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We present a comprehensive numerical study of dynamic phase transitions in the two-dimensional
kinetic Ising model under a nonantisymmetric time-dependent magnetic field including a sinusoidal
term and a second harmonic component. We demonstrate that the expected antisymmetric prop-
erty and the scaling behavior of the order parameter are maintained using the recently proposed
generalized conjugate field approach. Via a detailed finite-size scaling analysis we compute, for
zero-bias field, the set of critical exponents suggesting that the Ising universality class is conserved,
even in the absence of half-wave antisymmetry in the time-dependent magnetic field. Our results
verify up-to-date experimental observations and provide a deeper understanding of non-equilibrium
phase transitions, establishing a broader framework for exploring symmetry-breaking phenomena in
driven magnetic systems.

I. INTRODUCTION

Hysteresis and dynamically ordered states, which oc-
cur in response to an oscillating control parameter, are
common manifestations of non-equilibrium behavior in
interacting many-particle systems [1, 2]. In systems far
from equilibrium dynamically ordered states and their
derivatives may undergo qualitative changes at a critical
control parameter value, known as dynamic phase transi-
tion. A significant example of non-equilibrium phenom-
ena is the dynamic phase transition observed in ferromag-
netic materials exposed to a time-dependent oscillating
magnetic field and it has emerged as a fundamental re-
search field for revealing the collective dynamics behind
non-equilibrium phase transitions [3, 4].

Dynamic phase transitions in ferromagnets were orig-
inally observed in the Ising model subjected to a sinu-
soidal oscillating magnetic field, known as the kinetic
Ising model [5]. In the kinetic Ising model, the dy-
namic magnetization trajectory, M(t), displays signifi-
cant changes at the dynamic phase transition as one mod-
ifies the external control parameter of the time-dependent
field with amplitude h0 and period P at temperatures be-
low the Curie temperature [6]. The kinetic Ising model
is characterized by the exchange interaction parameter J
and the intrinsic relaxation time constant, known as the
metastable lifetime τ . This is the time required for spins
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to relax to a stable state when a constant magnetic field
is applied in the opposite direction to their alignment [7].
The dynamic response of the kinetic Ising model to the
driving field h(t) is governed by the interplay between
the metastable lifetime and the field’s period P [8, 9].
In the slow dynamic regime, for which the period of the
magnetic field is larger than τ , the magnetization can re-
verse during the one cycle of the field, but with a phase
lag, resulting in the typical hysteresis loops. This regime
is referred to as the dynamic paramagnetic (disordered)
phase. On the other hand, in the fast dynamic regime
where the period of the magnetic field is smaller that τ ,
the magnetization cannot follow the field. Instead, it dis-
plays small oscillations around one of the non-vanishing
values of the magnetization, and this regime corresponds
to the dynamic ferromagnetic (ordered) phase.

Within this framework, the average of the time-
dependent magnetization over a full cycle of the periodic
magnetic field

Q =
1

P

∫ t+P

t

M(t′)dt′ (1)

is defined as the order parameter of the related dynamic
phase transition [5]. In the case of dynamic phase tran-
sitions in ferromagnets, the system undergoes a second-
order phase transition from the paramagnetic to the fer-
romagnetic phase at the critical period P = Pc [3, 5].
For P < Pc, the system displays a dynamically ferro-
magnetic phase with Q taking a non-zero value. In the
dynamically paramagnetic phase (P > Pc) the oscilla-
tions in the magnetization generate a vanishing value of
the order parameter with Q = 0.

Over the years, many concepts and tools from the pool
of thermodynamic phase transitions have been applied
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for the study of dynamic phase transitions in ferromag-
nets. These include experimental work [10–16], theoret-
ical approximations (mainly of mean-field type) [17–23],
but also Monte Carlo simulations [9, 24–29]. The above
vast literature has revealed that conventional thermody-
namic and dynamic phase transitions share many analo-
gies [6]. In particular, both are described by relevant
order parameters (M and Q) that manifest a continu-
ous phase transition from ferromagnetic to paramagnetic
phases at critical points, Tc and Pc, respectively, and have
similar phase diagrams. In the last two decades, signifi-
cant efforts have been made to estimate critical exponents
and the underlying universality classes of the kinetic Ising
model and its variants. Applications of finite-size scaling
techniques to the kinetic Ising model have demonstrated
that thermodynamic and dynamic phase transitions be-
long to the same universality class [8, 9, 30–37]. It is
worth noting that these findings also support the sym-
metry arguments put forward by Grinstein et al. [38] and
the study of a Ginzburg-Landau model in an external os-
cillating field [39]. Furthermore, theoretical results have
been validated through a recent experimental investiga-
tion on dynamic critical properties of ultrathin uniaxial
Co films, showing that the dynamic critical exponents are
consistent with those predicted for the two-dimensional
Ising ferromagnet [16].

Additional analogies between thermodynamic and dy-
namic phase transitions emerge when a ferromagnet is
exposed to a time-independent constant-bias field, hb,
applied in addition to the periodic field. It has been
shown that the bias field serves as the conjugate field
of the order parameter, similar to the external magnetic
field h being the conjugate field of M in the equilibrium
set up [22, 40]. This latter observation has stimulated the
investigation of the order parameter in two-dimensional
P −hb and h0−hb dynamic phase spaces in several stud-
ies [15, 16, 41, 42] yielding new insights into various as-
pects of the relevant phase diagrams. One of these is the
time-reversal symmetry in the dynamic phase diagram,
i.e.,

Q(hb) = −Q(−hb) (2)

which is valid for all P and h0 values in the dynamic
phase space [43–45]. This antisymmetric property of the
order parameter applies to the time-dependent part of
the magnetic field sequences that display half-wave an-
tisymmetry, namely h(t) = −h(t + t1/2), where t1/2 is
the half-period value of the external field. In the dynam-
ically paramagnetic phase, the half-wave antisymmetry
of h(t) causes the magnetization curve to exhibit anti-
symmetric behavior, with M(t) = −M(t + t1/2), lead-
ing to a vanishing order parameter (Q = 0). To date,
the time-dependent field applied to magnetic systems is
typically chosen as sinusoidal in experiments and mean-
field studies, while square-like fields are used in Monte
Carlo simulations, both exhibiting the half-wave anti-
symmetric property. A nonantisymmetric magnetic field
with the lack of half-wave antisymmetry can be expressed

as [44, 45] follows

h(t) = hb + h0 sin

(
2πt

P

)
+ h2 sin

(
4πt

P

)
. (3)

Here, the first and second terms denote the bias field and
the sinusoidal magnetic field component with amplitude
h0 and period P , respectively. The last term is the second
harmonic contribution of period P/2 and amplitude h2.
This component is the lowest-order even Fourier compo-
nent and is responsible for the broken-time antisymmetry
of the field.

Recent experimental and theoretical observations
within the mean-field approximation indicated that in
the presence of fields with a lack of half-wave antisym-
metry, M(t) is no longer antisymmetric when hb = 0,
resulting in Q ̸= 0 in the dynamically paramagnetic
phase [44, 45]. Moreover, deviations from the antisym-
metric behavior of Q as a function of hb have been
observed to become more pronounced with increasing
h2 [45]. According to these findings, when the half-wave
antisymmetry of the external field is lost, the constant-
bias field hb is no longer a conjugate field, and a general
definition of the conjugate field h∗, that preserves the
time-reversal symmetry of the dynamic phase diagram,
is needed. In recent studies, a general definition of the
conjugate field is proposed as [44, 45]

h∗ = hb +∆h (4)

where ∆h is the nonlinear effective bias correction

∆h = −1

2
[hb(Q) + hb(−Q)] . (5)

It has been shown both experimentally and within the
mean-field theory that the definition of h∗ in Eq. (4) re-
covers the expected antisymmetry of the order parameter
as a function hb [44, 45] as

Q(h∗) = −Q(−h∗). (6)

According to mean-field calculations conducted near the
dynamic phase transition in the presence of periodic fields
that lack half-wave antisymmetry, the scaling behavior
of the dynamic order parameter is conserved if one uses
the general definition of the conjugate field defined in
Eq. (4) above. Furthermore, the extracted critical expo-
nents of the order parameter have been found to agree
with those predicted by the mean-field model even for
large amplitudes of h2, thereby confirming the concept
of universality.

At this stage, further investigation is required to val-
idate the general definition of h∗ as the true conjugate
field in dynamic phase transitions using other methods
where several crucial factors, such as the spin-spin cor-
relations, and the dimensionality/topology of the lattice
can be taken into account. In this respect, we present in
the current work an extensive Monte Carlo investigation
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of the dynamic magnetic phase diagram of the square-
lattice kinetic Ising model in the presence of a nonan-
tisymmetric field sequence h(t) that includes a fundamen-
tal harmonic component h0 and a second-harmonic com-
ponent h2. A detailed finite-size scaling analysis based
on several thermodynamic quantities allows us to explore
the dynamic phase diagram and to scrutinize the uni-
versality aspects. Alongside our main analysis, we also
extract the critical exponent δ of Q(h∗) at the dynamic
phase transition for various values of h2 and show that
the generalized conjugate field h∗ is indeed the suitable
conjugate field of the dynamic order parameter.

The outline of the remaining parts of the paper is as
follows: In Sec. II we introduce the model and the details
of our simulation protocol. We also define the relevant
observables that will facilitate our finite-size scaling anal-
ysis for the characterization of the universality principles
of this dynamic phase transition. The numerical results
and discussion are presented in Sec. III. Finally, Sec. IV
presents a summary of our conclusions.

II. SIMULATION FRAMEWORK

A. Model and numerical details

In this work we considered the fruit-fly model of Sta-
tistical Physics, i.e., the two-dimensional square-lattice
kinetic Ising model under a nonantisymmetric magnetic
field sequence. The Hamiltonian of the system reads as

H = −J
∑
⟨xy⟩

σxσy − h(t)
∑
x

σx, (7)

where σx = {±1} is the spin variable , ⟨xy⟩ indicates
summation over nearest neighbors, and J > 0 denotes
the ferromagnetic exchange interaction. The final term is
the Zeeman energy, with h(t) representing a spatially uni-
form, periodically oscillating magnetic field; see Eq. (3).

In numerical grounds, we carried out Monte Carlo
simulations on square lattices with periodic boundary
conditions using the single-site update Metropolis algo-
rithm [47–50]. In our simulations, N = L×L defines the
total number of spins and L the linear dimension of the
lattice, taking values within the range L = {24− 1024}.
To facilitate the numerical process, we implemented a
geometric parallelization procedure where the lattice is
divided into strips of L × L/Np, with Np the number
of available processors. For each set of simulation pa-
rameters we performed 100 independent computer ex-
periments (allowing thus the computation of errors via
the jackknife method [48]), using the following protocol:
the first 103 periods of the external field have been dis-
carded during the thermalization process and numerical
data were collected and analyzed during the following
104 periods of the field. In our simulations the unit of
time is defined as one Monte Carlo step per site (MCSS).
Note also that our simulations were performed in the

multi-droplet regime, in which the decomposition of the
metastable phase arises via the nucleation and growth
of numerous droplets of the stable phase [7, 8]. It is
well established that the metastable decay of the system
during field reversals is influenced by the temperature,
field strength, and system size [9]. Thus, to examine the
system in this multi-droplet regime, we have set the am-
plitude of the external magnetic field to h0 = 0.3 and
fixed the temperature at T = 0.8Tc [32], where Tc is the
Curie temperature of the equilibrium square-lattice Ising
model [46].

A comment for the application of finite-size scaling to
the numerical data: We have restricted ourselves to data
with L ≥ Lmin, adopting the standard χ2 test for good-
ness of the fit. Specifically, we considered a fit as being
acceptable only if 10% < p < 90%, where p is the quality-
of-fit parameter [51].

B. Observables

The main quantity of interest is the time-dependent
magnetization per site

M(t) =
1

N

N∑
x=1

σx(t), (8)

which, when integrated over one cycle of the field, see
Eq. (1), provides access to the dynamic order parameter
Q. Given that the probability density of the order param-
eter exhibits two opposite peaks in such finite systems, we
measure the average norm of the order parameter, ⟨|Q|⟩,
in the calculations. Furthermore, to identify and charac-
terize dynamic phase transitions and to extract critical
exponents using finite-size scaling methods, it is essen-
tial to compute the scaled variance of the dynamic order
parameter

χ = N
[
⟨Q2⟩ − ⟨|Q|⟩2

]
, (9)

which is analogous to the static susceptibility [8, 9, 30].
The use of χ has been validated as a proxy for nonequi-
librium susceptibility through fluctuation-dissipation re-
lations [40]. Finally, with the help of the dynamic order
parameter Q we may define the corresponding fourth-
order Binder cumulant

U4 = 1− ⟨Q4⟩
3⟨Q2⟩2

, (10)

which provides us with an alternative estimation of the
critical point, at the same giving time a flavor of univer-
sality at its intersection point [52].

III. RESULTS AND DISCUSSION

We start the presentation of our results with Fig. 1,
displaying the time evolution of the magnetization for
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FIG. 1. Time evolution of the magnetization M(t) (red solid
curves) of the square-lattice kinetic Ising model under a time-
dependent magnetic field defined in Eq. (3) (black dashed
lines). Panel (a) shows the case with zero second harmonic
component (h2 = 0) where the magnetization exhibits anti-
symmetric behavior, resulting in a dynamic order parameter
of Q = 0. Panel (b) showcases the scenario with h2 = 0.06,
breaking the half-wave antisymmetry and leading to a non-
zero dynamic order parameter (Q ̸= 0). Both plots corre-
spond to a lattice size of L = 1024 and a half-period of
t1/2 = 100 MCSS. The numerical data shown here are ob-
tained by averaging over 104 periods of the external field.

two selected values of h2 in the dynamic paramagnetic
phase. To facilitate the discussion we note here that the
critical half-period of the system is around 93 MCSS (see
also Fig. 4(a) below) . When h2 = 0 (panel (a)), one ob-
tains a typical behavior observed previously in the kinetic
Ising model, where the magnetization can follow the field
with a phase lag [9, 35]. Since the time-dependent mag-
netic field has the property of half-wave antisymmetry,
the magnetization has an antisymmetric behavior with
time leading to a period-averaged value of Q = 0. How-
ever, when the half-wave antisymmetry of h(t) is broken
due to the existence of the second-order Fourier compo-
nent of the field with an amplitude of h2 = 0.06 (panel
(b)), the antisymmetric behavior of the magnetization
also disappears. This leads to a finite dynamic order pa-
rameter Q ̸= 0, despite the magnetization undergoing a
full reversal cycle as observed in recent experimental and
theoretical studies [44, 45].

To understand the overall behavior of the order pa-
rameter across a broad dynamic phase space, we now
examine the variation of Q with the half-period of the
external field for several values of h2 and a wide range of

system sizes, as illustrated in the main panel of Fig. 2. In
the dynamic ferromagnetic phase, the half-period depen-
dence of Q exhibits a typical behavior, showing a finite
value and no observable finite-size effects for all values of
h2. Also, the presence of the h2 term in the h(t) formula
does not cause any obvious modification in the value of Q
and the dynamic phase transition point which will be dis-
cussed later in our finite-size scaling analysis. In the dy-
namic paramagnetic phase, and the absence of h2, Q = 0
is expected, as mentioned also while inspecting Fig. 1.
It is evident from Fig. 2 that there are strong finite-size
effects for small L-values, which weaken upon increasing
the system size. If one concentrates on the largest lattice
size of L = 384 shown, there is a slight increment in the
value of Q for larger values of the half period which is
particularly noticeable for h2 = 10−2. For small values
of h2 (namely h2 = 0, 10−4, and 10−3 considered here),
the order parameter exhibits a pronounced change near
the dynamic phase transition corresponding to the peak
observed in the dynamic susceptibility, χ, given in the in-
set of Fig. 2. Additionally, the dynamic susceptibility χ
exhibits a clear divergence, with its height increasing as L
takes larger values, indicating a second-order phase tran-
sition. On the other hand, this divergent behavior of χ is
not present at the relatively larger value of h2 = 10−2, as
indicated by the smooth variation of Q with t1/2. This
behavior is also a signature of the absence of a dynamic
phase transition for the larger value of h2 considered, i.e.,
h2 = 10−2.

As already observed in experiments and theoretical
studies [44, 45], introducing the second harmonic field
component breaks the half-wave antisymmetric property
of h(t), resulting in an effective bias effect. Since this bias
effect increases with h2, one expects that there should
be no dynamic phase transition for relatively large val-
ues of h2. To demonstrate this, we use the fourth-order
Binder cumulant of the order parameter, U4, which pro-
vides critical information about the existence of a phase
transition. The half-period dependency of the Binder cu-
mulant is shown in Fig. 3 for the same set of parameters
as those used in Fig. 2. For all values of h2 < 10−2,
the L-dependent cumulant curves intersect, marking on
the horizontal axis the critical half-period period of the
system and at the vertical axis verifying (within error
bars) the universal value U∗ = 0.610 692 4(16) of the
two-dimensional equilibrium Ising model [53]. Certainly,
the crossing point is expected to depend on the lattice
size L (as also shown in the figure) and the term univer-
sal is valid for given lattice shapes, boundary conditions,
and isotropic interactions. For a detailed discussion of
this topic we refer the reader to Refs. [54] and [55]. Still,
the scope of the current Fig. 3 is to show qualitatively
an instance of the Ising universality. Note however that
there is no crossing for the case with h2 = 10−2 sup-
porting the above discussion regarding the absence of a
dynamic phase transition for this particular case.

Having determined the values of h2 at which a dy-
namic phase transition occurs, we employ now the stan-
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FIG. 2. Half-period dependence of the dynamic order parameter Q (main panels) and magnetic susceptibility χ (insets) for
various lattice sizes and different values of the second harmonic component h2. Panels (a) to (d) correspond to h2 = 0, 10−4,
10−3, and 10−2, respectively. For small values of h2, panels (a)–(c), the order parameter Q exhibits a clear second-order phase
transition with strong finite-size effects near the dynamic phase transition point. As h2 increases the height of the magnetic
susceptibility peak diminishes, and the sharp phase transition disappears at h2 = 10−2, as shown in panel (d). The insets
illustrate the divergence of χ with increasing system size L, characteristic of second-order phase transitions, at least in panels
(a)-(c). Clearly, no such divergence is observed in panel (d).
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FIG. 3. Half-period dependence of the fourth-order Binder cumulant U4. The simulation parameters (i.e., L and h2 values)
are identical to those of Fig. 2. A clear crossing behavior can be observed for all values of h2 < 10−2 (panels (a)-(c)), except
for the data corresponding to h2 = 10−2 (panel (d)), where no crossing is observed, indicating the absence of a dynamic phase
transition.
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FIG. 4. (a) Determination of the critical half-period tc1/2,χ
and the correlation-length’s critical exponent ν using finite-
size scaling analysis. The shift behavior of the pseudocritical
half-period t∗1/2,χ is plotted as a function of 1/L, with the
solid lines representing a simultaneous fit to the power-law
ansatz, Eq. (11). (b) Finite-size scaling of the peak of the
dynamic susceptibility χ∗ for several values of h2. The solid
lines show fits according to Eq. (12). (c) Finite-size scaling of
the dynamic order parameter Q∗ at the critical half-period,
following Eq. (13). Note the double-logarithmic scale in pan-
els (b) and (c).

dard finite-size scaling analysis to explore the universality
principle of the model and corroborate the quantitative
results of Fig. 3 based on the crossings of the Binder
cumulant. It should be noted that earlier works on the
kinetic Ising and Blume-Capel models and their variants
have shown that the finite-size scaling laws can also be
effectively applied to systems far from equilibrium [9, 33–
37]. The location of the maxima of the dynamic suscep-
tibility in Fig. 2 can be referred to as suitable pseudocrit-
ical half-periods, denoted hereafter as t∗1/2,χ. The shift
behavior of these pseudocritical half-periods is plotted in
Fig. 4(a). The solid lines highlight a simultaneous fit of
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Q
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h2 = +0.01
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FIG. 5. Dynamic order parameter Q as a function of the
bias field hb (a) and the generalized conjugate field h∗ (b),
for several values of h2 in the dynamic paramagnetic phase
(t1/2 = 100 MCSS). The numerical data shown correspond to
a system with linear size of L = 256.

the form [56–58]

t∗1/2,χ = tc1/2,χ + bL−1/ν , (11)

where the critical half-period tc1/2,χ and the critical ex-
ponent ν are shared among the three data sets, and b
is a non-universal fitting constant. The obtained value
tc1/2,χ = 93(1) MCSS for the critical half-period is com-
patible with the location of the crossing points of the
Binder cumulants identified in Fig. 3 and the estimate
ν = 0.99(3) for the correlation-length exponent points
again to the universality class of the equilibrium two-
dimensional Ising model. Subsequently, in Fig. 4(b) we
present the finite-size scaling behavior of the maxima of
the dynamic susceptibility, χ∗, again for the lower h2

values studied. Here, the solid lines represent fits of the
form

χ∗ ∼ Lγ/ν , (12)

giving exponent ratios in excellent agreement with the ex-
act result γ/ν = 7/4 of the Ising ferromagnet, as outlined
also in the panel. In addition to γ/ν, further evidence
may be provided via the alternative magnetic exponent
ratio, namely, β/ν, obtained from the scaling behavior of
the dynamic order parameter at the critical point via

Q∗ ∼ L−β/ν . (13)

In Fig. 4(b) we depict this scaling behavior, where power-
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FIG. 6. Dynamic order parameter Q as a function of the
generalized conjugate field h∗ for two different lattice sizes,
L = 256 and L = 512, with a second harmonic field compo-
nent h2 = 10−3 in the dynamic paramagnetic phase.

law fits of the form (13) give estimates for β/ν compat-
ible with the Ising value 1/8 = 0.125. A summary of
estimates for the critical-exponent ratios γ/ν and β/ν
for non-vanishing, but sufficiently low values of the sec-
ond harmonic field component h2 are given in Table I.
At this point we would like to note that we also included
in our fits scaling corrections (in the form of polynomials
in ∼ L−ω) where ω = 1.75, see, for example, the discus-
sion in the supplementary material of Ref. [59]. We note,
however, that other values of ω have also been reported
for certain quantities in the two-dimensional Ising model,
most notably ω = 4/3 and ω = 2, and in some cases
also the analytic corrections might be dominant. In our
case, the observed corrections were so weak (compared to
the statistical accuracy of our data) that numerically we
could not reliably identify any difference between these
choices and even by excluding the correction terms.

So far our discussion was restricted to the case with
zero-bias field, indicating that the (dynamic) ferromag-
netic phase is largely unaffected by the presence of h2,
as long as its value is sufficiently low. Clearly, the next
indispensable step forward refers to the application of
a time-independent bias field at, and above, the criti-
cal half-period, targeting at a deeper understanding of
the effect of h2 on the order-parameter’s critical behav-
ior. In Fig. 5(a), we show Q as a function of hb for
various values of h2 in the dynamic paramagnetic phase
phase (t1/2 = 100 MCSS). As one can observe, in the
absence of h2 the inversion of hb → −hb in the mag-
netic field leads to exactly Q → −Q, given in Eq. (2).
When h2 is non-zero, deviations from the antisymmetric
property become apparent and more pronounced with in-
creasing h2. If both h2 and hb are nonzero, the Q → −Q
state is accessed with h2 → −h2 and hb → −hb, i.e.,
Q(h2, hb) = −Q(−h2,−hb). It is clear that when h2 is
added to the standard magnetic field sequence, hb no
longer accurately represents the conjugate field. Accord-
ingly, as the next step, we utilize the general definition
of the conjugate field, h∗, introduced very recently by
Quintana and Berger [44, 45] to restore the antisymmet-

0.6

0.7

0.5
0.001 0.003 0.005

h2 = 0 : 1/δ = 0.0668(3)
h2 = 10−4 : 1/δ = 0.0663(3)
h2 = 10−3 : 1/δ = 0.0670(3)
Q ∼ (h∗)1/15

Q

h∗

FIG. 7. Dynamic order parameter Q as a function of the
generalized conjugate field h∗ at the critical half-period for
different values of the second harmonic field component h2

for a system with linear size L = 256. The black solid line
represents the scaling behavior Q ∼ (h∗)1/δ, with δ = 15.
Note the double-logarithmic scale of the panel.

ric behavior of the order parameter. Figure 5(b), dis-
plays Q vs h∗, as computed from the data of Fig. 5(a)
by using Eqs. (4) and (5). Here, Monte Carlo simula-
tion results indicate that for the considered amplitudes
of h2, the antisymmetry of the Q − h∗ curve is recov-
ered with all the curves nearly overlapping. This result
shows that the proposed h∗ is the true conjugate field
and confirms the earlier experimental and theoretical in-
vestigations [44, 45].

To explore the existence of possible finite-size effects
in the above discussion, we present in Fig. 6 two charac-
teristic Q−h∗ curves for a selected value of h2 = 10−3 in
the dynamic paramagnetic phase and two system sizes,
namely L = 256 and L = 512. It is evident from this
figure that there are no signs for significant finite-size
effects (in fact the curves for the two different L’s prac-
tically overlap) for the considered value of h2. Hence, in
the following analysis focusing on the numerical deter-
mination of the critical exponent δ we shall restrict our
analysis on the L = 256 system size.

At the critical half-period value of the external field
the order parameter is known to display scaling behavior
of the form Q ∼ (hb)

1/δ, where δ = 1 + γ/β [40, 45].
In full analogy with the equilibrium case, the relevant
exponent in the kinetic Ising model was determined in
previous studies (where half-wave antisymmetry of h(t)
was present) to take the value δ = 15. Since it has been
demonstrated previously within mean-field approxima-
tion and in our above analysis that h∗ is the true conju-
gate field that establishes the antisymmetric property of
Q, it is possible to write at the critical period an analo-
gous ansatz [44, 45]

Q ∼ (h∗)1/δ. (14)

In Fig. 7, we sketch the dynamic order parameter Q vs.
h∗ for different h2 values for a system with linear size
L = 256. The extracted exponents obtained from the
slope of the Q− h∗ curves are also listed in Table I and
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TABLE I. A summary of critical-exponent ratios γ/ν, β/ν,
and 1/δ of the dynamic susceptibility χ, dynamic order pa-
rameter Q, and generalized conjugate field h∗ for various val-
ues of the second harmonic field component h2, as computed
in the present work. The last row of the table provides for
reference the exact values marking the universality class of
the equilibrium two-dimensional Ising ferromagnet.

h2 γ/ν β/ν 1/δ

0 1.75(1) 0.130(7) 0.0668(3)

10−4 1.76(1) 0.123(7) 0.0663(3)

10−3 1.75(1) 0.122(4) 0.0670(3)

Exact values 7/4 1/8 1/15

they are very close to the exact value 1/δ = 1/15 ≈ 0.067.
Consequently, our numerical data and analysis confirm
that the scaling property of Eq. (14) is valid for the con-
sidered values of h2 and the generalized field defined in
Eq. (4) and also that Eq. (5) can be used as a conjugate
field when half-wave antisymmetry is lost in the time-
dependent magnetic-field term.

IV. CONCLUSIONS

In the present manuscript we have investigated the dy-
namic critical behavior of the two-dimensional kinetic
Ising model under a nonantisymmetric magnetic field,
using extensive Monte Carlo simulations and finite-size
scaling techniques. By introducing a second harmonic
component to the magnetic field which breaks the tra-
ditional half-wave antisymmetry, we observed significant
modifications in the underlying dynamic phase transi-
tions. We confirmed that the generalized conjugate field
restores the expected antisymmetry in the dynamic or-

der parameter, in agreement with recent experimental
findings. Our finite-size scaling analysis showed that, de-
spite the broken half-wave antisymmetry, the universality
class and critical exponents of the model remain consis-
tent with those of the equilibrium two-dimensional Ising
model. Further investigation is needed in this direction
for larger values of the amplitude of the second harmonic
field component in order to scrutinize the requirement
of conjugate-field corrections, as well as the universal-
ity properties of spin models driven by a time-dependent
magnetic field. These results validate the theoretical pre-
dictions on symmetry-breaking phenomena and extend
our understanding of non-equilibrium systems subjected
to nonantisymmetric fields. Moreover, our study con-
firms that the critical behavior of the kinetic Ising model
is robust, even in the presence of symmetry-breaking per-
turbations, offering direct theoretical support for recent
experimental observations. These findings provide a com-
prehensive framework for studying dynamic phase tran-
sitions in driven magnetic systems and pave the way for
further experimental and theoretical work in the explo-
ration of symmetry-breaking effects in complex systems.
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