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Detection of Tea Leaf Diseases Using Deep
Transfer Learning

Abstract—Tea leaf diseases significantly impact both the quan-
tity and quality of tea production in Sri Lanka, a country
where tea cultivation holds considerable economic importance,
contributing significantly to its GDP and serving as a major ex-
port to consumer markets. Existing computer vision and machine
learning methods require a large number of image samples for
accurate classification, leading to a time-consuming process. To
address this limitation, we propose a novel approach utilizing
deep transfer learning to train classification models efficiently
with limited samples, leveraging cross-domain knowledge trans-
fer. Our method aims to detect tea leaf diseases early, thereby
preserving tea quality and fostering sustainable agricultural
practices. The unique contributions of this study are a) collecting
a comprehensive set of tea leaf images from different tea gardens
representing six tea leaf conditions, annotated manually and b)
developing a pre-trained convolutional neural network (CNN)
architecture, with 256, 128, and 6 fully connected layers, includ-
ing Xception, DenseNet201, VGG16, InceptionV3, EfficientNetB0,
and MobileNetV2, to transfer classification knowledge. Through
several experimentations with various fine-tuning techniques, we
achieved a notable average accuracy of 99.58% in classifying tea
leaf diseases.

Keywords: Convolutional Neural Network, Deep Transfer
Learning, Image Classification, Tea leaf diseases

I. INTRODUCTION

Sri Lanka is globally recognized as a premier tea exporter,
a reputation it has maintained for over a century. In 2019,
Sri Lanka’s tea cultivation covered an expansive area
of approximately 202,985 hectares, yielding an annual
production of around 300 million kilograms, sustaining year-
round harvests [1]. Notably, in 2023, the country exported
256.04 million Kgs of tea, representing a significant portion
of its total production [2]. Sri Lanka stands as the foremost
producer of orthodox tea on a global scale. This demands
intense care of tea plant health in Sri Lanka. Therefore,
the identification and detection of tea leaf diseases play a
crucial role in ensuring the growth safety and quality of tea
production [3].

There are various practices carried out to monitor the
condition of tea leaves in tea estates using manpower and
Information Technology. The traditional disease identification
and detection methods in tea plants often rely on manual
inspection, which can be time-consuming and prone to errors.
Furthermore, these traditional methods may require extensive
knowledge and expertise in tea plant diseases, making them
less accessible to farmers and researchers without specialized
training. To address these problems, in recent years, the advent
of deep learning technology has opened up new possibilities

for automating the detection and identification of tea leaf
diseases [3][41[51[6][7] [8][9]. It is possible to develop ac-
curate and efficient models that can classify different diseases
and other common tea leaf diseases by training deep-learning
neural networks on large datasets of tea leaf images [4]. These
deep learning models can help to distinguish healthy leaves
and diseased leaves, leading to early detection and classifi-
cation [10]. Moreover, deep learning models can potentially
improve the accuracy and reliability of tea leaf disease de-
tection by extracting significant features from tea leaf images
[11]. This can help overcome the limitations of subjective and
time-consuming manual inspection methods, providing a more
efficient and objective approach to tea leaf disease diagnosis.
However, the absence of robust datasets, variability in disease
presentations, and the necessity for automated, non-invasive
detection methods provide both challenges and opportunities
for innovative research and technological progress.

Despite the predominant focus of prior research on detecting
blister blight in tea leaves in Sri Lanka [12], our study aims
an approach to present a robust disease detection framework
for automatically identifying five tea leaf diseases (algal leaf
spot, grey blight, black blight, blister blight, and spider mites).
Our objective is to achieve state-of-the-art accuracy in disease
detection, addressing the need for comprehensive solutions
in managing tea plant health. Utilizing a pre-trained CNN
architecture, augmented by data augmentation and transfer
learning techniques, our approach addresses the challenge of
limited sample availability, achieving a classification accuracy
of 99.58%. Through the collection of 607 tea leaf image
samples from the central region of Sri Lanka, we constructed
a comprehensive database covering six tea leaf conditions.
Our work contributes to the advancement of tea leaf disease
classification by employing deep transfer learning techniques
to achieve remarkable accuracy.

This paper is presented with a literature review to highlight
the existing research in tea leaf disease detection. Following
that, the methodology section describes the dataset used, pre-
processing techniques applied, and details of the experiments
conducted. Section 4 reports the results of these experiments,
including the accuracy and performance of the deep-learning
models in tea leaf disease detection. Finally, the conclusion in
Section 5 summarizes the findings of the study and discusses
potential future directions for research in tea leaf detection
using deep learning.



TABLE I
COMPARATIVE ANALYSIS OF EXISTING WORKS

Paper | Year Disease type NO' of Method Accuracy
images
Algal leaf spot, grey blight, white spot, brown blight,
[13] 2021 red scab, bud blight, and grey blight 860 Custom DCNN 94.45
[14] 2021 Red rgst, red spider, thrips, helopeltis, and sunlight 1000 PCA and SVM 33
scorching
[15] 2021 Leaf blight 970 Retinex algorithm and faster RCNN 84.45
[16] 2021 Brown blight, blister blight, and leaf spot 4295 Cascade RCNN (CRCNN) 76.60
[17] 2022 Leaf spot, rhizome rot, powdery mildew, and leaf blotch | 630 Hybrid filter and support vector machine 92.84
Red leaf spot, algal leaf spot, bird’s eyespot, grey blight, .
(18] 2022 white spot, anthracnose, and brown blight 885 Improved retina-net 9383
[19] 2022 Blister blight 60000 %;?A;lashmg with integrated autoencoders 98.50
. . Custom DCNN and generative adversarial net-
[20] 2022 White scab, leaf blight, red scab, and sooty mould 634 work (GAN) 93.24
[21] 2022 tea white star, tea leaf blight, tea wheel spot 694 Inception V3 90.42
[22] 2023 Grey blight 634 DCNN 98.99
[12] 2023 Blister blight 3102 YOLOVS, ResNet50 88.26
4] 2023 Ez;ifsrpulster, Tea mosquito bug, Black rot, Brown blight, 4000 YOLOVT 9730

II. LITERATURE REVIEW

In recent years, a small number of methods for detecting
tea leaf diseases have been introduced, utilizing computer
vision, image processing, and machine learning techniques.
This section elaborates on the most relevant frameworks and
methodologies. Table I presents a comparative analysis of
various detection methodologies proposed in different articles.
Arnal Barbedo [23] investigated the identification of multiple
plant diseases on the same leaf from individual lesions and
spots using deep learning, demonstrating that this approach
significantly enhances data variability without requiring addi-
tional images. Furthermore, an approach proposed by G. Hu
et al. [24], a low-shot learning method for tea leaf disease
identification employs Support Vector Machine (SVM) for
image segmentation and improved conditional deep convolu-
tional generative adversarial networks (C-DCGAN) for data
augmentation.

The identification of plant diseases from individual lesions and
spots using deep learning has also been explored, showing that
this approach can significantly increase data variability without
the need for additional images and can identify multiple
diseases on the same leaf [23]. In the context of tea leaf disease
identification, a low shot learning method has been proposed,
which leverages SVM for image segmentation and improved
conditional deep convolutional generative adversarial networks
(C-DCGAN) for data augmentation, resulting in high identifi-
cation accuracy [24].

Several other studies have investigated the detection of tea leaf
diseases using YOLO models [4][25]. Notably, Xue et al. [8]
developed the YOLO-Tea model, an extension of YOLOVS,
which integrates self-attention and convolution (ACmix) along
with the convolutional block attention module (CBAM) to en-
hance detection capabilities for specific diseases in tea plants.
This model enhances focus, replaces modules to improve
feature extraction, and optimizes resource consumption for

edge devices. However, this paper focuses only in tea leaf
blight disease.

In a different approach to detecting tea leaf diseases, many
authors have proposed custom CNN models [25][15][22]. In
which, Gayathri et al. [6] introduced a CNN approach aimed
at detecting tea plant diseases from leaf images, particularly
focusing on common diseases like Blister Blight and Leaf
Blight in India. The method utilizes data annotation and
augmentations, with the CNN model LeNet providing the
output.
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Healthy Algal leaf spot Black blight
Blister blight Gray blight Spider mites

Fig. 1. Sample images of tea leaf conditions

However, there are only a few tea leaf disease detection
methods employing deep transfer learning techniques have
been proposed. These methods involve the direct transfer of
features from a pre-trained CNN architecture. J. Chen et al.
[26] applied deep transfer learning to plant disease identi-
fication. They adapted pre-trained models such as VGGNet
and the Inception module for specific tasks, resulting in sub-
stantial performance improvements. Other similar approaches
[16][18][21][12] and various techniques applied for detecting
tea leaf disease are presented with a comparative analysis in



Table 1.

Based on the extensive literature review, it is evident that
transfer learning plays a crucial role in tea leaf disease de-
tection. However, existing techniques face several challenges.
Firstly, the visual symptoms of diseases such as algal leaf spot
and grey blight are often similar, leading to misclassifications
by disease detection models. Secondly, there is a limited
number of research studies dedicated to diagnosing tea leaf
diseases, despite their significant impact on tea crop yields in
Sri Lanka. Lastly, existing techniques have not consistently
achieved high performance across all tea leaf diseases, with
the maximum classification accuracy of 98.99% observed in
a model specifically trained for detecting grey blight disease
[22]. These findings highlight the importance of proposing a
novel approach that can accurately differentiate between the
symptoms of algal leaf spot, blister blight, black blight, grey
blight, and spider mites, thus surpassing the performance of
existing methods.

III. METHODOLOGY
A. Dataset

For the dataset acquisition process, a selection of image
samples was carefully gathered to depict six distinct classes
of tea leaf conditions: algal leaf spot, blister blight, black
blight, grey blight, spider mites, and healthy leaves as shown
in Figure 1. These samples were obtained from tea plantations
situated in the central province of Sri Lanka, renowned for
its extensive tea cultivation. A comprehensive representation
of the various conditions observed in tea leaves was achieved
by capturing a total of 607 images using a smartphone
camera. However, the number of images for each class varied,
with some classes having fewer images than others. The
distribution of images for each class is detailed in Table
II, providing insights into the dataset composition across
different disease categories and healthy leaves.

TABLE I
COLLECTED NUMBER OF IMAGE SAMPLES

Tea leaf diseases | Number of images
Algal leaf spot 86
Blister blight 36
Black blight 109
Grey blight 199
Spider mites 69
Healthy 111

The varying quantities of images obtained for each class
can be attributed to the various effects of environmental
conditions and weather patterns on tea leaves afflicted by
different diseases. This variability emphasizes the dynamic
nature of disease prevalence within tea estates. It highlights the
imperative of capturing a comprehensive spectrum of samples
to faithfully represent real-world scenarios in the dataset
collected for tea leaf disease detection. The images were
resized before training, with two models utilizing captured

images resized to 299x299 pixels and the remaining models
using images resized to 224x224 pixels.

B. Data Augmentation

Following the data preprocessing, the data was augmented
to expand the dataset by generating additional samples from
the collected images to alleviate the data deficiency during the
training phase. Basic image processing algorithms were em-
ployed for this purpose. Since Convolutional Neural Networks
(CNNs) exhibit invariance to factors like scale ,translation,
illumination, and viewpoint, data augmentation was deemed
essential to augment the samples for each disease category
[27]. In this proposed approach, seven new samples were
created from each raw image through various augmentation
techniques, including , height shift,width shift, shear, zoom,
rotation, , horizontal flip and fill mode. The utilization of
synthetic data, generated through imaging algorithms, signifi-
cantly improved the feature extraction capabilities of the CNN
model.

C. Transfer learning

Transfer learning is a technique used to improve the accu-

racy of tea leaf disease prediction models. It involves using
pre-trained models on large datasets, such as ImageNet, and re-
training them on tea leaf disease data. Several models, includ-
ing VGG16, VGG19, 10-DCNN, Inception V3, ResNet-50,
MobileNetV2, and DenseNet20, have been used for transfer
learning in tea leaf disease identification. The use of transfer
learning has been found to be effective in improving the
performance of the models, achieving high accuracy, precision,
sensitivity, specificity, and F1-score.
Additionally, the lightweight deep convolutional neural net-
work MobileNetV2 has been used for tea disease classification,
and its knowledge has been transferred to the task of tea
disease identification. This approach has resulted in higher
recognition rates for tea disease.

D. Proposed Approach

As depicted in Figure 2, the proposed architecture utilizes
a shallow convolutional feature extraction block followed by
three fully-connected layers for classification. The feature ex-
traction block leverages pre-trained convolutional layers from
established image classification models, including Xception
[28], InceptionV3 [29], VGG16 [19], EfficientNetBO [30],
DenseNet201 [31], and MobileNetV2 [32]. These pre-trained
layers were originally trained on the large-scale ImageNet
dataset. The architecture of the network incorporated a dropout
layer inserted between the fully-connected layers. The con-
volutional layers leveraged the pre-trained model’s param-
eters without further optimization. The design of the fully
connected layers was determined based on validation results,
with neurons set to 256, 128, and 6. The proposed network
required input of size 299 x 299 x 3 for Xception and Incep-
tionV3 models, and 224x 224x 3 for VGG16, EfficientNetBO,
DenseNet201, and MobileNetV2, produced output for the six
corresponding disease classes.
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Fig. 2. Proposed architecture

The convolutional layers in the proposed CNN architectures
were initialized using weights pre-trained on models de-
veloped for the ImageNet classification task. These models
are characterized by fully connected layers containing 1000
neurons tailored for classifying respective classes. Given our
focus on a 6-class classification task, the final fully-connected
layers of the pre-trained models were replaced with a custom
architecture designed for this specific output dimensionality.
The design changes were made based on the experimental
results, resulting in the utilization of fully connected layers
with 256, 128, and 6 neurons in the proposed approach. In
all six pre-trained models, a staged fine-tuning approach was
employed. The initial convolutional layers were maintained in
a frozen state, leveraging their ability to extract generic image
features. Subsequent convolutional layer blocks, progressing
from the final layers, were progressively fine-tuned using the
tea leaf image dataset. This targeted fine-tuning strategy aimed
to capture class-specific features while preserving the general
feature extraction capabilities of the pre-trained model. The
optimal number of fine-tuned convolutional layer blocks was
determined empirically through model performance evalua-
tion.

As described earlier, the proposed approach utilized transfer
learning techniques to train a convolutional neural network
(CNN) model for tea leaf disease classification. This ar-
chitectural design leverages pre-trained convolutional layers,
with most initial layers remaining static during the training
process. This approach mitigates the limitations imposed by
the relatively small dataset of tea leaf images. Fine-tuning is
strategically applied only to a select number of later layers,
facilitating the model’s ability to capture class-specific features
for tea leaf classification. The selection of convolutional layers
for fine-tuning was guided by empirical evaluation of model
performance. Conversely, the fully-connected layers were ini-
tialized with random weights, allowing their parameters to be

optimized during the training process.

The performance of the CNN model is highly dependent on
hyperparameters such as batch size, learning rate, optimization
function, and dropout value. These hyperparameter values
were fine-tuned based on validation results to achieve optimal
performance. To enhance the generalizability and robustness of
the proposed network architecture, k-fold cross-validation was
employed for training and evaluation. Within each fold, the tea
leaf image dataset was stratified and randomly partitioned into
an 80% training and validation set, with the remaining 20%
designated for testing. The network architecture underwent
training for a predefined number of epochs. Subsequently, the
model exhibiting the optimal performance on the validation
set, as determined by a pre-defined metric, was selected for
final evaluation.
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Fig. 3. Comparison between proposed models

IV. EXPERIMENTAL RESULTS
A. Proposed Approach

In our proposed methodology, we utilized convolutional
layers from well-established pre-trained models such as Xcep-
tion, InceptionV3, VGG16, EfficientNetB0, DenseNet201, and



MobileNetV2. Each model’s performance was individually
assessed to determine its suitability within our framework.
Consistent parameter settings for the convolutional layers
were maintained across all models to ensure methodological
coherence. We set the dropout parameter within the range of
0.3 to 0.5 based on empirical findings to address potential
overfitting. Optimization of the models was achieved using the
Adam[33] algorithm, with performance evaluations conducted
for each model separately. During training, the softmax cross
entropy loss function was employed with a fixed learning rate
of 0.0001 to facilitate model convergence.

For both training and testing phases, image data underwent
pre-processing to normalize color intensity values between O
and 1. The CNN architecture was trained extensively over 100
epochs, employing a batch size of 32 to achieve a balance
between computational efficiency and model performance.
Implementation of our methodology was carried out using
the Keras tool within the Python programming environment.
We leveraged the computational capabilities of the NVIDIA
Tesla K80 GPU through the Google Colab cloud platform
for efficient algorithm execution. The dataset and source code
have been publicly shared to uphold scientific transparency,
enabling reproducibility of the findings and fostering collab-
oration within the scientific community (see supplementary
materials).

B. Evaluation protocols

Based on the related studies, Accuracy and Fl-score are

the most commonly used evaluation metrics for plant disease
classification. Accuracy measures the overall correctness of a
machine learning model by comparing its predictions to the
actual labels (ground truth). However, accuracy may be biased
towards the majority class in imbalanced datasets, potentially
overestimating model performance. To address this issue, we
also consider the F1-score, which provides a balanced measure
of precision and recall.
Classification accuracy serves as the metric for assessing
the performance of the proposed six pre-train models. In
particular, Fl-score, precision and recall are calculated to the
outperformed proposed Xception model. Those are calculated
using the following formulas:

A B TP+ TN )
Y = TP TN + FP+ FN
TP
Precision = ———— 2
recision TP+ FP 2)
TP
Recall = m (3)

F1— score, = 2 x Precision *x Recall

“4)

Precision + Recall

Here, TP represents true positives, FP stands for false posi-
tives, FN denotes false negatives, and TN indicates true neg-
atives. To evaluate the performance, a 5-fold cross-validation
method was employed. The average of these cross-validations

is regarded as the comprehensive performance measure of the
proposed approach.

C. Testing Results

The effectiveness of the proposed approach was demon-
strated through the utilization of the k-fold cross-validation
technique, a method commonly employed by researchers to
evaluate deep learning models when faced with a limited
number of samples. The dataset was stratified and randomly
partitioned into five folds of equal size. In each fold, four
folds were designated for training and validation, while the
remaining fold served for testing. This process iterated through
all five folds, ensuring each fold served as the testing set
exactly once. The final classification accuracy of the proposed
model was determined by averaging the performance metrics
across all five iterations of the cross-validation process.

TABLE III
CLASSIFICATION PERFORMANCE METRICS FOR VARIOUS
LEAF CONDITIONS: XCEPTION-BASED MODEL

Class Precision | Recall | Fl-score
Algal leaf spot 0.97 1.00 0.99
Black blight 1.00 0.97 0.99
Blister blight 1.00 1.00 1.00
Gray blight 1.00 1.00 1.00
Healthy leaf 1.00 0.97 0.99
Spider mites 0.98 1.00 0.99

Figure 3 illustrates the test accuracy of each pre-trained
model employed in our methodology. In comparison to
the lightweight models EfficientNetBO and MobileNetV2,
EfficientNetBO exhibited notably higher accuracy. Among
the four depth models: Xception, VGG16, InceptionV3 and
DenseNet201 examined, the Xception model showed infe-
rior performance with an accuracy of 99.58%. The accuracy
achieved closely aligns with precision and recall values rang-
ing from 0.97 to 1.00. These high precision and recall values
indicate the model’s capability in correctly classifying each
leaf condition and effectively capturing instances of each con-
dition, as illustrated in Table III. Furthermore, with F1-score
values consistently surpassing 0.99, our model shows a robust
balance between precision and recall, reflecting its strong
overall performance. This comparison affirms the efficacy of
our model in accurately classifying various leaf conditions.
When comparing the results of our study with those pre-
sented in Table I, our work demonstrates notable accuracy
in detecting five distinct diseases in tea leaves. While some
existing studies exhibit significant accuracy in disease detec-
tion, they are primarily focused on individual diseases, unlike
our proposed approach, which addresses multiple diseases
comprehensively.

V. CONCLUSION

This paper introduces a deep transfer learning-based frame-
work for classifying tea leaf diseases. Image samples, compris-
ing five disease classes and healthy leaves, were collected from
Sri Lanka’s central province across various lighting conditions



and preprocessed to form an image dataset. Data augmentation
strategies were implemented to artificially expand the training
dataset. Leveraging six pre-trained CNN models (Xception,
InceptionV3, DenseNet201, VGG16, EfficientNetBO, and Mo-
bileNetV2) trained on the ImageNet dataset, we fine-tuned
them using a limited number of tea leaf image samples.
The proposed approach was evaluated using a 5-fold cross-
validation technique, resulting in a classification accuracy of
99.58%. The future work of this study involves developing
a lightweight model suitable for integration into embedded
systems.
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