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Abstract— Non-orthogonal multiple access (NOMA) exploits
the potential of the power domain to enhance the connectivity for
the Internet of Things (IoT). Due to time-varying communication
channels, dynamic user clustering is a promising method to
increase the throughput of NOMA-IoT networks. This article
develops an intelligent resource allocation scheme for uplink
NOMA-IoT communications. To maximise the average perfor-
mance of sum rates, this work designs an efficient optimiza-
tion approach based on two reinforcement learning algorithms,
namely deep reinforcement learning (DRL) and SARSA-learning.
For light traffic, SARSA-learning is used to explore the safest
resource allocation policy with low cost. For heavy traffic, DRL is
used to handle traffic-introduced huge variables. With the aid of
the considered approach, this work addresses two main problems
of fair resource allocation in NOMA techniques: 1) allocating
users dynamically and 2) balancing resource blocks and network
traffic. We analytically demonstrate that the rate of convergence
is inversely proportional to network sizes. Numerical results
show that: 1) Compared with the optimal benchmark scheme,
the proposed DRL and SARSA-learning algorithms have lower
complexity with acceptable accuracy and 2) NOMA-enabled IoT
networks outperform the conventional orthogonal multiple access
based IoT networks in terms of system throughput.

Index Terms— Deep reinforcement learning, Internet of
Things, non-orthogonal multiple access, power allocation, SARSA
learning, user clustering.

I. INTRODUCTION

INTERNET of things (IoT) enable millions of devices to
communicate simultaneously. It is predicted that the num-

ber of IoT devices will rapidly increase in the next decades [2].
Owing to a large number of time-varying communication
channels, the dynamic network access with massive connec-
tivity becomes a key requirement for future IoT networks.
Recently, non-orthogonal multiple access (NOMA) is evolved
as a promising approach to solve this problem [3], [4]. The
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key benefit of using NOMA is that NOMA exploits the
power domain to enable more connectivity than the traditional
orthogonal multiple access (OMA). More specifically, NOMA
supports multiple users at the same time/frequency resource
block (RB) by employing superposition coding at transmitters
and successive interference cancellation (SIC) techniques at
receivers [5]. Various model-based schemes have been pro-
posed to improve different metrics of NOMA-IoT networks,
such as coverage performance, energy efficiency, system
throughput (sum-rates), etc. Additionally, on the importance of
sum-rates, the recent work in wireless networks based on the
state of the art reflective intelligent surfaces (RIS) considered
sum-rate maximization objective function [6]. The sum-rate is
an important parameter to depict the average performance of
wireless networks in detail for each user. Due to this, the sum-
rate is widely used as a significant performance indicator
for wireless networks by numerous research works [7], [8].
It shows the significance of the sum-rate maximization based
objective functions. Regrading the system design, the uncer-
tainty and dynamic mechanisms of wireless communication
environments are difficult to be depicted by an accurate model.
The dynamic mechanism involves spectral availability, channel
access methods (e.g., OMA, NOMA, hybrid systems, etc.), and
dynamic traffic arrival. Especially in practical NOMA systems
by allowing resource share among more than one users the
process is more dynamic when users are simultaneously join-
ing and leaving the network in short term and long term basis.
Numerous model-based techniques target to solve dynamic
behaviour of wireless networks but failed to provide long-term
performance outcomes [9]–[12] and [13]. Moreover, due to the
absence of learning abilities, to provide long term network
stability the computational complexity of traditional schemes
becomes ultra-high. This is due to the fact that, by default,
traditional approaches cannot extract knowledge from any
given problem (e.g, given distributions) online. Fortunately,
the online learning properties of recently developed machine
learning (ML) methods are extremely suitable to handle such
type of dynamic problems [14].

A. Related Works and Motivations

1) Studies on NOMA-IoT Networks: Due to the aforemen-
tioned benefits, academia has proposed numerous studies on
the optimization of resource allocation in NOMA-enabled
IoT networks. For single-cell scenarios, the authors in [10]
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proposed a two-stage NOMA-based model to optimize the
computation offloading mechanism for IoT networks [15].
In the first stage, a large number of IoT devices are clustered
into several NOMA groups depending on their channel condi-
tions. In the second stage, different power levels are allocated
to users to enhance network performance. The comparison
between uplink NOMA-IoT and OMA-IoT is presented in
[16], which considered the optimal selection of targeted
data rates for each user. Regarding downlink transmission,
the similar topic was studied in [17] and [18]. Different from
others, in [19] using 2D matching theory authors performed
dynamic resource allocations considering energy efficiency for
downlink NOMA. Similarly, in [12] for the massive Machine
Type Communications (mMTC) usage scenario, also known as
massive Internet of Things (mIoT) dynamic resource manage-
ment is performed with Sparse Code Multiple Access (SCMA)
domain using conventional mathematical tools. The authors in
[20] proposed a general power allocation scheme for uplink
and downlink NOMA to guarantee the quality of service
(QoS). In [21], NOMA scheduling schemes in terms of power
allocation and resource management were optimized to realize
the massive connectivity in IoT networks. For multi-cell
scenarios, the impact of NOMA on large scale multi-cell
IoT networks was investigated in [22]. To characterize the
communication distances, the authors in [23] analysed the
performance of large scale NOMA communications via sto-
chastic geometry. It is worth noting that NOMA-IoT channels
are time-varying in the real world. Therefore, the study in
[24] considered a practical framework with dynamic channel
state information for evaluating the performance of massive
connectivity. The authors in [25], [26], and [27] discussed the
advantages of various NOMA-IoT applications. Interestingly,
the proposed schemes introduced artificial intelligence (AI)
methods to solve some practical challenges of NOMA-IoT
systems. For both uplink and downlink scenarios, AI-based
multi-constrained functions can be utilized to optimise multi-
ple parameters simultaneously.

2) Studies on ML-Based NOMA Systems: Due to the
dynamic nature of NOMA-IoT communications, traditional
methods may not be suitable for such type of networks
[13]. Note that ML-based methods are capable to handle
the complex requirement of future wireless networks via
learning. In [28], one typical deep learning method, namely
long short-term memory (LSTM) [29], was applied for the
maximization of user rates by minimizing the received signal-
to-noise-ratio (SINR). In [30], a successive approximation
based algorithm was proposed to minimize outage proba-
bilities through optimizing power allocation strategies. For
next-generation ultra-dense networks, ML-aided user cluster-
ing schemes were discussed in [31] for obtaining efficient net-
work management and performance gains. Because using clus-
tering schemes, the entire network can be divided into several
small groups, which helps to ease resource management [32].
Regarding AI-based cluster techniques, in [33] and [34],
resources were assigned to the most suitable user to ensure
the best QoS for unmanned aerial vehicle (UAV) networks
and millimetre wave networks, respectively. It is worth noting
that the optimization of clustering is an NP-hard problem.

Therefore, for such type of problems the authors in [28], [31],
and [35] recommended to use AI instead of conventional math-
ematical models. Currently, realistic datasets are not available
for most of the machine learning algorithms, to overcome these
designers use the synthetic dataset for simulations. The data
set is generated for a certain environment so it is difficult to
depict general property and online scenarios of wireless net-
works. Therefore, algorithms like reinforcement learning play
a very important role where data is collected online (during
simulation) to learn the given search space for the simulation
requirements. There are various Q-learning algorithm variants
used for NOMA systems. Due to inefficient learning mecha-
nism, other methods like traditional Q-learning and Multi-arm
bandits (MABs) are heavily influenced by regret (negative
reward) [36], [37]. On the other hand two most powerful
methods, deep reinforcement learning (DRL) and SARSA
learning created by google deep mind [38] and by the authors
in [39]. Both DRL deep mind and SARSA learning algorithms
are efficient learners. Due to unique learning behaviour, DRL
and SARSA tend to receive more rewards. The main advantage
of the deep mind and online SARSA learning is to handle
dynamic control as in [40]. With the development of such type
of RL techniques, the challenges for NOMA systems, which
are difficult to be solved via traditional optimization methods,
have been reinvestigated via RL-based approaches [41]–[43].

3) Motivations: Combining multi-user relationship and
resource allocation increases the complexity of NOMA-IoT
systems, which also introduces new problems for optimizing
power allocation and scheduling schemes. Unlike traditional
methods [21], where only one BS is considered for small
scale network with no inter-cell interference and dynamic user
connectivity. The design of schedulers should be in tandem
with the large scale dynamic resource allocations and user
decoding strategies. Therefore, due to the high complexity of
the problem under multi-cell multi-user cases, AI can be a
feasible option for the dynamic resource allocation [44]. For
large-scale NOMA-IoT networks, an intelligent reinforcement
learning (RL) algorithm becomes a promising approach to find
the optimal long-term resource allocation strategy. This algo-
rithm should jointly optimize multiple criteria under dynamic
network states. In this article, our main goal is to address the
following research questions:

• Q1: In NOMA-IoT networks, how to maximize the
long-term sum rates of users for a given network traffic
density?

• Q2: How does the inter-cell interference affect the
long-term sum rates?

• Q3: What is the correlation between traffic density, sys-
tem bandwidth, and the number of clusters in NOMA-IoT
networks?

From above as it is known that model-free methods are suitable
to address multi-constrained long-term problem online. There-
fore, in long-term, there is a strong correlation of mentioned
research questions with general problems of “intermittent
connectivity of IoT users (continuously joining and leaving
the network), balanced resource allocations ( optimal allo-
cations policy for dynamic network settings) and network
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traffic (as the (Min-Max) number of users competing for the
resource blocks)” in wireless networks. Similarly, research
Q1 for capacity maximization, research Q2 for network
scalability and, research Q3 for long-term network perfor-
mance is strongly dependent on the main problems “balancing
of network resources, IoT users and, the dynamic network
behaviour”.

B. Contributions and Organization

This article considers uplink NOMA-IoT networks, where
multiple IoT users are allowed to share the same RB based
on NOMA techniques. With the aid of RL methods, we pro-
pose a multi-constrained clustering solution to optimize the
resource allocation among IoT users, base stations (BSs), and
sub-channels, according to the received power levels of IoT
users. Appropriate bandwidth selection for the entire system
with different traffic densities is also taken into considera-
tion for enhancing the generality. Our work provides several
noteworthy contributions:

• We design a 3D association model-free framework for
connecting IoT users, BSs, and sub-channels. Based on
this framework, we formulate a sum-rate maximization
problem with multiple constraints. These constraints con-
sider long-term variables in the proposed NOMA-IoT
networks, such as the number of users, channel gains, and
transmit power levels. To characterize the dynamic nature
(online), at each time slot, these variables are changeable.

• We propose two RL techniques, namely SARSA-learning
with ε − greedy and DRL, to solve this long-term
optimization problem. SARSA-learning is used for light
traffic scenarios to avoid high complexity and memory
requirements. Heavy traffic scenarios with a huge number
of variables are studied by DRL, where three different
neuron activation mechanisms, namely TanH, Sigmoid,
and ReLU, are compared to evaluate the impact of neuron
activation on the convergence of the proposed DRL
algorithm.

• We design novel 3D state and action spaces to minimise
the number of Q-tables for both SARSA and DRL frame-
works. The considered action space represent switching
between RBs, which is the most efficient strategy for our
networks. Based on this adequate Q-table design, DRL is
able to converge faster.

• We show that: 1) according to the time-varying environ-
ment, resources can be assigned dynamically to IoT users
based on our proposed framework; 2) for the proposed
model, the learning rate α = 0.75 provides the best
convergence and data rates; 3) for SARSA and DRL
the sum-rate is proportional to the number of users;
4) DRL with the ReLU activation mechanism is more
efficient than TanH and Sigmoid, and 5) IoT networks
with NOMA provide better system throughput than those
with OMA.

The rest of the article is organised as follows: In
Section II, the system model for the proposed NOMA-IoT
networks is presented. In Section III, SARSA-learning
and DRL-based resource allocation is investigated.

The corresponding algorithms are also presented. Finally,
numerical results and conclusions are drawn in Section IV
and Section V, respectively.

II. SYSTEM MODEL

In this article, we consider an uplink IoT network with
NOMA techniques as shown in Fig. 1, where Nb BSs
communicate with Nu(t) IoT users via Ns orthogonal sub-
channels. we assume Nu(t) dynamic in each time-slot in
our model, however for simplicity we omit (t) for further
sections. Additionally, channel gains are also dynamic for each
user at each time-slot, even for the same user. The BSs and
sub-channels are indexed by sets Φb = {b1, . . . , bNb

} and
Φs = {s1, . . . , sNs}, respectively. Regarding users, the set
for users severed by one BS bi ∈ Φb (i ∈ [1, Nb])
through a sub-channel sj ∈ Φs (j ∈ [1, Ns]) is defined
as Φi,j

u = {u1, . . . , uNi,j
u
}, where N i,j

u is the number of

the intra-set users and
Nb∑
i=1

Ns∑
j=1

N i,j
u = Nu. BSs and users

are assumed to be equipped with a single antenna. For
each BS, the entire bandwidth B is equally divided into Ns

sub-channels and hence each sub-channel has B
Ns

bandwidth.
In a time slot, we assume a part of users are active and
the rest users keep silence. To share knowledge, we con-
sider fiber link with ideal back-haul for inter BS connec-
tivity. The defined notations in this system model are listed
in Table I.

A. NOMA Clusters

Based on the principles of NOMA, more than two users
can be served in the same resource block (time/frequency),
which forms a NOMA cluster. In this article, each sub-channel
represents one NOMA cluster and N i,j

u ≥ 2 [45]. To sim-
plify the analysis, we assume BSs contain perfect CSI
of all users. That CSI is our state space showing sig-
nalling and the channel conditions of IoT users connected
to sub-channel via base-station. A detailed explanation is
present in section III-b and section III-c. Based on such CSI,
BSs are capable to dynamically optimize the sub-channel
allocation for active users in long-term communication. For
an arbitrary user uk, we define its clustering variable at time t
as follows:

ci,jk (t) =

{
1, user uk connects to BS bi via sub-channel sj

0, otherwise

(1)

It is worth noting that ci,jk (t) also implies the activity status
of users. If user k is inactive, we obtain that ci,jk (t) ≡ 0, ∀i, j.
The set of clustering parameters is defined as Ct and ci,jk (t) ∈
Ct, ∀i, j, k.

B. Signal Model

In a NOMA cluster sj , one BS bi first receives the super-
posed messages from the active users in Φi,j

u and then applies
SIC to sequentially decode each user’s signal [46]. Without
loss of generality, we assume the order of channel gains is
gi,j
1 ≤ gi,j

2 , . . . ,≤ gi,j
u

N
i,j
u

, where gi,j
k is the channel gain for
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Fig. 1. Illustrating uplink NOMA resource allocation by using the optimization algorithm to efficiently cluster users for resource blocks at the base-station
side. Resource allocations-(a) presents different resource blocks in yellow, green, and blue with power on (x-axis) and time/frequency on (y-axis) assigned to
IoT users. The powers and gains of Nu users are denoted with p and g.

TABLE I

TABLE OF NOTATIONS

the k-th user in Φi,j
u [47]. Therefore, the decoding order in

this article is the reverse of the channel gain order [48]. In a
time slot t, the instantaneous signal-to-interference-plus-noise
ratio (SINR) for the intra-cluster user ui,j

k ∈ Φi,j
u is given by

γi,j
k (t) =

ci,jk (t)pi,j
k (t)gi,j

k (t)
k−1∑
k′=1

ci,jk′ (t)pi,j
k′ (t)gi,j

k′ (t) + Iinter(t) + σ2(t)
, (2)

where

Iinter(t) =
∑

i′∈Φb\bi

∑
k′∈Φi′,j

u

ci
′,j

k′ (t)pi′,j
k′ (t)gi′,j

k′ (t) (3)

and pi,j
k (t) is the transmit power of the user ui,j

k (t) and the set
of transmit power is given by Pt (pi,j

k (t) ∈ Pt, ∀i, j, k) [49].
The power of thermal noise obeys σ2(t) = kbTrB, where Tr

is temperature of resistors kb is Boltsmann’s constant, B is
the considered bandwidth. In this article we use Tt = 300 K
therefore, σ2(t) ≈ 4.14× 1012 BW . The Iinter(t) represents
the inter-cell interference, which is generated by the active
users served by other BSs using the same sub-channel sj .
In uplink NOMA, the decoding of user ui,j

k is based on the

SIC process of its previous user ui,j
k+1. If the data rate of

successfully completing the SIC process is Rth
k+1, when the

decoding rate of user ui,j
k+1 obeys

Ri,j
k+1(t) =

B

Ns
log2

(
1 + γi,j

k+1(t)
)
≥ Rth

k+1, (4)

the data rate of user ui,j
k is given by

Ri,j
k (t) =

B

Ns
log2

(
1 + γi,j

k (t)
)
. (5)

Otherwise, if Ri,j
k+1(t) < Rth

k+1, the decoding of all rest users
ui,j

k , . . . , ui,j
1 fails, namely Ri,j

k (t) = . . . = Ri,j
1 (t) ≡ 0.

C. Problem Formulation

For a long-term communication with period T , the number
of active users is different across each time slot. Given
the maximal load of each sub-channel Us, we assume the
number of active users are uniformly distributed in the range
[2, UsNbNs] and UsNbNs ≤ Nu. Under this condition,
the average long-term sum rate can be maximized by optimiz-
ing clustering parameters C = {C1, . . . ,CT } and transmit
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power P = {P1, . . . ,PT }. Therefore, the objective function
is given by

max
C,P

B

Ns
E

⎡
⎣ T∑

t=1

Nb∑
i=1

Ns∑
j=1

Ni,j
u∑

k=1

log2

(
1 + γi,j

k (t)
)⎤
⎦ , (6a)

s.t : gi,j
1 ≤, . . . ,≤ gi,j

Ni,j
u
, ∀i, j, t, (6b)

Ni,j
u∑

k=1

ci,jk (t)pi,j
k (t) ≤ Ps, ∀i, j, t, (6c)

γi,j
k (t) ≥ 2Rth

k Ns/B − 1, ∀k, t, (6d)

2 ≤
Nb∑
i=1

Ns∑
j=1

Ni,j
u∑

k=1

ci,jk (t) ≤ Nu, ∀t, (6e)

Ni,j
u∑

k=1

ci,jk (t) ≤ Us, ∀i, j, t (6f)

Nb∑
i=1

Ns∑
j=1

ci,jk (t) ∈ {1, 0} ∀k, t, (6g)

where (6b) is the ordered channel gains based on the perfect
CSI. (6c) is to impose the power constraint of each sub-
channel. (6d) ensures all clustered IoT users can be success-
fully decoded for maximizing the connectivity. (6e) and (6f)
limits the number of clustered users for the entire system
and each sub-channel, respectively. (6g) indicates that each
user belongs to only one cluster. Problem (6a) is an NP-hard
problem, even only a fixed number of users per cluster is
considered instead of dynamic range, especially, in case of
(6c) and (6f). The proof process is provided in Appendix A.
The proof of (6a) follows the idea in [44] and [50].

III. INTELLIGENT RESOURCE ALLOCATION

A. Markov Decision Process Model for Uplink NOMA

In this section, we formulate user clustering and optimal
resource allocation for uplink NOMA as a Markov decision
process (MDP) problem. Problem transformations are shown
in Fig. 2(a) and Fig. 2(b). A general MDP problem con-
tains single or multiple agents, environment, states, actions,
rewards, and policies. The process starts with the interaction
of an agent with a given environment. In each interaction,
the agent processes an action followed by a policy π with
previous state s. After processing action according to these
conditions and observed state agent/s receives a reward r
in the form of feedback to change its state st to next state
st+1. A reward can be positive (reward) or negative (penalty).
It helps the agent/s to find an optimal set of actions to
maximize the cumulative reward for all interactions. Q-table
acts as the brain of an agent. The main function of Q-table is
to store/memorize states s and corresponding actions a that
the agent can take according to all the states as QT

π (s, a)
during trail T for the basic RL algorithms. SARSA and DRL
are two promising RL methods to solve this MDP problem.
SARSA learns the safest path, the policy π′ is learned by
estimation of state-value optimization function Q′(s, a) =
Qπ(s, a), ∀s, a, but it requires more memory for complex

Fig. 2. Overview of the proposed framework for the sum-rate maximization
problem. Sub-figure (a) is an optimization problem breakdown to show where
RL algorithms are applied and Sub-figure (b) shows problem transformations
for the users and BSs as system states and the brain of reinforcement learning
agents, respectively.

state space. DRL uses a neural network to simplify the Q-table
by reducing memory requirements to handle more complex
types of problems. Furthermore, the design complexity for
the SARSA algorithm is less because we only need to design
Q-table. However, for the DRL algorithm, the design is more
complex due to the deep neural network (DNN) and additional
hyperparameters. Therefore, this work implements SARSA
learning for light traffic. To further reduce the impact of
state-space complexity DRL is used for heavy traffic scenarios.
Additionally, in any case when the SARSA algorithm fails
to provide an optimal policy for any type of network traffic
during threshold trial Te then the final allocation is done using
DRL. Finally, to summarize, this model follows model free on
policy SARSA-learning algorithm instead of value iteration
and off-policy methods for light traffic and DRL for complex
networks. The major advantage of proposed algorithms is
to avoid huge memory requirements (DRL) and learn the
safest allocation policy (SARSA) for the different traffic
conditions.
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Fig. 3. An illustration of the communication environment for the proposed algorithm, where RL technique (SARSA) is invoked to optimize NOMA-IoT
uplink 3D associations and resource allocation. The agents in this case are the BSs. The process of associations and resource allocation based on users
activities is the state for our system.

B. SARSA-Learning Based Optimization for Light Traffic
((2-3,2-4)-Ue’s)

As the name suggests, for this type of traffic scenarios
there is less number of users joining and leaving the network.
In other words, the state space is not as huge as compared
to heavy traffic. Therefore, we use the SARSA learning
algorithm to find optimal long term policy. The traditional
Q-learning is not suitable for the long term because it uses
tuple of 3 (St, At, Rt) for policy learning which doesn’t know
the knowledge of next step that is not suitable for our case.
Secondly, the state space is not as huge as compared to heavy
traffic that requires more complex control. To efficiently utilise
system resources we use SARSA learning for light traffic
and DRL for heavy traffic where the state space is huge
with dynamic users. For SARSA learning, discount factor
γ, sum reward, and the number of iterations are significant
hyperparameters. The details for the flow of the information
update is shown in Fig. 3. The 5-tuple (S, A, P, R, S′, A′)
SARSA-learning elements are mentioned below:

1) S, is a state space consists of finite set having dimen-
sions Nb × Ns containing NNb×Ns

u total number of
states. Each state represents one sub-set of 3D associa-
tions among users, BSs, and sub-channels.

2) A, is an action space that consists of a finite set of
actions to move the agent in a specific environment.
Actions in this model are [−1, 0,+1]. The ‘−1’ is to
reduce any one of the state elements from state matrix.
Similarly, ‘+1’ shows an increment in any of the state
matrix elements. The last action ‘0’ represents no change
in the current state of the agent (BSs). It means that

actions are swap operations between sub-channels and
all BSs. For example, when an agent takes an action
from (7), the first action in A means agent performs
swap operation of user between sub-channels at BS.
In this model, agents have a total of 8 swap operations
between BSs and sub-channels.

A =
{(−1 0

1 0

)
,

(
1 0
−1 0

)
,

(
0 −1
0 1

)
,

(
0 1
0 −1

)
,(

0 0
1 −1

)
,

(
0 0
−1 1

)
,

(
1 −1
0 0

)
,

(−1 1
0 0

)}
. (7)

3) P, is an expected probability P a
s→s′ = Pr(s′|s, a)

to change current state s into next state s′ by taking
action a. The total number of actions for an agent are
(2 × Nb × Ns + 1) with ‘8’ swap operations. These
operations include ‘+1’,‘−1’, and ‘0’ actions, the agent
selects suitable actions according to corresponding state
to obtain an optimal state and action pair.

4) R, is a finite set of rewards, where the reward obtained
after state s transition to next state s′ by taking action a.
The reward function is denoted by ra

s→s′ , showing that
in the result of all associations the agent will receive a
reward according to the conditions mentioned in reward
function.

5) Multi-constrained reward function, the short-term
reward in the proposed model depends on two condi-
tions:1) sum-rate and 2) the state of the system means
the total number of users associated to BSs and sub-
channels, which is defined as S′. The reward function
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can be expressed as follows:

r(st, st+2, at) =

⎧⎪⎪⎨
⎪⎪⎩
r = 0, if Rst+1 ≥ Rst

and
∑Te

t=1
(ust

k ) =
∑Te

t=1
(ust+1

k )

r = −10, otherwise.

(8)

6) S′, is a next state of an agent based on the previous
state, action, and reward pairs of an agent.

7) A′, is a next possible action can be taken by an agent
from state S′.

Definition 1: The parameters of 3D state matrix S defined
as Z = {1, 2, · · · , NNb×Ns

u } total number of states with
Nb×Ns dimensions

∑Z
1 SNb

Ns
. For all types of network traffic

minimum for Z is defined as
∑N

1 Z(ij) ≥ 2, the maximum
for light traffic is

∑N
1 Z(ij) ≤ {3, 4} and for heavy network

traffic the maximum load is
∑N

1 Z(ij) ≤ 10.
Furthermore, the optimal policy of the aforementioned para-
meters can be discovered by an agent using the following
function:

π′(s) = argmax
a

Q′(s, a), ∀s ∈ S′, (9)

where π′(s) represents the optimal policy. This function
provides the optimal policy value for each state s from the
finite sate set after taking appropriate action a. For a better
understanding, the optimal policy can be defined:

Vπ′(st) = max
a

[
r(st, at) + γ

∑
s′
Ps→s′Vπ′(s′)

]
. (10)

For Q-table value updating that contains state and cor-
responding action values of an agent. Bellmen equation is
utilised to perform optimization processes. According to the
Bellman equation statement, there is only one optimal solution
strategy for each environment setting. Bellman’s equation is
defined as:

Q(s, a)← (1 − a)Q(s, a) + α [r′ + γQ(s′, a′)] , (11)

where γ ∈ (0, 1) is a discount factor, which is a balancing
factor between historical and future Q-table values. The larger
γ is the more weight for the future value and vice versa.
α ∈ (0, 1) indicates learning rate, it works like a step function
(i.e., larger α contributes to fast learning but due to minimal
experience, it may result in non-convergence. Similarly, if the
value of α is too small then it will increase the time complexity
of the system by leading it to a slow learning process).

Definition 2: For Q-learning we define Qt=0(s, a) = −100
to learn greedy policy Pπ(A = a|S = s) for all state and
action pairs.

One main limitation of reinforcement learning algorithms
is slow convergence due to Q(s, a) requirement. Additionally,
it is challenging with 3D state space and dynamic systems
[51], [52]. Due to dynamic behaviour of IoT users the 3D state
S and action space, A influence learning process more as S
and A are main parts of Q-table Q(s, a). The convergence of
the reward functions r and reinforcement learning hyperpara-
meters guide the algorithm towards optimal policy V . In other

words, the choice of a reward function and the values for
{ε, α and, λ} are used by reinforcement learning agent/s to
avoid the random walk. The random walk in search space
causes infinite exploration of the search space resulting in no
convergence. Therefore, we are able to propose the following
conclusion.

Remark 1: The selection of suitable rewards ra
s→s′ accord-

ing to system dynamics Q(s, a) is critical for effective con-
vergence to find optimal Vπ′ . Consequently, following (10)
altering the reward function does not change the output of RL
algorithms but the convergence towards policy Vπ′ is highly
influenced.

It is known that the proposed protocols are capable to handle
multi-constrained optimization problems for different network
traffic scenarios. We used ε − greedy SARSA-learning and
DRL algorithms to explore and exploit search space to find
dynamic outcomes, so the proposed protocols are capable
to successfully obtain the optimal clustering solution. The
Q-table in our model contains solutions for all subsets (user
associations) in the search space. Therefore, in each episode
Ne, only a specific subset of users will be active.

Remark 2: In reinforcement learning to find the best asso-
ciations st from the set St = {s1, s2, · · · , sN} possible states,
an agent will converge towards the optimal states and actions
pairing with the highest probability Pπ′ . In this way, by the
increase in probabilities, the number of visits per state-action
pair and rewards increase as well.

Since an agent has limited successful visits, the achieved
rewards will be as described in Remark 1 and Remark 2.
As a result, the agent successfully finds the optimal policy for
the given system by processing the best actions.

1) SARSA-Algorithm: Based on the above discussions,
we design Algorithm 1 for step by step significant optimiza-
tion stages of the SARSA algorithm for light traffic networks.
The details of the mentioned algorithm are as follows:

• Line #(1− 6): presents the initialization of the SARSA
algorithm, in which the system is initialized by initial
sets of users, BSs, and sub-channels as an initial state St.
After this, we define the maximum number of clusters and
the maximum number of users for each cluster. In line#2
the brain of an agent is initialized with −100 having
dimensions [s×a] as Q-table. The purpose of initialization
with −100 is to show that the brain of an agent needs
training. Therefore, after training, the Q-table will contain
values approaching zero for the best case and vice versa.
Secondly, it also shows that the proposed algorithm is
targeted to solve the maximization problem, maximum
Q-value means better solutions. Line #(3 − 6) shows
SARSA-learning parameter definition and initial random
association among IoT users, BSs, and sub-channels.

• Line #(7 − 17): shows key training steps based on
Q-table updates via bellman equations. From line#1,
an agent performs actions according to a given state
of the environment, that is 3D associations and cluster
allocation. In line#8 agent picks new associations for
different active users in one episode, then for all trials
agent is trying to get optimal associations with optimal
sum rate, if the associations are successful then the agent
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Algorithm 1 SARSA-Learning Based NOMA-IoT Uplink
Resource Optimization
1: Inputs for SARSA:

1) Episodes Ne

2) Explorations per trials Te

3) Learning rate α

2: Initialization for SARSA:
1) Network parameters (Nb, bi, Ns, sj , Nu, uk, Pb)
2) Q-Table Q(s, a)

3: Define number of clusters-k
4: Define range of users per cluster
5: load s = NNb×Ns

u and a = [−1, 0,+1]
6: Random user association to any BSs and Cluster
7: for iteration = 1:Ne do
8: st = rand()
9: for iteration = 1:Te do

10: st, at

11: compute r(st, st+2, at)

=

⎧⎪⎨
⎪⎩
r = 0, if Rst+1 ≥ Rst

and
∑Te

t=1(u
st

k ) =
∑Te

t=1(u
st+1
k )

r = −10, otherwise.
12: update Rsum

13: update Q(s, a) ← (1 − a)Q(s, a) +
α [r′ + γQ(s′, a′)] .

14: Update π towards greediness
15: s← s′, a ← a′

16: end for
17: return optimised (c,p) (6) under con-

straints (6a),(6b),(6c),(6d) and (6e)
18: end for
19: Return Q-Table Q(s, a)

gets a reward (0) and if it fails then negative (−10) is
given as a punishment. In line#13, based on the 3D
designed 5-tuple (S, A, P, R, S′, A′) values (11) is
updated on-line. To perform online updates using S, A,
P, R, S′, A′ instead of S, A, P, R as (traditional
Q-learning) the online learning mechanism becomes more
fast converging. In other words, the agent finds optimal
long-term online allocation policy more efficiently. Sim-
ilarly, these updates are calculated for maximum episode
Ne = 500 and all the trials Te = 500 to maximize the
overall long-term average reward of the system.

Definition 3: In 3D state matrix S from the set St =
{s1, s2, · · · , sN} possible states, is defined as CSI of the
proposed network that is known to both of the reinforcement
learning agents. Therefore, the reinforcement learning agent
contains perfect knowledge of the CSI for the whole network.

C. Deep Reinforcement Learning for Heavy Traffic
((2-10)Ue’s)

In general, both on-line and off-line Q-learning methods
require high memory space to build a state of the systems.
However, practical systems are high in dimension and com-
plex. Due to this reason Q-learning is not suitable for a

large action space, this is a major drawback of conventional
Q-learning methods. To overcome this, DRL method adopts
a DNN Q(s, a; θ), to generate its Q-table with the help of
θ by approximating the Q-values Q(s, a) [38]. Therefore,
DRL agents only need to memorize the θ weights instead
of reserving huge memory space for all possible states and
action pairs. This is the main advantage to use DNN. More
specifically, in conventional Q-leaning algorithms, the opti-
mization of Q(s, a) is equal to the optimization of Q(s, a; θ)
in DRL with low memory requirements. Similarly, θ updates
are based on history states, actions, and reward values. More
specifically, these values are based on DRL agent interactions
with the environment to learns the relationship among the
different actions and states by continuously observing a given
environment.

1) S, is a unique state space used as an input of DNN. Each
state is a combination of multiple sub-sets of 3D associ-
ations among users, BSs, and sub-channels. It also con-
sists of current rewards of the system as an instantaneous
and average reward from previous iterations.

2) R, is a reward of the system that is denoted by R =
{ri, rl}, where ri is an instantaneous rewards similar
to SARSA algorithm and rl =

∑500
t=1 r

t
i/t denotes

long-term average rewards for the time slot t.
3) A, is a multi-dimensional matrix representing actions

as A = {a1, a2, · · · , a8}. For the DRL algorithm,
the action mechanism is based on two main parts as;
allocation strategies described as switching strategy as

and association strategy ai for the optimization process,
where as is a switching mechanism similar to SARSA
and used for the DRL channel switching process.
The second strategy ai is a result of selected switching
strategy as, ai denotes an index of the 3D associations
among users, BSs, and sub-channels. Finally, the DRL
agent uses loss function mentioned in (12) to calculate
θ based on the previous experience.

loss(θ) = 1/Ne

Ne∑
t=1

[yDRL
t −Q(st, at; θ)]

2
, (12)

where

yDRL
t = r + γ max

a′∈A
Q(s′, a′; θ′) (13)

and yDRL
t is the target Q-values from target DNN. For

the improved training, in general the update frequency
of the target network θ′ is performed in slow manner.
Due to this reason the target network remains fixed for
the target network update threshold T ′

e.
The DRL agent uses gradient decent method as in (12) to
reduce the prediction error by minimizing the loss function.
The updating of θ is provided in (16), which is based on the
outcome of new experience. The updating function for θ is
defined in (18), namely DRL Bellman equation.

θ ← θ − [yDRL −Q(s, a; θ)]∇Q(s, a; θ). (14)

qπ(s, a) = r(s, a) + γ
∑
s′∈S

∑
a′∈A

pss′(a)qπ(s′, a′), (15)

qπ∗(s, a) = r(s, a) + γ
∑
s′∈S

pss′(a) max
a′∈A

qπ∗(s′, a′), (16)
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where the function qπ∗(s, a) shows Q-values and the long-term
reward calculations for DRL based on the discount factor γ
and below mentioned optimal DRL policy π∗.

π∗(s) = arg max
a∈A

[qπ∗(s, a)] , ∀ s ∈ S, (17)

where π∗(s) represents the optimal policy for the DRL algo-
rithm. This function provides the optimal policy value for each
state s from finite sate set after taking appropriate action a.

Q(s, a)←(1−α)Q(s, a)+α
[
r(s, a)+γ max

a′∈A
Q(s′, a′)

]
, (18)

where Q(s, a) is showing Q-value update according to DRL
Bellman equation.

s(t) = {a1(r1i , r
1
l ), a2(r2i , r

2
l ) . . . , at(rt

i , r
t
l )}. (19)

ρ(x) :
dj∑

j=0

Wj × Ij(s(t)) + ψj , (20)

where in (19), s(t) represents state of the DRL agent and
equation (20) shows the activation mechanism for each neuron
layer I based on weights Wj for j− th depth of neurons with
bias term ψj . In this model, the input of the DRL algorithm is
the instantaneous network observation as st. This state is sent
to the different neural network neurons with specific network
Wj to obtain the final output as a set of different Q-values for
all actions. For the DRL framework, the size of output actions
is similar to the SARSA. We use the replay memory as an
experience for the DRL agent to store the tuple (st, at, rt, s

′)
for all the time steps Te in an experience dataset E with size ε.
When the size ε is full, the first experience as the oldest tuple
will be removed to free some space for the new experience
update. The reason for this updated experience is to reflect
the sequential exploration of the DRL framework. However,
the distribution of the samples is independent and identical.
Therefore, to get more general output, the Wj update process
is performed based on randomly sampled tuple (st, at, rt, s

′)
instead of the current tuple. This is because output is highly
influenced by the correlated set of tuples (st, at, rt, s

′) and
variance of the updates.

Definition 4: DRL design in this work is defined with two
main elements, the first element is target Q-network based
on θ′. The second main element of DRL is state transition
mechanism (st, at, rt, s

′)t∈[n]. This mechanism is used to
construct mini-batch for experience reply from dataset E to
train DNN.

Remark 3: The convergence rate/speed of the proposed
algorithm varies according to the initial 3D associa-
tion (states) that is randomly selected. In this model, the state
space means allocation strategies that include subsets of all
possible associations of active users uk = 2 ≤ Nu for each
sub-channel at the episode Ne.

Based on the above discussions, we design Algorithm 2
for step by step significant optimization stages of the DRL
algorithm for heavy traffic. The details of the mentioned
algorithm are as follows:

Algorithm 2 Deep Q-Learning Based NOMA-IoT Uplink
Resource Optimization
1: Inputs for DRL:

1) Episodes Ne

2) Explorations per trials Te

3) Learning rate α

2: Initialization for DRL:
1) Network parameters (Nb, bi, Ns, sj, Nu, uk, Pb)
2) memory, hidden size, State size, action size and

mini-batch

3: train DRL to find a good policy θ
4: for iteration = 1:Ne do
5: for iteration = 1:Te do
6: st, at

7: compute r(st, st+2, at)

=

⎧⎪⎨
⎪⎩
r = 0, if Rst+1 ≥ Rst

and
∑Te

t=1(u
st

k ) =
∑Te

t=1(u
st+1
k )

r = −10, otherwise.
8: update θ using qπ∗(s, a) = r(s, a) +

γ
∑

s′∈S

pss′(a) max
a′∈A

qπ∗(s′, a′).

9: loss(θ) = [yDRL
t −Q(st, at; θ)]

2
, update using

yDRL
t = r + γ max

a′∈A
Q(s′, a′; θ′).

10: s← s′, a ← a′

11: update mini-batch (Experience)
12: if Te > State− size then
13: get s← s′, a ← a′ from mini-batch
14: end if
15: end for
16: end for
17: Return Q(Wa)

1) DRL:

• Line #(1 − 2): In this stage, the parameter initializa-
tion is performed, which is a similar initialization step
like SARSA. However, instead of state action pairing,
the weight matrix is initialized for DRL to find optimal
policy π.

• Line #(3) Pre-training: In this stage, initial actions are
selected using uniform random distribution as an initial
state space in a continuous environment. In this way,
initial weights are also calculated to start the optimization
process.

• Line #(4 − 17): Whole process for DRL is similar
to SARSA from line #(5 − 11) with DRL bellmen
equations (12) to (19).

• Loss Calculation: The equation (12) is to calculate the
loss θ that is the mean squared error (MSE) indicat-
ing the difference of the target and predicted networks.
To optimise these values between the target network and
prediction network we use Adam optimiser. The Adam
optimizer is used for the loss minimization to further
improve the optimal predicted Q-values for each episode.
Therefore, the DRL framework converges faster even in
huge state space. In (13), we calculate the target Q-values
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Fig. 4. DRL structure: it shows the flow of information between target and training networks to minimize the loss function using states, actions, rewards,
and replay memory.

based on the tuple (St, At, Rt) from mini-batch and the
mini-batch is updated after 100 iterations.

• DRL Updates: The updating function for the prediction of
DRL θ and long-term reward calculation is shown in (14)
to (16), where DRL agents obtain rewards and prediction
loss after every transition from st to next state st+1 to
find the greedy policy. Additionally, γ discount factor
has a significant impact in search of the greedy-policy
because based on discount factor as we mentioned in
the previous paragraphs, the agent selects immediate or
previous Q-values. The policy π is calculated using (17)
to maximize the Q-values by the greedy search. The
calculation for DRL Bellman equation is performed using
states in (18).

• Sparse Activations: The ρ(x) is an activation function
for DNNs sparse activations using ReLU (ρ). The sparse
activations help agents to efficiently converge by avoiding
useless neuron activations. The outcome of sparsity is
shown in the results section, comparing sparse ReLU,
Sigmoid, and TanH. In (20), the activations are performed
for the δj density of neurons with j − th index, for
each neuron we use state of the system as an input
that is multiplied with weight Wj of j − th density
and adding bias value as λ before activation. In the
next steps, current states, actions, and rewards are added
to mini-batch for experience replay (for self-training).
In #(10 − 14), the agent receives next states from
mini-batch that is learned in previous sections based on
pre-training. Before that, the learning process of the agent
is based on pre-training but when mini-batch is full,
the agent will learn the optimal policy by experiencing a
replay mechanism with the help of mini-batch processing.

• Neural Networks: this article uses the DRL that is built
with two DNNs as shown in Fig. 4: 1) a training network

Q(s, a; θ) that learns the policy and 2) a target network
Q(s′, a′; θ′) to compute target Q-values for every update,
where θ and θ′ shows the weights of these two networks.
For the training of the DNN network, θ weights are
predicted based on the current state and action. On the
other hand, θ′ weights are based on the previous episodes
and these weights are fixed during the calculation of θ
for training purpose. Additionally, We utilize MSE loss
function (12) to evaluate the accuracy of the training for
the target network. Therefore, the proposed loss function
is based on θ and θ′ to check the deviation of the
predicted DNN weights.

• Output: Finally, the output of this algorithm is the optimal
policy for all clusters where the overall long-term sum
rate is maximum.

Definition 5: We use ReLU activation function ρ(x) =
max(x, 0) (x is the input neuron) for DRL performance
evaluations. A ReLU network of density δj and λi hidden
layers with each layer width {δj}λ+1

i=0 ⊆ N can be represented
as f : R

δ0 → R
δΛ+1 for any positive number L. f(x) =

wΛ+1ρ(wΛρ(wΛ−1 . . . ρ(w2ρ(w1ρ+ψ1)+ψ2) . . . ψΛ−1)+ψΛ.
In this definition, f(x) is a function to show the construction

of neural network with weights for each layer wλ ∈ R
δλ−1
δλ

and ρ is the activation for each neuron. The mesh structure of
the neural network remains fixed in this model to learn two
main neural network parameters (wλ, ψλ)[λ∈Λ+1] in addition
with the activation function ρ and the input of the neural
network. In the neural network Ψ bias terms are added with
the input of the DNN as ΨΛ+1 as a shift value. To optimise our
dynamic objective function, the greedy search agent is used.
With the help of a greedy search, the DRL agent receives
higher rewards.

Remark 4: To avoid useless visits, greedy policy π′ provides
a balanced exploitation, because ε − greedy exploits in the
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TABLE II

NETWORK PARAMETERS

most cases and some times it processes a random action
to explore the environment in search of different solutions
QNe(s, a) = E[

∑Ne

t=1 γtrt].
For DRL, unbalanced random actions cause huge error

propagation so that this ε − greedy is suitable to be applied
for achieving efficient learning in dynamic state space. Note
that the boundary for the policy selection is 0 ≤ ε ≤ 1. For ε
close to 0 the policy becomes a greedy policy, and for ε close
to 1 the agent explores more.

Definition 6: (Sparsity for ReLU DNN): The sparsity of the
ReLU network is a weight based sparsity denoted by κ, sparse
ReLU networks are bounded by Ψ for Λi layers, Ψ > 0. For
any hidden layer Λi, κ ∈ N, {δj}Λ+1

i=0 ⊆ N.

F(Λ, {δj}Λ+1
i=o , κ,Ψ) =

(
f : max

λ∈[Λ+1]

∥∥Wλ
′∥∥

∞ ≤ 1,

Λ+1∑
λ=1

∥∥Wλ
′∥∥

0
≤ κ, max

j∈[δΛ+1]
‖fj‖∞ ≤ Ψ

)
,

where W ′
λ is used to represent Wλ, ψλ. The function f is from

Definition 5 and fj is the j − th element of f .

D. Complexity

The complexity of the proposed model is based on the
number of BSs Nb, total number of sub-channels Ns and
the number of users communicating Nu. In proposed scheme,
simulated experiments are based on different examples. This
article considers Nb = 2, Ns = 2 and Nu = 3, 4, for
light traffic and 10 for heavy traffic. These examples are
association decisions for the user Nu and the sub-channel
Ns at BS Nb that receives signals for NNb

u channels from
users. The computation complexity for SARSA-learning is
O(NbN

Ns
u ) operations with NNb×Ns

u × (2 × Nb × Ns + 1)
memory requirement for Q-table to simulate brain of the
learning agent/s. The complexity of DRL is O(NeTe) with
smaller Q-table O(Q(Wj)) and DRL uses 1D experience
replay containing states vector (19) instead of huge mem-
ory requirements like traditional Q-learning. The benchmark
scheme considered in this work is a memory-less method,
which shows the maximum achievable rate by exhaustively
searching all possible combinations of 3D associations. Con-
sequently, it requires more number of operations. Due to this
reason, the computation complexity increases in exponential
manner as O(NNb×Ns

u ).

IV. NUMERICAL RESULTS

In this section, simulation results are provided for the
performance evaluation of the proposed multi-constrained
algorithms. The proposed multi-constrained algorithms are
tested under different network settings to solve: 3D associ-
ations among user, BSs, and sub-channels as well as sum-rate

optimization with different network traffic. For simulations,
we have considered two different traffic density threshold
values to analyse the impact of network load with various
power levels on the sum rate and 3D associations. Addition-
ally, the network load in our case represents the load of each
resource block instead of the total number of users in the
network. Therefore, max network load = 10 with two RB’s
for each BSs means 10∗4 = 40 users in the network. To show
the significance of available channel bandwidth, we start with
a minimum channel bandwidth of 60(kHz) and then increase
it to 120(kHz) under different network traffic conditions. The
hardware and software system used for experimentation is Intel
core i7-7700 CPU with 3.60 GHz frequency having 16 GB of
RAM (Random Access Memory) and 64-bit operating system
(windows-10). All the experiments are simulated using Matlab
version-R2019a and Python 3.6. From Table II for both the
algorithms we used 500 episodes with 500 iterations for each
episodes. Similarly, λ[SARSA/DRL] = 0.5, γ[SARSA/DRL] =
0.6, α[SARSA/DRL] = {0.75, 0.1}, and ε−greedy exploration
are values for the significant hyper-parameters of proposed
algorithms. We used Load balancing factor k values per
resource block to show the maximum and minimum user
connectivity for each resource block. The values of channel
gain for each user is defined as [1, 1.5, 2]∗ 10−5 [47]. For the
DRL, additional parameters are trained, such as loss MSE,
activation functions, batch-size= 500, optimisers, experience
memory E = 500, pre-training length = 500, the number
and size of hidden units. We use ReLU, Sigmoid, and TanH
as activation functions with two hidden layers having density
δ = 500 units. Adam optimizer is utilized for the optimal
convergence of DRL.

A. Convergence vs Sum Rate vs Traffic Density
Fig. 5(a) shows the inter-correlations among the four mea-

sures of convergence. It is apparent from this figure that if
traffic density increases then convergence is slower and vice
versa. DRL has better convergence for heavy traffic with the
maximum allocation capacity/load, which makes DRL more
suitable for scenarios with high traffic densities. Furthermore,
to show the performance of DRL with medium traffic (M),
we can see that compared to the SARSA algorithm DRL is
handling medium traffic better by fast converging. Secondly,
another interesting insight is that the performance of SARSA
α = 0 is better than α = 0.1 with ε − greedy. The
convergence of Adam depends on DRL θ weights as RDRL =
T∑

t=1
(ft(θt)− ft(θ′)). where θ′ = arg minθ∈κ

∑T
t=1 ft(θ) and

κ is feasible set for all t− 1 steps.
Definition 7: The bounded gradients of the function fDRL

t

is ‖δft(θ)‖2 ≤ GDRL‖δft(θ)‖∞ ≤ GDRL
∞ , ∀θ ∈ RDRL

d .
Secondly, the distance generated by the Adam optimiser is
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Fig. 5. Sub-figure (a) is the convergence for the proposed algorithms:
DRL for medium and heavy traffic (for 4 users and max scheduling up to
10 users), SARSA for medium and low traffic range ( support 2, 3, and
upto 4 users scheduling) and the comparison for two different learning rates
(α = 0.75, α = 0.1). The sub-figure (b) shows a long-term comparison
between the channel bandwidth, average sum rate, and power levels for the
proposed SARSA, DRL and benchmark scheme.

bounded as: ‖θp − θq‖2 ≤ D, ‖θp − θq‖∞ ≤ D∞ for any
p, q ∈ {1, · · · , T} with the bias terms β1, β2 ∈ [0, 1] satisfying

the β2
1√
β2

< 1 condition. Let the learning rate of the Adam

optimiser be αt = α/
√
t and bias term βt

1 = β1λ
t−1, λ ∈

[0, 1] for each step t, for all T ≥ 1 Adam obtains the following
condition [53]:

RDRL(T ) ≤ D2/2α(1− β1)
d∑

i=0

√
Tv′T,i

+
α(1 + β1)GDRL

∞
(1 − β1)

√
1− β2(1− γ)2

d∑
i=0

‖g1:T,i‖2

+
d∑

i=0

D2
∞G

DRL
∞
√

1− β2

2α (1− β1)(1 − λ)2
(21)

The results obtained from the primary analysis of sum
rate and traffic densities are shown in Fig. 5(b) in

Fig. 6. Overview of the proposed framework for the sum-rate maxi-
mization problem. Sub-figure (a) is a short-term comparison between the
channel bandwidth, average sum rate, and different network traffic loads
for the proposed DRL and SARSA. The parameter (L) denotes light traffic,
(M) denotes medium, and (H) is for heavy traffic. (b) shows a long-term
comparison between time episodes and clustering parameter c, showing the
sum of connected users in the long-term for the proposed SARSA, DRL and
OMA scheme.

long-term settings. It shows that the proposed model per-
forms close to the benchmark scheme and better than OMA.
Additionally, we compare the proposed NOMA with dynamic
power and traditional NOMA scheme with the fixed power
as NOMA-fix(P). It is clearly visible that the traditional
method of allocation as NOMA-fix(P) is not as efficient as
the proposed allocation strategy. Fig.6(a) shows short-term
performance analysis between sum rates, bandwidth, and the
number of iterations. This figure illustrates the performance of
DRL and SARSA according to different bandwidths, due to the
fast convergence with heavy traffic as shown in Fig. 5(a) the
performance of the DRL is better than SARSA. Interestingly it
also shows that with the increase of the traffic density, the sum
rate improves. Therefore, sum rates are proportional to the
number of users/traffic density in this case. Furthermore, from
Fig. 5(b) even with light traffic conditions, the sum rate of
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Fig. 7. Overview of the proposed framework for the sum-rate maximization
problem. Sub-figure (a) DRL loss vs the number of episodes: A comparison
between DRL loss and training episodes for different activation functions
(ReLU, TanH, Sigmoid). Sub-figure (b) shows Rewards vs activation func-
tions: A comparison between achieved rewards and episodes for different
activation functions (ReLU, TanH, Sigmoid) of DRL algorithm.

NOMA systems is higher than OMA. Lastly, Fig. 6(b) shows
the relationships among long-term users connectivity during
the simulation time. Where it is clearly visible that NOMA
is more efficient for user connectivity by serving more users
than OMA. From this figure, we can see that the connectivity
is improving as reinforcement learning agents, specifically
DRL agent learning the dynamic environment. The number
of served users are significantly increasing after 150 episodes
of learning. As we can see the total number of served users
are more than 3000 for DRL NOMA and more than 1000 for
SARSA NOMA within 200 episodes.

B. DQN Loss vs Rewards

In Fig. 7(a), the loss (MSE) for the DRL algorithm
is shown, comparing three well-known activation functions
(ReLU, TanH, and Sigmoid). As it can be seen that ReLU per-
forms better than both Sigmoid and TanH activation functions.

Fig. 8. Clustering time (mean (sec)) vs Traffic Densities for DRL and
SARSA: A comparison between different traffic densities and learning rates
of the proposed algorithms.

Sigmoid and TanH perform relatively better only in initial
steps due to less experience of the DRL agent. Therefore,
when the DRL agent gains some experience after the process
of exploration and exploitation of the given environment,
the outcome of the DRL algorithm is changed accordingly.
The loss (y-axis) for all the activation functions is decreasing
according to the number of episodes (x-axis). Furthermore,
this figure also shows that the performance (loss) of the
DRL algorithm is efficient when ReLU activation is used.
Fig. 7(b) provides the summary statistics of achieved average
rewards for the three different activation functions of the
DRL algorithm. From the data in Fig. 7(b), it is apparent
that the DRL algorithm with ReLU outperforms Sigmoid
and TanH activation functions. After combining Fig. 7(a) and
Fig. 7(b), another interesting outcome is that by the improve-
ment of the loss function, the rewards improves as well. There-
fore, loss and reward are proportional to each other. Lastly,
DRL with the Sigmoid activations is the second best until
200 episodes and in all the remaining cases, where the episode
is greater than 200 the performance of TanH is better than
Sigmoid.

C. Clustering Time

The average clustering time in second is compared for DRL
and SARSA algorithms with different types of traffic and
the impact of learning rates α in Fig. 8. The learning rate
is the significant hyper-parameter of RL algorithms, which
shows how long the agent spends to explore and exploit
the given environments. From the figure, it can be seen that
there is no large effect of learning rates on clustering time
(y-axis) for all the scenarios with current hyper-parameters
but if it is not tuned with other hyper-parameters, the learning
rate can negatively influence the learning process. Therefore,
with improper tuning the learning process becomes unbal-
anced and the agent can be searching for the solution for an
infinite amount of time. Lastly, the clustering time increases
but not significant when the max load is increased from
3 to 10.
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V. CONCLUSION

This article has proposed resource allocation for IoT users
in the uplink transmission of NOMA systems. Two algorithms
DRL and SARSA in the present study have been designed
to determine the effect of three different traffic densities on
the sum rate of IoT users. In order to improve the overall
sum rate under a different number of IoT users, we have
formulated a multi-dimensional optimization problem using
intelligent clustering based on RL algorithms with several
interesting outcomes. Firstly, the simulation results of this
study have indicated that the proposed technique performed
close to the benchmark scheme in all the scenarios. The second
major finding is that this framework provides a long-term
guaranteed average rate with long-term reliability and stability.
Thirdly, it has proved that DRL is efficient for complex
scenarios. Additionally, we have proved that the sparse activa-
tions improve the performance of the DNNs when compared
to the traditional mechanisms. Therefore, DRL with sparse
activations is suitable for heavy traffic and SARSA is suitable
for light traffic conditions. Furthermore, in general, both the
algorithms (DRL and SARSA) have obtained better sum
rates than OMA systems. Lastly, further research will explore
performance improvements under the different scale of the
networks.

APPENDIX A
PROOF OF PROBLEM (6a)

With the aid of the theory of computation complexity,
we are able to use the following two steps to prove that the
problem (6a) is an NP-hard problem. Step 1: the association
problem for every subset of Φi,j

u is NP-complete. Step 2: this
step is to prove the relationship of ui,j

k and the problem in
(A.1) is similar to our objective function. The problem (6a)
in this article is NP-hard, following proof can be divided into
two cases, namely Nu = 1 (static clustering/association) and
Nu ≥ 1 (dynamic clustering/associations).

1) For the case Nu = 1 (static clustering/association),
the problem (6a) is similar to the conventional OMA
systems so that the resource management problem can
be expressed as follows:

max
C,P

E[Rsum(t)], (A.1)

s.t : 2 ≤ ci,jk (t), ∀i, k = 1, (A.2)
Ni,j

u∑
k=1

ci,jk (t)pi,j
k (t) ≤ Pb, ∀i, ∀j. (A.3)

The above-mentioned problem has been proved to be
NP-hard in [54] for OMA systems.

2) For the case Nu > 1 (dynamic clustering/associations),
even with known power allocations we show that the
problem (6a) is NP-hard since the optimal power selec-
tion for multiple users is NP-hard. Additionally, it is
known that 3D associations are NP-hard problems [44].
Under the condition that Nu > 1, for any ui,j

k , there
are more than one combinations in the set Φi,j

u even for
the 3D association problem in OMA systems. Moreover,
the combinations in NOMA is larger than those in OMA.

As a result, the decision problem of the constructed instance
is NP-complete and the main instance is NP-hard.
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