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In order to improve the energy efficiency of wearable devices, it is necessary

to compress and reconstruct the collected electrocardiogram data. The

compressed data may be mixed with noise during the transmission process.

The denoising-based approximate message passing (AMP) algorithm performs

well in reconstructing noisy signals, so the denoising-based AMP algorithm is

introduced into electrocardiogram signal reconstruction. The weighted nuclear

norm minimization algorithm (WNNM) uses the low-rank characteristics of

similar signal blocks for denoising, and averages the signal blocks after low-

rank decomposition to obtain the final denoised signal. However, under

the influence of noise, there may be errors in searching for similar blocks,

resulting in dissimilar signal blocks being grouped together, affecting the

denoising effect. Based on this, this paper improves the WNNM algorithm

and proposes to use weighted averaging instead of direct averaging for the

signal blocks after low-rank decomposition in the denoising process, and

validating its effectiveness on electrocardiogram signals. Experimental results

demonstrate that the IWNNM-AMP algorithm achieves the best reconstruction

performance under different compression ratios and noise conditions, obtaining

the lowest PRD and RMSE values. Compared with the WNNM-AMP algorithm,

the PRD value is reduced by 0.17∼4.56, the P-SNR value is improved by

0.12∼2.70.

KEYWORDS

ECG, compressed sensing, non-local similarity, weighted nuclear norm minimization,
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1 Introduction

Compressed sensing (CS) can simultaneously sample and
compress signals, and accurately reconstruct the original signal
from the sampled data. Once proposed, this theory has attracted
widespread attention in the academic community. In order to
reduce the amount of information collected by wearable ECG
devices, compressed sensing technology is used to simultaneously
collect and compress signals, which greatly reduces the amount
of collected data, improves the energy efficiency of wearable
devices, and has been widely used. Balouehestani et al. (2013)
combined CS with block sparse Bayesian learning (BSBL) theory
for wireless ECG acquisition, significantly reducing the sampling
frequency and power consumption; Zhang et al. (2013) used CS
and BSBL for remote monitoring of fetal ECG, also with the aim of
reducing the sampling frequency and power consumption; Shoaran
et al. (2014) used CS for the biomedical signal acquisition system
of sensor arrays, which not only reduced power consumption
and data volume, but also reduced the area of electrodes.
Reconstructing the original signal from the compressed data
is one of the core research contents of compressed sensing
technology.

Reconstruction algorithms based on compressed sensing
technology can be divided into three categories: (1) Convex
optimization algorithms (Liu et al., 2017), which transform NP-
hard `0 norm problems into convex optimization problems
with `1 norm. (2) Greedy matching pursuit algorithm
(Nguyen et al., 2017), a greedy optimization algorithm
that selects the most suitable atom in each iteration based
on the greedy strategy and adds it to the candidate set.
(3) Bayesian reconstruction algorithms (He et al., 2010),
transforming the reconstruction problem into a probability-
solving problem by utilizing the prior probability distribution of
the signal.

Approximate message passing (AMP) (Donoho et al., 2009),
a reconstruction algorithm based on iterative thresholds, is
particularly suited for real-time reconstruction in scenarios where
signals such as electrocardiograms (ECGs) require rapid and
efficient processing. However, the design of filters and their
ability to exploit signal structure characteristics, based on AMP
reconstructions, significantly impact reconstruction performance.
During the research process, scholars have imposed constraints
on the prior information inherent in the signal, proposing
various forms of denoising models, including sparsity priors,
gradient priors, non-local self-similarity priors, and low-rankness
priors.

Based on the sparsity prior of images, Som (2012) employed
wavelet transforms in conjunction with hidden Markov trees
(HMT) for modeling and reconstruction, thus reducing
computational complexity while enhancing reconstruction
performance. Tan et al. (2015) applied the wavelet-domain
adaptive Wiener filter to the AMP framework and proposed
the AMP-Wiener algorithm. Hill et al. (2016) designed an
AMP algorithm based on the Cauchy prior in the wavelet
domain, which converges about twice as fast as the AMP
method and improves the reconstruction quality. However,
wavelet sparsity is not suitable for non-stationary natural
signals. The gradient sparsity prior, which better preserves

edges and textures, has attracted scholars’ attention. Wang and
Liang (2015) proposed an AMP algorithm that utilizes the
gradient sparsity prior to preserve image edges and texture
information.

Another research direction for signal denoising is designing
denoising operators that match the sparse characteristics of the
target signal, where dictionary learning-based denoising is an
efficient technique (Xu et al., 2021; Xue et al., 2020). The
research results indicate that dictionary learning algorithms such
as K-SVD (K-means singular value decomposition) (Aharon et al.,
2006; Scetbon et al., 2021) and SGK (sequential generalization
of K-means) have better denoising performance than denoising
algorithms based on wavelet domain. Li et al. (2017) proposed
a dictionary learning based AMP (DL AMP) algorithm, which
integrates dictionary learning methods into the AMP algorithm
to achieve denoising and achieve better image reconstruction
performance than fixed transform domain denoising operators.
The disadvantage is that the DL-AMP algorithm needs to
train the dictionary in each iteration, and the training data
entirely from the current signal to be filtered, and the number
is very limited, which limits the denoising performance of
the algorithm. At the same time, the dictionary training
process is time-consuming, resulting in longer runtimes for DL-
AMP.

The above research methods only utilize the local features
of the signal, but ignore the non-local information contained in
a large number of similar blocks in the signal. Metzler et al.
(2016) proposed the denoising-based approximate message passing
(D-AMP) algorithm, which incorporates a block-matching and
3D filtering (BM3D) denoiser (Dabov et al., 2007) that utilizes
image non-local similarity priors during each iteration of the
filtering process, thereby enhancing reconstruction performance.
However, using non-local similarity prior requires searching for
similar image blocks. The common criterion for measuring similar
blocks is Euclidean distance. In the presence of noise, noise can
affect the calculation of similarity between image blocks, causing a
higher similarity scores between dissimilar blocks, thus impacting
denoising performance.

In order to further improve reconstruction performance of
compressive sensing, this paper proposes an improved weighted
nuclear norm minimization algorithm for approximate message
passing algorithms. In the presence of noise, dissimilar signal blocks
may be grouped together, resulting in a signal block belonging
to different similar block groups, so that the misclassified signal
blocks obtain different denoising effects. Therefore, the weighted
nuclear norm minimization (WNNM) algorithm, which averages
the signal blocks after low-rank decomposition, is not suitable
for obtaining the denoised signal. Theoretically, the greater the
similarity between signal blocks, the lower the rank of the similar
block group matrix, and the better the denoising effect. However,
misclassified signal blocks will affect the low rank characteristics of
the similar block group matrix, resulting in poor denoising effect. If
each signal block is directly averaged to obtain the denoised signal,
the details may be smoothed. Therefore, the denoised signal should
be the weighted average of multiple signal blocks. Based on this,
this paper improves the WNNM algorithm by proposing to use
weighted averaging instead of direct averaging for the signal blocks
after low-rank decomposition in the denoising process.
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2 The background introduction

2.1 D-AMP algorithm

The mathematical model for compressive sensing can be
expressed as:

y = 8x (1)

Signal x ∈ RN represents the original electrocardiogram
signal, 8 ∈ RM×N(M � N) is the observation matrix, and
y ∈ RM is the obtained observation value. That is, the original
ECG signal x is projected onto the low-dimensional space
through the observation matrix 8 to obtain an M dimensional
observation signal.

The DAMP algorithm reconstructs vector x ∈ RN based on the
vector y and the measurement matrix 8.

xt+1 = Dσ̂t (xt +8Tzt) (2)

zt = y−8xt + zt−1D′σ̂t (xt−1 +8Tzt−1)/M (3)

σ̂t =
||zt||2
√
M

(4)

Where xt is the t-th iteration estimate of the original signal x0, zt is
the residual, σ̂t is the standard deviation of the noise, xt +8Tzt
is equivalent to the superposition of the original signal x and
Gaussian noise, Dσ̂t (•) represents the denoising operator acting
on xt +8Tzt , making the output xt closer to the original signal x
than xt−1, and D′

σ̂t
is the derivative of the denoiser. The denoiser

plays a key role in the D-AMP algorithm, directly affecting the
quality of signal reconstruction and determining the algorithm’s
reconstruction performance.

2.2 The weighted nuclear norm
minimization (WNNM) algorithm

ECG signal denoising is the process of removing noise from
noisy ECG signals and restoring the original ECG signals. Let q =
x+ n where q is the noisy ECG signal, x is the original ECG signal
without noise, and n is the noise. The ultimate goal of ECG signal
denoising is to obtain an estimated value x̂ of the original ECG
signal, where x ≈ x̂.

The WNNM algorithm utilizes the similarity of signal
structures and applies soft-thresholding shrinkage to singular
values with different values, achieving good denoising effects. Given
a noisy ECG signal q, let qi be a local signal block of q. By using
block matching algorithm to search for non-local similar blocks to
form matrix Qi, let Qi = Xi + Ni, where Xi is a matrix block of the
original ECG signal without noise and is a low-rank matrix, Ni is a
noise block. The objective function of WNNM can be expressed as:

X̂i = arg minXi

1
σ2
n
||Qi − Xi||

2
2 +||Xi||w,∗ (5)

Where σ2
n is the noise variance used to normalize the Frobenius

norm, ||Xi||w,∗ =
∑

i ||wjσj(Xi)||1, σj(Xi) represents the j-th

singular value of Xi, and each item in w= [w1,w2, ...,wn] is a non-
negative number, corresponding to each singular value, as follows:

wi = c
√

d/(σj(Xi)+ ε) (6)

σj(Xi) =
√

max(σ2
j (Qi)− dσ2

n, 0) (7)

Where, σj(Xi) is the j-th singular value of Xi. It can be observed
that the larger the singular value, the smaller the weight. c is a
constant greater than 0, dis the number of similar blocks, and ε is a
small parameter to prevent division by zero. Perform singular value
decomposition on Qi,Qi = U6V .

ςw(6) = max(6ii − w, 0) (8)

Where, 6ii is the diagonal element of the singular matrix 6, so the
solution of the objective function is obtained:

Xi = Uςw(6)V (9)

3 Proposed method

3.1 Improved weighted nuclear norm
minimization algorithm

The WNNM algorithm has achieved good denoising results.
However, when searching for non-local similar blocks, there
is a possibility of misclassification by measuring the similarity
of two signal blocks using Euclidean distance, which may
result in grouping dissimilar blocks together and affecting the
denoising effect.

In the presence of noise, the similarity between signal blocks
qiand qj can be expressed as follows

Dqiqj = (xi − xj)2
+ (ni − nj)2

+ 2× (xi − xj)× (ni − nj) (10)

Where, qi = xi + ni, qj = xj + nj .
In formula (10), (xi − xj)2 is the distance obtained by the noise-

free signal block, which is the real similarity of the signal block.
(ni − nj2 + 2× (xi − xj)× (ni − nj) is the error caused by noise,
which may cause the Euclidean distance between signal blocks
that originally have no similarity to be smaller, thus dividing them
into a group. Since dissimilar signal blocks lack structural and
data similarity, the resulting matrix is not a low-rank matrix, and
averaging over each signal block is not suitable for denoising in
the WNNM algorithm. In theory, the larger the similarity between
similar blocks, the lower the rank of the matrix, Therefore, the
denoised signal should be the weighted average of the signal
blocks. Based on this, an improved WNNM (IWNNM) algorithm
is proposed.

Xi =
1

m(i)
e−

r
l
Ai (11)

Where m(i) =
∑
i
e− r

l , r is the rank of the matrix ςw(6) and l

is the number of rows in the matrix Qi. Ai = Uςw(6)V The ECG
denoising process based on IWNNM is shown in Figure 1.

Firstly, the noisy ECG signal is divided into blocks. One
block is selected as the reference block, while the others are
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FIGURE 1

Flow chart of ECG denoising based on IWNNM.

ALGORITHM 1 Improved WNNM (IWNMM) algorithm denoising process.

Input noisy signal q, number of iterations K

Initialize x̂0 = q, q0 = q

for t = 1:K do
Regularize qt = x̂t−1 + δ(q− q̂t−1), and divide vector qt into different signal
blocks.
For each sub-block qido
Find its similar sub-block group Qi .
Singular Value Decomposition[U, 6,V] = svd(Qi)

Where Ai = Uςw(6)V

Estimate obtained: Xi =
1

m(i) e−
r
l Ai , m(i) =

∑
i
e− r

l

end
Aggregate Xi to obtain a clean signal x̂t
End

Output: x̂t

candidate blocks. The block matching algorithm is used to find
similar signal blocks from the candidate blocks compared to the
reference block. These non-local similar blocks are arranged as
column vectors to form a group of similar signal blocks. Through
singular value decomposition, soft thresholding operation achieves
low-rank matrix approximation, obtaining denoised signal blocks.
During the process of singular value decomposition, different
weight values are assigned to signal blocks based on the rank
of similar signal block groups. The denoised signal is obtained
by taking the weighted average of the denoised signal blocks.
The denoising process of the IWNNM algorithm is shown in
Algorithm 1.

3.2 ECG signal reconstruction based on
improved weighted nuclear norm
minimization (IWNNM-AMP) and
approximate message passing algorithm

The improved weighted nuclear norm minimization algorithm
is combined with the approximate message passing algorithm to
reconstruct the compressed ECG signal. The algorithm flow is as
follows:

For the noisy electrocardiogram data q = x+8Tz, divide
the noisy ECG data into signal blocks of specified size. Let qi

be the local block of q and serve as the reference block. The
others are candidate blocks. Through block matching algorithm,
similar signal blocks are found from candidate blocks that
match the reference block. These non-local similar blocks are
arranged into column vectors to form a matrix Qi, where the
similarity between two signal blocks is expressed by formula (12):

Dqiqj = ||q
i
− qj||22 (12)

Where || • ||22 represents the Euclidean distance between
two signal blocks. If the similarity between two signal
blocks is less than or equal to a preset threshold, they are
considered to be similar.

Assume that Xi is the original ECG signal matrix block without
noise, and Ni is the noise block, then Qi = Xi + Ni. By using the
low-rank matrix approximation method to estimate Xi from Qi. Let
Q = [Q1,Q2, ...,Qn], denoise each similar block group Qi, then
obtain the denoised signal x̂. By using the IWNNM algorithm to
denoise matrix Qi, the objective function of denoiser Dσ̂tQi is as
follows:

Xi = arg minXi

1
σ2
n
||Qi − Xi||

2
2 +||Xi||w,∗ (13)

Denoise each similar block group Qi to obtain the
corresponding Xi, aggregate all denoised matrix blocks to
obtain X= [X1,X2, ...,Xn], and take the weighted average of the
denoised signal blocks to obtain the denoised signal xt+1 .

By using the Monte Carlo method (Ramani et al., 2008) to
obtain the derivative of Dσ̂t (·), we have

D′σ̂t (qt) = E(
b
τ
Dσ̂t (qt + τb)− Dσ̂t (qt)) (14)

Where b∈<N is a random vector that conforms to the standard
normal distribution, τ = ||qt||∞/1000.Let dt = zt−1D′σ̂t (xt−1 +

8Tzt−1)/M, then
zt = y−8xt + dt (15)

σ̂t =
||zt||2
√
M

(16)

Where xt is the t-th iteration estimate of the reconstructed
electrocardiogram signal x0, zt is the residual, σ̂t is the standard
deviation of the noise, and D′

σ̂t
is the derivative of the denoiser. The

ECG signal reconstruction based on improved weighted nuclear
norm minimization and approximate message passing algorithm is
shown in Algorithm 2.

4 Experiments and discussion

4.1 Experimental setup

To verify the reconstruction effect of the IWNNM-AMP
algorithm on ECG signals, data from the MIT-BIH Arrhythmia
Database (MITDB) was used to evaluate the performance of the
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FIGURE 2

Comparison of PRD values with iteration numbers for six reconstruction algorithms under noise-free conditions.

FIGURE 3

Comparison of PRD values with iteration numbers for six reconstruction algorithms under the condition of noise variance of 15.

ALGORITHM 2 IWNNM-AMP algorithm process.

Inputy, number of iterations K

for t = 0, 1, · · · ,Kdo

(1) qt = xt +8Tzt , Split vector qt into blocks and search for similar block
groups Qi for each signal block qi .

(2) Use Algorithm 1 to implement denoising and get xt+1 .

(3) Calculate residuals zt+1 = y−8Txt+1 +
1
M ztD′σ̂t (qt)

(4) Estimate the noise variance σt = 1
√
M
||zt ||2

end

Output:x̂t+1

proposed algorithm. This dataset contains 48 ECG signal records,
each with two leads (MLII and V5), lasting approximately 30 min,
and sampled at 360 Hz. This experiment uses MLII lead data, selects
113th ECG signal with more obvious noise for the experiment,
and uses MATLAB R2020b software. In the experimental part,
the reconstruction performance of the IWNNM-AMP algorithm

is compared with that of the AMP algorithm based on wavelet
threshold method (Liu et al., 2010) (WAVE-AMP), the AMP
algorithm based on empirical mode decomposition (Xi et al., 2014)
(EMD-AMP), the AMP algorithm based on WNNM (WNNM-
AMP), the AMP algorithm based on NLM (NLM-AMP), and the
AMP algorithm based on LRA-SVD (LRA-SVD-AMP) (Guo et al.,
2016) under different noise conditions and compression rates.
In the IWNNM-AMP, WNNM-AMP, and NLM-AMP algorithms,
the block size is set to 32× 1 and the step size is set to 1. The
WAVE-AMP and EMD-AMP algorithms use the settings specified
in the corresponding references. All tests are conducted in 100
independent experiments, and the results are averaged.

4.2 Evaluation of performance metrics

The reconstruction performance is highly correlated with the
compression ratio CR, which is defined as:

CR =
N
M

(17)
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FIGURE 4

Comparison of PRD values with compression rate variation for six reconstruction algorithms under noise-free conditions.

Where M is the length of the measured signal and Nis the length of
the original ECG.

Percentage root-mean-squared difference (PRD) is used to
measure the distortion level of the reconstructed signal x̂ relative
to the original signal x. PRD is defined as:

PRD =
||x̂− x||2
||x||2

× 100% (18)

Root mean square error (RMSE) is used to compare x and x̂ based
on errors.

RMSE =
||x̂− x||2
√
N

(19)

Rebuilding signal-to-noise ratio (SNR) and Peak Signal-to-Noise
Ratio (P-SNR) are used to estimate the quality of the recovered
signal. SNR is defined as:

SNR(dB) = 10 log10(
||x||22
||x− x̂||22

) (20)

P-SNR is defined as:

P-SNR(dB) = 10 log10(
max(x)2N
||x− x̂||22

) (21)

4.3 Comparison and analysis of
experimental results

4.3.1 The impact of different iteration numbers
on reconstruction results

The AMP algorithm has the characteristic of fast convergence.
By comparing the PRD∼number of iterations of the six algorithms,
the convergence of the six algorithms is compared. Figure 2 shows
the curves of the PRD values of the six algorithms changing with the
number of iterations when there is no measurement noise and the
compression ratio CR = 5.12. In the absence of observation noise,
all six algorithms have good convergence.

The PRD value of the IWNNM-AMP algorithm is lower than
that of the EMD-AMP, WAVE-AMP, WNNM-AMP, NLM-AMP

TABLE 1 Reconstruction performance of different algorithms under
different noise.

  PRD RMSE SNR PSNR

15 dB EMDD-AMP 26.792 0.082 11.439 28.218

WAVE-AMP 29.994 0.091 10.459 27.494

NLM-AMP 18.885 0.052 14.645 31.786

LRA-SVD-
AMP

17.156 0.048 15.323 32.321

WNNM-AMP 17.060 0.051 15.360 32.393

IWNNM-AMP 12.496 0.038 18.064 35.099

20 dB EMDD-AMP 25.393 0.077 11.905 28.684

WAVE-AMP 28.230 0.085 10.985 28.282

NLM-AMP 13.293 0.040 17.527 34.520

LRA-SVD-
AMP

13.520 0.041 17.380 34.378

WNNM-AMP 12.058 0.036 18.374 35.409

IWNNM-AMP 11.887 0.036 18.498 35.533

25 dB EMDD-AMP 23.764 0.072 12.481 29.479

WAVE-AMP 26.308 0.080 11.598 28.377

NLM-AMP 9.171 0.027 20.61 37.75

LRA-SVD-
AMP

11.220 0.034 18.992 36.133

WNNM-AMP 9.306 0.028 20.624 37.783

IWNNM-AMP 8.961 0.027 20.952 38.111

and LRA-SVD-AMP algorithms, and the convergence speed is
faster. After the number of iterations reaches 30, the PRD values
obtained by the six algorithms change little. Therefore, this article
will use the number of iterations K = 30 as an example to
demonstrate the simulation results.

Figure 3 shows the curves of the PRD values of the six
algorithms changing with the number of iterations when the
measurement noise variance is 15 and the compression ratio
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TABLE 2 t-test for PRD values of different algorithms.

Algorithm EMDD-AMP WAVE-AMP NLM-AMP LRA-SVD-AMP WNNM-AMP

P-value 0.0005 0.0003 0.426 0.235 0.538

FIGURE 5

Comparison of PRD values with compression ratio for six reconstruction algorithms under the condition of noise variance of 15.

FIGURE 6

Reconstruction results of NLM-AMP algorithm.

CR = 5.12. In the presence of observation noise, all six algorithms
have good convergence performance, and the reconstruction
performance of the IWNNM-AMP algorithm is better than that of
the other five methods.

4.3.2 The impact of different compression rates
on reconstruction results

When the compression ratio varies from 1.03 to 5.12, the
impact of the compression ratio CR on the performance of the six
reconstruction algorithms is analyzed. Figure 4 shows the variation
of PRD values of the six algorithms with compression rate when
measurement noise is not considered and the number of iterations
is 30. The experimental comparison results show that under

different compression rates, the PRD value of the proposed method
are generally the lowest, indicating that compared with other
methods, the proposed method has better objective reconstruction
performance. At the same time, as the CR value increases, the
PRD of the reconstruction results of various methods gradually
improves. Meanwhile, as the CR value increases, the PRD of the
reconstruction results of the six algorithms gradually increases.

When the CR is 1.7–2.04, the maximum PRD difference
between the IWNNM-AMP algorithm and the EMD-AMP, WAVE-
AMP, NLM-AMP, LRA-SVD-AMP and WNNM-AMP algorithms
is 8.45. When the CR is 5.12, the IWNNM-AMP algorithm
has the largest difference in PRD compared to the WAVE-AMP
algorithm. The PRD of the proposed method is 13.59, 16.27,
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FIGURE 7

Reconstruction results of LRA-SVD-AMP algorithm.

FIGURE 8

Reconstruction results of WNNM-AMP algorithm.

3.24, 2.57, and 2.46 lower than that of the EMD-AMP, WAVE-
AMP, NLM-AMP, LRA-SVD-AMP, and WNNM-AMP algorithms,
respectively. As the CR value increases, the reconstruction
performance of the IWNNM-AMP algorithm is better than that of
the comparison algorithm.

Figure 5 shows the curve of PRD values versus compression
ratio for six algorithms with a measurement noise variance of
15 and 30 iterations. In the presence of observation noise, the
reconstruction performance of the IWNNM-AMP algorithm is
better than that of the other five methods. At the same time, as
the CR value increases, the reconstruction performance of the
IWNNM-AMP algorithm is better than that of the comparison
algorithms.

4.3.3 The impact of different noise levels on the
reconstruction results

To verify the denoising effect of the algorithm under different
noise levels, Gaussian white noise with noise intensities of 15 dB,

20 dB, and 25 dB was added to the 113th ECG signal, and the
performance metrics of the six algorithms under different noise
conditions were calculated.

Table 1 shows the average values of reconstructed PRD of the
six algorithms under three different noise conditions when the
compression ratio CR = 5.12 and the number of iterations is 30. The
average experimental data show that when the noise variance is 15,
compared with EMD-AMP, WAVE-AMP, NLM-AMP, LRA-SVD-
AMP and WNNM-AMP, the PRD/RMSE values of the proposed
method are lower than 14.296/0.044, 17.498/0.053, 6.389/0.014,
4.660/0.010 and 4.564/0.013, respectively. SNR/PSNR values were
higher than 6.625/6.881, 7.605/7.605, 3.419/3.313, 2.741/2.778 and
2.704/2.706, respectively.

The average experimental data show that when the noise
variance is 20, compared with EMD-AMP, WAVE-AMP, NLM-
AMP, LRA-SVD-AMP and WNNM-AMP, the PRD/RMSE values
of the proposed method are lower than 13.506/0.041, 16.343/0.049,
1.406/0.004, 1.633/0.005 and 0.171/0, respectively. SNR/PSNR
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FIGURE 9

Reconstruction results of IWNNM-AMP algorithm.

values were higher than 6.593/6.849, 7.513/7.251, 0.971/1.013,
1.118/1.155 and 0.124/0.124, respectively.

The average experimental data show that when the noise
variance is 25, compared with EMD-AMP, WAVE-AMP, NLM-
AMP, LRA-SVD-AMP and WNNM-AMP, the PRD/RMSE values
of the proposed method are lower than 14.785/0.045, 17.347/0.053,
0.210/0, 2.259/0.007 and 0.345/0.001, respectively. SNR/PSNR
values were higher than 8.471/8.632, 9.354/9.734, 0.342/0.361,
1.960/1.978 and 0.328/0.328, respectively.

The paired t-test method was used to statistically analyze the
PRD values of different algorithms in Table 1, and P < 0.05 was
considered to be statistically significant. t-tests were conducted
on the PRD values of the IWNNM-AMP algorithm and other
algorithms at different noise levels, and the results are shown
in Table 2.

From the results in Table 2, it can be seen that compared with
the EMDD-AMP and WAVE-AMP algorithms, the reconstruction
effect of the IWNNM-AMP algorithm is significantly improved
(P < 0.001). This is because empirical mode decomposition and
wavelet denoising require an understanding of the frequency
domain characteristics of the signal, while the IWNNM-AMP
algorithm is a blind denoising method that utilizes the structural
features of the signal to achieve denoising, making it more
advantageous in reconstructing compressed signals. Compared
with the NLM-AMP algorithm, LRA-SVD-AMP algorithm, and
WNNM-AMP algorithm, the IIWNNM-AMP algorithm has lower
PRD values by 6.389, 4.66, and 4.56, respectively, when the noise
variance is 15. However, when the noise variance is 20 and 25, the
PRD values are relatively close (P > 0.05).

Figures 6–9 compare the reconstruction results of the
IWNNM-AMP algorithm with three other algorithms from the
subjective visual perspective under the condition of an additional
measurement noise standard deviation of 20 and compression ratio
CR = 5.12. Through the comparison of reconstruction results,
we found that the NLM-AMP and LRA-SVD-AMP algorithms
have poor reconstruction quality, indicating that these algorithms
perform poorly in reconstructing measured values with noise.
Compared to the WNNM-AMP algorithm, the IWNNM-AMP

algorithm has better visual reconstruction effects and superior
detail reconstruction capabilities.

4.3.4 Complexity analysis
Assuming the noisy signal x ∈ RN and the signal block qi ∈ Rd,

the time complexity of calculating all similar blocks is o((N −
d + 1)2). Considering that the time complexity is too large, the
algorithm defines a window range wSize for signal block qi and
calculates the similarity between signal block qi and the signal
blocks within window range wSize. This not only reduces the
time complexity, but also because similar blocks to a signal block
are usually located around this signal block. Performing low-rank
approximation on groups of similar signal blocks, the algorithm
complexity is o(d3).

Table 3 compares the running time of six reconstruction
algorithms at different sampling rates. In the case of no
measurement noise, with a signal length of 1,024 and 30 iterations,
the running time of six algorithms at different sampling rates is
compared, as shown in Table 3. The computation time of WNNM-
AMP and IWNNM-AMP algorithms is longer than that of NLM-
AMP algorithm. This is because it takes a certain amount of time to
search for similar signal blocks. The running time can be reduced
by limiting the search range. The running time of the IWNNM-
AMP algorithm is basically the same as that of the WNNM-AMP
algorithm. This is because the weight value of the signal block
calculated by the IWNNM-AMP algorithm is obtained in the
process of low-rank matrix approximation, and the computational
complexity is not increased compared with the WNNM-AMP
algorithm.

4.3.5 EEG signal reconstruction performance
This experiment used the NT9200 digital

electroencephalogram (EEG) recorder to record EEG signals,
with 32-channel recording electrodes placed according to the
international standard 10–20 system. The sampling rate was
256 Hz, the recording duration was approximately half a minute,
and further filtering was applied (notch filter at 50 Hz and
bandpass filter 4–45 Hz). The collected data is compressed to
verify the reconstruction performance of the IWNNM-AMP
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TABLE 3 Relative values of running time of six algorithms.

  

1.03 1.30 1.28 1.46 1.70 2.04 2.56 3.41 5.12

EMDD-AMP 3.01 2.95 2.81 2.75 2.51 2.17 1.80 1.55 1.46

WAVE-AMP 0.49 0.46 0.44 0.40 0.37 0.34 0.32 0.29 0.27

NLM-AMP 0.52 0.49 0.47 0.46 0.44 0.40 0.36 0.33 0.31

LRA-SVD-AMP 0.58 0.55 0.54 0.52 0.49 0.47 0.43 0.40 0.38

WNNM-AMP 0.73 0.70 0.67 0.65 0.62 0.59 0.57 0.54 0.52

IWNNM-AMP 0.72 0.70 0.67 0.65 0.63 0.59 0.58 0.54 0.51

FIGURE 10

Reconstruction results of EEG signal.

algorithm. Figure 10 shows the reconstruction effect of the EEG
signal when the compression rate CR = 5.12 and the number of
iterations is 30. The experimental results show that under high
compression rate, the reconstruction error of the EEG signal of
the IWNNM-AMP algorithm is between ± 0.5, and it has good
reconstruction performance.

4.4 Results and discussion

Based on the above experimental results, the IWNNM-AMP
algorithm proposed in this paper shows the best reconstruction
performance under different compression ratios and noise
conditions, achieving the lowest PRD and RMSE values. This
indicates that the IWNNM-AMP algorithm can achieve higher
accuracy in reconstructing electrocardiogram signals compared
to other reconstruction algorithms. At the same time, in
high compression ratio reconstructions, the PRD and RMSE
values of the IWNNM-AMP algorithm are lower than those of
the comparison algorithms, indicating that the IWNNM-AMP
algorithm can reconstruct the electrocardiogram signals using
less effective information, reducing the data volume for signal
sampling and transmission. From a subjective visual perspective,
the IWNNM-AMP algorithm has smaller reconstruction errors and
better visual effects, with better ability to reconstruct details.

5 Conclusion

Non-local self-similarity is an important prior in signal
denoising algorithms. In the presence of noise, dissimilar signal
blocks may be grouped together, and dissimilar block groups do
not have low rank properties. Therefore, it is inappropriate for
the WNNM algorithm to average the signal blocks to obtain the
denoised signal. Theoretically, the greater the similarity between
similar blocks, the lower the rank of the matrix and the better
the denoising effect. Therefore, this paper proposes a denoising
approximate message passing reconstruction algorithm based
on an IWNNM algorithm. In the denoising process, weighted
averaging is used instead of direct averaging. Different weight
values are assigned to the signal blocks according to the size of the
rank of the similar block group. The smaller the rank of similar
block groups, the more similar the signal blocks, and the larger the
weight coefficient; the larger the rank of similar block groups, the
smaller the weight coefficient.

The experimental verification selected the data set of MIT-BIH
arrhythmia database. The results show that the proposed IWNNM-
AMP algorithm can achieve better reconstruction performance
than the WNNM-AMP algorithm, and in the reconstruction with
high compression ratio, the PRD value is reduced by 0.17∼4.56,
the RMSE value is reduced by 0∼0.013, and the P-SNR value is
increased by 0.12∼2.70.
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One drawback is that wearable devices may introduce
noise during the actual collection of physiological signals,
including baseline drift noise, power frequency interference, high-
frequency electromyographic interference, and motion artifacts.
The frequency range of motion artifacts overlaps with the frequency
range of physiological signals, making it difficult to distinguish
which frequency components belong to the heart rate and which
belong to motion artifacts interference. Therefore, further research
is needed on how to remove motion artifacts noise on the basis of
blind denoising.
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