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Summary 

The paper introduces SensoryT5, a novel neuro-cognitive model developed to 

integrate sensory information into the T5 (Text-to-Text Transfer Transformer) 

framework for enhanced hate speech detection. This integration represents a 

pioneering step in natural language processing (NLP) as it combines cognitive 

science and computational techniques to improve the effectiveness and 

sensitivity of language models. SensoryT5 enriches the traditional attention 

mechanism of the T5 model with sensory cues, which helps achieve a more 

nuanced understanding of language context and sensory data. This approach 

has demonstrated superior performance over existing models, including both 

the foundational T5 and other pre-trained or large language models 

(PLMs/LLMs), as well as conventional machine learning methods. Through 

rigorous testing across multiple public datasets dedicated to hate speech 

detection, SensoryT5 has consistently outperformed contemporary 

benchmarks in the field. The primary contributions of this research are fourfold. 

First, it proposes a unique architecture that innovatively merges sensory 

knowledge with contextual attention mechanisms within a transformer-based 

model. Second, it showcases significant improvements in model performance 

for detecting hate speech. Third, by embedding sensory information into word 

representations, the model enhances the interpretability, providing deeper 

insights into the interplay between emotion and cognition in linguistic processes. 

Lastly, SensoryT5's use of sensory knowledge not only aids in refining detection 

capabilities but also promotes a broader interdisciplinary exchange of ideas 

between neuro-cognitive science and NLP. Overall, this study proposes a more 

integrated approach that considers both the cognitive underpinnings and 

technical aspects of language processing to tackle complex tasks like hate 

speech detection more effectively. 
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Abstract 

Traditionally, sensory perception and hate speech detection have been viewed 

as distinct areas within the field of natural language processing (NLP). However, 

the profound impact of sensory experiences on cognitive and linguistic 

processes is undeniable. Previous NLP research has often overlooked the 

potential of integrating sensory knowledge with advanced language models for 

hate speech detection. Addressing this oversight, we introduce SensoryT5, a 

neuro-cognitive model that embeds sensory information into the T5 (Text-to-

Text Transfer Transformer) framework, specifically tailored for enhanced hate 

speech detection. This innovative approach enriches the T5's attention 

mechanism with sensory cues, fostering a nuanced balance between 

contextual insights and sensory awareness. Through extensive testing across 

various datasets, SensoryT5 demonstrates superior performance in identifying 

hate speech, outperforming both the foundational T5 model and other pre-

trained language models (PLMs)/large language models (LLMs) as well as 

traditional machine learning methods. This advancement not only boosts the 

model’s efficacy but also underscores the importance of neuro-cognitive data 

in augmenting the linguistic and emotional sensitivity of machine learning 

models. Our findings mark a significant evolution in NLP research, advocating 

for a more integrated approach that considers both cognitive science and 
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computational techniques in tackling complex tasks such as hate speech 

detection. 

 

Introduction 

In the digital age, social media platforms and chat forums have revolutionized 

how individuals interact and communicate. These platforms offer a unique 

opportunity for instant and widespread sharing of personal opinions and 

experiences. However, this open digital space also fosters the dissemination of 

harmful content, including hate speech—expressions of animosity or 

disparagement directed at individuals or groups based on protected 

characteristics such as race, gender, or religion (Nockleby, 1994). The 

complexity and rapid evolution of online interactions present significant 

challenges for the detection and moderation of such content (Alkomah & Ma, 

2022; Jahan & Oussalah, 2023). 

Hate speech not only violates ethical norms and often legal guidelines but also 

poses severe social risks by fueling discrimination and social divisions. Recent 

events, such as the online harassment campaigns during various geopolitical 

conflicts, underscore the urgent need for effective hate speech detection 

mechanisms. Given the limitations of manual moderation—such as scalability 
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and timeliness—there is a substantial push towards developing automatic 

methods for hate speech detection using advances in Natural Language 

Processing (NLP) and Machine Learning (ML). 

The proliferation of digital platforms has been accompanied by an increase in 

the linguistic and cultural diversity of the content, which complicates the task of 

hate speech detection. Automatic detection systems must now cope with subtle 

linguistic cues and cultural contexts to distinguish between harmful speech and 

benign communication accurately. The challenges are exacerbated by the 

diverse legal landscapes across different countries, which influence the 

definition and thresholds of hate speech. Substantial research efforts have 

been directed at refining computational techniques to tackle this issue. 

Traditionally, machine learning models such as support vector machines (SVM), 

Naive Bayes (NB), Logistic Regression (LR), Decision Trees (DTs) and K-

Nearest Neighbor (KNN) have been extensively applied to text classification 

tasks, including hate speech detection (Alkomah & Ma, 2022). These models 

rely on feature extraction techniques like Term Frequency-Inverse Document 

Frequency (TF-IDF) or word embeddings to represent textual data in a high-

dimensional space. For example, SVM has been particularly popular due to its 

ability to handle high-dimensional feature spaces and its effectiveness in binary 

classification tasks, such as identifying hate speech versus non-hate speech. 

While these traditional approaches offer advantages in terms of interpretability 
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and relatively fast training times, they face limitations in capturing complex 

linguistic patterns, context, and semantic nuances (Yin & Zubiaga, 2021). This 

has led to the rise of more complex models like Convolutional Neural Networks 

(CNNs) and transformer-based models like Bidirectional Encoder 

Representations from Transformers (BERT), which can better understand the 

contextual relationships between words. However, traditional machine learning 

models remain a key component in the early stages of hate speech detection 

research and are often used as baselines for comparing the performance of 

more advanced methods. Researchers have leveraged a variety of data 

sources to train both traditional and deep learning models, as highlighted in 

prominent competitions like SemEval-2019 (Zampieri et al., 2019), SemEval-

2020 (Zampieri et al., 2020), and GermEval-2018 (Wiegand et al., 2018), which 

have significantly advanced the field. 

In recent decades, various sensory resources from diverse sources and 

modalities, such as physical signals (e.g., speech and facial expression) and 

physiological signals (e.g., electroencephalogram, electrocardiogram, galvanic 

skin response, and eye tracking), have been extensively used for automatic 

emotion recognition, which have improved the models for emotion recognition 

greatly(Fan et al., 2023; Rodriguez et al., 2022; Skaramagkas et al., 2023; 

Tuncer et al., 2021; Zhong et al., 2022). Recently, Xia et al. (2024) have 

achieved excellent results in emotion classification by integrating sensory 



10 

 

lexical fusion into the T5 model.  

Numerous studies have approached hate speech detection by incorporating 

techniques from sentiment analysis, reflecting the shared importance of 

emotional assessments in both fields (Markov et al., 2021; Plaza-Del-Arco et 

al., 2021; Rana & Jha, 2022). In this light, sentiment analysis does not merely 

serve to detect feelings but becomes a tool to gauge the intensity and harm 

potential of online interactions. Some researchers even categorize hate speech 

detection as a specialized branch of sentiment analysis focused on identifying 

negative sentiments that could lead to real-world harm (Ali et al., 2021). Inspired 

by this integrated perspective, this project is founded on the hypothesis that 

sensory inputs, which significantly aid emotion classification, can similarly 

enhance hate speech detection. Sensory information enriches the processing 

capabilities of NLP models by providing them with deeper contextual cues about 

the emotional state conveyed in text. Thus, by applying these insights, our 

SensoryT5 model aims to not only identify but also understand the complex 

emotional layers that underpin hate speech. This exploration is poised to 

advance our ability to handle the nuanced demands of online communication. 

Through integrating detailed sensory data into the T5 architecture, we enhance 

its capacity to discern subtle emotional nuances, thereby improving the 

precision and reliability of detecting hate speech. Ultimately, this project 

underscores the value of combining cognitive and sensory data to enrich NLP 
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applications, pushing the boundaries of what our current technologies can 

achieve in monitoring and moderating online spaces. This project aims to 

explore the relationship between sensory input and hate speech based on the 

assistance sensory input provides in emotion classification tasks. This 

exploration seeks to enhance the task of hate speech detection. The main 

contributions of our work can be summarized as follows: 

(1) We introduce a novel architecture, SensoryT5, which advances the 

transformer-based model for hate speech detection by incorporating 

sensory knowledge. This pioneering effort adapts SensoryT5 to integrate 

the subtleties of contextual attention with sensory information-based 

attention seamlessly. 

(2) Our experiments across several publicly available datasets for hate speech 

detection illustrate that our model significantly enhances the performance of 

existing models and consistently surpasses the contemporary state-of-the-

art benchmarks. 

(3) Beyond the improved performance and consistency of our SensoryT5 model 

compared to baseline models, embedding sensory knowledge into word 

representations augments the interpretability of the findings. This 

enhancement not only aids in the explainability of the model and its 

applications but also deepens our comprehension of the complex interplay 
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between emotion and cognition in human behaviors. 

(4) SensoryT5 leverages sensory knowledge within transformer text 

classification frameworks, contributing to the ongoing efforts to incorporate 

neuro-cognitive data in NLP tasks. That is, our work illuminates the potential 

of sensory information in refining hate speech detection, carving fresh 

prospects for exploration within the realm in NLP. In addition, this study 

underscores the value of cognition-anchored resources in sculpting 

attention models, which also encourages continued interdisciplinary 

dialogue and research between the domains of NLP and neuro-cognitive 

science. 
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Related work 

Hate speech 

Understanding hate speech within the framework of text processing involves 

grappling with its inherently nebulous boundaries. While the precise definition 

of hate speech remains a contentious issue without universal consensus, its 

recognition can significantly streamline annotation processes, thereby 

enhancing the reliability of hate speech detection systems. This is supported by 

researchers like Ross et al., who argue that a well-articulated definition could 

simplify the task of identifying hate speech in textual data (Ross et al., 2016). 

On the other hand, distinguishing hate speech from permissible free speech 

often presents a dilemma due to the overlapping nuances and the potential for 

infringing on freedom of expression. For example, the American Bar Association 

refrains from endorsing a definitive description of hate speech, suggesting 

instead that any speech contributing to a criminal offense may be judged under 

hate crime statutes (Wermiel, 2017). 

Consequently, this thesis does not attempt to establish a fixed definition of hate 

speech. Rather, it explores a variety of definitions put forward by different 

entities and authors to better understand the common characteristics attributed 

to hate speech and the various challenges these definitions pose to its detection. 

This approach not only aids in delineating what constitutes hate speech but also 
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highlights the complexity and the critical need for nuanced analysis in its 

identification, reflecting the intricate interplay between language and intergroup 

dynamics. 

1. Encyclopedia of the American Constitution (Nockleby et al., 2000): 

“Hate speech is speech that attacks a person or group on the basis of 

attributes such as race, religion, ethnic origin, national origin, sex, disability, 

sexual orientation, or gender identity.” 

2. Code of Conduct between European Union Commission and 

companies (Wigand & Voin, 2017): “All conduct publicly inciting to violence 

or hatred directed against a group of persons or a member of such a group 

defined by reference to race, color, religion, descent or national or ethnic.” 

3. International minorities associations (ILGA)1: “Hate crime is any form of 

crime targeting people because of their actual or perceived belonging to a 

particular group. The crimes can manifest in a variety of forms: physical and 

psychological intimidation, blackmail, property damage, aggression and 

violence, rape.” 

4. Facebook2: “We define hate speech as a direct attack against people on 

 
1 https://www.ilga-europe.org/what-we-do/our-advocacy-work/hate-crime-hate-speech 

2 https://www.facebook.com/communitystandards/hate_speech 



15 

 

the basis of what we call protected characteristics: race, ethnicity, national 

origin, disability, religious affiliation, caste, sexual orientation, sex, gender 

identity, and serious disease. We define attacks as violent or dehumanizing 

speech, harmful stereotypes, statements of inferiority, expressions of 

contempt, disgust or dismissal, cursing, and calls for exclusion or 

segregation. We consider age a protected characteristic when referenced 

along with another protected characteristic. We also protect refugees, 

migrants, immigrants, and asylum seekers from the most severe attacks, 

though we do allow commentary and criticism of immigration policies. 

Similarly, we provide some protections for characteristics like occupation, 

when they’re referenced along with a protected characteristic.” 

5. Twitter3: “Hateful conduct: You may not promote violence against or directly 

attack or threaten other people on the basis of race, ethnicity, national origin, 

sexual orientation, gender, gender identity, religious affiliation, age, disability, 

or serious disease.” 

6. YouTube 4 : “We remove content promoting violence or hatred against 

individuals or groups based on any of the following attributes: age, caste, 

disability, ethnicity, gender identity and expression, nationality, race, 

 
3 https://help.twitter.com/en/rules-and-policies/twitter-rules#hateful-conduct 

4 https://support.google.com/youtube/answer/2801939?hl=en 
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immigration status, religion, sex/gender, sexual orientation, victims of a 

major violent event and their kin, and veteran Status.”  

7. Academic Perspectives: 

Nobata et al. (2016) view hate speech as acts that "attack or demean a 

group or individual based on attributes such as race, ethnic origin, religion, 

disability, gender, age, or sexual orientation". This definition underscores the 

targeted nature of hate speech, emphasizing the diversity of potential victim 

categories. 

Nockleby (1994) offers a broader definition, describing hate speech as "any 

communication that disparages a person or a group on the basis of 

characteristics like race, color, ethnicity, gender, sexual orientation, 

nationality, religion, or other similar traits". This encapsulates a wider array 

of discriminatory communications. 

Warner & Hirschberg (2012) differentiate hate speech by the speaker's 

intent to harm, associating it with the presence of language that could incite 

prejudice or violence. 

Waseem & Hovy (2016) specifically categorize racist and sexist remarks as 

key examples of hate speech, highlighting the common contexts in which 

such speech occurs. 

Waseem & Hovy (2016) define it as "a deliberate attack directed towards a 
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specific group, motivated by aspects of the group’s identity", pointing out the 

premeditated nature of such acts. 

Fortuna & Nunes (2019) describe hate speech as language that "attacks 

or diminishes, that incites violence or hate against groups based on specific 

characteristics such as physical appearance, religion, descent, national or 

ethnic origin, sexual orientation, gender identity, among others". They note 

the potential subtlety of hate speech, which can even include humor or 

indirect language. 

In exploring the multifaceted definitions of hate speech presented by various 

entities ranging from constitutional documents to social media policies and 

scholarly research, it is clear that hate speech encompasses a wide array 

of expressions driven by prejudice, discrimination, or antagonism. Each 

definition highlights different aspects of hate speech, from intentional 

attacks to subtle insinuations, reflecting the complex nature of this social 

phenomenon. 

Given this complexity, the challenge of automatically detecting hate speech 

in text is significant. The varying definitions imply that any detection system 

must be highly sophisticated and adaptable, capable of understanding 

context, nuance, and the subtleties of language that differentiate hate 

speech from other forms of expression. This is not just a technical challenge 
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but also a societal imperative, as the impact of hate speech on individuals 

and communities can be profound. 

Automatic hate speech detection 

The exploration of automatic hate speech detection in textual data is a crucial 

aspect of modern computational linguistics and artificial intelligence, aimed at 

mitigating the pervasive issue of online hate. This section reviews various 

methodologies and frameworks developed for automatic hate speech detection, 

emphasizing the evolution from simple lexical approaches to sophisticated 

machine learning and deep learning models. 

A modest share of the studies, about 12%, employ traditional machine learning 

techniques centered around the Term Frequency-Inverse Document Frequency 

(TFIDF) approach (Alkomah & Ma, 2022). The TFIDF methodology emphasizes 

terms that are uncommon in the overall corpus but prevalent in hate speech, 

thereby aiding in its detection. Significant implementations in this approach 

include using TFIDF in conjunction with various natural language processing 

tools to refine detection capabilities, as demonstrated in works incorporating 

character or word IDF methods (Saha et al., 2018), sophisticated embedding 

techniques (de Andrade & Gonçalves, 2021), and multiple linguistic features 

(Davidson et al., 2017; Martins et al., 2018; Nobata et al., 2016; Ombui et al., 

2019; Watanabe et al., 2018). Lexicon-based strategies utilize predefined sets 
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of keywords compiled from scholarly literature or expert recommendations to 

filter hate speech. An example of effective application is the integration of a hate 

speech-specific lexicon with SVM (Support Vector Machines) classifiers, which 

has proven effective in identifying misogynistic content online (Frenda et al., 

2019). This method's precision is enhanced by combining traditional TFIDF 

values with lexicon-based features, increasing the accuracy of predictions 

(Bauwelinck et al., 2019, p. 5; Chakrabarty, 2020; Davidson et al., 2017; Indurthi 

et al., 2019; Srivastava & Sharma, 2020). 

Beyond lexicon-based approaches, traditional machine learning models have 

been widely studied. These models include character n-gram Logistic 

Regression (Gröndahl et al., 2018), Support Vector Machines (Fortuna, Soler-

Company & Wanner, 2021; Pamungkas & Patti, 2019; Pamungkas, Basile & 

Patti, 2020), and shallow networks with pre-trained embeddings, such as MLP 

with Byte-Pair Encoding (BPE)-based subword embeddings (Heinzerling & 

Strube, 2018). But these simpler models generally do not perform as well as 

deep neural networks. 

Hate speech detection in NLP has seen substantial evolution, transitioning from 

basic rule-based methods to sophisticated pre-trained language models (PLMs) 

and large language models (LLMs). Initially, research in this area largely 

focused on feature learning through neural networks such as Convolutional 

Neural Networks (CNN) (Gambäck & Sikdar, 2017), Recurrent Neural Networks 
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(RNN) (Saksesi et al., 2018), and Long Short-Term Memory networks (LSTM) 

(Bisht et al., 2020), which primarily addressed syntactic parsing. 

Over recent years, the development of PLMs and LLMs like BERT (Devlin et 

al., 2019), RoBERTa (Liu et al., 2019), GPT-3 (Brown et al., 2020), T5 (Raffel 

et al., 2020), PaLM (Chowdhery et al., 2023), LLaMA (Touvron et al., 2023), and 

ChatGPT (OpenAI et al., 2024) has marked a significant leap forward. These 

models have been pre-trained on extensive text corpora using self-supervised 

learning techniques, enabling them to generate complex representations 

autonomously. This capability has greatly enhanced their performance in 

various NLP tasks, notably in hate speech detection (Jahan et al., 2024; Y. Jin 

et al., 2024; Kikkisetti et al., 2024; Shi et al., 2024; Zhang et al., 2024). 

Among these, the T5 model is particularly notable for its unique text-to-text 

transfer methodology, where every NLP task, including hate speech detection, 

is reformulated as a text-to-text problem. This innovative approach has proven 

effective in identifying and categorizing hate speech, setting new standards for 

accuracy and efficiency in the field. 

Despite the significant progress made with Pre-trained Language Models 

(PLMs) and Large Language Models (LLMs), several persistent research gaps 

remain. Notably, while these models deploy advanced neural architectures 

capable of parsing extensive text datasets to identify patterns, they often 
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overlook the potential benefits of integrating cognitive resources to enhance 

performance. However, recent studies suggest that incorporating sensory 

resources with LLMs could markedly improve their effectiveness, propelling 

them towards achieving a level of comprehension comparable to human-like 

understanding (Khare et al., 2024). 

For example, research by Long et al. demonstrated that integrating eye-tracking 

data significantly improves performance in sentiment analysis, a field closely 

related to hate speech detection (Long et al., 2019). Likewise, findings by Yan 

et al. (2024) show that combining electroencephalogram signals and eye-

tracking data can greatly enhance Automatic Keyphrase Extraction (AKE) from 

microblogs, suggesting the vast potential of multimodal data integration. 

Additionally, the evolution of models like ChatGPT to include capabilities such 

as voice and image processing represents a significant advancement in making 

human-machine interactions more intuitive and context-rich. This shift not only 

facilitates more complex and nuanced interactions but also moves the focus 

from purely cognitive tasks to those involving emotional and subjective 

understanding. 

Building on these advancements, integrating LLMs with cognitive architectures 

and sensory inputs emerges as a promising strategy for improving hate speech 

detection. By constructing and dynamically updating cognitive models that 

understand complex information about entities and their interactions, such 
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integration can significantly enhance the ability to detect and interpret hate 

speech. These developments are essential for creating more sophisticated and 

effective computational tools that can identify and mitigate hate speech across 

various communication platforms (Romero et al., 2023). 

This study advocates for the integration of sensory resources and cognitive 

frameworks into large language models such as T5 to significantly boost their 

hate speech detection capabilities, marking a pivotal advancement in the field. 

Our SensoryT5 model exemplifies this approach by merging the robust features 

of T5 with embedded sensory knowledge, aiming for a deeper and more 

nuanced understanding of hate speech. 

By enriching the T5 architecture with sensory insights, SensoryT5 is specifically 

designed to improve the interpretation of the complex interplay between 

language and human emotions that often characterizes hate speech. This 

nuanced understanding is critical because hate speech frequently intertwines 

overt expressions of animosity with subtler tones of aggression and bias, 

mirroring the emotional complexity found in typical human interactions. 

Moreover, the relationship between sentiment analysis and hate speech 

detection is intricate and mutually reinforcing. Sentiment analysis, traditionally 

focused on identifying the emotional tone of a text, provides foundational 

techniques that are crucial for detecting not just the presence of emotions, but 
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also their nature—whether they are likely to incite or reflect negative behaviors 

such as hate speech. By applying sentiment analysis methodologies, 

researchers can better distinguish between harmful speech and innocuous 

communication, even when they are contextually similar. 

Therefore, by incorporating sensory data—which can provide deeper emotional 

context—into the analysis process, SensoryT5 offers enhanced capabilities for 

identifying the often subtle and context-dependent cues that signal hate speech. 

This innovative integration positions SensoryT5 at the forefront of current efforts 

to combat hate speech, providing a powerful tool that leverages both cognitive 

and sensory data to improve detection accuracy and deepen our understanding 

of the underlying dynamics of hateful discourse. 

Sensory resources: Lancaster norms 

In recent years, there has been an emergent trend that neuro-cognitive data 

and computational approaches are synergized in NLP studies. The 

interdisciplinary synergy unlocks new dimensions in understanding language, 

perception, and cognition for human beings. 

Most of the studies focus on using neuro-cognitive data for metaphor detection. 

For instance, Chen et al. (2021) incorporated the brain measurement data for 

modeling word embedding to identify metaphorical usages. Wan et al. (2023) 

demonstrated the superiority of neural networks for metaphor detection by 
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leveraging sensorimotor knowledge. These studies collectively underscore a 

broader shift in the field towards a more integrated approach to NLP. By 

weaving in neuro-cognitive data, researchers are equipping computational 

models with a richer and more intricate understanding of language and 

cognition, which are often overlooked by traditional data-driven methods. 

This study utilizes Lynott et al. (2020)'s sensorimotor norms which encompass 

the metrics of sensorimotor strengths (ranging from 0 to 5) of 39,707 English 

words spanning six perceptual domains including touch, taste, smell, vision, 

hearing, and interoception, as well as five action effectors including 

mouth/throat, hand/arm, foot/leg, head (excluding mouth/throat), and torso. 

Lynott et al. (2020)'s sensorimotor norms (named “Lancaster norms" hereinafter) 

were compiled by following the sensory rating task proposed by (Lynott & 

Connell, 2009, 2013), which asked participants to rate the extent to which the 

meaning of a lexical item is based on sensory perceptions through the six 

sensory modalities and the five action effectors. Thus, the norms are language-

specific lexical properties representing the correlation between conceptualized 

lexical meanings and sensory modalities/action effectors. As there is little work 

reported to show the correlation between emotion and sensory action effectors, 

this study only exploits the perceptual data in the six sensory modalities. Table 

1 shows the perceptual ratings of six sample words in Lancaster norms. 
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Table 1: The sensory ratings of six sample words in the Lancaster norms. 

 

This study unveils SensoryT5, a model engineered to construct sensory vectors 

using the Lancaster norms, effectively enhancing the hate speech detection 

process. These vectors are seamlessly incorporated into T5's decoder 

mechanism via an auxiliary attention layer specifically designed for this purpose. 

Positioned strategically after the decoder, this sensory-centric attention layer 

works in concert with the decoder’s output to forge a comprehensive 

representation imbued with deep sensory knowledge of the words in the text. 

Consequently, SensoryT5 is adept at simultaneously processing contextual 

cues and sensory information, enabling a powerful convergence of sensory 

insights with contextual awareness. This innovative integration significantly 

bolsters the model’s ability in detecting hate speech by aligning sensory 

nuances with the linguistic context. The enhanced capability of SensoryT5 to 

interpret these complex layers of information not only improves detection 

accuracy but also aids in understanding the subtleties of hate speech dynamics. 
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This model promises to advance the field by providing a more nuanced and 

effective approach to identifying and analyzing hate speech in diverse textual 

environments. 

 

Our SensoryT5 model 

 

Figure 1: An overview of SensoryT5. The blue box shows a T5 process of deep learning, and 

the purple box describes sensory information quantified and passed into T5. 

 

The proposed SensoryT5 model, depicted in Figure 1, advances the state-of-

the-art in natural language processing by embedding sensory knowledge 

directly into the architecture of T5 (Raffel et al., 2020). This integration is 

achieved using an innovative adapter approach, which incorporates attention 

mechanisms specifically designed to process and synthesize sensory and 
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contextual information. This fusion is facilitated by a unified loss function that 

enables joint training, optimizing the model to effectively handle a diverse array 

of sensory inputs alongside traditional text data. 

Choosing the T5 model as our foundation was strategic, reflecting our broader 

vision for the application of sensory integration across various NLP domains, 

not limited to hate speech detection. The versatility of T5’s text-to-text transfer 

methodology makes it an ideal candidate for a wide range of NLP tasks 

including, but not limited to, question-answering, text generation, and more. 

This approach aligns with the overarching goal of achieving more human-like 

artificial intelligence by enhancing models’ abilities to interpret and generate 

text that reflects a deeper understanding of human sensory experiences 

(Duéñez-Guzmán et al., 2023; Khanam et al., 2019). 

T5’s unique design, which converts every NLP problem into a text-to-text format, 

provides the flexibility needed to incorporate sensory data effectively. This 

structural adaptability allows SensoryT5 to excel not only in tasks directly 

involving sensory data like hate speech detection but also in areas where 

enriching text with sensory details can be beneficial. For instance: Question-

Answering: SensoryT5 can improve the quality of responses in question-

answering systems by incorporating sensory nuances that make the answers 

more detailed and contextually relevant, thus providing a richer user experience. 

Text Generation: In text generation tasks, the ability of SensoryT5 to integrate 
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sensory information allows it to produce text outputs that are not only 

grammatically and contextually accurate but also imbued with sensory details 

that enhance the narrative depth and emotional resonance of the content. This 

capability makes it particularly valuable for applications in creative writing, 

marketing, and other fields where engaging and vivid textual content is crucial. 

Enhanced User Interaction: By processing sensory inputs, SensoryT5 can 

better understand and generate language that reflects human-like senses and 

experiences, thereby improving the interaction between AI systems and users 

in applications such as virtual assistants and interactive chatbots. Ultimately, 

the integration of sensory information within the T5 framework through 

SensoryT5 represents a significant step towards imbuing machines with a more 

sophisticated understanding of the world as experienced through human 

senses. This development not only enhances the model’s performance across 

a variety of tasks but also contributes to the broader field of AI by pushing the 

boundaries of what it means for machines to understand and generate human-

like text. 

This expanded functionality demonstrates the potential of SensoryT5 to adapt 

and thrive in a multitude of settings, driving forward the possibilities for more 

nuanced and intelligent systems in natural language processing and beyond. 
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Preliminaries 

Despite the large size of Lancaster norms, there are still out-of-vocabulary 

words. Following the method proposed by Li et al. (2017), we use a word 

embedding model to regressively predict the sensory values of unknown words, 

aiming to obtain the sensory values for the out-of-vocabulary words. 

The objective of hate speech detection is to determine and categorize hate for 

a piece of text following a defined label schema. Let D denote a collection of 

documents for hate speech detection. Each document 𝑑  ∈  𝐷 is first tokenized 

into a word sequence with the maximum length 𝑛, then the word embeddings 

𝑤𝑖 of these sequences are jointly employed to represent the document 𝑑 =

𝑤1, 𝑤2, … , 𝑤𝑖, … , 𝑤𝑛(𝑖 ∈ 1,2, . . . , 𝑛). 

The core attention mechanism in T5 

The word embeddings of these sequences 𝑑 = 𝑤1, 𝑤2, … , 𝑤𝑖, … , 𝑤𝑛(𝑖 ∈

1,2, . . . , 𝑛) first enter the T5 model. Each layer of the encoder and decoder has 

a series of multi-head attention units. The multi-head attention mechanism for 

the final decoder layer can be represented using the following equation: 

 

Where each head is computed as: 
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𝑊𝑖
𝑄

 , 𝑊𝑖
𝐾 , and 𝑊𝑖

𝑉   are weight matrices that are learned during the training 

process. They are used to project the input queries (𝑄), keys (𝐾), and values 

(𝑉) to different sub-spaces.(𝑄0), (𝐾0), and (𝑉0) are derived from the output of 

the penultimate decoder layer. Additionally, following the common practice for 

text classification with the T5 model, we employ a zero-padding vector as the 

sole input for the decoder.  

 The result (𝑉𝑑) is the output of the T5 decoder, imbued with context-aware 

attention. Both (𝑉𝑑) and (𝐾0) will be utilized for the integration with sensory 

knowledge. 

Sensory information transformation for T5 integration 

We project the perceptual ratings of words in Lancaster norms and the 

predicted sensory values of the out-of-vocabulary words into a word vector 

space. Each word is linked with a six-dimensional vector representing sensory 

scores across six perceptual modalities (haptic, gustatory, olfactory, visual, 

auditory, and interoceptive dimensions). For a word 𝑤, its sensory vector is 

denoted as 𝑠(𝑤) = [𝑠1, 𝑠2, … , 𝑠6]. 

To enable effective integration into the T5 model, we use two linear 
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transformations followed by a ReLU (Rectified Linear Unit) activation function 

to map the sensory vectors to the same dimension as the T5's word 

embeddings. Given a T5 model with an embedding dimension of 1024 , the 

transformation process can be formally described as: 

 

Where 𝑊1: 𝑅6 → 𝑅128  and 𝑊2: 𝑅128 → 𝑅1024  are two linear transformation 

matrices and 𝑏1 and 𝑏2 are the respective bias terms.The shapes of the two 

weight matrices 𝑊1  and 𝑊2  are (6,128)  and (128,1024)  respectively. The 

output ℎ1 of the first linear layer is a vector of shape (1,128), and the output 

𝑠′(𝑤)  of the second linear layer is a vector of shape (1,1024) . After the 

transformation, the sensory vector 𝑠′(𝑤) is projected into the same semantic 

space as the features generated by the T5 model. The output vector 𝑠′(𝑤) with 

𝑉𝑑 and 𝐾𝑑 from the T5 model will be applied for infusing sensory knowledge 

into the T5 model. 

Sensory attention mechanism in SensoryT5 

The sensory vector 𝑠′(𝑤) generated by the sensory vector transformation is 

used as the query in the attention mechanism of the sensory adapter, 

substituting the query vector 𝑄 in the T5 model. The sensory adapter performs 
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the attention calculation as follows: 

 

where each head is computed as: 

 

Once the output 𝐴𝑑 = 𝑎1, 𝑎2, … , 𝑎𝑛 of the sensory adapter is obtained, we apply 

dropout and pooling operations to form a final representation 𝑃𝑑, which is then 

used as the input to the classification layer. 

 

The pooled representation 𝑃𝑑 is then fed into the classifier of the T5 model.

 

𝐶𝑑 is a probability distribution vector. The class with the highest probability is 

selected as the predicted label, denoted as 𝑦. 

The first step of the back-propagation process involves computing the gradient 

of the loss function with respect to the parameters of the sensory attention 

adapter. ΘA represents the parameters of the sensory attention layer, and 𝐴𝑑 

represents the output of the sensory T5. The computed gradient is used to 
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update the parameters of the attention layer, enhancing its capacity to integrate 

sensory information into the T5 model. This is represented as follows:

 

After the gradients for the sensory attention mechanism have been computed, 

we then compute the gradients for the parameters of the final layer of T5, 

denoted as ΘE.

 

Finally, the gradients for the sensory information transformation, denoted as ΘS, 

are computed as follows: 

 

Here, ΘS represents the parameters of the sensory information transformation 

component, which includes the weights and biases of the two linear layers, and 

𝑠′(𝑤) represents the output of this component. The calculated gradient is used 

to update the parameters of the sensory information transformation to improve 

its ability to capture and model the sensory information. 

Through these calculations, we are able to update the parameters of the 

sensory attention mechanism, the T5 model, and the sensory information 

transformation component. 
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Experiment 

Datasets 

Our study employs the HASOC 2020 and HASOC 2021 datasets, meticulously 

compiled by Mandl et al., which are designed to benchmark natural language 

processing techniques for identifying and classifying hate speech and offensive 

content. 

HASOC 2020 Dataset: 

The 2020 edition of the dataset comprises 3,708 tweets collected for training 

purposes and 1,592 for testing. We focus primarily on Task 1 (also known as 

Task A), which targets the identification and classification of text as either hate 

speech or offensive. This task was initially categorized using a sophisticated 

combination of SVM classifiers and extensive human judgment to ensure 

accuracy and reliability (Mandl et al., 2020). The classification under Task A is 

crucial for developing algorithms that can effectively discern harmful 

communication in digital conversations, reflecting the ongoing challenges and 

complexities of moderating online platforms. 

HASOC 2021 Dataset: 

Following the structure of its predecessor, the HASOC 2021 dataset contains 

slightly more extensive data, with 3,843 tweets for training and 1,281 
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designated for testing. Compiled during the COVID-19 pandemic, this dataset 

uniquely includes tweets that are related to pandemic topics, thereby 

incorporating the contemporary issues and sentiments prevalent during such a 

global crisis. As with the previous year, our analysis remains concentrated on 

Task A, focusing on the detection of hateful or offensive content within these 

pandemic-contextualized tweets. To enhance our model's performance and 

adaptability, approximately 10% of the training data is set aside as a 

development set, which is used to iteratively evaluate and refine our 

approaches after each training epoch (Mandl et al., 2021). 

These datasets not only offer a robust framework for testing the efficacy of 

various NLP methods but also provide a diverse array of text samples across 

different contexts and temporal settings. The inclusion of COVID-19 related 

content in the 2021 dataset, for instance, adds a layer of complexity and 

relevance to the task of hate speech detection, reflecting how societal issues 

can influence online discourse. By continuously testing and improving our 

methods on these rich datasets, we aim to develop more sophisticated and 

context-aware models capable of handling the nuances of language used in 

hate speech and offensive communications. Through the careful analysis of 

these datasets, our study aims to contribute significantly to the evolving field of 

hate speech detection by providing insights into how different natural language 

processing techniques can be optimized to detect and categorize offensive 
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content more effectively. The iterative testing and refinement process enabled 

by the structure of these datasets ensure that our conclusions are not only 

based on static assumptions but are also tested against real-world, dynamically 

changing scenarios. This methodological rigor helps in building algorithms that 

are not only robust but also adaptable to the shifting paradigms of online 

communication. 

As shown in Table 2, the class distribution in the training sets of HASOC 2020 

and HASOC 2021 shows that while the 2020 dataset is balanced, the 2021 

dataset has a noticeable imbalance, with the number of "HOF" (hate or 

offensive) entries being nearly twice that of the "NOT" (non-hate) entries. This 

imbalance was introduced to give the model more examples of hate speech, 

which helps it learn better. However, it also creates a slight imbalance in the 

dataset, which does not fully reflect real-world scenarios where hate speech is 

usually much less common than non-hate content. In actual hate speech 

detection tasks, hate speech tends to be rare and datasets are often highly 

imbalanced. To handle this issue and ensure fair model evaluation, we use both 

Weighted F1 and Macro F1 as evaluation metrics. These metrics are well-suited 

for imbalanced data because they provide a clearer picture of how well the 

model performs on both the more common and less common classes. 
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Table 2: Statistical overview of the Training Data. HOF represents hate or offense, and NOT 

represents non-hate. 

 

Sensory knowledge 

Before conducting the hate speech detection experiments, we conducted a 

preliminary analysis of the sensory lexicon from the perspective of sensory 

perception value distribution. Figure 2 displays histograms of the six sensory 

measures across all words in the Lancaster norms. Notably, the distributions of 

these perceptual measures are unbalanced. Gustatory and olfactory measures 

predominantly demonstrate a right-skewed distribution 5 , with most values 

ranging between 0 and 1. This suggests that these two sensory perceptions are 

less frequently represented in the textual context. Thus, it might be challenging 

to represent gustatory and olfactory perceptions from text. 

 
5 A right-skewed distribution, also known as a positive skew, is characterized by a tail that 

extends more significantly to the right, indicating that a majority of data points are 

concentrated on the left of the peak. This results in the mean being greater than the median, 

and the median being greater than the mode (Mean > Median > Mode). 
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Figure 2: The distribution of six sensory values over words. The X-axis shows the value in a 

sensory dimension, and the y-axis displays the word density. 

 

In contrast, auditory and visual measures show a relatively uniform distribution. 

The auditory measure is evenly distributed between 0 and 2.5, while the visual 

measure ranges between 2 and 4.5. These distributions indicate a higher 

sensitivity of auditory and visual knowledge to textual information, which 

suggests that auditory and visual senses may play a significant role within 

sensory models. Lastly, haptic and interoceptive measures exhibit similar 

trends, declining from about 2500 to 0 as the values increase from 0 to 5. These 

declines in the presence of haptic and interoceptive knowledge across the 

general textual context might suggest that they are less informative sensory 

dimensions in the majority of cases. 

The Lancaster norms are subject to the size limitation, resulting in a significant 

number of out-of-vocabulary words whose sensory values are unavailable. To 



39 

 

address this challenge, we adopted the method proposed by Li et al. (2017) for 

predicting sensory values of unknown words through embedding techniques. In 

our experiments, we utilized both the T5 embedding and the GloVe embedding 

(Pennington et al., 2014) for this prediction task. 

To assess the performance of our predictions, we randomly selected 10% of 

the Lancaster norms as a validation set and applied the Root Mean Square 

Error (RMSE) as the evaluation metric. The results of the prediction task, 

presented in Table 2, demonstrate that the GloVe embedding outperforms the 

T5 embedding in predicting each sensory dimension. To preserve the original 

values of the Lancaster norms to a maximal extent, we opted for a smaller 

version of GloVe with 400,000 data points and 200 dimensions. Following 

augmentation, the size of our sensory vocabulary has reached 407,5726. 

Although we conducted rigorous analysis and processing, it must be 

acknowledged that the Lancaster norms have certain limitations. First, the 

Lancaster norms are static, whereas human understanding of language is 

constantly evolving. The sensory information and intensity that people 

associate with the same word may change over time. Additionally, individual 

differences in sensory perception mean that different people may experience 

 
6 The whole dataset of the sensory vocabulary can be accessed at: 

https://osf.io/w8yez/?view_only=0e807dfaa5e6433184e452bfebabd01b. 
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varying degrees of sensory intensity from the same words. We chose the 

Lancaster norms because they have been extensively validated and widely 

applied in experiments across fields such as medicine and cognitive science, 

which demonstrates the reliability and validity of this knowledge. Furthermore, 

the Lancaster norms were generated through crowd-sourcing, aggregating data 

from a large number of participants, which gives this knowledge a certain 

degree of generalizability and applicability. While we consider the Lancaster 

norms to be the most reasonable source of sensory knowledge at present, in 

the future, we plan to explore and develop more effective sensory knowledge 

sources. 

 

 

 

Table 3: Comparison of the accuracy of predictions between T5 embedding and GloVe 

techniques on different sensory dimensions, as measured by RMSE values. Lower scores 

indicate higher accuracy in the prediction of sensory values. 
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Selected baselines 

For comprehensive comparisons involving data speech detection, we 

benchmark our proposed SensoryT5 model against a range of established 

models. 

CNN (Adewumi et al., 2023): Originally renowned in the field of computer 

vision, CNNs have been effectively adapted for NLP by capturing local text 

patterns through three convolutional layers, each equipped with 100 filters of 

increasing size. This adaptation uses ReLU activation and max-pooling 

techniques to optimize text pattern recognition, supported by a dropout layer for 

regularization. With a total of 1,386,201 trainable parameters, the CNN model 

demonstrates high efficiency in processing and classifying text-based data. 

Bi-LSTM (Adewumi et al., 2023): A variant of the Recurrent Neural Network, 

the Bi-LSTM processes input text in both forward and backward directions using 

two bidirectional layers and pretrained GloVe word embeddings of 100 

dimensions, enhancing contextual understanding. This model also incorporates 

a dropout layer to mitigate overfitting and contains 1,317,721 parameters, 

making it effective for complex NLP tasks due to its improved handling of 

context and sequence in text. 

BERT (Devlin et al., 2019): A Pretrained Language Model (PLM) that 
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revolutionized text classification by processing text inputs in the [CLS] text [SEP] 

format. Its deep semantic understanding makes it highly effective for hate 

speech detection tasks. 

RoBERTa (Liu et al., 2019): As an enhanced version of BERT, RoBERTa 

refines training processes and hyperparameters to significantly improve 

performance in NLP tasks. 

XLNet (Yang et al., 2019): This model extends BERT's capabilities by learning 

bidirectional contexts and using an autoregressive formulation, overcoming 

some of BERT's limitations. 

T5 (Raffel et al., 2020): The Text-to-Text Transfer Transformer (T5) adapts all 

NLP tasks into a text-to-text format, showcasing the versatility and strong 

performance across various tasks. 

Experiment settings and implementation details. 

During training, we applied the Adam optimizer in Euclidean space, 

characterized by its efficiency in navigating the parameter space and adjusting 

weights to minimize loss. The hyperparameters used are learning rate = 2𝑒 −

5, max_seq_length = 100, batch_size = 32. 
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Results and discussion 

Results of experiments 

 

 

Table 4: Results of the SensoryT5 model in comparison to the baselines across two hate speech 

detection datasets. The top performances are highlighted in bold. 

 

In the realm of hate speech detection, our proposed SensoryT5 model 

demonstrates a notable improvement over both traditional machine learning 

models (such as CNN and Bi-LSTM) and advanced pre-trained language 

models (PLMs)/large language models (LLMs) like BERT, RoBERTa, XLNet, 

and T5. We focused our evaluations on the weighted F1 and Macro F1 scores 

across two major datasets: HASOC 2020 Task A and HASOC 2021 Task A. 

In our analysis, T5 was previously identified as the best performing model 

among all baselines in the HASOC 2020 dataset, achieving a weighted F1 and 
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Macro F1 score that was 0.8% higher than the second-best model. Similarly, in 

the HASOC 2021 dataset, T5 outperformed the second-best model by 0.4% in 

weighted F1 and by 0.1% in Macro F1. Interestingly, traditional machine 

learning models like the Bi-LSTM performed comparably to PLMs/LLMs, which 

is unusual for text classification tasks where PLMs/LLMs typically dominate. 

This anomaly highlights the unique demands of hate speech detection, which 

relies heavily on lexical foundations and benefits from semantically-based 

models. 

Our SensoryT5 model outshined all baselines, including the high-performing T5. 

In the HASOC 2020 dataset, SensoryT5 exceeded T5 by 0.7% in both weighted 

F1 and Macro F1 scores. In the HASOC 2021 dataset, SensoryT5 improved 

upon T5 by 1.1% in weighted F1 and by 1.2% in Macro F1. These 

enhancements underscore the effectiveness of integrating sensory information 

into the model, which significantly boosts its capability to detect hate speech. 

The integration of sensory data with the robust text-to-text framework of T5 not 

only enhances the model's accuracy but also its interpretative power, allowing 

it to better discern the nuanced contexts and subtleties involved in hate speech. 

This advanced capability positions SensoryT5 as a superior tool for tackling the 

complexities of hate speech detection across varied and challenging datasets. 
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Ablation studies  

Evaluating the impact of sensory knowledge 

 

 

Figure 3: The performances of T5 (None), Random SensoryT5 (with sensory values randomly 

assigned), and SensoryT5 across two hate speech detection datasets, evaluated using macro 

F1 as the metric. 

 

To elucidate the impact of different components within the SensoryT5 model, 

we conducted ablation studies specifically for the task of hate speech detection, 

using the HASOC 2020 and HASOC 2021 datasets. These studies are 

instrumental in assessing the efficacy of our novel sensory integration approach. 

The ablation tests were structured around three primary configurations: 

T5 (None): The baseline model without any sensory information, representing 

the conventional approach in hate speech detection tasks. 
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Random SensoryT5: A variant where the sensory scores are substituted with 

random numbers ranging from 0 to 5. This setup preserves the distribution of 

sensory scores but removes their meaningful correlations with sensory 

vocabulary data. 

SensoryT5: Our proposed model which incorporates cognitively-grounded and 

linguistically-encoded sensory knowledge. 

The results, as depicted in Figure 3, reveal that the SensoryT5 model 

outperforms the other configurations in terms of Macro F1 scores across both 

datasets. However, the Random SensoryT5 model exhibits lower performance 

than the T5 (None) model, particularly highlighting the detriments of arbitrary 

sensory data integration.  

These findings emphasize that the effectiveness of the SensoryT5 model stems 

not just from the addition of numerical data but from the meaningful integration 

of sensory knowledge that is both cognitively-grounded and linguistically-

encoded (Lynott et al., 2020). Conversely, the poorer performance of the 

Random SensoryT5 model compared to the T5 (None) setup suggests that 

indiscriminate inclusion of sensory information can introduce noise, impairing 

the model's ability to accurately detect and categorize hate speech. This 

underscores the importance of strategic sensory integration, as random 

additions could potentially disrupt model performance and prove to be 
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counterproductive. 

Impact of sensory knowledge on different foundation models 

To further investigate the versatility and efficacy of sensory knowledge in NLP, 

we expanded our experiments to include additional foundational transformer 

models such as BERT, RoBERTa, and XLNet. These models were enriched 

with cognitively-motivated and linguistically-encoded sensory data, as detailed 

in Figure 4. Our objective was to assess the impact of sensory integration on 

these established models, particularly in the context of hate speech detection. 

 

Figure 4: Infusing sensory knowledge into different transformer-based models. In 

SensoryXLNet, both K (key) and V (value) in the sensory attention layer are constituted by the 

output of the final hidden layer of XLNet. 
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The effects of integrating sensory knowledge into various foundational models 

are summarized in Table 4 and indicate substantial improvements in hate 

speech detection capabilities across all modified models when compared to 

their original counterparts. 

 

Table 5: Impact of sensory knowledge on different foundation models. 

 

SensoryBERT: The integration of sensory knowledge with BERT resulted in 

improvements in hate speech detection F1 scores. For HASOC 2020, 

SensoryBERT achieved a 0.3% increase in weighted F1 and a 0.4% rise in 

Macro F1 scores over the original BERT. In HASOC 2021, these gains were 

even more pronounced, with improvements of 0.4% in weighted F1 and 0.5% 

in Macro F1. 

SensoryRoBERTa: Similar enhancements were observed with RoBERTa upon 

sensory integration. In HASOC 2020, SensoryRoBERTa outperformed the base 
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RoBERTa model by 0.5% in both weighted F1 and Macro F1 scores. The 2021 

data showed greater improvements, with increases of 0.8% in both weighted 

F1 and Macro F1 scores. 

SensoryXLNet: The SensoryXLNet configuration also demonstrated beneficial 

outcomes. It surpassed the base XLNet model by 0.3% in weighted F1 and 0.4% 

in Macro F1 for HASOC 2020, and by 0.5% in weighted F1 and 0.7% in Macro 

F1 for HASOC 2021. 

SensoryT5: The most notable improvements were seen with SensoryT5, which 

consistently outperformed the base T5 model across both datasets. In HASOC 

2020, there was an enhancement of 0.7% in both weighted F1 and Macro F1 

scores. The HASOC 2021 results were even more impressive, with SensoryT5 

leading by 1.1% in weighted F1 and 1.2% in Macro F1. 

These results collectively underscore the significant value of infusing sensory 

knowledge into transformer-based models for hate speech detection. The 

consistent improvements across different platforms confirm that sensory 

integration not only enhances the models' performance but also extends their 

applicability to more complex NLP tasks. This approach leverages neuro-

cognitive data effectively, highlighting the potential of combining computational 

methods with cognitive science insights to improve NLP systems' 

understanding and processing capabilities in sensitive areas such as hate 
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speech detection. 

Case study 

 

 

Figure 5: The heatmap visualizes the heat values of the final sensory layer in SensoryT5 and 

the encoder layer in T5 for two sentences. Darker colors indicate higher attention weights. 

These sentences are sourced sequentially from the HASOC 2020 and HASOC 2021 datasets. 

 

Case studies are presented in Figure 5 using two sentences from the HASOC 

2020 and HASOC 2021 datasets: “I f*** with you but don’t get mad at people 

trying to seek opportunities...”* (HASOC 2020), “You just seem like a major d***” 

(HASOC 2021). The SensoryT5 heatmaps illustrate the aggregate attention for 

each token in the sensory layer, while the T5 section compiles and averages 

attention weights across all encoder layers to reveal the model's overall focus. 

The SensoryT5 model shows more attention on hate-related phrases: “f***” in 

the first sentence and “major d***” in the second sentence. This indicates the 

model's ability to detect crucial hateful terms that are highly relevant in 
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identifying offensive content. In contrast, the standard T5’s attention is more 

spread out and less concentrated on these hateful terms. It demonstrates a 

broader focus on the entire sentence, missing the heightened sensitivity 

needed to zero in on specific offensive words. These micro-level analyses show 

SensoryT5's superior capability in recognizing and highlighting hate speech, 

proving the efficiency of integrating sensory awareness into language models 

for improved detection of hate and offensive language. By selecting sentences 

from multiple datasets, we demonstrate SensoryT5’s robustness and ability to 

generalize across different contexts in identifying and focusing on hate-related 

phrases. These micro-level analyses further validate SensoryT5’s advantage in 

handling offensive language detection by emphasizing key words that signal 

hateful intent, contributing to its effectiveness in real-world hate speech 

detection tasks. 

Conclusion 

This study introduces the SensoryT5 framework, a cutting-edge model 

designed specifically for enhancing hate speech detection. By integrating 

sensory knowledge into the established transformer architecture, SensoryT5 

excels in identifying subtle contextual cues essential for recognizing hateful 

language. Utilizing sophisticated attention mechanisms, it meticulously 

combines sensory and contextual information to provide an in-depth analysis of 
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text. Through extensive testing across a variety of datasets, SensoryT5 has 

demonstrated that it exceeds the performance of the foundational T5 model as 

well as other popular pre-trained language models (PLMs) and large language 

models (LLMs). Moreover, it also shows improvements over traditional machine 

learning approaches used in NLP for hate speech detection. This achievement 

highlights SensoryT5's capability as a bridge that connects sensory perception 

with linguistic analysis, moving NLP towards integrating neuro-cognitive 

insights more robustly. The model's effectiveness is underpinned by its use of 

the well-established neuro-cognitive links between sensory experiences and 

behavioral outputs to better predict and understand hate speech. By decoding 

the sensory cues found in texts, SensoryT5 accesses the underlying emotional 

drivers of hate speech, similar to how humans interpret sensory inputs to form 

emotional and cognitive responses. This not only improves the accuracy of hate 

speech detection but also encourages deeper interdisciplinary research and 

collaboration. SensoryT5 integrates advanced text processing techniques with 

insights from both sensory perception and cognitive science, showcasing a 

comprehensive approach in computational linguistics. This strategy 

emphasizes the importance of understanding language on a nuanced level that 

goes beyond mere words, incorporating the broad spectrum of human 

experiences and perceptions that shape communicative intentions. 

In summary, SensoryT5 not only refines the accuracy of detecting hate speech 
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but also enhances the interpretability of detection outcomes, fostering a more 

profound comprehension of the content and context of hate speech. This 

comprehensive approach does not just advance the technical finesse of NLP 

models but also deepens our understanding of the complex interplay between 

language, emotion, and cognition. As it breaks new ground in methodological 

approaches, SensoryT5 encourages ongoing research into integrated, human-

centric methods in NLP. This pioneering model points towards a future where 

digital communication spaces are safer and more respectful, propelled by an 

enhanced understanding of the cognitive and emotional underpinnings of 

language. This promising direction in NLP research invites further academic 

exploration and technological innovation, aiming to expand our capabilities in 

combating online hate speech and enriching our grasp of the nuanced 

relationship between human cognition and communicative expressions. 

Limitation and future plan 

In our current research, we have utilized GloVe and T5 embeddings to estimate 

sensory values for unknown words through a regression-based approach. 

While this method has proven effective within the scope of our study, it 

inherently relies on the availability and quality of pre-trained embeddings which 

may not fully capture the nuanced sensory attributes that are specific to all 

contexts or languages. Inspired by the work of Chersoni et al. (2020), which 
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demonstrates the viability of cross-lingual methods in sensory knowledge 

prediction, we are optimistic about the potential of extending our SensoryT5 

model to encompass multiple languages. This would involve adapting the 

model to utilize multilingual embeddings and developing regression techniques 

that can operate effectively across different linguistic frameworks. Such 

advancements could dramatically increase the model’s applicability and 

effectiveness in a global context, making it a valuable tool for international 

platforms where multiple languages are used. Another promising direction for 

future research is to expand the sensory knowledge base used by our model. 

Currently, the model's performance is partially dependent on the predefined 

sensory values derived from existing datasets. By incorporating a broader array 

of sensory inputs and possibly crowdsourcing sensory data from diverse 

cultures and languages, we could significantly enhance the model's 

understanding and interpretation of sensory nuances in text. To improve the 

model’s versatility and its ability to handle a variety of NLP tasks in diverse 

linguistic environments, we plan to explore more sophisticated machine 

learning techniques. For instance, employing advanced neural network 

architectures such as Transformer-XL or GPT-3 could provide a way to better 

capture long-range dependencies and contextual subtleties that our current T5 

setup might miss. These improvements could lead to more accurate predictions 

of sensory values and, by extension, more effective hate speech detection in 
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multilingual contexts. We also see substantial value in adopting more 

interdisciplinary approaches that integrate insights from cognitive science, 

psychology, and linguistics to enrich the sensory attributes analyzed by our 

model. This could involve collaborative projects aimed at understanding how 

sensory perceptions are expressed differently across languages and cultures, 

which would help in fine-tuning our model to be sensitive to these variations. 

Looking ahead, our ultimate goal is to develop a robust, adaptable framework 

that can not only detect hate speech but also provide insights into the emotional 

and cognitive underpinnings of language use in various cultural and linguistic 

settings. By continuously refining our SensoryT5 model and expanding its 

linguistic and cultural reach, we aim to contribute to safer, more understanding 

online environments worldwide. 

By addressing these areas, we aim to overcome the current limitations and 

significantly expand the scope and efficacy of our SensoryT5 model. This will 

pave the way for more nuanced and culturally aware NLP applications, 

potentially revolutionizing how automated systems understand and interact with 

human language on a global scale. 
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