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Abstract
The physical effects of climate warming have been well documented, but the bio-
logical responses are far less well known, especially at the ecosystem level and at 
large (intercontinental) scales. Global warming over the next century is generally pre-
dicted to reduce food web complexity, but this is rarely tested empirically due to the 
dearth of studies isolating the effects of temperature on complex natural food webs. 
To overcome this obstacle, we used ‘natural experiments’ across 14 streams in Iceland 
and Russia, with natural warming of up to 20°C above the coldest stream in each 
high-latitude region, where anthropogenic warming is predicted to be especially rapid. 
Using biomass-weighted stable isotope data, we found that community isotopic diver-
gence (a universal, taxon-free measure of trophic diversity) was consistently lower in 
warmer streams. We also found a clear shift towards greater assimilation of autoch-
thonous carbon, which was driven by increasing dominance of herbivores but without 
a concomitant increase in algal stocks. Overall, our results support the prediction that 
higher temperatures will simplify high-latitude freshwater ecosystems and provide 
the first mechanistic glimpses of how warming alters energy transfer through food 
webs at intercontinental scales.
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1  |  INTRODUC TION

Our planet is warming at an accelerating rate, with average sur-
face temperatures rising by more than 1°C in the last 80 years 
and an increase of 1.5–4°C forecast for the end of this century 
(IPCC,  2023; NASA,  2024). Even small changes in temperature 
can dramatically alter natural systems, and biological responses to 
warming can manifest anywhere from the individual to the eco-
system level (Walther, 2010; Woodward, Perkins, & Brown, 2010). 
The >1°C warming that our planet has experienced within the past 
century has already been implicated in reduced insect abundances 
(Hallmann et al., 2017; Leather, 2018), body size declines within and 
across taxa (Sheridan & Bickford, 2011; van Buskirk et al., 2010), and 
widespread local extinctions of hundreds of aquatic and terrestrial 
species (Wiens, 2016). Whole-community responses are less well-
described, partly because natural ecosystems commonly consist of 
many hundreds of species and thousands of interactions and docu-
menting such phenomena is logistically challenging. However, even 
in these seemingly complex food webs, each species is often only 
two links removed from any other (Woodward et al., 2008), so the 
system as a whole can be very sensitive to perturbations and may 
respond in ways that cannot be simply extrapolated from studying 
individual populations. Characterising how natural food webs re-
spond to changes in temperature is therefore essential if we are to 
understand wider ecosystem responses to warming. Here we em-
ploy an isotopic approach to food web characterisation which offers 
a common currency that is both logistically tractable and transfer-
able across ecosystems and through space and time. This allows us 
to compare how temperature shapes ecosystems from contrasting 
biogeographical histories and with negligible taxonomic overlap.

The carbon and nitrogen stable isotope values of a consumer's 
body tissue reflect that of their diet, and they are, therefore, use-
ful indicators of feeding interactions. Carbon isotopes reflect diet 
source (allochthonous vs. autochthonous), while nitrogen isotopes 
indicate trophic position (Jackson et  al.,  2012). These feeding in-
teractions are expected to be temperature dependent; therefore, 
this should be reflected in consumers carbon and nitrogen stable 
isotope values. For instance, diet can be affected by warming di-
rectly through elevating the metabolic rates of consumers (Brown 
et  al.,  2004; Yvon-Durocher et  al.,  2010), thereby increasing their 
feeding activity and forcing diet switching to keep up with rising 
metabolic demands (O'Gorman et al., 2016). Diet might also change 
due to the indirect effects of warming. For instance, high tempera-
tures might alter resource quality or abundance (Tseng et al., 2021). 
In freshwaters warming is generally expected to increase the abun-
dance of primary producers by promoting faster algal growth which 
can promote herbivory (the ‘green’ pathway; Delgado et al., 2017). 
These changes, both within individuals of the same species and be-
tween species, could ultimately lead to rewiring within the food web. 
Additionally, higher temperatures will put local cold-adapted taxa at 
a disadvantage, and these may be replaced by more eurythermal taxa 
with further implications for trophic diversity. We also expect food 
chains to shorten if warming reduces trophic transfer efficiency and 

favours smaller species, which tend to be herbivorous (Barneche & 
Allen, 2018; Brown et al., 2004; Yvon-Durocher et al., 2010).

Here, we test whether temperature has these predicted effects 
in stream food webs using a natural experiment spanning bioe-
geographically independent high-latitude catchments in Hengill 
(Iceland) and Kamchatka (Russia). Within each region, streams vary 
naturally in temperature due to indirect heating of groundwater. For 
many years, research in geothermal regions has focused on extrem-
ophiles (e.g. in Yellowstone National Park) adapted to very high tem-
peratures and these study systems are often associated with (and 
conflated with) high acidity, so they are poorly suited to studying 
the more subtle effects of global warming and in disentangling these 
from other physicochemical covariables. However, our study streams 
differ fundamentally from these extreme environments because 
they are all heated via gentle warming of the bedrock, hydrologically 
stable, and with no significant confounding effects of water chem-
istry across the temperature gradient (see Supporting Information), 
therefore providing an ideal ‘natural experiment’ where temperature 
can be isolated as a ‘master variable’ (O'Gorman et al., 2014). Our 
previous work in Hengill has shown that temperature causes a shift 
in community structure (Friberg et al., 2009; O'Gorman et al., 2017; 
Woodward, Dybkjaer, et  al.,  2010), but here we test the transfer-
ability of these findings by expanding to a second naturally heated 
suite of streams in Kamchatka (Jackson et al., 2024). We also use a 
novel approach to detect further food web trends: stable isotope-
derived—and biomass weighted—community metrics, which allow 
us to compare trophic structures over contrasting biogeographical 
regions by using common currencies that apply even in the face of 
100% species turnover.

Since the carbon isotopic values of a consumer reflect the origin 
of their assimilated food (authochthonous vs. allochthonous), while 
nitrogen isotopes describe trophic status, the distribution of organ-
isms in isotopic space (the ‘IsoWeb’) relative to one another captures 
the overall food web structure (Cucherousset & Villéger,  2015; 
Jackson et al., 2012). Typically, most such studies have given equal 
weighting to abundant and rare species due to the challenges of 
measuring population abundance or biomass, but our measures are 
weighted by the latter to map more meaningfully onto associated 
ecosystem processes (following Cucherousset & Villéger, 2015). We 
hypothesise that under warming we will see reduced (H1) trophic 
diversity (i.e. simpler food webs) and (H2) average trophic level (i.e. 
shorter food chains) with (H3) consumers shifting increasingly from 
‘brown’ to the ‘green’ trophic pathways.

2  |  METHODS

Sampling took place in July 2016 (Hengill, Iceland) and August 
2017 (Kamchatka, Russia, Figure S1). At each location, we sampled 
7 streams across a comparable range of ambient (i.e., the coldest 
stream) and elevated temperatures for stable isotope analysis (mean 
summer stream temperature: Iceland, 4.2–20.2°C; Kamchatka, 5.2–
21.6°C). At each site, we measured temperature every minute for 
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at least 1 week (MiniDot DO Loggers). Conductivity and pH were 
measured every minute for at least 24 h (using a Manta+, Eureka). 
Total nitrogen (TN) was measured from one water sample as the sum 
of organic and inorganic nitrogen using a TOC-L CPH/CPN analyser 
with a chemiluminescence detector (Shimadzu).

2.1  |  Consumer sampling

We collected benthic invertebrates using a 25 × 25 cm Surber sam-
pler (mesh size 250 μm) at 3 locations in each stream. The samples 
were preserved in 80% ethanol and taken back to the laboratory. 
Individuals were identified to the highest possible taxonomic reso-
lution (i.e. species where possible), counted and measured using a 
Nikon SMZ800 at a magnification of 10–63×. We then calculated 
rarefied invertebrate richness for each stream based on the lowest 
number of invertebrates sampled (n = 116) using the vegan package 
in R (Oksanen et al., 2019; R Core Team, 2022). Next, we quantified 
the total invertebrate biomass in each stream by first estimating av-
erage invertebrate species body masses. Here, a single linear dimen-
sion (head width or body length) was measured for an average of 
24 individuals (range: 1–161; 5966 individuals measured in total) of 
each species in each stream, and individual biomass was estimated 
using published length-mass equations (see O'Gorman et al., 2019). 
Biomass of each species was then calculated by multiplying the aver-
age species body mass of each taxon in the community by the popu-
lation abundance.

2.2  |  Basal resource sampling

We removed and dried all coarse particulate organic matter (CPOM, 
particles >2 mm) in each Surber sample as a measure of energy avail-
able via the ‘brown’ trophic pathway—representing decaying organic 
material, which is often terrestrial in origin. We scrubbed uniform 
areas (8.28 cm2) of biofilm from rocks using a toothbrush as an es-
timate (Jackson et al., 2014). This was resuspended in stream water 
before we used a Fluoroprobe (bbe Moldaenke GmbH) to calculate 
total chlorophyll for different taxonomic groups in each sample. We 
considered the palatable groups which are important as food re-
sources (diatoms and green algae, of which most species are edible 
for aquatic invertebrates) but not cyanobacteria or crytpophytes in 
our analysis (see Supporting Information for full methods).

2.3  |  Stable isotope analyses

The same invertebrate samples collected above and stored in eth-
anol were used for stable isotope analyses (see below) following 
(González-Bergonzoni et al., 2015). Ethanol preservation has been 
shown to have less of an effect on isotopic signatures than other 
preservation techniques (Ruiz-Cooley et  al.,  2011) and is becom-
ing increasing commonly in stable isotope ecology, particularly in 

aquatic studies. For instance, studies have effectively used ethanol 
preserved samples to quantify the diet of fish (González-Bergonzoni 
et  al.,  2015; Kishe-Machumu et  al.,  2017) penguins (Cherel & 
Hobson, 2007) and collembolans (Ferlian et al., 2015), and to study 
whole food webs (Feunteun et al., 2015; Hempson et al., 2017). We 
also froze some of the most abundant invertebrates for comparison 
of preservation techniques. This showed consistent differences 
between frozen and ethanol-preserved samples (see Supporting 
Information), allowing comparison of our results to other studies 
using frozen samples. For each stream, we ran three samples of each 
species for stable isotope analysis, following Jackson et al.  (2020). 
To gain sufficient material for robust isotopic analysis, we grouped 
2–20 individuals of a similar size for each invertebrate species. We 
removed them from ethanol and washed them in distilled water. 
We used whole primary consumers and omnivores without guts 
removed because several papers have shown that the removal of 
guts (or gut clearance) does not alter results because the biomass 
of gut contents is so small as to be effectively negligible, especially 
for smaller individuals lower in the food web (Jardine et al., 2005; 
Woodward et  al.,  2005). However, we removed the guts of larger 
invertebrate predators. Samples were then dried for 48 h at 60°C 
before being ground up and 0.5–1 mg weighed into ultra-clean tin 
cups (6 × 4 mm, Elemental Microanalysis). Carbon and nitrogen sta-
ble isotope analysis was performed on a Sercon Integra II combined 
elemental analyser and mass spectrometer following Barneche et al. 
(2021) . We collected taxa representing on average 94% of the total 
biomass of each stream (range: 76%–100%), thus we are confident 
our isotopic metrics are a good representation of the entire animal 
community (Perkins et al., 2018). We also collected potential basal 
resources (biofilm, aquatic weeds, terrestrial leaves, moss and grass) 
to determine what consumer isotopic shifts mean for actual diet 
composition (Supporting Information).

We scaled nitrogen and carbon values in each region from 0 
to 1 to standardise isotopic baselines following Cucherousset and 
Villéger  (2015). Next, we calculated biomass-weighted metrics of 
food web structure for each stream using the mean scaled isotope 
signature of each consumer species. This uses the relative spread of 
populations in ordination space and is, therefore, unaffected by the 
sample preservation technique since all samples are affected simi-
larly. We calculated isotopic diversity (also called isotopic divergence; 
Idiv) as a measure of whole food-web trophic diversity (see full equa-
tions in Cucherousset & Villéger, 2015). Values close to 0 indicate 
that most of the community biomass is distributed at the centre of 
the isotopic web, suggesting low trophic variation between species 
and that dietary generalism dominates. Values close to 1 indicate 
that most of the biomass is near the borders of the isotopic web 
and the food web has high trophic diversity and specialists are com-
mon. We calculated carbon position (Cpos) as biomass-weighted δ13C 
(Cucherousset & Villéger, 2015). This is scaled from 0 to 1, with lower 
values indicating that more of the biomass is reliant on the ‘brown’ 
trophic pathway and allochthonous input (Figure S4). Higher values 
indicate that most of the biomass is reliant on the ‘green’ trophic 
pathway and autochthonous input (Figure  S4). We also calculated 
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nitrogen position (Npos) as biomass-weighted and scaled δ15N, which 
is indicative of trophic level (Cucherousset & Villéger, 2015). Higher 
values indicate that a higher biomass of predators (Cucherousset & 
Villéger, 2015).

2.4  |  Statistical analysis

First, we tested for a relationship between temperature and the 
availability of resources via the ‘green’ (algal standing stock) and 
‘brown’ (CPOM biomass) trophic pathways using simple linear 
models in R. Next, variation in invertebrate taxonomic community 
structure was explored using Detrended Correspondence Analysis 
(DCA) in the vegan package (Oksanen et al., 2019). We used square 
root transformed relative biomass data to dampen the influence of 
outliers and passively overlaid associations with environmental vari-
ables (temperature, pH, total nitrogen, flow). We also assigned each 
species as either a herbivore, omnivore or predator using functional 
feeding groups (following Merritt & Cummins, 2008) for analysing 
biomass trends.

Finally, for each response metric (Idiv, Cpos, Npos, rarefied rich-
ness and biomass of different groups) we tested for an effect of 
temperature and location (and their interaction) using an ANCOVA 
in R. This allowed us to test if response-temperature relationships 
vary between Hengill and Kamchatka. We plotted a single trend line 
if the location was not significant (to represent a significant tem-
perature–response relationship) and separate trend lines for each 
location where there was a significant difference (and therefore, a 
significant temperature-response relationship within each region). 
We also explored both linear and exponential relationships with 
temperature, selecting a simple linear model unless the AIC values 
for the exponential model were >2 AIC units lower, indicating a sig-
nificantly better fit (using the ‘AIC’ function in R; Table S2). All our 
selected models satisfied tests for normality of the residuals (using 
Shapiro–Wilk tests) in the ‘olsrr’ package in R. All results are for sim-
ple linear models unless stated (see model comparison in Table S2). 
All data is provided in FigShare (Jackson, 2024).

3  |  RESULTS

3.1  |  Resource availability

There was no effect of temperature on resource standing stock via 
the ‘green’ (F1,10 = 0.963, p = .350; Figure S5a) or ‘brown’ (F1,10 = 1.008, 
p = .339; Figure S5b) pathways.

3.2  |  Stable isotope metrics

As predicted in H1, biomass-weighted isotopic divergence declined 
with temperature (F1,10 = 9.112, p = .013) and was significantly 
higher in Iceland (F1,10 = 11.192, p = .007, Figure 1a,b). There was no 

significant interactive effect of temperature and location (Table S2). 
Community carbon position significantly increased with warming 
(F1,10 = 6.728, p = .027, Figure  1c; Table  S2), indicating a consistent 
trend in both locations towards greater consumption of biomass 
from the green trophic pathway and autochthonous material as 
predicted in H3 (see Figure  S4 for resource isotopes). In contrast 
to our prediction (H2), however, community nitrogen position was 
not significantly altered by temperature (F1,10 = 2.363, p = .155, 
Figure 1d; Table S2).

3.3  |  Taxonomy metrics

Warming caused a shift in the invertebrate community, but the 
other environmental variables were also important (Figure  2a,b). 
Invertebrate richness declined exponentially with warming in each 
location (Figure 2c) (F1,10 = 4.03, p = .072; Table S2), supporting H1. 
Warming also significantly increased herbivore biomass in both 
locations (F1,10 = 7.71, p = .02; Table  S2; Figure  2d), supporting H3. 
There were no significant effects on generalist or predator biomass 
(Table S2).

4  |  DISCUSSION

Our results show a decline in trophic diversity and an increase in 
carbon position with warming, suggesting lower trophic variation 
between species and convergence on the ‘green’ trophic pathway, 
despite no change in the standing stock of this resource. This is 
supported by the taxonomic results, revealing an overall decline in 
invertebrate richness at high temperatures, but an increase in her-
bivore biomass.

We found that isotopic divergence (trophic diversity) declined with 
warming in both Kamchatka and Iceland, suggesting climate change 
could simplify food webs, as suggested in recent studies using 
more traditional metrics, such as network connectance (O'Gorman 
et al., 2012). Our results indicate species taxonomic richness is also 
lost at high temperatures, but the decline in isotopic divergence sug-
gests that this is not fully functionally compensated by expanding 
trophic niches in the remaining heat tolerant species. Low isotopic 
divergence indicates that more of the community biomass is clus-
tered close to the centre of the isotopic web, suggesting low trophic 
variation between species and a dominance of generalism, as we 
predicted. In general, streams are usually dominated by generalists, 
suggesting this phenomenon might intensify further still with warm-
ing. Other studies have found an increase in generalism and a loss 
of specialist species with global change (measured indirectly using 
trait-based approaches), leading to biotic homogenisation (Clavel 
et  al.,  2011). For instance, long-term studies spanning decades on 
both terrestrial ectotherms (Valtonen et al., 2017) and endotherms 
(Bowler et al., 2019) have found similar declines in dietary special-
ists over time which could be linked to climate change. Such biotic 
homogenisation can lead to a loss of ecosystem functions, due to a 
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loss of species with unique functional roles and an overall decline in 
community resilience (Petsch & Os-Graduas, 2016).

The increase in generalism occurred simultaneously with greater 
reliance on the ‘green’ trophic pathway, suggesting warming is mak-
ing consumers more reliant on autochthonous carbon, versus the 
‘brown’ detrial-based pathways. The standing stock of algal biofilms 
did not increase with temperature, but past evidence suggests pri-
mary productivity does, with this matched by an increase in herbiv-
ory (O'Gorman et al., 2017). Our results support this, with a marked 
increases in keystone herbivore biomass (primarily grazing snails, 

Radix sp.) under warming (O'Gorman et al., 2017). Overall, this sug-
gests that food webs under warming will become increasingly sim-
pler and dominated by herbivory. Similarly, O'Gorman et al.  (2019) 
found a decline in food web complexity (measured as linkage density 
or connectance in trophic networks) and mean trophic level in the 
same system in Iceland using traditional gut content analysis (which 
captures only recent ingestion, rather than assimilation over time—a 
major advantage of isotopes). Our results provide another key piece 
of evidence by demonstrating the same pattern of declines in food 
web complexity is repeated not only using a complementary isotopic 

F I G U R E  1  Isotopic changes with temperature. (a) Each plot shows a polygon to illustrate each stream's ‘IsoWeb’ coloured by temperature. 
Each data point represents the average carbon and nitrogen scaled stable isotope value of a species, with the symbol size representing 
relative biomass (%) of that species. Biomass-weighted functional diversity metrics were then calculated from this data to test how they 
change across the temperature gradient: (b) isotopic diversity (as a measure of food web complexity), (c) carbon position (as an indicator of 
reliance on ‘green’ vs. ‘brown’ trophic pathways), and (d) nitrogen position (as an indicator of average trophic level). Fitted lines are shown 
where significant: For isotopic diversity there was a significant effect of temperature and location, with trend lines shown in gold for Iceland 
and grey for Kamchatka. For carbon position, there was only a significant main effect of temperature, so a single best-fit line is shown in 
both colours.
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approach but that it also applies in a biographically independent 
suite of sites, suggesting the potential universal transferability of 
these findings. Despite our study sites being >6500 km apart, the 
food webs responded in the same way to temperature—indicating a 
fundamental response to warming (despite different species pools) 
and shows how isotope metrics can be used as a common global 
currency.

The changes in food web complexity we observed can be linked 
to convergence on the ‘green’ trophic pathway despite no increase 
in algal standing stock, suggesting an increase in algal growth (and 
overall productivity) leading to increased herbivory. Generally, these 
‘green’ resources are a higher quality food resource than those from 
the ‘brown’ trophic pathway (Evans-White & Halvorson,  2017). 
Therefore, the increased reliance on the ‘green’ pathway may be 
an energy efficient response to keep up with the greater meta-
bolic demands of living in a warmer environment (Allen et al., 2005; 

Barneche & Allen,  2018). However, in a mesocosm experiment 
Gossiaux et al.  (2020) found that increases in invertebrate growth 
rates with 2°C of warming was not linked to any improvement in 
basal resource quality. Furthermore, Leal et  al.  (2023) showed no 
relationship between climate factors and the relative contribution 
of ‘green’ resources in a meta-analysis of lotic systems. The clear 
shift to a higher reliance on ‘green’ resources could, therefore, also 
be due to a shift in the community (Jackson et al., 2024 ) to more ef-
ficient grazer species, which is supported by our ordination results. 
Although stocks did not differ with temperature, net primary pro-
duction (NPP) commonly increases with warming (Yvon-Durocher 
et al., 2015), and this could also be contributing to the increased con-
sumption of ‘green’ energy by invertebrates. Indeed, previous field 
experiments and bioassays in the same Icelandic systems have shown 
that both the brown and green pathways run ‘faster’ under warming, 
with algal growth and NPP (a resource flux) in the latter rising with 

F I G U R E  2  Taxonomic changes with temperature. (a, b) Ordinations (DCA) where each point is a stream coloured by temperature along 
a gradient from blue (cold) to red (warm). The top 10% of species driving the differences between streams are included on the plots, 
and environmental variables are overlaid. Changes in rarefied richness (c) and the biomass of herbivores (d) were best explained by an 
exponential and linear model, respectively. In (c) and (d) there was only a significant main effect of temperature, so a single best-fit line is 
shown in gold and grey for both locations.

 13652486, 2024, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17518 by T

est, W
iley O

nline L
ibrary on [31/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  7 of 9JACKSON et al.

temperature and increased herbivore biomass (Junker et al., 2020; 
O'Gorman et  al.,  2012; Woodward, Dybkjaer, et  al.,  2010). Other 
research in the same system in Iceland has found that microbial 
decomposition increases with temperature, which may reduce the 
availability of leaf litter and, therefore, force consumers to switch 
from the brown to the green pathway (Friberg et al., 2009).

By using biomass-weighted isotope metrics, we can say that the 
food web shifts are driven by community-level changes in consump-
tion by abundant species. Isotopic metrics of food web structure 
are becoming an increasingly important tool for understanding how 
networks of interacting species are affected by global change be-
cause they are transferable across huge biogeographical gradients 
(Cucherousset et al., 2012; Jackson et al., 2020; Layman et al., 2012; 
McCue et al., 2020). Here, we demonstrate the successful applica-
tion of these tools to show how temperature can shift food web 
diversity and pathways of energy transfer. Importantly, our met-
ric of isotopic complexity is strongly associated with linkage den-
sity, a measure of complexity calculated using classical food web 
approaches based on gut content analysis, calculated in the same 
streams (O'Gorman et al., 2019; see correlation in Figure S6). This 
is the first time (as far as we are aware) that isotopic complexity has 
been shown to match classical measures of food web complexity. 
This has important implications for these two largely separate fields 
of study—food web theory and stable isotope ecology. By working 
together researchers from these two disciplines have the potential 
to provide more robust large-scale predictions about how food webs 
will respond to global change.
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