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Deep Reinforcement Learning Based Ultra Reliable
and Low Latency Vehicular OCC
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Abstract—In this paper, we present a deep reinforcement 
learning (DRL) framework for vehicular optical camera com-
munication (OCC) systems that ensures ultra-reliable and low-
latency communication (uRLLC). We first formulate a  through-
put maximization problem that aims at optimizing speed of ve-
hicles, channel code rate, and modulation order while respecting 
the uRLLC requirements. We model reliability by satisfying a 
target bit error rate and latency as transmission latency. To 
improve the transmission rate and provide high reliability and 
low latency, our scheme uses low-density parity-check codes and 
adaptive modulation. We then solve the optimization problem 
using the actor-critic-based DRL scheme with Wolpertinger 
framework. We employ a deep deterministic policy gradient 
algorithm to operate over continuous action spaces. The evalua-
tion confirms that our proposed DRL-based optimization scheme 
achieves superior performance compared to radio frequency-
based communication systems as well as variants of the proposed 
scheme. Finally, we verify through simulations that our proposed 
solution can maximize the communication rate while meeting the 
uRLLC constraints.

Index Terms—DRL, vehicular OCC, uRLLC, LDPC codes, 
actor-critic, DDPG

I. INTRODUCTION

Autonomous vehicles (AVs) are guiding the evolution of
future smart cities and are regarded as the most transformative
technology for intelligent transportation systems (ITSs). AV
communication can improve the overall driving experience
and ensure traffic s afety b y f acilitating n ew s ervices, e.g.,
autonomous driving and collision avoidance [1]. In order to
realize this, we need to design systems that guarantee the
availability of ultra-reliable communication links at extreme
low latency [2]. The need to meet both latency and reliability
requirements simultaneously makes vehicular communication
a very challenging problem as they cannot be ensured by
employing current vehicular communication systems. This
happens because the current methods attempt to achieve ultra-
reliable and low-latency communication (uRLLC) by either
using cellular or radio frequency (RF)-based communication
systems. These methods typically incorporate edge or remote
servers and centralized base stations, relying on centralized
resource management. However, the computational resources
of these systems are limited; hence, they can be overloaded
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when there are frequent requests for AV tasks. Besides,
RF communication channels are exposed to interference and
noise. These render the use of RF- or cellular-based systems
problematic for realizing uRLLC in ITS.

On the contrary, in recent years, visible light communica-
tions (VLCs) is anticipated to be an essential alternative to
RF systems for next-generation communication services [3].
VLC employs light-emitting diodes (LEDs) as transmitters,
and photodiodes (PDs) or cameras as receivers. VLC systems
employing PDs as receivers are named light-fidelity (LiFi),
whereas those using cameras are called optical camera com-
munication (OCC) systems. PDs have very quick responses
to signal reception though being non-imaging small devices.
However, there is a trade-off in performance between signal
reception and transmission signal coverage. Cameras can
mitigate the challenges faced by PD-based systems [4]. The
rapid advancements in OCC have rendered this system a
favourable technology for AV communication [4], [5]. How-
ever, meeting the uRLLC constraints necessitate the use of
channel coding. Low-density parity-check (LDPC) code is a
promising candidate for uRLLC, which has been adopted in
the fifth-generation (5G) new radio (NR) services [6]. We use
LDPC codes in our system because they can help achieve a
high transmission rate, low latency, and high reliability.

Since vehicular environments are time-varying and dy-
namic, it is challenging to respect uRLLC constraints. Further,
vehicular communication systems become even more complex
when they involve the control of various decision-making
parameters, e.g., channel code rates, speed, distances, and
modulation schemes. It is difficult to solve these problems us-
ing traditional methods, such as dynamic programming or ex-
haustive search because of their inherent complexity and time
required to solve them. Deep reinforcement learning (DRL)
has emerged as a possible candidate to solve autonomous
vehicular problems [7], [8]. DRL overcomes partially the
complexity of these systems as it can be applied distributively
[9]. DRL uses a deep Q network (DQN) which aims at
approximating the Q-value of Q-learning algorithm. Besides,
DQN cannot be easily applied to continuous problems [10],
which is the case for our proposed vehicular system. This is
because the DQN maximizes the action-value function to find
the appropriate action, whereas it is an iterative optimization
process applied at every step in continuous problems. One of
the approaches to solve continuous problems is to discretize
the state and action spaces. However, this introduces subop-
timality, as we may not find the optimal action because of
discretization. This happens as inexperienced discretization
needlessly discards information, which can be critical for
solving the underlying problems.
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The above issues can be alleviated by adopting the actor-
critic based DRL frameworks [10], where the DRL agent
incorporates two networks, namely, the actor network and
the critic network. The actor network controls the agent’s
behaviour by selecting actions, whereas the critic network
refines the actor’s choices to determine the optimal policy
approximation. The Wolpertinger architecture [11] along with
actor-critic network converges faster than the vanilla actor-
critic method over a large actions space by considering the
nearest neighbour’s actions of a proto-actor action selected
by the actor network.

In this paper, we present an actor-critic based DRL ap-
proach in vehicular OCC that aims at maximizing the through-
put while respecting the uRLLC constraints. In doing this, we
optimize the throughput by selecting the optimal code rate,
modulation scheme and speed of the vehicle. Our scheme
respects uRLLC constraints by designing the reward so that
the violation of the constraints results in zero rewards, in-
centivizing vehicles to avoid them. We train the proposed
model using deep deterministic policy gradient (DDPG) [10].
We summarize the key novel contributions of this paper as
follows:

• In this study, we use 5G NR LDPC codes in vehicular OCC
to ensure uRLLC, which is, to the best of our knowledge,
the first work in this regard.

• We present a DRL-based throughput maximization scheme
by simultaneously controlling LDPC code rate selection,
modulation level, and vehicle speed. This novel joint opti-
mization approach, not previously explored in the context of
OCC systems, enhances communication link performance.

• We define our vehicular OCC problem as a Markov decision
process (MDP) by uniquely designing the state, action, and
reward. The reward is modelled such that it respects uRLLC
constraints while maximizing the throughput. The com-
plexity involved in the studied problem by simultaneously
optimizing critical parameters (channel coding rate, modu-
lation selection and vehicle speed) in a dynamic vehicular
environment makes it particularly challenging. Traditional
research might address these aspects individually. Our paper
tackles them together, aiming for a more complete approach.

• We propose a novel application of an actor-critic RL
framework with a Wolpertinger architecture for OCC, which
is particularly suitable for the considered problem due to
the use of the K-nearest neighbours (KNN) component. It
can handle large action spaces –– a challenge often faced
in RL due to the large number of state-action variables.
This machine learning framework, well-suited to complex
decision problems like those in vehicular communication,
has not been previously used in Vehicular OCC and remains
understudied.

• We model our vehicular system in the Simulation of Ur-
ban Mobility (SUMO) simulator, a popular platform for
transportation modelling, where the vehicular environment
is modelled similarly to the real-world environment. This
realistic simulation is a critical aspect of our approach and
this paper is the first to use SUMO in Vehicular OCC.

• We validate our proposed methods through extensive sim-

ulations by comparing them with RF systems as well as
variants of our scheme with regard to achievable through-
put, bit error rate (BER), and transmission latency. The
results show that our proposed actor-critic based DRL
scheme achieves promising performance, maximizes the
transmission rate while satisfying the uRLLC constraints,
and outperforms the schemes under comparison, showcasing
the practical benefits and real-world applicability of our
proposed approach.
The remainder of this paper is organized as follows. Section

II presents the related works. We then outline the OCC system
model and the performance-defining parameters in Section
III, while we formulate the maximization problem and RL
framework in Section IV. Section V introduces the actor-critic
DRL framework using Wolpertinger policy architecture. The
simulation setup is provided in Section VI followed by Section
VII, where we provide the simulation results for different
performance parameters and comparison with various schemes
under consideration. Finally, we have drawn conclusions in
Section VIII.

II. RELATED WORKS

Achieving reliability and latency requirements concurrently
complicates AV communications. Several techniques have
been proposed in the literature of ITSs to facilitate uRLLC,
including delay minimization [12] and reliability guarantee
[13]. Specifically, in [12], the authors aim at minimizing the
transmission power of vehicular networks by grouping them
into clusters, where the violation probability of queuing delay
is used to model reliability. In [13], the communication rate
is maximized through a joint power control and resource
allocation algorithm while considering reliability and latency
constraints. Moreover, to reduce latency, edge computing has
become an attractive solution, where the requested tasks are
processed locally without depending on remote servers [14].
In [14], the authors minimize the computational latency by
developing an edge computing strategy in vehicular networks.

The above-mentioned methods lead to interference as they
employ RF technology. Various strategies, e.g., machine
learning-based schemes [15], frequency planning methods
[16], are introduced to mitigate the interference in RF systems.
These methods are computationally demanding, where achiev-
ing optimality is challenging. More importantly, they have not
considered uRLLC requirements and focused only on dealing
with interference. OCC has the ability to separate different
transmitter sources spatially and process them independently
on the image plane. Thus, the receiver can easily discard
interference and other light sources, e.g., streetlights, Sun,
while focusing on specific pixels where the LEDs strike [4].
There are works in OCC mainly targeting to increase data rate,
but they do not consider the uRLLC aspects that we study
here. Specifically, in [5], the authors achieved 10 megabits
per second (Mbps) data rate by varying LEDs intensity and
creating flag images using the communication image pixels
in which the high-intensity light sources appear. In [4], the
authors achieved a rate of 20 Mbps per pixel without detection
of LEDs and a rate of 15 Mbps per pixel with real-time
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Fig. 1: Proposed vehicular optical camera communication
system model.

detection of LEDs in OCC systems. In [17], the rate was
further improved to 54 Mbps for BER < 10−5 at 50 m
distance.

Stochastic optimization schemes cannot be easily applied
in an online way in vehicular networks as the networks
are dynamic, time-varying and the size of vehicular prob-
lems is also bigger, similar to what we consider in this
paper. More challenges arise because the problems cannot
be solved fast, and, hence, the low latency constraint may
be violated, which makes it complicated to respect uRLLC
requirements. Deep reinforcement learning has emerged as an
optimization framework to deal with the time-varying nature
of the optimization problems in vehicular networks [7], [8].
In [18], the authors proposed a solution for joint dynamic
channel access and power control using DRL applied in a
centralized way. The main drawback of this approach is that
centralized training is time-consuming and possibly results
in violation of the latency requirements. Moreover, these
methods only optimize the spectral efficiency in RF-based
systems without considering uRLLC constraints. Since the
vehicular environment is time-varying and decision-making
parameters, e.g., speed, distance, are continuous, general DQN
cannot be trivially applied to this system without discretization
of the spaces, which degrades the performance [10]. Recently,
actor-critic based DRL frameworks have been studied to solve
continuous problems [10]. The Wolpertinger architecture is
used in conjunction with the actor-critic framework to limit the
search for optimal actions to the nearest neighbour of proto-
actor action determined by the actor network [11].

To satisfy the uRLLC requirements in vehicular OCC,
channel coding is required in addition to the interference
mitigation and DRL framework. Recently, 5G NR LDPC
codes have been used to provide reliability and low latency
while improving transmission rate [6]. To the best of our
knowledge, LDPC code rate optimization using DRL has
not been applied in vehicular OCC yet. LDPC codes have
already been applied to improve the reliability of communi-
cation systems that use adaptive modulation schemes both in
wireless [19] and optical communication [20]. These systems
use traditional optimization methods to solve the underlying
optimization problem, which is inefficient in a time-varying
vehicular environment because of the entailed computational
complexity. Therefore, in this paper, in order to cope with the
diverse nature of the vehicular OCC systems, we follow an
actor-critic based DRL framework with Wolpertinger policy
architecture to adjust LDPC code rate, speed of vehicles, and
modulation scheme while respecting uRLLC constraints.

III. SYSTEM MODELLING

We start this section by introducing the considered vehicular
OCC system parameters. We, then, discuss the employed
LDPC channel codes and adaptive modulation schemes. We
conclude this section by defining different performance pa-
rameters of the proposed vehicular OCC system including
transmission rates and observed latency.

A. System Overview

Fig. 1 illustrates the proposed model of the vehicular
OCC network, where each vehicle is an individual agent.
In this system, we define the information-carrying vehicle
as “Transmitter Vehicle (TV)” and the information receiving
vehicle as “Receiver Vehicle (RV)” while following the TV.
The TV transmits information employing rear LED lights,
such as, speed, next possible actions (move right, left, stop, or
accelerate), position, and safety or action-related information
from other vehicles. The RV detects signals from the LED
transmitters using a camera. We consider two sets of cameras
for each vehicle, one in the front, i.e., a high-speed camera
having a frame rate of 1000 frames per second (fps) and
another in the back, i.e., a vision camera. The front camera
has dual functionality. It first measures the forward distance
between the TV and the RV. Then, it receives the transmitted
data from the transmitters, i.e., LED lights of TV. The back
camera calculates the backward distance, dt, following a
stereo-vision technology as the one discussed in [21]. We
would like to note that we have not used two high frame
rate cameras both at the frontal and back part of the vehicle
because we have only one-way communication with the back
LED lights and front camera. Additionally, our setting is cost-
efficient because stereo cameras are cheaper than high-speed
cameras.

Considering the advantages of adaptive modulation to im-
prove the transmission rates and maintain higher quality of ser-
vice, we employ M-ary quadrature amplitude modulation (M-
QAM) in this paper. However, different modulation schemes
can still be applied to our system. M-QAM has already
been used in optical communications [22], which offers very
low BER, high-speed and flicker-free communication [23].
To further improve the transmission rate and guarantee low
BER, i.e., ultra-reliability and low latency, we utilize the
5G NR LDPC code with the M-QAM scheme. We illustrate
the overall block diagram of the OCC system employing
the transmitter, OCC channel, and receiver in Fig. 2. The
transmitter includes an LDPC encoder, an M-QAM modulator,
and an LED transmitter, whereas the receiver consists of
an image sensor receiver, an M-QAM demodulator, and an
LDPC decoder. We will describe the employed LDPC codes
in Section III-B. At the transmitter, the data bitstreams are
first encoded using LDPC codes before mapping the channel
encoded codewords into M-QAM symbols. Then, the coded
data are transmitted over an OCC channel through LEDs. At
the receiver, the camera captures the modulated light intensity
as three different LED states, i.e., on, off, and mid. The
originally transmitted information is then extracted from the
detected intensity using M-QAM demodulation [24]. For more
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Fig. 2: Block diagram of the employed LDPC coded M-QAM
for vehicular OCC.

detail about M-QAM modulation in OCC, please refer to our
previous paper [25], where we explain M-QAM encoding and
decoding.

As the modulation may change with time, the transmitter
should inform the receiver regarding the employed modula-
tion. This is done by appending a small overhead, e.g., some
extra bits, in each transmitted packet. In practice, a small set
of modulation schemes is used, i.e., 5 in our system. This
requires only 3 bits to be appended to the transmitted data for
the receiver. Thus, the overhead will be insignificant compared
to the transmitted packet size, i.e., 5 kbits, and, thus, we
neglect it in our system.

B. Channel Coding

Channel coding strongly impacts the achievable reliability
and throughput of a communication system. Since our vehicu-
lar OCC system requires ultra-reliability and low-latency, 5G
NR LDPC codes that we have used, have already been applied
in optical communications [20]. 5G NR systems employ
Quasi-cyclic (QC)-LDPC codes as channel coding schemes
because of the advantages of efficient implementation and
improved performance [26]. The QC-LDPC coded modulation
can also resolve the weaknesses of having low reliability and
high latency performance for arbitrary order of modulation
formats [20], [27] while guaranteeing a low error rate for
all code rates. Most notably, 5G NR LDPC codes support a
wide selection of data block lengths covering 40 to 8448 bits
and diverse code rates, κ, between 1/5 and 8/9 [6], [28]. 5G
NR codes use a feedback channel to adapt protection, which
makes them reliable and efficient. Therefore, we use 5G NR
QC-LDPC channel coding over the Galois Field (GF(Q)) for
Q-ary QAM transmissions in our vehicular OCC system.

For a GF size of Q = 2M , the transmitter encodes the orig-
inal data employing Q-ary LDPC codes. Then, the encoded
data are transmitted by sequentially mapping them to the M-
QAM symbols. On the other hand, the receiver accumulates
the modulated symbols, i.e., codeblock, for demodulating and
decoding the originally transmitted information. For LDPC
decoding, we use the Min-Sum algorithm (MSA) [29]. MSA
reduces decoding complexity in LDPC codes by decreasing
the number of multiplication operations with only minor
performance loss [30]. The receiver uses a standard M-QAM
demodulator to demodulate the incoming message in order to
recover the original information message.

C. Channel Modelling

In our system, we consider the vehicles to be free from
obstruction, and they can communicate with each other con-
tinuously through an uninterrupted line-of-sight (LoS) link be-
tween the LED transmitter and the camera receiver. OCC has
either a diffuse or flat-fading channel. There are two different
light propagation in the OCC channel: (i) LoS propagation
component that results from the direct light transmitted from
transmitter to receiver, and (ii) diffuse propagation component,
which is the reflecting lights coming from reflective surfaces
or other vehicles. However, the LoS propagation component
has higher energy compared to the diffuse component, and
hence, in this paper, we neglect the diffuse light component.

The LED has wider directivity and follows a Lambertian
radiation pattern. Hence, we can model the emitted light from
the transmitters as a generalized Lambertian radiant intensity
[25]. Thus, the DC channel gain for visible light LoS link is
derived by [25]

Ht =

{
(m+1)A
2πd2t

g Ts(θ) cosm(φ) cos(θ), 0 ≤ θ ≤ θl
0, θ > θl

(1)

where m represents the Lambertian radiation pattern order,
A is the area of the camera lens’s entrance pupil, the inter-
vehicular distance between the transmitter and receiver vehicle
is represented by dt, g is the lens’s gain, Ts(θ) denotes the
signal transmittance of an optical filter, θ is the angle of
incidence (AoI) with regard to the receiver, φ is the angle
of irradiance with respect to the emitter, and θl is the field of
view (FoV) of the camera lens. We can estimate dt using a
stereo vision camera following a method similar to the one in
[21]. In this paper, we consider a fixed AoI, θ, following the
analysis of our previous work presented in [31]. In particular,
we fix the AoI to 60o, which can help our system meet
the latency and reliability requirements. We made this design
decision as it is challenging to change the AoI continuously
in a practical scenario because this would introduce additional
delays caused by the need to change the AoI mechanically in
the vehicle.

In this paper, we ignore the overhead of recognizing the
desired light sources under the mobile environment, which is
inspired by [32]. We clarify this in our previous paper [25].
The authors in [32] proposed a vehicular motion model in an
image plane and showed that the motion of the vehicle along
the horizontal and vertical axes on the image sensor plane
varies within a single pixel most of the time, which is very
small compared to entire image pixels on the captured image.
1Following [25], the received channel SNR, γ(d), for a single
LED-camera communication is given as:

γ(d) =

{
k2P 2

qρPnWfpsf2l2d2 ; if d < dc
k2P 2

qρPnWfpss2d4
, if d ≥ dc

(2)

where k = ρ (m+1)A
2π gTs(θ) cosm(φ) cos(θ), P is the optical

transmit power, q denotes the electron charge, ρ is the re-

1From (1), we see that the channel gain depends on t, which represents the
changes in inter-vehicular distance, i.e., d over time. So, from now we adapt
d instead of t. From the context, it is also evident that the working variable
is distance.
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ceiver’s responsitivity, Pn represents the power in background
light per unit area, Wfps is the sampling rate of the camera.
f represents the focal length of the lens, and l denotes the
diameter of an LED. When the generated image from the LED
falls exactly onto one pixel on the image plane, we refer to
this distance as critical distance dc = fl/s, where s represents
the pixel edge length.

D. Capacity and Latency Modelling

The channel capacity of the OCC systems relies on the
applied modulation scheme and employed channel codes.
For the LDPC codes with code rate, κ, and the M-QAM
modulation schemes, the transmission rate is expressed as
shown in [25]

C(d,κ) =
Wfps

3
· κ NLEDs w%

2 tan
(
θl
2

)
d
· log2(M(d)) (3)

where NLEDs represents the number of LEDs at the transmitter
in each row, w is the image width (in case the rolling axis
is along the width of the image sensor), % is the size of the
LED light in cm2, and M is the order of the modulation
scheme. Please note that, we consider the operation of a rolling
shutter camera in our system. The term Wfps/3 refers to the
fact that the camera must sample the modulated signal three
times to decode the original M-QAM signal [24]. In other
words, for reconstructing the amplitude and phase perfectly,
we need to sample the modulated symbol in three successive
frames. Please note that, from hereon we use the terms rate
or throughput interchangeably.

We assume that the end-to-end latency of our OCC system
is controlled by transmission latency. We ignore the computa-
tional latency since we deal with a small volume of data, i.e.,
the communicated information by TVs to RVs. Consequently,
we experience short computational time. Moreover, modern
vehicles can be equipped with powerful processors and GPUs
and thus are capable of handling significant computational
loads, making transmission latency the dominating latency
factor. Hence, the transmission latency, τ(d,κ), for a packet
size of L is defined by [25]

τ(d,κ) =
L

C(d,κ)
. (4)

IV. PROBLEM STATEMENT AND RL FORMULATION

A. Proposed Problem Formulation

Considering the vehicular environment and the ultra-reliable
and low-latency communication requirements, we formulate a
throughput maximization problem for the considered vehicular
OCC system. This problem aims at optimizing the modulation
schemes and LDPC code rates and adjusting to the vehicle’s
optimal relative speed. We constrain the BER and latency to
respect uRLLC conditions. Hence, we formulate the maxi-
mization problem as follows:

max
M, X , v

C(d,κ) (5)

s.t. BER(d,κ) ≤ BERmax, (6)
τ(d,κ) ≤ τmax, (7)

M(d) ∈M, (8)
κ ∈ X , (9)

where M represents the QAM modulation scheme set, X
is the set of LDPC codes, v is the relative speed of the
vehicle, BERmax denotes the target BER, and the maximum
allowable latency is represented by τmax. To ensure uRLLC,
the reliability is defined by satisfying target BER as in (6), and
the latency requirement is respected as in (7). We select the
modulation scheme from M as given in (8). The code rates
are adjusted using the set of available 5G NR codes [28], as
defined in the IEEE standard as presented in (9). We adapt
the distance by dt = dt−1 + vt · ∆t, where ∆t stands for
the time difference between the current and previous states
and dt−1 denotes the distance at the prior state. Our problem
belongs to the class of sequential decision problems. This
is because the actions of one vehicle affect the actions in
the next time slots. Moreover, the decision of changing the
speed affects the distance between the agent vehicle and the
neighbouring ones, and hence (5) is a sequential problem.
It is important to note that by using its back cameras, each
agent (vehicle) can accurately estimate the distance from the
vehicles behind it. This information is sufficient to solve our
problem, as represented by (3) and (4). With this information,
the agent vehicle can compute both throughput and latency,
and leverage this information to train the OCC system and
enhance its overall performance.

The optimization problem in (5) is mixed-integer program-
ming (MIP) with nonlinear constraints for BER in (6) and
delay in (7). As a result, our problem is non-deterministic
polynomial-time-hard [33]. MIP problems are known to have
high computational complexity [34], and while dynamic pro-
gramming or exhaustive search techniques can be used to
solve them, these methods cannot be used in dynamic systems
like the one we study in this paper because they are extremely
time-consuming and/or computationally demanding. The deci-
sion space in our problem is incredibly large since we control
the speed, code rate, and modulation. The use of deep RL
allows us to solve the problem with less computational and
time complexities. Please note that vehicular communication
must satisfy the uRLLC requirements to ensure that the
information is received reliably within the required time. In
RL, the vehicles (agents) cooperate with the unknown envi-
ronment to decide the optimal policy, i.e., selecting optimal
code rate, speed, and modulation order, while adapting to the
environmental changes. Before driving to the solution in the
following section, we first formulate the problem in (5) - (9)
as a MDP in the next subsection.

B. MDP Modelling

The proposed optimization problem in (5) is formulated
as MDP, where each vehicle is an agent, and the other
vehicles, apart from the specific vehicle, are considered the
environment. The agent explores and interacts with the envi-
ronment to have a better understanding of it and decides the
throughput maximization policies based on the observations of
the environmental states. The MDP is defined as a tuple (S ,
A, p, r, ζ) [9], where we define each element as follows:
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S: a set of available states; A: a set of available actions;
p(st+1, rt|st, at): the transition probability that describes the
probability when the agent transits from the state st to the next
state st+1 by selecting an action at from A; r: the reward;
and ζ ∈ [0, 1]: discount factor that affects the future rewards
by discounting the impact of the action gradually. A discount
factor ζ = 0 provides a short-sighted goal that maximizes
the immediate reward. When ζ is close to 1, the agent
focuses more on the future reward, and the scheme becomes
farsighted. In practice, a farsighted approach is desirable, as
it achieves better returns by focusing on future discounted
rewards. We now present the definition of state space, action
space, and reward function for the studied RL problem as
follows:

1) State Definition: At the current time t, an agent looks at
the state st from the vehicular environment. In our system, the
state consists of three parameters: the backward distance, dt,
the transmitting modulation scheme, Mt, from the set M =
{4, 8, 16, 32, 64}, and the code rate, κt, from the set X =
{5G NR codes} [28]. We summarize the state at time t as
st = {dt,Mt,κt}.

2) Action Definition: At each state st, the agent selects
an action at from the set A following a policy π. For our
considered system, the action space is the combination of
selecting a modulation scheme from the setM, code rate from
set X , and adjusting the speed, vt. In summary, the action
space is expressed as at = {4Mt,4κt,4vt}, where 4
represents the change of values of the respective parameters,
e.g., 4Mt refers to the change in modulation scheme.

3) Reward Function: Following the action taken at the
current state, the agent receives a reward. Note that, an
effective design of the reward is imperative for the learning
algorithm to obtain the desired goal, which is achieved by ex-
perience and a multitude of attempts. Hence, the reward needs
to be relevant to the objective function. In our framework, the
reward is the weighted sum of the rewards corresponding to
inter-vehicular distance (dt), throughput (5), BER constraint
(6), and latency constraint (7). Firstly, we model the reward
for the distance changes, rd

t , as follows:

rd
t =

{
dt − dstop, dt < dstop

1
dt−dstop

, dt > dstop
(10)

where dstop denotes the stopping distance that is the sum-
mation of braking distance, i.e., the distance that the vehicle
travels after triggering the brakes and reaction distance, i.e.,
the distance that the vehicle travels between the time required
by the driver to react after observing any situation [35]. We,
then, model the reward for the reliability, i.e., BER, rrt , as:

rrt = 1b(BERt ≤ BERmax), (11)

where 1b stands for the indicator function for the BER, which
returns 1 when the BER condition is satisfied or 0 otherwise.
Similarly, the latency is constrained so that it meets the low
latency requirement. Accordingly, the reward for latency, rτt ,
is modelled as follows:

rτt = 1τ (τt ≤ τmax), (12)

where, 1τ is the indicator function for latency that returns 1
for true condition and 0 otherwise.

Finally, from the above modelling, the overall weighted sum
of rewards, rt, is expressed as

rt = ωd r
d
t + ωbr

r
t + ωτr

τ
t + ωc C(d,κ), (13)

where, ωd, ωb, ωτ , and ωc are positive weights that balance the
distance, BER, latency, and communication rate rewards. The
weights can be adjusted based on the system requirements.
For instance, a higher value for ωc gives higher priority to
selecting actions that maximize the throughput at every step.
The reward (13) is designed in a manner so that the violation
of reliability and delay constraints (Equations (11) and (12),
respectively) result in zero reward. This design guides the
learning process towards solutions that consistently meet the
uRLLC requirements.

The return in the MDP is the discounted sum of future
rewards received by the agent, which is expressed as Gt =∑∞
j=0 ζ

jrt+j+1. The RL framework aims at maximizing the
expected return over all timesteps, i.e., max E[Gt(st, at)],
starting from a given state, st, and taking an action, at,
following a policy, πt, thereafter. The Q-learning-based action-
value function is commonly used in RL algorithms. It can
be expressed in a recursive relationship using the Bellman
equation:

Qπ (st, at) = r(st, at) + ζEat+1∼π [Qπ (st+1, at+1)] , (14)

where Eat+1∼π stands for expectation of future accumulated
reward Qπ (st+1, at+1), while taking an action following a
policy π at time t + 1. To determine the Q value, the agent
considers both the current and next state over all actions A.

V. PROPOSED SOLUTION

Q-Learning is a well-known method [9] employed for
addressing problems formulated as MDP. The size of the
state-action space, however, affects the Q-learning algorithm’s
rate of convergence. The RL agent can quickly explore each
state-action pair in a small state-action space and identify the
optimal policy. The Q-table size grows incredibly big for a
large state-action space, which results in slow convergence
times. This happens because the Q-learning agent may not
explore numerous state-action pairs in a reasonable time.
Although there are several linear function approximation ap-
proaches [36], [37] that can be used to solve RL problems, the
capabilities of these approaches are limited to medium-sized
problems. Despite using efficient approximation functions,
traditional RL algorithms cannot quickly learn the informative
features of the environment in high-dimensional and compli-
cated systems. This is due to the RL agent’s potential failure to
explore many state-action pairs. Another disadvantage of the
original Q-learning technique is that it requires a significant
amount of storage space for the Q-table and a longer time
to converge for indefinitely large state-action spaces. The
problem quickly becomes insoluble as the cost of evaluating
the Q function increases since the execution complexity rises
linearly with the number of state-action spaces.

Tabular Q-learning cannot be employed since it only works
with discrete variables; nevertheless, distance and speed are
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continuous variables that result in a large state-action space.
Discretization may be applied, however, it has an impact on
the solution’s quality, where there is a trade-off between the
discretization and the size of the state-action space. Thus,
we must compromise on performance because we may be
required to generalize the state-action space while discretizing
them. Unfortunately, Q-learning cannot be straightforwardly
applied to continuous problems. This happens because, when
we have significantly large action spaces and function ap-
proximators, the optimization becomes practically too slow.
This motivates the approach that we follow here. In particular,
we employ an actor-critic framework based on the DDPG
algorithm [38], where we utilize a policy architecture known
as Wolpertinger architecture [11]. This policy architecture
removes the massive computational cost of evaluating Q-
function on each action taken.

A. Algorithm Overview

We have already mentioned that the proposed policy archi-
tecture follows the Wolpertinger architecture [11], which is
based on actor-critic [9] framework. The dual-network struc-
ture collaboratively enables the model to balance exploration
and exploitation while continually improving policies to meet
the uRLLC requirements. The Wolpertinger architecture has
three main components: actor network, K-nearest neighbours,
and critic network and is executed in three main steps. The
actor first takes states as the input and produces a proto-actor,
â, at the output. Secondly, the proto-actor is fed as input to
the KNN, which computes the L2 distance between the proto-
actor and each valid action, i.e., actions that respect latency
and reliability constraints, and keeps a list of the K actions
that result in the smallest L2 distance. In this way, the proto-
actor is expanded over the action space, AK , where K is the
number of elements and every element is an action a ∈ A.
Finally, the critic network takes AK as the input to rectify
the decision of the actor network based on the Q value. In
order to update the actor and critic networks, we train the
policy using the DDPG algorithm [10]. We use multi-layer
neural networks for the actor-critic function approximators.
A detailed explanation of the essential elements of the actor-
critic framework and Algorithm 1 is presented below.

1) The actor network: The Wolpertinger architecture oper-
ates on actions within a continuous space, Rn and then maps
this output to the discrete action set A. We define the network
through a function which is characterized as θµ [11].

µ(s | θµ) : S → Rn

µ(s | θµ) = â. (15)

This function provides a proto-action in Rn for a given
state, which may not be a valid action, i.e. it is likely that
â /∈ A. Therefore, we need to map â to an element in A. We
can do this through function g, which performs as follows:

g : Rn → A (16)

2) K-nearest neighbours (KNN): For a large action space,
the potential high computational complexity can be reduced
by the proto-actor generation. However, transforming to only

a single actor from large action space dimensions will direct to
choosing imperfect decisions. To resolve this, KNN mapping,
gK , is used to expand the actor’s action to a valid actions’
subset, AK ⊂ A that are in close proximity of the proto-
actor. We express the returned action set, AK , from gK as:
AK = gK(ât), where

gK = arg
K

min
a∈A
| a− â |2 . (17)

where | a − â |2 represents the features distance between
the proto-actor â and the chosen action a. After selecting the
proto-actor by the actor network, the agent determines the
KNN feature distances by roaming over the action space and
accordingly, the action set can be formed. We can find the
K nearest neighbours using (17). It is worth noting that this
lookup process can be performed in an approximate manner
with logarithmic time complexity, as demonstrated in [39].

3) The critic network: To avoid selecting an invalid action
or an action that leads to a low Q-value frequently, the critic
network is introduced, which refines the actions chosen by
the actor. The deterministic policy in the critic network is
characterized as follows:

Q
(
st, at | θQ

)
= E

[
r(st, at) + ζQ

(
st+1, at+1 | θQ

)]
,
(18)

where θQ is the parameters of the critic network. The critic
calculates the Q value while considering the current state,
st, and the next state, st+1, as the input. The critic network
evaluates all actions in AK and chooses the action which gives
the maximum Q-value, as follows:

at = arg max
at∈AK

Q(st, at | θQ). (19)

Update: At each timestep, a minibatch is sampled uniformly
from the replay memory to update the actor and critic net-
works. Since DDPG is an off-policy algorithm, it allows the
algorithm to benefit from learning across a set of uncorrelated
transitions. Hence, we update the actor policy using DDPG
with a minibatch size NB, which is expressed as

∇θµJ ≈
1

NB

∑
t

∇aQ
(
s, a | µQ

)
|s=st,a=µ(st)

∇θµµ (s | θµ) | st, (20)

and the critic is updated by minimizing the loss:

L =
1

NB

∑
t

(
yt −Q

(
st, at | θQ

))2
, (21)

where

yt = rt + ζQ′
(
st+1, µ

′(st+1 | θµ
′
) | θQ

′
)

(22)

represents the target value at each iteration.
Implementing (21) directly with neural networks is tricky

in most RL problems. The updated Q(s, a | θµ) network is
utilized to calculate the target in (22); however, the update of
the Q-value suffers from divergence issues. Instead of directly
copying the weights, we present a similar target network used
in [40] as the solution. This solution is adjusted for actor-critic
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while using “soft” target updates. In doing so, we calculate
the target values by copying the actor and critic networks,
Q′(s, a | θµ′

) and µ′(s | θµ′
), respectively. We then update

the target network’s weights by slowly tracking the networks
as

θQ
′
← βθQ + (1− β)θQ

′
, (23)

θµ
′
← βθµ + (1− β)θµ

′
, (24)

where β � 1 is the soft target update rate. This indicates that
we constrain the target values to change them slowly while
improving learning stability.

In contrast to the general Q-learning, where the balance
between exploration and exploitation is controlled using a
ε-greedy method [9], the DDPG algorithm deals with the
exploration problem separately from the learning algorithm.
Hence, we define the exploration policy µ′ by sampling the
noise, nt, from a noise process and adding it to the actor
policy

µ′(st) = µ(st | θµt ) + nt, (25)

where nt is chosen to suit the environment. We consider
temporally correlated noise to explore well in the environment
using a similar process to that introduced in [41].

Although there is no general theoretical guarantee that
among the nearest neighbours of a proto-actor is the optimal
action, numerous studies have demonstrated the efficacy of
the KNN algorithm in similar problems [42], [43]. This has
been observed through the conducted experiments in the per-
formance evaluation section that demonstrate the effectiveness
of our approach.

B. Complexity Discussion

The Wolpertinger algorithm’s training process has a time
complexity proportional to the amount of training data and
time. We, therefore, only focus on the training process. The
time complexity of the running process is characterised by
the neural networks’ architecture as well as the state-action
space dimension. Please note that, one fundamental difference
between this and traditional stochastic non-convex methods
is the inherent computational speed to link the bias in the
search direction, which is defined by the method used in the
critic network. The convergence rate is determined by the
convergence rate of the critic network. Slow convergence in
critic networks is the bottleneck for actor-critic, whereas fast
convergence methods shift this problem to policy gradient
updates. It is demonstrated experimentally that fast critic
convergence results in faster actor-critic convergence, but the
stationary point it reaches is worse than the methods that
guarantee slower convergence [10].

Furthermore, the Wolpertinger architecture’s time complex-
ity varies linearly with the percentage of actions selected,
i.e., K, from the total actions set. In practice, however,
increasing the value of K above a certain point does not
result in improved performance [11]. The authors of [11]
demonstrate a significant improvement in the performance
with higher K values though it renders other performance
improvements. When only 5% or 10% of the total number of

Algorithm 1 Actor-Critic Algorithm

1: Randomly initialize critic network Q
(
s, a | θQ

)
and µ(s |

θµ) with weights θQ and θµ.
2: Initialize target network Q′ and µ′ with weights θQ

′ ←
θQ, θµ

′ ← θµ

3: Initialize SUMO environment and replay memory accord-
ing to system requirements.

4: for episode do
5: Receive the initial observation state st
6: for each timestep t do
7: Receive observation state st
8: Actor: Receive proto-action from actor network ât =

µ(st | θµ).
9: KNN: Retrieve K approximately closest actions

AK = gK(ât)
10: Critic: Select action at = arg maxat∈AK Q(st, at |

θQ) according to the current policy
11: Execute action at, and observe reward rt and observe

new state st+1

12: Store transition (st, at, rt, st+1) in replay memory.
13: Sample a random mini-batch of NB transitions

(st, at, rt, st+1) from replay memory
14: Set target yt = rt + ζQ′

(
st+1, µ

′(st+1 | θµ
′
) | θQ′

)
15: Update critic by minimizing the loss using (21)
16: Update the actor policy using the sampled policy

gradient with (20)
17: Update the target networks with β � 1 using (23)

and (24)
18: Update the state, action and reward
19: Update rate
20: end for
21: end for

actions are used, the method performs similarly to when the
entire action set is used. Using the remaining actions would
result in relatively minor performance gains while significantly
increasing computational time. Therefore, in our case, we use
5% to 20% of the available action set for the KNN algorithm.

VI. EXPERIMENTAL SETUP

In this section, we present the simulation setup of the
proposed actor-critic-based DRL framework for our vehic-
ular OCC system. In particular, we start by presenting the
microscopic traffic simulation of SUMO [44] environment.
We, then, provide the considered parameters for the proposed
actor-critic scheme and training workflow.

A. SUMO Framework

In order to implement our vehicular environment, we have
chosen the SUMO traffic simulator because it: (i) is an
open-source, microscopic, multi-model traffic and extensible
simulator; (ii) offers flexibility and scalability to create the
required scenario maps; and (iii) supports Traffic Control
Interface (TraCI), a Python-based application programming
interface to adapt the simulation online. There are already
various sets of driver models in SUMO, and it is relatively
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TABLE I: SUMO modelling parameters

Parameter Value
Initial velocity of vehicle 5 miles per hour
Window size of the simulation 180 m
Maximum number of vehicle per window 20
Number of lane 1
Step length 1 m
Lateral movement of vehicle 0.64 m per timestep

easy to include additional models. We transform the proposed
vehicular environment into a corresponding SUMO map,
where each vehicle is an agent. The vehicles randomly enter
in the SUMO environment and then move or leave the map
following the SUMO mobility model set by the system. The
interaction between the SUMO framework and the DRL agent
is managed by the middleware, TraCI. The agent can retrieve
various features of the vehicle from the SUMO network, such
as the inter-vehicular distance, speed of the vehicle, current
position of the agent, and so on.

We adjusted the SUMO environment according to the
requirements of our proposed multi-agent vehicular system
by changing some settings. For example, we have a window
size of the simulation of 180 m. In the SUMO model, we add
some aggressively moving vehicles to the environment, which
gives our system more diversity. The simulation parameters of
the SUMO framework are presented in Table I.

With the training being initiated, the vehicles are loaded
in the SUMO with the specified settings for our vehicular
environment. During the training, TraCI interacts with the
SUMO environment and extracts the required data by observ-
ing the environment. At the current state, the agent observes
the vehicular environment and allocates an action following
policy neural network. Thus, the agent updates its state while
moving to the next state in the SUMO environment. Then,
the reward is computed and communicated to the agent to
optimize in every simulation run. This process recommences
until all the simulation steps are finished or a convergence
threshold is achieved.

B. OCC System Design

To demonstrate the competence of our proposed OCC
system, we consider the communication of 1011 bits and
a packet size of 5 kbits. For our simulation, we consider
the 5G NR LDPC codes set from the IEEE standard [45].
The required stimulation parameters are shown in Table II.
We train the system model with the transmission of zero
codewords, i.e., all the bits of the codeword are zero, which
are sufficient for the training as the channel is symmetric [46].
On the transmitter side, the zero codewords are encoded by the
LDPC encoder and, after M-QAM modulation, are transmitted
through the LoS OCC channel. On the receiver side, the data
are first demodulated by the M-QAM demodulator and then
decoded by the LDPC decoder. The error is computed by
comparing the received codeword with the zero codeword.

Our system aims at meeting the uRLLC constraints in
vehicular OCC, so we set threshold values for delay and
reliability accordingly. The requirements for uRLLC depend
on the use case; e.g., ultra-reliability in terms of packet error
rate can range from 10−5 to 10−9 [47] and low-latency can

range from 1 ms to 10 ms [48]. For vehicular communication,
the required reliability is 10−5 and the latency is 3 ms - 10 ms
for a packet of 300 bytes [48]. Hence, for large packet sizes
(5 kbits in our case), a maximum of 10 ms latency will meet
the requirements of vehicular communication. Regarding the
reliability constraint, we have set the BER at a maximum of
10−7, which is measured by communicating a 5 kbits packet.

C. Actor-critic DRL Framework

1) Training Parameters Settings: In this subsection, we
introduce the actor-critic-based DRL network settings and
the considered training parameters. The individual actor and
critic network has three fully connected layers, containing
an input layer, an output layer, and a hidden layer. The
input layer has (d +M + |X |) nodes since the state space
combines the distance, modulation scheme, and code rate,
where Nd = 150, |M| = 5, and |X | = 20 with Nd = 150
being the number of nodes for distance. Whereas the output
layer has (4M+4κ+4v) nodes, as in our proposed system,
the action includes the change in modulation scheme, code
rate, and velocity where 4M = 5, 4κ = 20, and 4v = 60).
We consider 250 neurons at the hidden layer. The rectified
linear unit (ReLU) is employed as the activation function
[49] for both the actor and critic networks. To ensure that the
critic network learns faster than the actor network, we have
set the learning rate of the actor network as 0.0001 and the
learning rate of the critic network as 0.001. Whereas, we set
β = 0.001 to update the soft target value. It is common that we
achieve fast convergence when the learning rate is large, but it
can also lead to unsatisfactory convergence performance, e.g.,
local minima, saddle point, concurrently. Contrarily, a small
learning rate results in extensive computation requirements
and causes slow convergence. In our evaluations, we utilize
TensorFlow [50] to realize the DRL algorithm. We use root
mean square propagation (RMSProp) optimizer [51] as the
training algorithm to minimize the loss function and update
DQN network parameters.

In our implementation, we train the actor-critic based DRL
scheme for 10000 timesteps, which is sufficient to ensure
convergence. For the noise process in exploration, we use
temporally varying correlated noise. We utilize the Ornstein-
Uhlenbeck noise process models [41] with a mean value
equal to 0.15 and variance equal to 0.2 that produces values
around zero. The discount factor, ζ, is set to 0.98 for our
proposed scheme. We train the network with minibatch sizes
of 64 while having a replay buffer size of 1011 to store the
transitions in the memory. We also perform normalization
to bring the different sub-rewards corresponding to distance,
BER, latency, and transmission rate in (13) to a similar scale.
This normalization improves the performance and provides
training stability for the NN model. Specifically, we normalize
the reward function of distance (10) and rate of (5) to keep
the scale of (13) between 0 and 1. We specify the simulation
parameters in Table II.

2) Training Procedure: The training workflow of the pro-
posed actor-critic based DRL algorithm is summarized in
Algorithm 1. In every training step, an agent observes the
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TABLE II: Simulation Parameters

Parameter, Notation Value Parameter, Notation Value
Angle of irradiance w.r.t. the emitter, φ 70o Number of LEDs at each row, NLEDs 30
AoI w.r.t. the receiver axis, θ 60o Packet size, L 5 kbits
FoV of the camera lens, θl 90o Size of the LED, % 15.5 × 5.5 cm2

Image sensor physical area, A 10 cm2 Resolution of image, w 512 × 512 pixels
Optical filter’s transmission efficiency, Ts 1 Mini-batch size, NB 64
Lens gain, g 3 Replay memory size 1011

Optical transmitting power, P 1.2 Watts Number of hidden layer (Neurons) 1(250)
Electron charge, q 1.6 ×10−19 C Discount factor, ζ 0.98
Background light power per unit area, Pn 6000 Optimizer RMSProp
Diameter of a LED, l 6 mm Activation function ReLU
Focal length of camera lens, f 21 mm Learning rate (Actor network, Critic network) 0.0001, 0.001
Edge-length of a pixel, s 7.1 µm Soft target updates rate, β 0.001
Constellation set, M 4, 8, 16, 32, 64 Gradient momentum (used by RMSProp) 0.95
Camera-frame rate, Wfps 1000 fps Interval between two timesteps 1 second
Distance range 0-150 m Code rate range 5G NR standard [28]

state st (distance, modulation scheme, and code rate) on line
5. Then, the actor network finds a proto-actor following the
policy on line 8, which is then expanded to an action set AK
via KNN on line 9. The critic network evaluates the action
(change in modulation, code rate, and velocity) and finds the
action set that can provide the maximum state value on line
10. This action is then applied to the environment on line 11
and the resulting reward and subsequent state are stored along
with the applied action (st, at, rt, st+1) in the replay buffer
after each epoch on line 12. On line 13, a random transition
is sampled from the replay buffer, and line 14 performs Q-
learning update by applying (22), using the target network’s
weights for the target Q. On line 15, the critic parameter
is updated by minimizing the loss (21) whereas the actor is
then trained on line 16 by following the policy gradient using
(20). Subsequently, the target network is updated by slowly
varying the weights of (23) and (24) on line 17. This allows the
learning algorithm to leverage otherwise ignored information
of which action was actually executed for training the critic
while taking the policy gradient at the actual output.

VII. PERFORMANCE EVALUATION

In this section, we conduct numerous simulations to exam-
ine the performance of our proposed DRL-based throughput
maximization scheme in the vehicular OCC system. We begin
this section by outlining the various comparison schemes
under consideration. Then, we assess several performance
metrics, such as throughput, latency, and BER for all schemes
under comparison.

A. Comparison Schemes

We analyze the performance of our proposed actor-critic-
based DRL scheme, termed hereafter as the proposed scheme,
against different methods to get insights into the system
performance. We present a brief summary of all the schemes
under comparison below:
• Proposed scheme: By the proposed scheme, we refer to our

DRL-based vehicular OCC system, where each vehicle is
an agent considering other vehicles as the environment. In
this case, we employ the settings as we discuss in Section
VI. The discount factor ζ is set to 0.98. We demonstrate the
effect of the selected number of neighbours by examining
different K values for the employed KNN framework.
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Fig. 3: Convergence of loss function for different weight
settings of sub-reward function.

• Greedy: This is one of the variants of our scheme, where
the discount factor ζ is set to 0 in (21), while other system
parameters are kept the same, as noted in Table II. In this
scenario, the agent chooses the action which maximizes
only the immediate reward.

• Farsighted: This method is a variant of our scheme, where
we set the discount factor ζ is set to 1 in (21), while
other system parameters are kept the same, as noted in
Table II. This scheme focuses on future rewards and ignores
immediate rewards.

• RF-based Scheme [7]: This is a RF technology-based re-
source allocation scheme presented in [7]. For this scheme,
we adapt the hyper-parameters according to our proposed
scheme while keeping the environment unchanged. This
scheme considers centralized learning, which involves com-
munication between server and agent. This system incurs
extra delay due to having feedback loop.

Please note that for the proposed scheme, we consider
three different K values, whereas, for greedy and farsighted
variants of our scheme, we set K = 0.1. This is because
it provides a good compromise between performance and
convergence speed, as we will see in the sequel. Please
note that, throughout our simulation, we refer to timestep



11

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Timestep

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
A

v
e
ra

g
e
 r

e
w

a
rd

 p
e
r 

1
0
0
 t
im

e
s
te

p
s

Proposed scheme (  
d
 = 0.1,  

b
 = 0.1,   = 0.1, 

c
 = 0.7)

Greedy (  = 0)

Far-sighted (  = 1)

Proposed scheme (  
d
 = 0.5,  

b
 = 0.2,   = 0.2, 

c
 = 0.1)

Proposed scheme (  
d
 = 0.1,  

b
 = 0.5,   = 0.2, 

c
 = 0.2)

Fig. 4: Average reward per 100 training timesteps for the
proposed scheme and its variants.

as the decision interval of our scheme. We would also like
to emphasize that we have compared with [7], which is an
RF-based scheme in vehicular networks, which is regarded
as state-of-the-art. We note that RF systems are the current
technology being used to achieve low-latency communication
in vehicular OCC networks.

B. Simulation Results

We start by exploring the training performance of our
proposed actor-critic based DRL scheme by performing an
ablation study to address the trade-off among different weight
settings at the total rewards of (13), namely distance, ωd; BER,
ωb; latency, ωτ ; and rate, ωr, rewards. For ease of visual
representation, we only demonstrate five particular settings,
including (i) ωd = 0.1, ωb = 0.1, ωτ = 0.1, ωc = 0.7;
(ii) ωd = 0.1, ωb = 0.4, ωτ = 0.4, ωc = 0.1; (iii)
ωd = 0.1, ωb = 0.5, ωτ = 0.2, ωc = 0.2; (iv) ωd = 0.5,
ωb = 0.2, ωτ = 0.2, ωc = 0.1; and (v) ωd = 0.4, ωb = 0.1,
ωτ = 0.1, ωc = 0.4, as shown in Fig. 3. We observe
from the figure that setting (i) converges after 5000 decision
timesteps and presents better loss performance when we assign
higher weight related to throughput. Other settings have more
elevated losses compared to setting (i). Though setting (ii)
demonstrates better performance until 3000 timesteps, setting
(i) overcomes setting (ii) after 3000 timesteps as the DRL
agent takes some time to achieve balance between the action
and the rewards. Therefore, we adopt this weights setting (i)
throughout the performance evaluation.

To verify the improvement of rewards over decision inter-
val, we illustrate the average rewards per 100 timesteps for
the different variants of our proposed scheme, i.e., proposed
scheme, greedy (ζ = 0) and farsighted (ζ = 1) for 10000
timesteps in Fig. 4. For the proposed scheme, we examine
the achieved rewards for three different weight settings, i.e.,
(i), (iii) and (iv), as presented above, for the reward function.
From the figure, we see that our proposed scheme with setting
(i) demonstrates higher rewards over all the decision intervals,
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Fig. 5: Comparison of average rate by varying the BERmax
requirement for all schemes under comparison.

whereas the rewards of greedy and farsighted schemes fluc-
tuate. We also observe our proposed scheme with weights
setting (i) reaches an average reward of 1 at 10000 timesteps,
while the average reward for the other settings and variants of
our scheme never reaches 1. This is because of the impact of
weight settings on different sub-rewards. Since the weights
setting (i) demonstrates better average reward performance
than the other two weights settings, we adapt this setting for
the rest of our simulations.

After demonstrating the training implementation, we now
examine different communication performance metrics for
our actor-critic-based vehicular OCC system. Consequently,
we evaluate the schemes under comparison with respect to
throughput, latency and reliability. Please note that for the
RF-based scheme, we require communication between the
server and agent back and forth through feedback link, which
involves an extra delay that is usually 1 ms to 12 ms. For
our simulations, we consider 2 ms as the additional delay for
the feedback, which is a favourable setting for the RF scheme
though other settings can also be used as user necessities.

First, in Fig. 5, we investigate the effect of BER on the
average throughput (Mbps) for various BERmax values. From
the figure, we see that the average throughput increases as
we reduce the BERmax requirements from 10−9 to 10−5.
This happens because of using less strong LDPC codes. We
observe that the proposed scheme with K = 0.2 achieves
the highest average throughput for all BER values, whereas
the performance of the proposed scheme with K = 0.1 is
relatively close to the one achieved with K = 0.2 and the
performance of the proposed scheme with K = 0.05 is close
to Farsighted and significantly lower than our scheme with
K = 0.2. This observation shows that increasing the number
of neighbours can help improve the decision policy because
the K value affects the number of actions that can be learned
in a single iteration. We also notice that initially, the RF-
based method achieves the lowest rate of all the schemes but
performs better than the greedy method beyond BERmax =
10−8. Hence, it is seen that when the BER requirements are
tighter, other schemes fail to meet the constraint (6), and
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Fig. 6: Comparison of achievable throughput by our scheme
per timestep considering different BERmax requirement.

therefore performance degrades. As a result, these schemes
achieve lower average throughput compared to the proposed
scheme at all times. Further, we would like to emphasise that
the achieved average throughput by our proposed scheme for
different BER requirements exceeds the minimum threshold
required for seamless communication between vehicles which
according to [52] is 4.1 Mbps. The work in [52] mentions
that the required reliability is 10−4 which our system can
always meet. This demonstrates that our approach maximizes
the average throughput and meets the uRLLC requirements.

In an effort to present the robustness of selecting the code
rate, we evaluate the throughput (Mbps) for three different
BERmax requirements in Fig. 6. For this simulation, we
illustrate the throughput across 120 runs, where a sample is
taken from the whole run at 6000 - 6120 timesteps. From the
figure, we observe that the throughput varies near the average
values for all BERmax. We also notice that we achieve higher
throughput, and there is less fluctuation between decision
intervals when the BER requirement is lower, e.g., 5.36 Mbps
for 10−6. At lower BERmax, the probability of violating (11)
is less, and the throughput improves as the variation between
one decision interval to another is shorter. At higher BERmax,
the violation probability of (11) increases, and the throughput
reduces for the bigger difference between one decision interval
to another.

To visualize how the proposed scheme respects the uRLLC
requirements while maximizing the throughput, we analyze
the BER and latency performance for the various schemes
under comparison. Please note that in this paper, we consider
meeting BER of 10−7 and latency of 10 ms as the ultra-
reliability and low-latency requirements, respectively. We exe-
cute the simulation for 10000 decision timesteps to investigate
the BER and latency data. Again, we test the proposed
framework with three different K values, i.e., K = 0.2,
K = 0.1, and K = 0.05 and compare the BER and latency
performance with that achieved by the other non-optimal
schemes, greedy, farsighted, and RF-based scheme. We then
generate boxplots over all the available data and compare
the results with all the schemes under comparison. First, we
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Fig. 7: Box plot to justify how the reliability requirement is
satisfied considering our maximum allowable BER 10−7.

illustrate the boxplot of the BER to demonstrate whether all
the schemes under comparison meet the reliability requirement
in Fig. 7. We have also plotted a reference line to present our
BER constraint of 10−7 (dashed black line). The blue boxes
in the boxplot represent the interquartile range, signifying
the spread of the central 50% of the total values. The red
lines inside the boxes denote the median, providing a measure
of central tendency. Individual data points lying beyond the
whiskers, which extend to the maximum and minimum values
within the defined range, are considered potential outliers and
are presented as dots.

Figure 7 shows that the proposed scheme satisfies the
reliability requirement for all K values, whereas the other
schemes fail to respect the constraint most of the time. We
note that, the proposed scheme with K = 0.2 achieves the
lowest BER than the other two K values of the proposed
scheme and the proposed scheme with K = 0.05 has the
highest BER performance. This is in accordance with what we
have seen earlier, i.e., increasing the value of K can help an
agent explore more action strategies and hence can achieve the
lowest error rate. However, the performance with the higher
K values is achieved at the cost of higher computation time
[42].

Finally, we present the boxplot of observed latency for all
comparison schemes in Fig. 8. Similar to the BER perfor-
mance, we evaluate boxplots to examine how the low latency
requirement (10 ms) is satisfied by the different comparison
schemes. Like in the previous comparison, we also show a
reference line for the latency constraint (dashed black line)
in Fig. 8. The figure shows that the proposed scheme always
respects the low latency requirements of 10 ms, while the other
three schemes fail to meet the constraint most of the time in
our simulation. In particular, for the greedy, farsighted and
RF-based schemes, the maximum observed latency is 14.5 ms,
11.8 ms, and 17.5 ms, respectively. For the proposed scheme
with different K values, the proposed scheme with the highest
value, i.e., K = 0.2, has the lowest latency (1.5 ms to 8.7 ms),
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Fig. 8: Box plot to verify how the latency requirement is
satisfied considering our latency requirement 10 ms.

whereas K = 0.05 offers latency in the range of 3.2 ms to 8.9
ms. The gap between the performance of different K values
reflects the randomness that might be introduced by the proto
action when considering different numbers of neighbours.
From this comparison, we can summarize that the proposed
vehicular OCC system can maximize the throughput while
guaranteeing uRLLC, while the RF-based schemes cannot
meet the delay requirements.

VIII. CONCLUSION

In this paper, we introduce an actor-critic DRL framework
in vehicular OCC by selecting the optimal code rates and
modulation schemes as well as changing the relative speed of
the vehicles while respecting uRLLC requirements. In doing
so, we first model the vehicular OCC system. To support vari-
able rate and ultra-reliability, we use 5G NR LDPC code rate
optimization for the M-QAM scheme. We solve the continu-
ous optimization problem using an actor-critic algorithm with
Wolpertinger architecture. We verify our proposed scheme
through numerous simulations and compare it with several
variants of our scheme and an RF communication-based
scheme. The average throughput of our proposed scheme
shows a considerably higher value compared to other schemes
under comparison. We neglect the effect of weather conditions
in this paper. Our proposed scheme can guarantee uRLLC
while maximizing the throughput, whereas other methods fail
most of the time. This happens because interference-free OCC
DRL-based systems achieve higher rates even at low BER
requirements, and the code rate optimization scheme offers
ultra-reliability. We believe that our study is an important step
toward guaranteeing uRLLC, and we hope that it will motivate
researchers to conduct real-world experiments.
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