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Abstract

The misuse of social platforms and the difficulty in regulating post contents have cul-

minated in a surge of negative sentiments, sarcasms, and the rampant spread of fake news.

In response, Multimodal sentiment analysis, sarcasm detection and fake news detection

based on image and text have attracted considerable attention recently. Due to that these

areas share semantic and sentiment features and confront related fusion challenges in

deciphering complex human expressions across different modalities, integrating these

multimodal classification tasks that share commonalities across different scenarios into

a unified framework is expected to simplify research in sentiment analysis, and enhance

the effectiveness of classification tasks involving both semantic and sentiment modeling.

Therefore, we consider integral components of a broader spectrum of research known

as multimodal affective analysis towards semantics and sentiment, and propose a novel

multimodal dual perception fusion framework (MDPF). Specifically, MDPF contains

three core procedures: 1) Generating bootstrapping language-image Knowledge to

enrich origin modality space, and utilizing cross-modal contrastive learning for aligning

text and image modalities to understand underlying semantics and interactions. 2)

Designing dynamic connective mechanism to adaptively match image-text pairs and

jointly employing gaussian-weighted distribution to intensify semantic sequences. 3)
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Constructing a cross-modal graph to preserve the structured information of both image

and text data and share information between modalities, while introducing sentiment

knowledge to refine the edge weights of the graph to capture cross-modal sentiment

interaction. We evaluate MDPF on three publicly available datasets across three tasks,

and the empirical results demonstrate the superiority of our proposed model.

Keywords: multimodal sentiment analysis, sarcasm detection, fake news detection,

multimodal affective analysis, multimodal dual perception fusion

1. Introduction

Social data has evolved from being predominantly text-based to a rich, diversified

format where images and text coexist harmoniously. This transformation has led indi-

viduals to increasingly rely on multimodal data to articulate their affective viewpoints.

However, the misuse of these platforms and the inherent challenges in regulating posted5

content have culminated in a surge of negative sentiments, sarcasm, and the rampant

spread of fake news [27, 36, 41, 60]. In response, the fields of multimodal sentiment

analysis (MSA), multimodal sarcasm detection (MSD), and multimodal fake news

detection (MFND) have emerged, focusing on the intertwined analyses of images and

text to address these concerns.10

Multimodal sentiment analysis, sarcasm detection, and fake news detection all fall

within the realm of human affective behavior [1, 4, 19, 58], and these areas are integral

components of a broader spectrum of research known as multimodal affective analysis,

involving same emotional mechanisms, namely, dual modeling of semantics and senti-

ment. As illustrated in Figure 1, semantics represents the factual content described by15

text and images, and sentiment represents the emotional tendencies contained in text and

images. The orderly fusion of factual content and sentiment tendencies can achieve the

mutual complementation of semantic and emotional information in cases where the text

and image are consistent, so as to accurately predict the sentiment polarity, as shown

in Figure 1 (a). Figure (a) lacks explicit sentiment expression, and the discrimination20

of its sentiment polarity requires the combination of semantic content with the positive

sentiment elements conveyed through the azure sea and burning sun in the image. In
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(a) 巴黎内城的小环线铁路。

文本：无明显情感倾向

图像：花朵，粉色等暖色

调蕴涵的积极情感倾向

情感倾向：积极

(b) 感谢承包商对洪水进行了出色的处理！

文本：感谢、出色等词蕴

涵的积极情感倾向

图像：湿漉地面、淤泥等

对象蕴涵的消极情感倾向

情感倾向：消极

(a) 我们在海滩上度过了一天。

语义：文本海滩；图像太

阳、沙滩、大海、朝霞

情感：文本无情感倾向；
图像火红、淡紫等暖色调

蕴含积极情感倾向

任务一：情感极性分析

(b) 一定喜欢温暖干燥的环境！

语义：文本温暖、干燥；

图像白雪、潮湿地面

情感：文本喜欢等词表达
积极情感倾向；图像白
色、灰色等冷色调蕴含消

极情感倾向

任务二：讽刺检测

(c) 叙利亚小女孩在街上卖口香糖，这样她就能养活自己。

语义：文本叙利亚小女
孩、卖口香糖；图像衣着

干净整洁，微笑

情感：文本叙利亚小女
孩、养活整体表达消极情
感倾向；图像面带微笑蕴

含的积极情感倾向

任务三：虚假信息检测

语义与情感的双重建模

(a) 我们在海滩上度过了一天。

语义：文本海滩；图像太阳、沙

滩、大海、朝霞

情感：文本无情感倾向；图像火
红、淡紫等暖色调蕴含积极情感

倾向

场景：积极

(b) 一定喜欢温暖干燥的环境！

语义：文本环境；图像白雪、潮

湿地面、教堂

情感：文本喜欢、温暖、干燥表
达积极情感倾向；图像白色、灰

色等冷色调蕴含消极情感倾向

场景：讽刺

语义与情感的双重建模

面向语义与情感的多模态统一框架

预测结果：积极 预测结果：讽刺 预测结果：虚假

私有语义

公有语义

私有语义

公有语义

私有特征

公共特征

私有特征

公共特征

(a) We spent our holiday 

at the beach.

(b) Gotta love the warm and 

dry conditions！

Semantics: 

warm, dry conditions (Text)

snow, wet ground, cloudy (Image)

Sentiment:

Positive  (Text)

Negative (Image)

Task 2：Sarcasm Detection

(c) Little Syrian girl sells chewing gum 

on the street so she can feed herself.

Semantics: 

little Syrian girl, chewing gum (Text) 

neatly dressed, smiling (Iamge)

Sentiment:

Negative (Text)

Positive (Image)

Task 3：Fake News Detection

Prediction：Sarcasm Prediction：Fake

Semantics：
holiday, beach (Text)

sun, beach, sea (Image)

Sentiment:

Neutral (Text)

Positive (Image)

Task 1：Sentiment Analysis

Prediction：Positive

Figure 1: Several examples from MSA, MSD, and MFND. (a) lacks explicit sentiment expression which

need to be complemented by the sentiment conveyed through image. (b) distinguishes sarcasm through

the significant differences between sentiment word and semantics of the image. (c) illustrate the impact of

semantics and sentiment information on fake news detection.

incongruent scenarios, the mutual comparison of semantics and sentiment can help

to judge whether it is ironic or false, as shown in Figure 1 (b) sarcasm detection and

Figure 1 (c) fake news detection. In Figure (b), the text descriptions of warm and25

dry form a strong semantic contrast with the image object snow, while the word like

creates a sentiment contrast with the cloudy area, which further exacerbates the degree

of inconsistency. Fake news in Figure (c) narrates a war-like situation, while the image

implicitly depicts a happy sentiment. Integrating these multimodal classification tasks

with commonalities in different scenarios into a unified multimodal framework is ex-30

pected to simplify the research work of multimodal sentiment analysis and improve the

effectiveness of multimodal classification tasks involving dual semantic and sentiment

modeling.

In addressing the complexities of multimodal affective content interpretation, we
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integrate multimodal sentiment analysis, multimodal sarcasm detection, and multimodal35

fake news detection into a unified approach within the broader realm of multimodal

affective analysis towards semantics and sentiment. This integration acknowledges the

shared features and challenges across these domains, leading us to propose the Mul-

timodal Dual Perception Fusion Framework (MDPF). Distinguished from traditional

sentiment classifications, MDPF focuses on a broader spectrum of multimodal affective40

classification by combining semantic and emotional cues for comprehensive multimodal

analysis. Specifically, we enrich multimodal representations with image-derived knowl-

edge by leveraging a bootstrapping language-image pre-trained model, and employ

cross-modal contrastive learning for precise text-image alignment, capturing the nu-

ances of multimodal expressions. Meanwhile, MDPF applies dynamic routing attention45

mechanisms and probability density functions to capture shared and private features to

identify and enhance semantics across modalities. Additionally, it integrates sentiment

knowledge to refine cross-modal interactions by performing graph convolution, culmi-

nating in the fusion of semantic intensified and sentiment interactive sequences. This

novel approach marks a significant advancement in affective classification, enhancing50

the interpretation of complex affective phenomena across textual and visual data, and

providing new research ideas for multimodal sentiment analysis research. The main

contributions of this work are summarized as follows:

• We introduce the Multimodal Dual Perception Fusion Framework (MDPF), in-

tegrating multimodal classification tasks involving dual modeling of semantic55

and sentiment in different application scenarios into a unified framework. This

approach not only promises to streamline sentiment analysis research but also en-

hances the effectiveness of detecting and analyzing complex affective phenomena

in social media content.

• By infusing the feature encoding process with image description knowledge60

and cross-modal contrastive learning, our approach significantly enriches the

multimodal sentiment space, ensuring a robust alignment of textual and visual

modalities with a sentiment focus.

• We develop a dynamic connective mechanism alongside a gaussian-weighted
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distribution approach, adept at distilling shared and private sentiment features,65

and incorporate sentiment knowledge into the cross-modal graph. This innovation

significantly enhances our proposed framework’s ability to navigate and interpret

complex affective landscapes effectively.

The remainder of this paper is organized as follows. After introducing related works

in Section 2, we propose a Multimodal Dual Perception Fusion Framework in Section70

3. Then, the experimental details and analysis are described in Section 4. Finally, we

summarize our work and provide a direction for future work in Section 5.

2. Related work

Multimodal fusion methods aim to construct unified semantic space combining

image and text information to perform multimodal task [10, 20, 46]. However, dis-75

crepancies across different modalities hinder the development of models. Therefore,

various multimodal classification models such as multimodal sentiment analysis, sar-

casm detection, and fake news detection design advanced fusion strategies to address

this issue.

2.1. Multimodal sentiment analysis80

MSA utilizes multimodal fusion methods to map multimodal features into a unified

semantic space for multimodal sentiment classification, and it focuses on modeling

modality interaction between image and text. Xu et al. [49] proposed a co-memory

network to integrate visual contents and textual words via an interaction strategy. The

above method may cause information loss, Jiang et al. [14] designed an interactive85

information fusion mechanism to interactively learn cross-modal representations. Yang

et al. [52] relied on the interaction of text and image modalities to fine-tune the

pre-trained BERT model. Rahman et al. [34] allowed BERT and XLNet to accept

multimodal non-linguistic data during fine-tuning for multimodal sentiment analysis.

Zhu et al. [57] believed that the correspondence between image regions and words in90

image-text pairs facilitates cross-modal interaction. Additionally, Yadav et al. [51] used

deep multi-level attention to exploit the correlation between image and text modalities

to improve multimodal sentiment analysis.
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2.2. Multimodal sarcasm detection

MSD is a subtask of MSA that aims to identify whether the text description differs95

from the image content. Previous studies have attempted to model sarcasm via fusion

and interaction across modalities. Schifanella et al. [35] combined visual semantics

with text features from an external dataset, while the other used pre-trained visual

neural networks to analyze multimodal sarcasm. Cai et al. [3] tried to use multimodal

hierarchical fusion to detect multimodal sarcasm. To address the issue in reasoning100

with multimodal sarcasm, Xu et al. [50] designed a decomposition and relation network

based on cross-modal contrast and semantic association for sarcasm detection.

However, previous methods have overlooked the deep implicit sarcasm relationship.

Therefore, recent studies attempt to model modality incongruity to fusion image and text

information. Liang et al. [22] constructed cross-modal graphs to model the incongruity105

of image and text. To address the issue that models lack the flexibility to diverse

image-text pairs, Tian et al. [39] employed dynamic paths and hierarchical co-attention

adapting to model cross-modal incongruity. Wen et al. [45] argued the challenge of

MSD from implicit intention and intrinsic conflict, and proposed a semantic intensified

distribution and siamese sentiment Contrastive Learning method. Jia et al. [13] believed110

the spurious correlations can significantly hinder the generalization capability, and they

proposed a debiasing multimodal sarcasm detection framework to alleviate the harmful

effects of biased textual factors on robust OOD generalization.

2.3. Multimodal fake news detection

MFND task based on contents is similar to MSD which aims to identify fake115

news as true or false through the image-text pair. Early studies leverage cross-modal

discriminative patterns to integrate image and text to improve the accuracy. Khattar et al.

[16] used a bimodal variational autoencoder combined with a binary classifier to perform

fake news detection tasks. To address the specific features could not be transferred

to newly emerging events, Zhang et al. [55] adopted multimodal knowledge-aware120

networks and event memory networks as building blocks for social media fake news

detection. In view of the fact that many existing methods ignore the correlation between

text and visual features and lead to suboptimal results, Wei et al. [44] proposed a novel
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cross-modal knowledge distillation function as a soft target to guide unimodal network

modeling and train a fusion model for multimodal fake news detection.125

Recently, some methods have worked on the principles of cross-modal incongruity.

Chen et al. [6] calculated Kullback-Leibler (KL) divergence to measure cross-modal

consistency. To improve the performance of the decision-making processing, Wang

et al. [42] proposed a cross-modal contrastive learning method for multimodal fake

news. Moreover, Chen et al. [7] proposed a causal intervention and counterfactual130

reasoning-based debiasing framework to mitigate multimodal biases from a causality

perspective. Wu et al. [46] adopted multimodal fusion and inconsistency reasoning

to discover multimodal inconsistent semantics for interpretable fake news detection.

Additionally, Peng et al. [31] proposed contextual semantic representation learning to

introduce contextual information into the representation learning process for multimodal135

fake news detection.

Despite multimodal fusion methods have achieved promising results, existing ap-

proaches only focus on individual tasks and have not yet established the inherent

connections among these tasks. Given that MSA, MSD, and MFND fall within the

realm of human affective behavior and share common fundamental characteristics.140

Meanwhile, these tasks confront related challenges in deciphering complex human

expressions across different modalities. Therefore, we aim to design a multimodal dual

perception fusion framework to integrate these tasks into a unified multimodal model.

3. Methodology

In this work, we propose a novel Multimodal Dual Perception Fusion Framework145

(MDPF) for multimodal sentiment analysis, sarcasm detection, and fake news detection.

The proposed method defines the three tasks as constructing a fused sequence of

semantics and sentiment. Specifically, we first utilize Bootstrapping Language-Image

Pre-training to generate image descriptions as external knowledge and combine image-

text contrastive learning for cross-modal alignment. Then, we design a dual perception150

mechanism that contains a semantic joint perception module and a sentiment interactive

perception module. The semantic joint perception module utilizes a dynamic connective
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Dynamic Connection

Gaussian Distribution

H
g
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Image Descriptions

Figure 2: Overall architecture of our proposed MDPF model. MCE, SJP, SIP, and CFM denote the multimodal

contrastive encoding, semantic joint perception, sentiment interactive perception, and combination fusion

module, respectively.

mechanism and gaussian- weighted distribution to capture shared and private features

for constructing semantic intensified sequences. Meanwhile, the sentiment interactive

perception module integrates textual and visual graphs to build a cross-modal graph155

convolutional network for generating sentiment interactive sequences. Finally, a cross-

modal combination fusion module is employed to merge the dual perceptual information

for multimodal classification. The framework of the proposed MDPF is shown in Figure

2. Next, we will provide the task and notation definitions and elaborate on each specific

technique in detail.160

3.1. Task and Notation Definition

Multimodal sentiment analysis, sarcasm detection and fake news detection involving

both text and images are integral components of a broader spectrum of research known

as multimodal affective analysis that can be defined as: given a collection of N training
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samples denoted as S = {s1, s2, ..., sN}, each sample s = {xvi , xti} contains an image-165

text pair which the image is split into m patches and text contains n words is denoted as

Image = {evi | 1 ≤ j ≤ m} and Text = {etj | 1 ≤ i ≤ n}, where evi denotes the i-th

patch of the image, and etj denotes the j-th word of the sentence. The goal of task is to

design a classifier F which jointly utilizes image and text modalities to predict the truth

label ŷi = F(xv, xt, θ) for each image-text pair.170

3.2. Multimodal Contrastive Encoding

The image and text information are first input into feature encoders. The image and

text embedding are obtained by utilizing a ViT [8] and Transformer [40] model from

CLIP [33] to enhance the cross-modal alignment and interaction capabilities within the

original modality space. The process is formulated as follows:

V =[v1, v2, ..., vm] = CLIP V iT (Image)

T =[t1, t2, ..., tn] = CLIP Transformer(Text)
(1)

where V ∈ Rm×dv and T ∈ Rn×dt represent the output embeddings of image and text.

vi ∈ Rdv denotes the i-th patch of image, and tj ∈ Rdt denotes the j-th word. dv, dt

denote the dimension of image and text embedding.

3.2.1. Bootstrapping Language-Image Knowledge Construction175

The limited richness of modal information representation is caused by low-level

image features and the absence of direct supervision for image-text alignment in the

multimodal task. Therefore, we construct external knowledge by generating image

descriptions D via Bootstrapping Language-Image pre-training model [18] to enhance

the multimodal representation.

D = LLM(FC(QFormer(xv))) (2)

Knowledge construction is pre-trained in two stages: In the first stage, the Q-Former

learns visual representations that are most relevant to the text. In the second stage, visual-

language generative learning is conducted by connecting the output of the Q-Former
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to a frozen Large Language Model (i.e., OPT [56]), allowing the visual representa-

tions produced by the Q-Former to be directly interpreted by the Large Language180

Models(LLMs).

Based on image descriptions, we restructure the encoding stage to introduce external

knowledge. Specifically, we continued to use ViT and BERT trained based on CLIP to

encode the image and the text concatenated with image description, respectively.

V c = CLIP V iT (V )

T c = CLIP Transformer(concat(T,D))
(3)

Where V c ∈ Rm×dv represents the output embedding of images, and T c ∈ Rn×dt is

the output embedding representing the combination of text and image description.

3.2.2. Cross-modal Contrastive learning

After obtaining the output embeddings, we align the image and text modalities to

comprehensively understand the underlying semantics and interaction between the text

and image. We adopt the InfoNCE loss [29] to construct cross-modal contrastive loss.

For each image text pair, image-to-text contrastive loss is defined as:

Lv2t = − log
exp(sim(vci , t

c
i )/τ)∑N

i=1 exp(sim(vci , t
c
j)/τ)

(4)

Where vci , t
c
i are the layer normalized representations from V c, T c. sim denotes sim-

ilarity measured by the dot product of the image-text pair. τ represents the learnable

temperature parameters. Then, the text-to-image contrastive loss Lt2v is constructed in

a similar way.

Lt2v = − log
exp(sim(tci , v

c
i )/τ)∑N

i=1 exp(sim(tci , v
c
j)/τ)

(5)

Where the contrastive learning generates sets of positive and negative instances via a

batch of N input pairs (vaa , t
a
b ). Specifically, there are one positive instance and N − 1

negative instances for each pair in the batch. The positive sample is formed by the

most similar image text pairs in the batch, represented as (vai , t
a
j )i=j , while other N − 1

image text pairs are defined as negative samples, represented as (vai , t
a
j )i 6=j . Finally, the

optimization objective of cross-modal contrastive learning is defined as:

Lcl =
1

2N
(Lv2t + Lt2v) (6)
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Lcl obtains the semantic alignment unimodal feature va, ta by maximizing the similarity185

between positive examples and minimizing the similarity between negative examples.

After completing the contrastive encoding, aligned image-text semantics are input into

dual perception module to construct semantic and sentiment sequence.

3.3. Semantic Joint Perception

Given the presence of shared and private features in multimodal data, shared features190

manifest as semantic congruity to enhance semantics. In contrast, private features display

semantic incongruity to distinguish and complement semantics [26, 47]. Therefore, we

design a semantic joint perception module with a dynamic connection mechanism and

Gaussian-weighted distribution, which captures shared and private features in parallel

to construct semantic intensified sequences, speeding up the calculation while reducing195

the introduction of noise and redundant information, thereby achieving cross-modal

semantic enhancement and supplementation.

3.3.1. Dynamic connective mechanism

Shared features enhance semantics by matching images and text combinations that

jointly describe the same entity. Therefore, we calculate dynamic connective weight

using a routing attention mechanism [39] to capture the matching probability between

each image patch and word token. Firstly, we introduce a graph attention mechanism

that aggregates text and graph edge relationships to enhance node representation.

T a =
exp(σ(at[tci ·WT ||tcj ·WT ]))∑m
i=1 exp(σ(a

t[tci ·WT ||tck ·WT ]))
∗ T a

V a =
exp(σ(av[vci ·WV ||vcj ·WV ]))∑n
i=1 exp(σ(a

v[vci ·WV ||vck ·WV ]))
∗ V a

(7)

Where σ denotes the LeakyReLU activation function. at ∈ R2dt , av ∈ R2dv and

WT ∈ Rdt×dt ,WV ∈ Rdv×dv are the learnable parameter. Then, the dynamic routing

embedding routei can be calculated as follows:

routei =softmax(
QT (KV )

T

√
dk

⊗
k∑
i=1

αiAi)VV (8)

Where routei ∈ Rh×dh is the dynamic routing embedding, and dt = n · dh. QT =

tawq ∈ Rn×dr , KV = vawk ∈ Rm×dr , VV = vawv ∈ Rm×dr denote the query, key

11



and value representations, and wq ∈ Rdt×dr , wk ∈ Rdv×dr , wv ∈ Rdv×dr are learned

parameter. αi = softmax(MLP (Att Pool(vi))) denotes the routing matching prob-

ability, and Att Pool denotes the adaptive average pooling function. Ai ∈ Rn×m is

the matching coefficients between each image-text pair. If the image patch is within

the attention span of the text target, the value of coefficients is set to 1, otherwise set to

0. Then, we treat the routei as a attention function head, executing h heads in parallel

across the hidden dimensions via multi-head self-attention.

Hr = Concat(head1, head2, ..., headh)wo (9)

WhereHr ∈ Rn×dh represents the dynamic connective representation. Concat denotes

the concatenation operation. w0 ∈ Rdt×dt is the weight matrix. Finally, Hr is input

into a dynamic connective layer to capture the shared features.

Hm
k−1 = LayerNorm(MHA(Hr) +Hr)

Hd
k =LayerNorm(FNN(Hm

k−1) +Hm
k−1)

(10)

Where Hd ∈ Rn×d is the output embedding of k − th layer which contains the shared

features, among dv = dt = d. MHA denotes the multi-head self-attention and FNN200

denotes the feed-forward network. The dynamic connective mechanism focuses on

different subspaces of the image and text while leveraging routing matching matrices

and attention mechanisms to establish more effective information transmission and

interaction across various modalities.

3.3.2. Gaussian-weighted distribution205

Private semantics are significantly greater than shared semantics in terms of mean

and variance. Therefore, we adopt a gaussian-weighted distribution to model private se-

mantics. First, we design a reweighting strategy to find the most relevant representations

of private semantics.

vr = σ((va · (ta)T ) ∗ eτ ) · va (11)

Where vr ∈ Rm×dv is the reweighted image embedding, and eτ is the temperature

parameter. The reweighted text tr ∈ Rn×dt is designed in a similar way. Then, we

12



calculate the mean and variance of private samples through a gaussian distribution and

maintain the gaussian distribution with a memory bank.

µ =

N∑
i=1

M(vri , t
r
i ) (12)

σ =

√√√√ N∑
i=1

(M(vri , t
r
i )− µ)2 (13)

Where µ and σ are the mean and variance values. M(vri , t
r
i ) is the maintained memory

bank [12, 45], which stores the features of image-text pairs in a discrete storage unit

and computes the cosine similarity between instances directly based on features in a

non-parametric manner. After that, we use the probability density function to calculate

the probability of samples falling within the private semantic region.

pg =
1

σ
√
2π
· e−τ(

M(vri ,t
r
i )−µ

σ )2 (14)

The probability density function pg is optimized using gradient descent during each

learning iteration, and calculates the difference value between pg and the original

image-text pair as λ = pg − p to guide the modeling of private semantics. Finally, the

gaussian-optimized image-text pairs vg, tg is integrated into the cross-modal attention

mechanism to capture private features Hg ∈ Rn×d.210

3.4. Sentiment Interactive Perception

The sentiment relations between image and text modalities are crucial for multimodal

fusion in sentiment analysis, sarcasm detection, and fake news detection [25]. Image

data contains rich spatial structural information, while text data encompasses semantic

and syntactic dependency information. Modeling image-text pairs using cross-modal

graph convolutional neural networks can preserve the structured information of both

image and text data and share information between modalities, thereby better capturing

cross-modal sentiment relations. Thus, we design a cross-modal graph convolutional

network to construct sentiment interactive sequences. First, we generate textual graphs

13



based on SenticNet [5] and dependency tree.

Dt
i,j =

1 + δ(tai ), if i = j or {tci , tcj}in ∈ T

0, otherwise
(15)

Where δ(tai ) ∈ [−1, 1] represents sentiment value of i-th word retrieved from SenticNet.

T is the origin dependency tree1. The visual graphs Dv
i,j are generated in the same

manner. Notably, the construction of visual edge weights is determined by judging

whether different image patches belong to the same object:

Dv
i,j =

1 + δ(vai ), if i = j or {tci , tcj} ∈ R

0, otherwise
(16)

Where Dv
i,j ∈ Rn×n is the adjacency matrix of visual modality, and vci , v

c
j denote the

image patches. Due to the weights of the edges are important in graph information

aggregation [22, 25], we construct edge weights for cross-modal graphs by measuring the

distance between textual words and image objects, and introduce sentiment knowledge

to calculate the sentiment score within each image-text pair to refine the edge weights.

Dcross
i,j =


1 + δ(tai ), if Dt

i,j and i < m, j < n

1 + λsim(vai , t
a
i ), if i < m, j ≥ n

0, otherwise

(17)

Where Dcross
i,j ∈ R(m+n)×(m+n) represents the cross-modal graph matrix. sim(vai , t

a
i )

denotes the cosine similarity between textual words and image objects. λ = e−δ(t
a
i )δ(a

a
j )·

|δ(tai )− δ(aaj )| is the sentiment score to modulate the sentiment relations to refine edge

weights by introducing the sentiment knowledge. δ(tci ) and δ(aaj ) indicate the sentiment215

values of the dependency words and image patch attribute retrieved from SenticNet. If

words and attribute are not present in the SenticNet, we set them to 0. Simultaneously,

following the settings of [17], we configure the cross-modal graph as an undirected

graph and set the diagonal nodes to 1.

1We use spaCy toolkit to construct the dependency tree: https://spacy.io/
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Finally, we feed the cross-modal graph matrix Dcross
i,j into graph convolutional

network (GCN) and utilize a retrieval-based attention to generate sentiment interactive

representation.

gli = ReLU(

m+n∑
j=1

Dcross
i,j Wl g

l−1
j + bl) (18)

Hc =

m+n∑
t=1

ηt · hlt, ηt =
exp(βt)∑m+n
i=1 exp(βi)

, βt =

m+n∑
i=1

gli · hlt (19)

Where gli is the graph hidden representation, and hlt = [Ht, Hv] = {ht1, ht2, ..., htn, hv1,220

hv2, ..., h
v
m}. Ht and Hv represent the textual and visual graph representations evolved

fromDt
i,j andDv

i,j . βt and ηt is the retrieval-based attention score and weight. Hc ∈ Rd

is the final sentiment interactive representation.

3.5. Combination Fusion Module

Based on semantic intensified and sentiment interactive sequences, we project the

shared, private and sentiment interactive representation into a cross-modal combination

fusion module to achieve the multimodal classification.

Md, Mg, M c =Mean(Hd, Hg, Hc)

yf =LN(Wf (M
d +Mg +M c)) + bf

ŷ = softmax(Wy · yf + by)

(20)

Where Md, Mg and Mc are processed by the average function. yf ∈ Rd is the225

multimodal fusion embedding. Wf , Wy , bf , and by are the learned parameters. ŷ ∈ Rdp

is the predicted probability, and dp is the dimensionality of possible labels.

3.6. Training Objective

The training of MDPF is to optimize all the parameters, and minimize the loss

function via the standard gradient descent function. The overall loss is as follows:

L = Lgce + λ1Lcl + λ2Lgs (21)

Where λ1 and λ2 are trade-off factors between different objective functions. Lgce is

the global cross-entropy loss, Lcl is the cross-modal contrastive loss and Lgs is the230

gaussian-optimized loss.
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4. Experiments

In this section, we initially describe the experimental datasets in Section 4.1, fol-

lowed by the implementation details and baseline models in Sections 4.2 and 4.3. Then,

we compare proposed MDPF with advanced baselines on MVSA, MSD and Twitter235

datasets in Section 4.4 to evaluate the performance. Next, we conduct an ablation

study to analyze the contribution of MCE, SJP, SIP and CFM modules in Section 4.5,

and introduce the parameter analysis in Section 4.6. We also introduce a case study

to explain how bootstrapping language-image knowledge affects the proposed MDPF

model in Section 4.7. Finally, we provide a visualization to discuss how the semantic240

joint perception and cross-modal sentiment interactive graphs assist the dual perception

module in capturing semantic and sentiment information in Section 4.8.

4.1. Experimental datasets

We evaluate MDPF on three publicly available multimodal affective classification

benchmarks: MVSA [28] for sentiment analysis, MSD [3] for multimodal sarcasm245

detection, and a multimodal fake news detection benchmark from Twitter [2].

MVSA comprises two datasets: MVSA-Single and MVSA-Multiple, tailored for

sentiment analysis. MVSA-Single consists of 4,869 image-text pairs, excluding pairs

with inconsistent image and text labels, while MVSA-Multiple encompasses 16,779

image-text pairs.250

MSD contains 24,635 image-text pairs from Twitter that collects the specific hashtag

(e.g., #sarcasm, etc.) as sarcastic examples, and collects pairs without such hashtags as

non-sarcastic examples. To improve the quality, Cai et al. [3] discards tweets containing

sarcasm, sarcastic, irony, ironic as regular words and discards URLs.

Twitter is released for Verifying Multimedia Use task at MediaEval 2. This database255

is created around widely known 11 real-world events, and it is divided into 9,596 fake

tweets and 6,225 real tweets.

2http://multimediaeval.org
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4.2. Implementation Details

We follow the previous studies [3, 15, 28] to process the datasets to ensure a fair

comparison. We utilize the origin ViT and BERT, and pre-trained CLIP ViT and BERT260

[33] with 768 dimensions to initialize the image and text embeddings. The batch size

is set to 32, and Adam is adopted as the optimizer with a learning rate of 0.00001.

To optimize the model training, the epoch is set to 40 runs with random initialization,

and the value of early-stopping is set to 5. The proposed MDPF and all baselines are

implemented with PyTorch and performed by NVIDIA GeForce RTX 3090.265

4.3. Baselines

We compare the performance of MDPF with strong baselines across three tasks,

including MSA, MSS and MFND which are listed in Table 1, 2 and 3. The MSA

baselines combine images and texts information for sentiment analysis are as follows:

• CoMN [49] exploits the correlation between image and text modalities to improve270

multimodal learning.

• FENet [14] uses an interactive information fusion mechanism to learn vision-

specific textual representations and text-specific visual representations.

• CM-BERT [52] relies on the interaction of text and image modalities to fine-tune

the pre-trained BERT model.275

• MAG [34] allows BERT and XLNet to accept multimodal non-linguistic data

during fine-tuning.

• MVAN [53] utilizes a continuously updated memory network to obtain deep

semantic features of image text.

• ITIN [57] introduces a cross-modal alignment module to capture region-word280

correspondence, and on this basis fuses multimodal features through an adaptive

cross-modal gating module.

• DMLANet [51] uses deep multi-level attention to exploit the correlation between

image and text modalities to improve multimodal learning.
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The MSD baselines combine images and texts information as follows:285

• HFM [3] proposes a multimodal hierarchical fusion model to detect sarcasm.

• Res-BERT [30] uses BERT to encode text and combines text and image features

for sarcasm prediction.

• Att-BERT [30] builds an attention mechanism to construct inter-modal attention

to capture inter-modal inconsistencies.290

• InCrossMGs [21] detects sarcasm by designing heterogeneous intra-modal and

cross-modal graphs through graph convolutional networks.

• CMGCN [22] builds a cross-modal graph convolutional network to draw sarcasm-

sarcasm relations.

• HKEmodel [23] Combines atomic-level consistency and atomic-level consistency295

based on graph convolutional networks to detect sarcasm.

• MILNet [32] designs local semantic guidance and global inconsistency learning

modules for sarcasm detection.

• DIP [45] proposes a dual incongruity-aware network that uses Gaussian distribu-

tion and contrastive learning for sarcasm detection.300

• DynRT [39] uses hierarchical joint attention to build dynamic paths to detect

cross-modal sarcasm incongruity.

• KnowleNet [54] incorporates prior knowledge through ConceptNet knowledge

and captures cross-modal semantic similarity for sarcasm prediction.

• SAHFN [24] introduces a hierarchical fusion model to integrate sentiment infor-305

mation for enhanced multimodal sarcasm detection.

• DMSD-CL [13] aims to alleviate the harmful effects of biased textual factors on

robust OOD generalization.

• DocMSU [9] introduces a fine-grained sarcasm comprehension method to prop-

erly align the pixel level image features.310
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• TFCD [59] proposes a Training-Free Counterfactual Debiasing framework.

The MFND baselines combine images and texts information as follows:

• EANN [43] exports event-invariant features for fake news detection through an

end-to-end framework.

• MVAE [16] uses a bimodal variational autoencoder combined with a binary315

classifier to perform fake news detection tasks.

• MCAN [48] proposes a novel multimodal co-attention network to better fuse text

and visual features for fake news detection.

• CAFE [6] proposes a cross-modal ambiguity learning problem from the perspec-

tive of information theory and performs multimodal fake news detection through320

ambiguity perception.

• LIIMR [38] captures intra-modal relations by extracting fine-grained representa-

tions of images and text.

• SEMI-FND [37] proposes a novel multimodal stacking integration framework to

ensure faster performance with fewer parameters.325

• MFIR [46] uses multimodal fusion and inconsistent reasoning to discover multi-

modal inconsistent semantics for explainable fake news detection.

• CDD [7] proposes a debiasing framework based on causal intervention and

counterfactual reasoning for multimodal fake news detection.

• CSFND [31] proposes contextual semantic representation learning to introduce330

contextual information into the representation learning process.

• KEVL [11] integrates information from large-scale open knowledge graphs to

augment its ability to discern the veracity of news content.
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4.4. Model Comparison

We report the comparative results of various baselines on the MVSA, MSD, and335

Twitter datasets. We follow prior studies [3, 48, 57] in using standard evaluation metrics.

For the MVSA dataset, we assess the model using Accuracy (Acc) and F1 score (F1).

On the MSD dataset, we evaluate the model using Accuracy, along with the Binary and

Macro Averages of Precision (P), Recall (R), and F1 score. For the MFDN dataset, the

model is evaluated based on Accuracy, Precision, Recall, and F1 score.340

As illustrated in Table 1, Table 2, and Table 3, the following conclusions can be

drawn: From the perspective of task characteristics, our proposed MDPF surpasses

all existing baselines across all evaluation metrics on the MVSA, MSD and Twitter

datasets. These outcomes suggest that framing the MSA, MSD, and MFND tasks as a

sequence that integrates semantics and sentiment leads to more effective multimodal345

classification. The significance of our results is confirmed through rigorous testing,

with p < 0.05 indicating statistical significance. From the perspective of the technical

characteristics, 1) MDPF using the origin BERT and ViT outperforms the baselines,

Table 1: Performance of MDPF compared to baselines on MVSA-single and MVSA-multiple with the

evaluation metrics Accuracy and F1-score. B&V denotes the model using origin BERT and ViT, and CLIP

denotes the BERT and ViT based on CLIP model. Results with ? denote the significance tests of MDPF over

the baseline models at p < 0.05.

Models
MVSA-Single MVSA-Multiple

Accuracy F1-score Accuracy F1-score

CoMN [49] 70.5 70.0 68.9 68.8

FENet [14] 74.2 74.0 71.4 71.2

CM-BERT [52] 71.3 72.7 70.0 73.6

MAG [34] 77.8 76.2 75.1 74.3

MVAN [53] 73.1 72.3 72.4 72.3

ITIN [57] 75.2 75.0 73.5 73.5

DMLANet [51] 79.4 79.5 77.8 75.2

MDPF + B&V? 80.1 80.1 78.4 78.2

MDPF + CLIP? 80.6 80.3 79.2 78.5
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indicating the effectiveness of the proposed method. Meanwhile, the performance

with CLIP initialization surpasses that of using original BERT and ViT approaches,350

indicating that aligned multimodal representations are more conducive to enhancing the

quality of feature fusion. 2) MDPF surpasses MSA baselines that model multimodal

congruity via sophisticated attention mechanisms, such as FENet and ITIN, demon-

strating that the dynamic connective strategy within semantic joint perception module

is capable of adaptively matching image-text pairs via a routing attention mechanism,355

thereby effectively capturing representations of multimodal congruity. 3) MDPF also

Table 2: Performance of MDPF compared to state-of-the-art baselines on MSD with the evaluation metrics

Accuracy, Precision, Recall and F1-score. The other settings are consistent with MVSA. Results with ? denote

the significance tests of MDPF over the baseline models at p < 0.05.

Model Acc
Binary-Average Macro-Average

P↑ R↑ F1↑ P↑ R ↑ F1↑

HFM[3] 86.6 83.8 84.1 84.0 86.2 86.2 86.2

Res-BERT[30] 84.8 77.8 84.1 80.8 78.8 84.4 81.5

Att-BERT[30] 86.0 78.6 83.3 80.9 80.8 85.0 82.9

InCrossMGs[21] 86.1 81.3 84,3 82.8 85.3 85.8 85.6

CMGCN[22] 87.5 83.6 84.6 84.1 87.0 86.9 87.0

HKEmodel[23] 87.3 81.8 86.4 84.0 - - -

MILNet[32] 89.5 85.1 89.1 87.1 88.8 89.4 89.1

DIP[45] 89.5 87.7 86.5 87.1 88.4 89.1 89.0

KnowleNet[54] 88.8 88.5 84.1 86.3 88.8 88.2 88.5

DynRT-Net [39] 88.9 88.6 87.9 88.2 - - -

SAHFN [24] 87.2 82.7 87.3 84.9 86.7 87.2 86.9

DMSD-CL [13] 88.9 84.8 87.9 86.3 88.3 88.7 88.5

DocMSU [9] 89.7 86.3 88.4 87.3 88.8 89.2 89.0

TFCD [59] 89.5 84.8 89.4 88.1 - - -

MDPF + B&V? 90.2 89.2 88.3 88.7 89.7 89.3 89.5

MDPF + CLIP? 90.8 89.5 88.9 89.2 90.1 89.4 89.7
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demonstrates optimal performance on the MSD task. Different from MSA task, MSD

task aims to identify incongruity between text and image. Therefore, compared to

baselines utilizing advanced pre-trained models and complex fusion mechanisms, such

as HKEmodel and DynRT-Net, MDPF employs a soft probability based on gaussian360

distribution to model incongruity. The strategy can avoid the errors and biases that

fixed thresholds may introduce. 4) MFND task is similar to the MSD task and also

achieves the best performance. Compared to pre-trained stacking and module integration

models such as SEMI-FND, MDPF utilizes cross-modal GCN to preserve the structured

information and share information between modalities, introducing sentiment knowl-365

edge to refine the edge weights of the graph to better capture cross-modal sentiment

interaction. 5) Compared to baselines that utilize traditional attention-aligned methods

during the encoding stage, MDPF demonstrates excellent performance. We consider

that MDPF introduces the external knowledge to augment the multimodal semantics and

Table 3: Performance of MDPF compared to state-of-the-art baselines on Twitter with the evaluation metrics

Accuracy, Fake News F1-score and Real News F1-score. The other settings are consistent with MVSA.

Results with ? denote the significance tests of MDPF over the baseline models at p < 0.05.

Model Acc
Fake News Real News

P↑ R↑ F1↑ P↑ R ↑ F1↑

EANN [43] 64.8 81.0 49.8 61.7 58.4 75.9 66.0

MAVE [16] 74.5 80.1 71.9 75.8 68.9 77.7 73.0

MCAN [48] 79.6 78.5 89.1 83.5 81.9 66.9 73.6

CAFE [6] 80.6 80.7 79.9 80.3 80.5 81.3 80.9

LIIMR [38] 83.1 83.6 83.2 83.0 84.0 84.3 84.1

MFIR[46] 85.8 85.0 84.8 84.9 86.7 87.1 86.9

CDD [7] 87.4 82.0 79.2 80.6 89.9 91.4 90.6

CSFND [31] 83.3 89.9 79.9 84.6 76.3 87.8 81.7

KEVL [11] 826 79.9 81.6 80.7 84.9 83.4 84.2

MDPF + B&V? 88.5 87.6 85.7 86.6 90.1 90.5 90.3

MDPF + CLIP? 89.4 90.2 85.5 87.8 90.3 91.6 90.9
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comprehensively understand the underlying semantics and interaction via contrastive370

learning.

4.5. Ablation Study

To evaluate the effectiveness of the main components, we conduct an ablation study

to remove each one from proposed MDPF for comparison, as shown in Table 4.

Firstly, we observe that the performance drops significantly across all datasets375

when remove the MCE module (i.e., (a)), this indicates that obtaining high-quality

representations is crucial for enhancing model performance. To further explore this

phenomenon, we compared the effects of solely removing the BLK (i.e., (b)) and

solely removing the CCL (i.e., (c)), and found the decline of the BLK is significantly

greater than CCL. This indicates that CCL relies on BLK. BLK supplements multimodal380

information in the original modal space by generating image descriptions, laying the

groundwork for performing a comprehensive understanding of the underlying semantics

and interactions via CCL.

Secondly, the setting of (d) obtains worse results than the original model (i.e.,

(i)). This reason is that SJP can capture shared and private features to model semantic385

congruity and incongruity via dynamic connective mechanism and g. Meanwhile, we

observe that the setting of (e) experienced a greater decline in performance on the

MVSA dataset compared to (f), while the opposite is true for the MSD and Twitter

datasets. We consider this to be caused by the characteristics of the tasks, with MVSA

focusing more on congruity in semantic modeling, while MSD and Twitter pay more390

attention to incongruity between text and images. Therefore, when the DC mechanism

is removed, the model fails to capture semantic congruity, resulting in a significant

decrease in its ability to classify multimodal sentiment. Conversely, when the GD is

removed, the model loses its ability to model incongruity between text and images,

leading to a decline in its capacity for detecting sarcasm and fake news.395

Finally, the performance decline is also significant after removing the SIP mod-

ule (i.e., (g)). Notably, in the setting (g), the performance decrease on the Twitter

dataset is not pronounced. We hypothesize two reasons for this: first, multimodal fake

news detection is more concerned with semantic incongruity between text and images,
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which is very similar to multimodal sarcasm detection. Second, although sentiment400

contributes to the detection of fake news information, not all data contain sentiment

elements. While cross-modal graph convolutional networks can preserve the structured

information of image and text data and share information between modalities, thereby

better capturing cross-modal emotional relationships, this may introduce noise when

sentiment information is not sensitive. Additionally, the setting (h) involves removing405

the combination fusion strategy and instead using a direct concatenation approach for

multimodal fusion. It is clear that using a combination fusion strategy significantly

outperforms the concatenation method.

4.6. Parameter analysis

Since dynamic connection and graph convolution components are related to the410

construction of semantic intensified and sentiment interactive information, we conduct

a parameter analysis to explore the impact of different layers of DC and GCN on the

accuracy in three tasks, as shown in Figure 3.

First, as the number of DC layers increases, we observe that the accuracy of MDPF

on the three tasks steadily improves and reaches a peak at the 5th layer. This shows415

that the increase in the number of connection layers enables MDPF to continuously

learn the congruity representation of images and texts via a multi-head dynamic routing

mechanism to capture the most appropriate image-text pairs. However, as the number of
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Figure 3: Parameter analysis on the accuracy in MVSA, MSD and MFND tasks.
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layers further increases, the dynamic connection components will gradually introduce

cross-modal relations that are irrelevant to the current image-text pair, resulting in420

performance degradation.

Secondly, different from the number of DC layers, the model performance is optimal

when the number of GCN layers is set to 2. This shows that the GCN has a strong ability

to aggregate information. However, as the number of layers increases, the performance

of the model gradually decreases. This phenomenon occurs because the GCNk has an425

over-smoothing issue, and the increase in the number of layers makes the features of all

nodes more similar.

4.7. Case Study

We randomly select three cases from the three datasets to explain how bootstrapping

language-image knowledge affects the proposed MDPF model, as shown in Figure 4.430

First, in the case of MVSA, we observe that the phrase Day 51 of 90 paintings in 90

Days of Stratford! highlights paintings and Stratford. However, neither these two words

nor the entire sentence exhibit a clear sentiment attitude. The overall sentiment polarity

would overly rely on the image encoding of low-level semantic features, leading to

erroneous judgments by the baseline model. When we employ the BLK module to435

 

Datasets MVSA MSD Twitter 

 

 

 

 

Image 

 

Text Day 51 of 90 paintings in 90 Days  

of Stratford! 
Gotta loves the warm and dry 

conditions! 
Fantastic! and plenty of cloud for all 

of us down on earth. 

 
BIK 

 
The painting of a flower garden with  

a gazebo. 

 
Church with a steeple in the snow 

and a street covered in snow. 

 
A solar eclipse seen from space. 

Baselines Neutral (False)                        Non-Sarcasm (False) Real (False) 

MDPF Positive (True) Sarcasm (True) Fake (True) 

Figure 4: Case analysis on MVSA, MSD and MFND datasets.
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generate image descriptive knowledge The painting of a flower garden with a gazebo,

the terms flower garden and gazebo exhibit a positive sentiment tendency to some extent.

MDPF makes accurate decisions with the aid of bright colors in the combined visual

features. Then, case MSD presents a sarcasm example. The sentence Gotta love the

warm and dry conditions expresses a positive sentiment via words love, warm and dry440

while the overall white background of the image does not provide a good reference for

the incongruity between text and image. The image description of Church with a steeple

in the snow and a street covered in snow contrasts the snow with warm, aiding the model

in accurately identifying the sarcasm incongruity. The case of Twitter is similar to the

case of MSD. The BLK-generated solar eclipse and space create a clear contrast with445

text words Fantastic, cloud, and earth, helping the model to overcome the deception of

the image object cloud on the textual semantics of cloud. This further demonstrates that

the BLK can assist MDFP in identifying fake news incongruity.

4.8. Visualization

To further discuss the effectiveness of our method, we provide a visualization to450

discuss semantic joint perception and cross-modal sentiment interactive graphs on how

to assist the dual perception module in capturing semantic and sentiment information.

Firstly, Figure 5 shows the impact of the semantic joint perception module. The

dynamic connection mechanism allows the model to focus on cross-modal regions

related to the text by modeling shared semantics, such as exhibiting high attention to455

image objects Strawberry, Nutella, and the word happiness. Meanwhile, the gaussian-

weighted distribution pays more attention to private semantics to achieve semantic

inconsistency modeling, as manifested by objects like cup in the image being identified

and distinguished.

Secondly, Figure 6 presents an example of constructing a cross-modal graph in the460

sentiment interaction perception module. We can observe that the positive sentiment

expressed by positively contrasts sharply with the gloomy colors in the hurricane and

dark clouds. The cross-modal sentiment interaction is represented by edges with greater

weights to represent highly relevant sentiment clues, indicating the effectiveness of

cross-modal graph convolution in capturing multimodal sentiment interactions.465

27



Strawberry and Nutella crepe my happiness

Figure 5: Attention visualization of the semantic joint perception mechanism.
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Figure 6: Sentiment interactive matrix of the cross-modal graph which presents the key word.

5. Conclusion

In this paper, we introduce MDPF, a pioneering unified multimodal fusion frame-

work designed for a broader spectrum of multimodal affective analysis, encompassing

sentiment analysis, sarcasm detection, and fake news detection. This framework in-

novatively constructs a fusion sequence of semantics and sentiment to enhance the470
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performance of multimodal affective classification. Initially, we employ a bootstrapping

language-image knowledge base and cross-modal contrastive learning to enrich the

original modality space and align cross-modal information. Subsequently, we establish

a dynamic connective mechanism that adaptively matches image-text pairs to capture

shared semantics, while also employing a gaussian-weighted approach to emphasize475

private semantics. Concurrently, sentiment knowledge is integrated to refine the edge

weights of the cross-modal graph, facilitating the capture of sentiment interactions.

Ultimately, we devise a cross-modal combination fusion strategy to merge semantically

enriched and sentimentally interactive sequences for comprehensive multimodal classifi-

cation. The efficacy of the proposed MDPF framework is validated on three publicly480

available datasets, with empirical results underscoring the superiority of our model.
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