes is com-
pared. Compared with the other two uniform grid schemes, the
GE scheme can converge faster. Combining Fig. 3 and 4, it can
be seen that with the same number of iterations, GE scheme
has lower computational complexity and faster convergence
while ensuring the NMSE performance.

The NMSE comparison between different methods is given
in Fig. 5. The expected resolution is r = 1

4 , thus the number
of grid points for all the uniform grid schemes is 561. The
initial number of grid points for the GE scheme is 45 and
finally reaches around 110. For a fair comparison, uniform grid
schemes marked with ′+′ are also presented and this indicates
that the number of grid points, in these uniform grid schemes,
is approximately equal to 110 as that in the GE scheme. It can
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be seen that the performance of the proposed GE with much
fewer grid points can be very close to that of the uniform grid
scheme with r = 1

4 , and significantly outperforms the uniform
grid schemes when the number of grid points is comparable.

Note that the performance of GE method relies on the choice
of rmin. Therefore, to demonstrate the influence of rmin, Fig.
6 shows the comparison of NMSE for different rmin and r at
SNR = 20 dB. It is found that the NMSE of GE is smaller if
we take a smaller rmin. And except for the 2D off-grid scheme
that considers the tandem off-grid distortion to make the model
error smaller, the GE scheme has the best performance when
r is large. Considering all simulation results together, the GE
scheme achieves a good trade-off between CE performance
and complexity.

V. CONCLUSIONS

An improved GE method for doubly fractional CE has been
proposed in this letter. SBL and grid refinement are combined
to adaptively evolve uniform DD grid into non-uniform grid.
The key idea of the proposed GE method consists of three
processes, i.e., learning, fission and adjustment process. The
learning process estimates the channel response at the current
grid points, the fission process adds new grid points, and
the adjustment process employs off-grid parameters to adjust
the DD grid. The learning process iterates alternately with
the other two processes, respectively. Simulation results show
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Fig. 6: NMSE under different rmin or r.

that the proposed GE scheme achieves an excellent tradeoff
between the CE performance and complexity.
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