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Abstract

The misuse of social platforms and the difficulty in regulating post contents have cul-
minated in a surge of negative sentiments, sarcasms, and the rampant spread of fake news.
In response, Multimodal sentiment analysis, sarcasm detection and fake news detection
based on image and text have attracted considerable attention recently. Due to that these
areas share semantic and sentiment features and confront related fusion challenges in
deciphering complex human expressions across different modalities, integrating these
multimodal classification tasks that share commonalities across different scenarios into
a unified framework is expected to simplify research in sentiment analysis, and enhance
the effectiveness of classification tasks involving both semantic and sentiment modeling.
Therefore, we consider integral components of a broader spectrum of research known
as multimodal affective analysis towards semantics and sentiment, and propose a novel
multimodal dual perception fusion framework (MDPF). Specifically, MDPF contains
three core procedures: 1) Generating bootstrapping language-image Knowledge to
enrich origin modality space, and utilizing cross-modal contrastive learning for aligning
text and image modalities to understand underlying semantics and interactions. 2)
Designing dynamic connective mechanism to adaptively match image-text pairs and

jointly employing gaussian-weighted distribution to intensify semantic sequences. 3)
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Constructing a cross-modal graph to preserve the structured information of both image
and text data and share information between modalities, while introducing sentiment
knowledge to refine the edge weights of the graph to capture cross-modal sentiment
interaction. We evaluate MDPF on three publicly available datasets across three tasks,
and the empirical results demonstrate the superiority of our proposed model.
Keywords: multimodal sentiment analysis, sarcasm detection, fake news detection,

multimodal affective analysis, multimodal dual perception fusion

1. Introduction

Social data has evolved from being predominantly text-based to a rich, diversified
format where images and text coexist harmoniously. This transformation has led indi-
viduals to increasingly rely on multimodal data to articulate their affective viewpoints.
However, the misuse of these platforms and the inherent challenges in regulating posted
content have culminated in a surge of negative sentiments, sarcasm, and the rampant
spread of fake news [27, 136} 41, 160]. In response, the fields of multimodal sentiment
analysis (MSA), multimodal sarcasm detection (MSD), and multimodal fake news
detection (MFND) have emerged, focusing on the intertwined analyses of images and
text to address these concerns.

Multimodal sentiment analysis, sarcasm detection, and fake news detection all fall
within the realm of human affective behavior [ 4} (19} 58], and these areas are integral
components of a broader spectrum of research known as multimodal affective analysis,
involving same emotional mechanisms, namely, dual modeling of semantics and senti-
ment. As illustrated in Figure[T] semantics represents the factual content described by
text and images, and sentiment represents the emotional tendencies contained in text and
images. The orderly fusion of factual content and sentiment tendencies can achieve the
mutual complementation of semantic and emotional information in cases where the text
and image are consistent, so as to accurately predict the sentiment polarity, as shown
in Figure[T] (a). Figure (a) lacks explicit sentiment expression, and the discrimination
of its sentiment polarity requires the combination of semantic content with the positive

sentiment elements conveyed through the azure sea and burning sun in the image. In
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Task 3: Fake News Detection

Task 1: Sentiment Analysis Task 2: Sarcasm Detection

Semantics: Semantics: Semantics:
holiday, beach (Text) warm, dry conditions (Text) little Syrian girl, chewing gum (Text)
sun, beach, sea (Image) snow, wet ground, cloudy (Image) neatly dressed, smiling (lamge)
Sentiment: Sentiment: Sentiment:
Neutral (Text) Positive (Text) Negative (Text)
Positive (Image) Negative (Image) Positive (Image)
Prediction: Positive Prediction: Sarcasm Prediction: Fake
(a) We spent our holiday (b) Gotta love the warm and ~ (c) Little Syrian girl sells chewing gum
at the beach. dry conditions ! on the street so she can feed herself.

Figure 1: Several examples from MSA, MSD, and MFND. (a) lacks explicit sentiment expression which
need to be complemented by the sentiment conveyed through image. (b) distinguishes sarcasm through
the significant differences between sentiment word and semantics of the image. (c) illustrate the impact of

semantics and sentiment information on fake news detection.

incongruent scenarios, the mutual comparison of semantics and sentiment can help
to judge whether it is ironic or false, as shown in Figure [T] (b) sarcasm detection and
Figure [I] (¢) fake news detection. In Figure (b), the text descriptions of warm and
dry form a strong semantic contrast with the image object snow, while the word like
creates a sentiment contrast with the cloudy area, which further exacerbates the degree
of inconsistency. Fake news in Figure (c) narrates a war-like situation, while the image
implicitly depicts a happy sentiment. Integrating these multimodal classification tasks
with commonalities in different scenarios into a unified multimodal framework is ex-
pected to simplify the research work of multimodal sentiment analysis and improve the
effectiveness of multimodal classification tasks involving dual semantic and sentiment
modeling.

In addressing the complexities of multimodal affective content interpretation, we
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integrate multimodal sentiment analysis, multimodal sarcasm detection, and multimodal
fake news detection into a unified approach within the broader realm of multimodal
affective analysis towards semantics and sentiment. This integration acknowledges the
shared features and challenges across these domains, leading us to propose the Mul-
timodal Dual Perception Fusion Framework (MDPF). Distinguished from traditional
sentiment classifications, MDPF focuses on a broader spectrum of multimodal affective
classification by combining semantic and emotional cues for comprehensive multimodal
analysis. Specifically, we enrich multimodal representations with image-derived knowl-
edge by leveraging a bootstrapping language-image pre-trained model, and employ
cross-modal contrastive learning for precise text-image alignment, capturing the nu-
ances of multimodal expressions. Meanwhile, MDPF applies dynamic routing attention
mechanisms and probability density functions to capture shared and private features to
identify and enhance semantics across modalities. Additionally, it integrates sentiment
knowledge to refine cross-modal interactions by performing graph convolution, culmi-
nating in the fusion of semantic intensified and sentiment interactive sequences. This
novel approach marks a significant advancement in affective classification, enhancing
the interpretation of complex affective phenomena across textual and visual data, and
providing new research ideas for multimodal sentiment analysis research. The main

contributions of this work are summarized as follows:

* We introduce the Multimodal Dual Perception Fusion Framework (MDPF), in-
tegrating multimodal classification tasks involving dual modeling of semantic
and sentiment in different application scenarios into a unified framework. This
approach not only promises to streamline sentiment analysis research but also en-
hances the effectiveness of detecting and analyzing complex affective phenomena

in social media content.

* By infusing the feature encoding process with image description knowledge
and cross-modal contrastive learning, our approach significantly enriches the
multimodal sentiment space, ensuring a robust alignment of textual and visual

modalities with a sentiment focus.

* We develop a dynamic connective mechanism alongside a gaussian-weighted
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distribution approach, adept at distilling shared and private sentiment features,
and incorporate sentiment knowledge into the cross-modal graph. This innovation
significantly enhances our proposed framework’s ability to navigate and interpret

complex affective landscapes effectively.

The remainder of this paper is organized as follows. After introducing related works
in Section[2] we propose a Multimodal Dual Perception Fusion Framework in Section
Bl Then, the experimental details and analysis are described in Section[d] Finally, we

summarize our work and provide a direction for future work in Section 3]

2. Related work

Multimodal fusion methods aim to construct unified semantic space combining
image and text information to perform multimodal task [10| 20, 46]. However, dis-
crepancies across different modalities hinder the development of models. Therefore,
various multimodal classification models such as multimodal sentiment analysis, sar-
casm detection, and fake news detection design advanced fusion strategies to address

this issue.

2.1. Multimodal sentiment analysis

MSA utilizes multimodal fusion methods to map multimodal features into a unified
semantic space for multimodal sentiment classification, and it focuses on modeling
modality interaction between image and text. Xu et al. [49] proposed a co-memory
network to integrate visual contents and textual words via an interaction strategy. The
above method may cause information loss, Jiang et al. [14] designed an interactive
information fusion mechanism to interactively learn cross-modal representations. Yang
et al. [52] relied on the interaction of text and image modalities to fine-tune the
pre-trained BERT model. Rahman et al. [34] allowed BERT and XLNet to accept
multimodal non-linguistic data during fine-tuning for multimodal sentiment analysis.
Zhu et al. [S7] believed that the correspondence between image regions and words in
image-text pairs facilitates cross-modal interaction. Additionally, Yadav et al. [51] used
deep multi-level attention to exploit the correlation between image and text modalities

to improve multimodal sentiment analysis.
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2.2. Multimodal sarcasm detection

MSD is a subtask of MSA that aims to identify whether the text description differs
from the image content. Previous studies have attempted to model sarcasm via fusion
and interaction across modalities. Schifanella et al. [35]] combined visual semantics
with text features from an external dataset, while the other used pre-trained visual
neural networks to analyze multimodal sarcasm. Cai et al. [3] tried to use multimodal
hierarchical fusion to detect multimodal sarcasm. To address the issue in reasoning
with multimodal sarcasm, Xu et al. [50] designed a decomposition and relation network
based on cross-modal contrast and semantic association for sarcasm detection.

However, previous methods have overlooked the deep implicit sarcasm relationship.
Therefore, recent studies attempt to model modality incongruity to fusion image and text
information. Liang et al. [22] constructed cross-modal graphs to model the incongruity
of image and text. To address the issue that models lack the flexibility to diverse
image-text pairs, Tian et al. [39]] employed dynamic paths and hierarchical co-attention
adapting to model cross-modal incongruity. Wen et al. [45] argued the challenge of
MSD from implicit intention and intrinsic conflict, and proposed a semantic intensified
distribution and siamese sentiment Contrastive Learning method. Jia et al. [13] believed
the spurious correlations can significantly hinder the generalization capability, and they
proposed a debiasing multimodal sarcasm detection framework to alleviate the harmful

effects of biased textual factors on robust OOD generalization.

2.3. Multimodal fake news detection

MEND task based on contents is similar to MSD which aims to identify fake
news as true or false through the image-text pair. Early studies leverage cross-modal
discriminative patterns to integrate image and text to improve the accuracy. Khattar et al.
[16] used a bimodal variational autoencoder combined with a binary classifier to perform
fake news detection tasks. To address the specific features could not be transferred
to newly emerging events, Zhang et al. [S5] adopted multimodal knowledge-aware
networks and event memory networks as building blocks for social media fake news
detection. In view of the fact that many existing methods ignore the correlation between

text and visual features and lead to suboptimal results, Wei et al. [44]] proposed a novel
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cross-modal knowledge distillation function as a soft target to guide unimodal network
modeling and train a fusion model for multimodal fake news detection.

Recently, some methods have worked on the principles of cross-modal incongruity.
Chen et al. [6] calculated Kullback-Leibler (KL) divergence to measure cross-modal
consistency. To improve the performance of the decision-making processing, Wang
et al. [42] proposed a cross-modal contrastive learning method for multimodal fake
news. Moreover, Chen et al. [7] proposed a causal intervention and counterfactual
reasoning-based debiasing framework to mitigate multimodal biases from a causality
perspective. Wu et al. [46] adopted multimodal fusion and inconsistency reasoning
to discover multimodal inconsistent semantics for interpretable fake news detection.
Additionally, Peng et al. [31] proposed contextual semantic representation learning to
introduce contextual information into the representation learning process for multimodal
fake news detection.

Despite multimodal fusion methods have achieved promising results, existing ap-
proaches only focus on individual tasks and have not yet established the inherent
connections among these tasks. Given that MSA, MSD, and MFND fall within the
realm of human affective behavior and share common fundamental characteristics.
Meanwhile, these tasks confront related challenges in deciphering complex human
expressions across different modalities. Therefore, we aim to design a multimodal dual

perception fusion framework to integrate these tasks into a unified multimodal model.

3. Methodology

In this work, we propose a novel Multimodal Dual Perception Fusion Framework
(MDPF) for multimodal sentiment analysis, sarcasm detection, and fake news detection.
The proposed method defines the three tasks as constructing a fused sequence of
semantics and sentiment. Specifically, we first utilize Bootstrapping Language-Image
Pre-training to generate image descriptions as external knowledge and combine image-
text contrastive learning for cross-modal alignment. Then, we design a dual perception
mechanism that contains a semantic joint perception module and a sentiment interactive

perception module. The semantic joint perception module utilizes a dynamic connective
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Figure 2: Overall architecture of our proposed MDPF model. MCE, SJP, SIP, and CFM denote the multimodal
contrastive encoding, semantic joint perception, sentiment interactive perception, and combination fusion

module, respectively.

mechanism and gaussian- weighted distribution to capture shared and private features
for constructing semantic intensified sequences. Meanwhile, the sentiment interactive
perception module integrates textual and visual graphs to build a cross-modal graph
convolutional network for generating sentiment interactive sequences. Finally, a cross-
modal combination fusion module is employed to merge the dual perceptual information
for multimodal classification. The framework of the proposed MDPF is shown in Figure
P} Next, we will provide the task and notation definitions and elaborate on each specific

technique in detail.

3.1. Task and Notation Definition

Multimodal sentiment analysis, sarcasm detection and fake news detection involving
both text and images are integral components of a broader spectrum of research known

as multimodal affective analysis that can be defined as: given a collection of N training
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samples denoted as S = {s1, s2, ..., sn }, each sample s = {z¥, 2!} contains an image-
text pair which the image is split into m patches and text contains n words is denoted as
Image = {ef |1 < j <m} and Text = {e} |1 <4 < n}, where ¢] denotes the i-th
patch of the image, and e§» denotes the j-th word of the sentence. The goal of task is to
design a classifier F which jointly utilizes image and text modalities to predict the truth

label §; = F(z?, xt, 0) for each image-text pair.

3.2. Multimodal Contrastive Encoding

The image and text information are first input into feature encoders. The image and
text embedding are obtained by utilizing a ViT [8]] and Transformer [40] model from
CLIP [33]] to enhance the cross-modal alignment and interaction capabilities within the
original modality space. The process is formulated as follows:

V =[v1,v9, ..., ;] = CLIP_ViT(Image)
ey
T =[t1,t2,...,tn] = CLIP Transformer(Text)
where V' € R"™*% and T € R™*% represent the output embeddings of image and text.
v; € R% denotes the i-th patch of image, and ¢; € R% denotes the j-th word. d,, d;

denote the dimension of image and text embedding.

3.2.1. Bootstrapping Language-Image Knowledge Construction

The limited richness of modal information representation is caused by low-level
image features and the absence of direct supervision for image-text alignment in the
multimodal task. Therefore, we construct external knowledge by generating image
descriptions D via Bootstrapping Language-Image pre-training model [18] to enhance

the multimodal representation.
D = LLM(FC(QFormer(z"))) (2)

Knowledge construction is pre-trained in two stages: In the first stage, the Q-Former
learns visual representations that are most relevant to the text. In the second stage, visual-

language generative learning is conducted by connecting the output of the Q-Former
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to a frozen Large Language Model (i.e., OPT [56]), allowing the visual representa-
tions produced by the Q-Former to be directly interpreted by the Large Language
Models(LLMs).

Based on image descriptions, we restructure the encoding stage to introduce external
knowledge. Specifically, we continued to use ViT and BERT trained based on CLIP to

encode the image and the text concatenated with image description, respectively.

Ve¢=CLIP.ViT(V)
3)
T¢ = CLIP Transformer(concat(T, D))

Where V¢ € R™*9 represents the output embedding of images, and 7¢ € R"*% is

the output embedding representing the combination of text and image description.

3.2.2. Cross-modal Contrastive learning
After obtaining the output embeddings, we align the image and text modalities to
comprehensively understand the underlying semantics and interaction between the text
and image. We adopt the InfoNCE loss [29] to construct cross-modal contrastive loss.
For each image text pair, image-to-text contrastive loss is defined as:
exp(sim(vs, ££)/7)

Ei]il exp(sim(v§, t;)/T)

Where vf, t¢ are the layer normalized representations from V¢, T°. sim denotes sim-

2771

L%t = —log 4)

ilarity measured by the dot product of the image-text pair. T represents the learnable
temperature parameters. Then, the text-to-image contrastive loss £2? is constructed in

a similar way.
exp(sim(t7, v7)/7)

N .
> ey exp(sim(t5, UJC)/T)
Where the contrastive learning generates sets of positive and negative instances via a

LtQ’U - _ (5)

batch of N input pairs (v¢,t7). Specifically, there are one positive instance and N — 1
negative instances for each pair in the batch. The positive sample is formed by the
most similar image text pairs in the batch, represented as (v, t?)izj, while other N — 1
image text pairs are defined as negative samples, represented as (v?, t?)# ;- Finally, the

optimization objective of cross-modal contrastive learning is defined as:

_ i v2t t2v
£cl_2N(E + L) (6)

10
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L obtains the semantic alignment unimodal feature v*, ¢* by maximizing the similarity
between positive examples and minimizing the similarity between negative examples.
After completing the contrastive encoding, aligned image-text semantics are input into

dual perception module to construct semantic and sentiment sequence.

3.3. Semantic Joint Perception

Given the presence of shared and private features in multimodal data, shared features
manifest as semantic congruity to enhance semantics. In contrast, private features display
semantic incongruity to distinguish and complement semantics [26} 47]]. Therefore, we
design a semantic joint perception module with a dynamic connection mechanism and
Gaussian-weighted distribution, which captures shared and private features in parallel
to construct semantic intensified sequences, speeding up the calculation while reducing
the introduction of noise and redundant information, thereby achieving cross-modal

semantic enhancement and supplementation.

3.3.1. Dynamic connective mechanism

Shared features enhance semantics by matching images and text combinations that
jointly describe the same entity. Therefore, we calculate dynamic connective weight
using a routing attention mechanism [39] to capture the matching probability between
each image patch and word token. Firstly, we introduce a graph attention mechanism
that aggregates text and graph edge relationships to enhance node representation.

exp(a(a'[t§ - Wr|[t§ - Wr]))
Yoisy exp(o(al[tf - Wrl|tf, - W)

exp(o(a”[vf - Wy||vf - Wy]))
iz exp(o(a’[vf - Wy [lof - Wy]))

Where o denotes the LeakyReLU activation function. a! € R?% q* € R2?% and

T = *T?

@)

Ve = x V¢

Wr € R%xde 1y, € R4*dv are the learnable parameter. Then, the dynamic routing

embedding route; can be calculated as follows:
k
Qr(Kv)"
route; =softmar(——— ® o; AV )
(@ L)

Where route; € R"*9 is the dynamic routing embedding, and d; = n - dj. Qr =

thw, € R4 Ky = v%wy, € R™*4 Vi, = vw, € R™*4" denote the query, key

11
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and value representations, and w, € R%*%r ;€ R4v*dr qp, € R¥*dr are learned
parameter. ov; = softmax(M LP(Att_Pool(v'))) denotes the routing matching prob-
ability, and Att_Pool denotes the adaptive average pooling function. 4; € R™"*"™ is
the matching coefficients between each image-text pair. If the image patch is within
the attention span of the text target, the value of coefficients is set to 1, otherwise set to
0. Then, we treat the route; as a attention function head, executing / heads in parallel

across the hidden dimensions via multi-head self-attention.
H" = Concat(heady, heads, ..., headp,)w, 9)

Where H” € R™* % represents the dynamic connective representation. Concat denotes
the concatenation operation. wy € R%*9 is the weight matrix. Finally, H" is input
into a dynamic connective layer to capture the shared features.

H;" | = LayerNorm(MHA(H") + H") 0

H =LayerNorm(FNN(H™ )+ H™ ) o
Where H? € R"*4 is the output embedding of k& — th layer which contains the shared
features, among d,, = d; = d. M H A denotes the multi-head self-attention and F'N N
denotes the feed-forward network. The dynamic connective mechanism focuses on
different subspaces of the image and text while leveraging routing matching matrices
and attention mechanisms to establish more effective information transmission and

interaction across various modalities.

3.3.2. Gaussian-weighted distribution

Private semantics are significantly greater than shared semantics in terms of mean
and variance. Therefore, we adopt a gaussian-weighted distribution to model private se-
mantics. First, we design a reweighting strategy to find the most relevant representations
of private semantics.

" =o((v®- (t)T) xeT) - v® (11)

Where v" € R™*% is the reweighted image embedding, and e7 is the temperature

parameter. The reweighted text t” € R™*% is designed in a similar way. Then, we

12
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calculate the mean and variance of private samples through a gaussian distribution and

maintain the gaussian distribution with a memory bank.

N
p=y M(@],t) (12)
i=1
N
o= | DMy, 1) = )2 (13)

i=1
Where 1 and o are the mean and variance values. M (v}, t7) is the maintained memory
bank [[12} 45]], which stores the features of image-text pairs in a discrete storage unit
and computes the cosine similarity between instances directly based on features in a
non-parametric manner. After that, we use the probability density function to calculate

the probability of samples falling within the private semantic region.

p? = L
oV 2w

The probability density function pY is optimized using gradient descent during each

M(u] t])—n

LT (14)

learning iteration, and calculates the difference value between p? and the original
image-text pair as A = pY — p to guide the modeling of private semantics. Finally, the
gaussian-optimized image-text pairs v9, t9 is integrated into the cross-modal attention

mechanism to capture private features H9 € R™¥9,

3.4. Sentiment Interactive Perception

The sentiment relations between image and text modalities are crucial for multimodal
fusion in sentiment analysis, sarcasm detection, and fake news detection [25]. Image
data contains rich spatial structural information, while text data encompasses semantic
and syntactic dependency information. Modeling image-text pairs using cross-modal
graph convolutional neural networks can preserve the structured information of both
image and text data and share information between modalities, thereby better capturing
cross-modal sentiment relations. Thus, we design a cross-modal graph convolutional

network to construct sentiment interactive sequences. First, we generate textual graphs

13
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based on SenticNet [15] and dependency tree.

1+6(t9), ifi=jor{te,t}ineT
bt (t) {t5, 5} as)

ij

0, otherwise
Where 0(t) € [—1, 1] represents sentiment value of ¢-th word retrieved from SenticNet.
T is the origin dependency treeﬂ The visual graphs D7 ; are generated in the same
manner. Notably, the construction of visual edge weights is determined by judging
whether different image patches belong to the same object:

1+(w), ifi=jor{t5,tc} € R

Dy = Y (16)
0, otherwise

Where D} ; € R™*™ is the adjacency matrix of visual modality, and v{, v§ denote the
image patches. Due to the weights of the edges are important in graph information
aggregation [22,[25]], we construct edge weights for cross-modal graphs by measuring the
distance between textual words and image objects, and introduce sentiment knowledge

to calculate the sentiment score within each image-text pair to refine the edge weights.

1+ 46(t9), if D} ;andi <m,j <n
DFP* = 9 14+ Asim(vg, t¢), ifi<m,j>n (r7)
0, otherwise

Where D;"%%% € R(mAn)x(m+n) represents the cross-modal graph matrix. sim(v$, t9)

177
denotes the cosine similarity between textual words and image objects. A\ = e0(t)3(ag).
|6(t¢) — d(a$)| is the sentiment score to modulate the sentiment relations to refine edge
weights by introducing the sentiment knowledge. §(¢f) and 6(af) indicate the sentiment
values of the dependency words and image patch attribute retrieved from SenticNet. If
words and attribute are not present in the SenticNet, we set them to 0. Simultaneously,

following the settings of [17], we configure the cross-modal graph as an undirected

graph and set the diagonal nodes to 1.

'We use spaCy toolkit to construct the dependency tree: https://spacy.io/

14
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Finally, we feed the cross-modal graph matrix D;"** into graph convolutional

network (GCN) and utilize a retrieval-based attention to generate sentiment interactive

representation.
m+n
gi — R@LU(Z DC’I“OSS VVl l 1 + bl) (18)
j=1
m—+n l eXp(ﬂt m+n .
= 0y - hy, nt:—a By = gz hy (19)
Z ' > exp(B:) Z

Where ¢! is the graph hidden representation, and hl = [H!, H"] = {h! hL, ...,k hY,

n?

hS,...,ht}. H' and H" represent the textual and visual graph representations evolved
from Df-’ ;and DY .. B; and 1, is the retrieval-based attention score and weight. H¢ € R?

is the final sentiment interactive representation.

3.5. Combination Fusion Module

Based on semantic intensified and sentiment interactive sequences, we project the
shared, private and sentiment interactive representation into a cross-modal combination

fusion module to achieve the multimodal classification.
M2, M9, M®= Mean(H?, HYI, HC)
y/ =LN(W;(M?* + M9 + M®)) + by (20)
4§ = softmax(W, -y’ +b,)
Where Mgy, M, and M, are processed by the average function. yf € R? is the

multimodal fusion embedding. Wy, Wy, by, and b, are the learned parameters. § € R%

is the predicted probability, and d,, is the dimensionality of possible labels.

3.6. Training Objective

The training of MDPF is to optimize all the parameters, and minimize the loss

function via the standard gradient descent function. The overall loss is as follows:

L= ['gce + Lo+ >\2Lgs (21)

Where A\; and \g are trade-oft factors between different objective functions. L. is
the global cross-entropy loss, L, is the cross-modal contrastive loss and L is the

gaussian-optimized loss.

15
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4. Experiments

In this section, we initially describe the experimental datasets in Section 1] fol-
lowed by the implementation details and baseline models in Sections and Then,
we compare proposed MDPF with advanced baselines on MVSA, MSD and Twitter
datasets in Section [E] to evaluate the performance. Next, we conduct an ablation
study to analyze the contribution of MCE, SJP, SIP and CFM modules in Section @
and introduce the parameter analysis in Section 4.6 We also introduce a case study
to explain how bootstrapping language-image knowledge affects the proposed MDPF
model in Section Finally, we provide a visualization to discuss how the semantic
joint perception and cross-modal sentiment interactive graphs assist the dual perception

module in capturing semantic and sentiment information in Section

4.1. Experimental datasets

We evaluate MDPF on three publicly available multimodal affective classification
benchmarks: MVSA [28] for sentiment analysis, MSD [3] for multimodal sarcasm
detection, and a multimodal fake news detection benchmark from Twitter [2]].

MYVSA comprises two datasets: MVSA-Single and MVSA-Multiple, tailored for
sentiment analysis. MVSA-Single consists of 4,869 image-text pairs, excluding pairs
with inconsistent image and text labels, while MVSA-Multiple encompasses 16,779
image-text pairs.

MSD contains 24,635 image-text pairs from Twitter that collects the specific hashtag
(e.g., #sarcasm, etc.) as sarcastic examples, and collects pairs without such hashtags as
non-sarcastic examples. To improve the quality, Cai et al. [3]] discards tweets containing
sarcasm, sarcastic, irony, ironic as regular words and discards U RLs.

Twitter is released for Verifying Multimedia Use task at MediaEval This database
is created around widely known 11 real-world events, and it is divided into 9,596 fake

tweets and 6,225 real tweets.

http://multimediaeval.org
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4.2. Implementation Details

We follow the previous studies [3| [15 28] to process the datasets to ensure a fair
comparison. We utilize the origin ViT and BERT, and pre-trained CLIP ViT and BERT
[33]] with 768 dimensions to initialize the image and text embeddings. The batch size
is set to 32, and Adam is adopted as the optimizer with a learning rate of 0.00001.
To optimize the model training, the epoch is set to 40 runs with random initialization,
and the value of early-stopping is set to 5. The proposed MDPF and all baselines are
implemented with PyTorch and performed by NVIDIA GeForce RTX 3090.

4.3. Baselines

We compare the performance of MDPF with strong baselines across three tasks,
including MSA, MSS and MFND which are listed in Table [T} ] and 3] The MSA

baselines combine images and texts information for sentiment analysis are as follows:

* CoMN [49] exploits the correlation between image and text modalities to improve

multimodal learning.

e FENet [14] uses an interactive information fusion mechanism to learn vision-

specific textual representations and text-specific visual representations.

¢ CM-BERT [52] relies on the interaction of text and image modalities to fine-tune

the pre-trained BERT model.

* MAG [34] allows BERT and XLNet to accept multimodal non-linguistic data

during fine-tuning.

* MVAN [53] utilizes a continuously updated memory network to obtain deep

semantic features of image text.

e ITIN [57] introduces a cross-modal alignment module to capture region-word
correspondence, and on this basis fuses multimodal features through an adaptive

cross-modal gating module.

* DMLANet [51]] uses deep multi-level attention to exploit the correlation between

image and text modalities to improve multimodal learning.
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The MSD baselines combine images and texts information as follows:

HFM |[3] proposes a multimodal hierarchical fusion model to detect sarcasm.

Res-BERT [30] uses BERT to encode text and combines text and image features

for sarcasm prediction.

Att-BERT [30]] builds an attention mechanism to construct inter-modal attention

to capture inter-modal inconsistencies.

InCrossMGs [21]] detects sarcasm by designing heterogeneous intra-modal and

cross-modal graphs through graph convolutional networks.

CMGCN [22] builds a cross-modal graph convolutional network to draw sarcasm-

sarcasm relations.

HKEmodel [23] Combines atomic-level consistency and atomic-level consistency

based on graph convolutional networks to detect sarcasm.

MILNet [32] designs local semantic guidance and global inconsistency learning

modules for sarcasm detection.

DIP [45] proposes a dual incongruity-aware network that uses Gaussian distribu-

tion and contrastive learning for sarcasm detection.

DynRT [39] uses hierarchical joint attention to build dynamic paths to detect

cross-modal sarcasm incongruity.

KnowleNet [54] incorporates prior knowledge through ConceptNet knowledge

and captures cross-modal semantic similarity for sarcasm prediction.

SAHFN [24] introduces a hierarchical fusion model to integrate sentiment infor-

mation for enhanced multimodal sarcasm detection.

DMSD-CL [13] aims to alleviate the harmful effects of biased textual factors on

robust OOD generalization.

DocMSU [9] introduces a fine-grained sarcasm comprehension method to prop-

erly align the pixel level image features.
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* TFCD [59] proposes a Training-Free Counterfactual Debiasing framework.

The MFND baselines combine images and texts information as follows:

EANN [43] exports event-invariant features for fake news detection through an

end-to-end framework.

MVAE [16] uses a bimodal variational autoencoder combined with a binary

classifier to perform fake news detection tasks.

MCAN [48] proposes a novel multimodal co-attention network to better fuse text

and visual features for fake news detection.

CAFE [6] proposes a cross-modal ambiguity learning problem from the perspec-
tive of information theory and performs multimodal fake news detection through

ambiguity perception.

LIIMR [38]] captures intra-modal relations by extracting fine-grained representa-

tions of images and text.

SEMI-FND [37] proposes a novel multimodal stacking integration framework to

ensure faster performance with fewer parameters.

MFIR [46] uses multimodal fusion and inconsistent reasoning to discover multi-

modal inconsistent semantics for explainable fake news detection.

CDD [7] proposes a debiasing framework based on causal intervention and

counterfactual reasoning for multimodal fake news detection.

CSFND [31]] proposes contextual semantic representation learning to introduce

contextual information into the representation learning process.

KEVL [11] integrates information from large-scale open knowledge graphs to

augment its ability to discern the veracity of news content.
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4.4. Model Comparison

We report the comparative results of various baselines on the MVSA, MSD, and
Twitter datasets. We follow prior studies [3} 148l 57 in using standard evaluation metrics.
For the MVSA dataset, we assess the model using Accuracy (Acc) and F1 score (F1).
On the MSD dataset, we evaluate the model using Accuracy, along with the Binary and
Macro Averages of Precision (P), Recall (R), and F1 score. For the MFDN dataset, the
model is evaluated based on Accuracy, Precision, Recall, and F1 score.

As illustrated in Table [T} Table [2] and Table [3] the following conclusions can be
drawn: From the perspective of task characteristics, our proposed MDPF surpasses
all existing baselines across all evaluation metrics on the MVSA, MSD and Twitter
datasets. These outcomes suggest that framing the MSA, MSD, and MFND tasks as a
sequence that integrates semantics and sentiment leads to more effective multimodal
classification. The significance of our results is confirmed through rigorous testing,
with p < 0.05 indicating statistical significance. From the perspective of the technical
characteristics, 1) MDPF using the origin BERT and ViT outperforms the baselines,
Table 1: Performance of MDPF compared to baselines on MVSA-single and MVSA-multiple with the
evaluation metrics Accuracy and Fl-score. B&V denotes the model using origin BERT and ViT, and CLIP

denotes the BERT and ViT based on CLIP model. Results with x denote the significance tests of MDPF over
the baseline models at p < 0.05.

Models MVSA-Single MVSA-Multiple
Accuracy Fl-score Accuracy Fl-score
CoMN [49] 70.5 70.0 68.9 68.8
FENet [14]] 74.2 74.0 71.4 71.2
CM-BERT [52] 71.3 72.7 70.0 73.6
MAG [34] 77.8 76.2 75.1 74.3
MVAN [53] 73.1 72.3 72.4 72.3
ITIN [S7] 75.2 75.0 73.5 73.5
DMLANet [51] 79.4 79.5 77.8 75.2
MDPF + B&V* 80.1 80.1 78.4 78.2
MDPF + CLIP* 80.6 80.3 79.2 78.5
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indicating the effectiveness of the proposed method. Meanwhile, the performance
with CLIP initialization surpasses that of using original BERT and ViT approaches,
indicating that aligned multimodal representations are more conducive to enhancing the
quality of feature fusion. 2) MDPF surpasses MSA baselines that model multimodal
congruity via sophisticated attention mechanisms, such as FENet and ITIN, demon-
strating that the dynamic connective strategy within semantic joint perception module
is capable of adaptively matching image-text pairs via a routing attention mechanism,

thereby effectively capturing representations of multimodal congruity. 3) MDPF also

Table 2: Performance of MDPF compared to state-of-the-art baselines on MSD with the evaluation metrics
Accuracy, Precision, Recall and F1-score. The other settings are consistent with MVSA. Results with x denote

the significance tests of MDPF over the baseline models at p < 0.05.

Binary-Average Macro-Average
Model Acc
Pt RT F11 Pt R F11
HFM]3] 86.6 83.8 84.1 84.0 86.2 86.2 86.2

Res-BERT/[30] 84.8 77.8 84.1 80.8 78.8 84.4 81.5
Att-BERT[30] 86.0 78.6 83.3 80.9 80.8 85.0 82.9
InCrossMGs[21] 86.1 81.3 84,3 82.8 85.3 85.8 85.6

CMGCNI22]] 87.5 83.6 84.6 84.1 87.0 86.9 87.0
HKEmodel[23] 87.3 81.8 86.4 84.0 - - -

MILNet[32] 89.5 85.1 89.1 87.1 88.8 89.4 89.1
DIP[45] 89.5 87.7 86.5 87.1 88.4 89.1 89.0

KnowleNet[54] 88.8 88.5 84.1 86.3 88.8 88.2 88.5
DynRT-Net [39] 88.9 88.6 87.9 88.2 - - -

SAHEFN [24] 87.2 82.7 87.3 84.9 86.7 87.2 86.9
DMSD-CL [13] 88.9 84.8 87.9 86.3 88.3 88.7 88.5
DocMSU [9] 89.7 86.3 88.4 87.3 88.8 89.2 89.0
TFCD [39] 89.5 84.8 89.4 88.1 - - -

MDPF + B&V*  90.2 89.2 88.3 88.7 89.7 89.3 89.5
MDPF + CLIP* 90.8 89.5 88.9 89.2 90.1 89.4 89.7

21



360

365

demonstrates optimal performance on the MSD task. Different from MSA task, MSD
task aims to identify incongruity between text and image. Therefore, compared to
baselines utilizing advanced pre-trained models and complex fusion mechanisms, such
as HKEmodel and DynRT-Net, MDPF employs a soft probability based on gaussian
distribution to model incongruity. The strategy can avoid the errors and biases that
fixed thresholds may introduce. 4) MFND task is similar to the MSD task and also
achieves the best performance. Compared to pre-trained stacking and module integration
models such as SEMI-FND, MDPF utilizes cross-modal GCN to preserve the structured
information and share information between modalities, introducing sentiment knowl-
edge to refine the edge weights of the graph to better capture cross-modal sentiment
interaction. 5) Compared to baselines that utilize traditional attention-aligned methods
during the encoding stage, MDPF demonstrates excellent performance. We consider

that MDPF introduces the external knowledge to augment the multimodal semantics and

Table 3: Performance of MDPF compared to state-of-the-art baselines on Twitter with the evaluation metrics
Accuracy, Fake News Fl-score and Real News Fl-score. The other settings are consistent with MVSA.

Results with = denote the significance tests of MDPF over the baseline models at p < 0.05.

Fake News Real News

Model Acc

Pt R?T F11 Pt R F11
EANN [43] 64.8 81.0 49.8 61.7 58.4 75.9 66.0
MAVE [16] 74.5 80.1 71.9 75.8 68.9 71.7 73.0
MCAN [48] 79.6 78.5 89.1 83.5 81.9 66.9 73.6
CAFE [6] 80.6 80.7 79.9 80.3 80.5 81.3 80.9
LIIMR [38] 83.1 83.6 83.2 83.0 84.0 84.3 84.1
MFIR[46] 85.8 85.0 84.8 84.9 86.7 87.1 86.9
CDD [7] 87.4 82.0 79.2 80.6 89.9 91.4 90.6
CSEND [31] 83.3 89.9 79.9 84.6 76.3 87.8 81.7
KEVL [11] 826 79.9 81.6 80.7 84.9 83.4 84.2

MDPF + B&V*  88.5 87.6 85.7 86.6 90.1 90.5 90.3
MDPF + CLIP* 89.4 90.2 85.5 87.8 90.3 91.6 90.9
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comprehensively understand the underlying semantics and interaction via contrastive

learning.

4.5. Ablation Study

To evaluate the effectiveness of the main components, we conduct an ablation study
to remove each one from proposed MDPF for comparison, as shown in Table 4]

Firstly, we observe that the performance drops significantly across all datasets
when remove the MCE module (i.e., (a)), this indicates that obtaining high-quality
representations is crucial for enhancing model performance. To further explore this
phenomenon, we compared the effects of solely removing the BLK (i.e., (b)) and
solely removing the CCL (i.e., (c)), and found the decline of the BLK is significantly
greater than CCL. This indicates that CCL relies on BLK. BLK supplements multimodal
information in the original modal space by generating image descriptions, laying the
groundwork for performing a comprehensive understanding of the underlying semantics
and interactions via CCL.

Secondly, the setting of (d) obtains worse results than the original model (i.e.,
(2)). This reason is that SJP can capture shared and private features to model semantic
congruity and incongruity via dynamic connective mechanism and g. Meanwhile, we
observe that the setting of (e) experienced a greater decline in performance on the
MVSA dataset compared to (f), while the opposite is true for the MSD and Twitter
datasets. We consider this to be caused by the characteristics of the tasks, with MVSA
focusing more on congruity in semantic modeling, while MSD and Twitter pay more
attention to incongruity between text and images. Therefore, when the DC mechanism
is removed, the model fails to capture semantic congruity, resulting in a significant
decrease in its ability to classify multimodal sentiment. Conversely, when the GD is
removed, the model loses its ability to model incongruity between text and images,
leading to a decline in its capacity for detecting sarcasm and fake news.

Finally, the performance decline is also significant after removing the SIP mod-
ule (i.e., (g)). Notably, in the setting (g), the performance decrease on the Twitter
dataset is not pronounced. We hypothesize two reasons for this: first, multimodal fake

news detection is more concerned with semantic incongruity between text and images,
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which is very similar to multimodal sarcasm detection. Second, although sentiment
contributes to the detection of fake news information, not all data contain sentiment
elements. While cross-modal graph convolutional networks can preserve the structured
information of image and text data and share information between modalities, thereby
better capturing cross-modal emotional relationships, this may introduce noise when
sentiment information is not sensitive. Additionally, the setting (h) involves removing
the combination fusion strategy and instead using a direct concatenation approach for
multimodal fusion. It is clear that using a combination fusion strategy significantly

outperforms the concatenation method.

4.6. Parameter analysis

Since dynamic connection and graph convolution components are related to the
construction of semantic intensified and sentiment interactive information, we conduct
a parameter analysis to explore the impact of different layers of DC and GCN on the
accuracy in three tasks, as shown in Figure 3]

First, as the number of DC layers increases, we observe that the accuracy of MDPF
on the three tasks steadily improves and reaches a peak at the 5th layer. This shows
that the increase in the number of connection layers enables MDPF to continuously
learn the congruity representation of images and texts via a multi-head dynamic routing

mechanism to capture the most appropriate image-text pairs. However, as the number of
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Figure 3: Parameter analysis on the accuracy in MVSA, MSD and MFND tasks.
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layers further increases, the dynamic connection components will gradually introduce
cross-modal relations that are irrelevant to the current image-text pair, resulting in
performance degradation.

Secondly, different from the number of DC layers, the model performance is optimal
when the number of GCN layers is set to 2. This shows that the GCN has a strong ability
to aggregate information. However, as the number of layers increases, the performance
of the model gradually decreases. This phenomenon occurs because the GCNk has an
over-smoothing issue, and the increase in the number of layers makes the features of all

nodes more similar.

4.7. Case Study

We randomly select three cases from the three datasets to explain how bootstrapping
language-image knowledge affects the proposed MDPF model, as shown in Figure [4]
First, in the case of MVSA, we observe that the phrase Day 51 of 90 paintings in 90
Days of Stratford! highlights paintings and Stratford. However, neither these two words
nor the entire sentence exhibit a clear sentiment attitude. The overall sentiment polarity
would overly rely on the image encoding of low-level semantic features, leading to

erroneous judgments by the baseline model. When we employ the BLK module to

Datasets MVSA MSD Twitter

Image
Text Day 51 of 90 paintings in 90 Days Gotta loves the warm and dry Fantastic! and plenty of cloud for all
of Stratford! conditions! of us down on earth.
BIK The painting of a flower garden with ~ Church with a steeple in the snow A solar eclipse seen from space.
a gazebo. and a street covered in snow.
Baselines Neutral (False) Non-Sarcasm (False) Real (False)
MDPF Positive (True) Sarcasm (True) Fake (True)

Figure 4: Case analysis on MVSA, MSD and MFND datasets.
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generate image descriptive knowledge The painting of a flower garden with a gazebo,
the terms flower garden and gazebo exhibit a positive sentiment tendency to some extent.
MDPF makes accurate decisions with the aid of bright colors in the combined visual
features. Then, case MSD presents a sarcasm example. The sentence Gotta love the
warm and dry conditions expresses a positive sentiment via words love, warm and dry
while the overall white background of the image does not provide a good reference for
the incongruity between text and image. The image description of Church with a steeple
in the snow and a street covered in snow contrasts the snow with warm, aiding the model
in accurately identifying the sarcasm incongruity. The case of Twitter is similar to the
case of MSD. The BLK-generated solar eclipse and space create a clear contrast with
text words Fantastic, cloud, and earth, helping the model to overcome the deception of
the image object cloud on the textual semantics of cloud. This further demonstrates that

the BLK can assist MDFP in identifying fake news incongruity.

4.8. Visualization

To further discuss the effectiveness of our method, we provide a visualization to
discuss semantic joint perception and cross-modal sentiment interactive graphs on how
to assist the dual perception module in capturing semantic and sentiment information.
Firstly, Figure [5] shows the impact of the semantic joint perception module. The
dynamic connection mechanism allows the model to focus on cross-modal regions
related to the text by modeling shared semantics, such as exhibiting high attention to
image objects Strawberry, Nutella, and the word happiness. Meanwhile, the gaussian-
weighted distribution pays more attention to private semantics to achieve semantic
inconsistency modeling, as manifested by objects like cup in the image being identified
and distinguished.

Secondly, Figure 6] presents an example of constructing a cross-modal graph in the
sentiment interaction perception module. We can observe that the positive sentiment
expressed by positively contrasts sharply with the gloomy colors in the hurricane and
dark clouds. The cross-modal sentiment interaction is represented by edges with greater
weights to represent highly relevant sentiment clues, indicating the effectiveness of

cross-modal graph convolution in capturing multimodal sentiment interactions.

27



Strawberry and Nutella crepe

my

happiness

Figure 5: Attention visualization of the semantic joint perception mechanism.
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Figure 6: Sentiment interactive matrix of the cross-modal graph which presents the key word.

5. Conclusion

In this paper, we introduce MDPF, a pioneering unified multimodal fusion frame-

work designed for a broader spectrum of multimodal affective analysis, encompassing

sentiment analysis, sarcasm detection, and fake news detection. This framework in-

a0 novatively constructs a fusion sequence of semantics and sentiment to enhance the
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performance of multimodal affective classification. Initially, we employ a bootstrapping
language-image knowledge base and cross-modal contrastive learning to enrich the
original modality space and align cross-modal information. Subsequently, we establish
a dynamic connective mechanism that adaptively matches image-text pairs to capture
shared semantics, while also employing a gaussian-weighted approach to emphasize
private semantics. Concurrently, sentiment knowledge is integrated to refine the edge
weights of the cross-modal graph, facilitating the capture of sentiment interactions.
Ultimately, we devise a cross-modal combination fusion strategy to merge semantically
enriched and sentimentally interactive sequences for comprehensive multimodal classifi-
cation. The efficacy of the proposed MDPF framework is validated on three publicly

available datasets, with empirical results underscoring the superiority of our model.
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