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A B S T R A C T

We study a truthful two-facility location problem in which a set of agents have private positions on the line of real numbers and known approval 
preferences over two different facilities. Given the locations of the two facilities, the cost of an agent is the total distance from the facilities she 
approves. The goal is to decide where to place the facilities from a given finite set of candidate locations so as to (a) approximately optimize desired 
social objectives, and (b) incentivize the agents to truthfully report their private positions. We focus on the class of deterministic strategyproof 
mechanisms and show bounds on their approximation ratio in terms of the social cost (i.e., the total cost of the agents) and the max cost for several 
classes of instances depending on the preferences of the agents over the facilities.

1. Introduction

In the well-studied truthful single-facility location problem, there is a set of agents with private positions on the line of real numbers, 
and a facility (such as a park or a school) that is to be located somewhere on the line. Given such a location, its distance from the 
position of an agent is interpreted as the individual cost that the agent would suffer by having to travel to the facility in order to be 
serviced by it. The goal is to determine the facility location so that the agents are given the right incentives to truthfully report their 
positions (that is, not being able to affect the outcome to decrease their cost), and, at the same time, a social function of the individual 
agent costs (such as the total or the max cost) is (approximately) optimized. Since the work of Procaccia and Tennenholtz [23], who 
were the first to consider facility location problems through the prism of approximate mechanism design without money, research on 
this topic has flourished and a large number of more complex variants of the problem have been introduced and analyzed; see the 
survey of Chan et al. [4] for an overview.

The original work of Procaccia and Tennenholtz [23] focused on a continuous model, where the facility is allowed to be placed at 
any point of the line, and showed tight bounds on the approximation ratio of deterministic and randomized strategyproof mechanisms 
in terms of the social cost (total individual cost of the agents) and the max cost (maximum individual cost among all agents). The 
discrete model, where the facility can be placed only at a given set of candidate points of the line, has also been studied, most notably 
by Feldman et al. [10]. They observed that this setting is equivalent to voting on a line, and the strategyproofness constraint leads to 
deterministic mechanisms that make decisions using only the ordinal preferences of agents over the candidate points; an assumption 
typically made in the distortion literature [3]. Many other truthful single-facility location models have been studied under different 
assumptions, such as that the location space is more general than a line [1,16,22], that the facility location must be decided in a 
distributed way [11,12], or that the facility is obnoxious and the agents aim to be as far from it as possible [6].

Aiming to locate multiple facilities is a natural generalization. Most of the work in this direction has focused on the fundamental 
case of two facilities, under several different assumptions about the types of the facilities, the preferences of the agents for them, 
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Table 1

An overview of the bounds that we show in this paper on the approximation 
ratio of deterministic strategyproof mechanisms for the different combina-

tions of social objectives functions (social cost and max cost) and agent 
preferences (doubleton, singleton, or general).

Social cost Max cost

Doubleton [1 +
√
2,3] [2,3]

Singleton 3 3
General [3,7] 3

the agent-related information that is public or private, and whether the setting is continuous or discrete, aiming to capture different 
applications. When the facilities are of the same type and serve the same purpose (for example, they might correspond to two parks), 
with only a few exceptions, the typical assumption is that each agent cares about one of them, such as the facility closest to her position 
(i.e., the agent would like to have a shortest path to a facility) [13,21,23], or the facility farthest from her position (i.e., the agent 
would like to be in a short radius from both facilities) [5]. In most works the facilities are considered desirable, but settings in which 
both of them are obnoxious have also been studied [14]. More generally, the facilities might be of different types and serve a different 
purpose (for example, they might correspond to a park and a school), in which case the agents might have different, heterogeneous 
preferences over them. For example, some agents might be interested in both facilities, some agents might be interested in only one 
of them, or some agents might consider one facility to be useful and the other to be obnoxious [2,5,7,9,15,18–20,24,29,30].

In this paper, we consider the case of two different facilities that can be placed only at candidate locations. For each agent, we 
assume that her position on the line is private, she has approval preferences over the facilities which are publicly known, and her 
individual cost is given by the total distance from the facilities she approves (rather than the distance from the closest or farthest 
such facility). We provide more details below.

1.1. Our contribution

We study a truthful two-facility location problem, in which there is a set of agents with known approval preferences (0 or 1) over 
two different facilities {𝐹1, 𝐹2}, so that each agent approves at least one facility; we can safely ignore agents that approve neither 
facility. The agents have private positions on the line of real numbers, and the facilities can only be placed at different locations chosen 
from a given set of candidate locations. Once the facilities have both been placed, the individual cost of each agent is the total distance 
from the facilities she approves.

Our goal is to design mechanisms that take as input the positions reported by the agents, and, using also the available information 
about the preferences of the agents, decide where to place the two facilities, so that (a) a social objective function is (approximately) 
optimized, and (b) the agents are incentivized to truthfully report their positions. As in previous work, we consider the well-known 
social cost (the total individual cost of the agents) and the max cost (the maximum individual cost over all agents) as our social objective 
functions. We treat separately the class of instances in which all agents approve both facilities (to which we refer as doubleton), the 
class of instances in which all agents approve one facility (to which we refer as singleton), and the general class of all possible instances. 
For all possible combinations of objectives and types of preferences, we design deterministic strategyproof mechanisms with small, 
constant approximation ratios. An overview of our results is given in Table 1.

In Section 3 we consider the social cost and show the following results:

• For doubleton instances (in which all agents approve both facilities), we show that the best possible approximation ratio of 
strategyproof mechanisms is between 1+

√
2 and 3. Our upper bound follows by a mechanism, which places the facilities at the 

two candidate locations closest to the median agent; this is the natural extension of the Median mechanism which achieves the 
best possible approximation ratio of 3 for the single-facility location problem [10]. These results can be found in Section 3.1.

• For singleton instances (in which each agent approves one facility), we first observe that no strategyproof mechanism can achieve 
an approximation ratio better than 3; this follows from the fact that the problem is now a generalization of the single-facility 
location problem. The main technical difficulty, which does not allow us to simply treat a singleton instance as two separate 
single-facility location problems (one for each facility), is that the facilities cannot be placed at the same location. We circumvent 
this difficulty and show a tight upper bound of 3 by considering a mechanism that places each facility at the available candidate 
location closest to the median agent among those that approve it. To decide the order in which the facilities are placed, we 
first perform a voting step that allows the agents that approve each facility to decide if they prefer the closest or second-closest 
candidate location to the respective median agent; this is necessary since just blindly choosing the order of placing the facilities 
leads to a mechanism with a rather large approximation ratio. These results are presented in Section 3.2.

• For general instances, we show an upper bound of 7 by considering a mechanism which switches between two cases depending 
on the cardinalities of the sets of agents with different preferences. In particular, when there is a large number of agents that 
approve both facilities, we run the simple median mechanism we used for doubleton instances by ignoring the other agents. 
Otherwise, we run a mechanism that places the facility that is approved by most agents at the location closest to the median 
of the agents that approve only it, while the other facility is placed at the available location that is closest to the median of the 
agents that approve it. These results are presented in Section 3.3. Our bound of 7 for general instances significantly improves 
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upon the bound of 22 shown by Lotfi and Voudouris [20] via a reduction between the model in which the individual cost of an 
agent is the distance to the farthest facility among the ones she approves and our model (in which the individual cost of an agent 
is the distance to all the facilities she approves).

In Section 4, we turn our attention to the max cost objective and show the following results:

• For doubleton instances, we show that the best possible approximation ratio is between 2 and 3. Our upper bound follows by a 
simple mechanism that places the facilities at the available candidate locations closest to the leftmost agent; see Section 4.1.

• For singleton instances, we show a tight bound of 3 by considering a mechanism that places the two facilities at the candidate 
locations closest to some agents among those that approve. The main difficulty here is to decide which agents to pick. In particular, 
after placing the first facility at the candidate location closest to one of the agents that approve it (such as the leftmost), we then 
need to dynamically decide whether the second facility can be placed closer to the leftmost or rightmost among the agents that 
approve it, or neither of them. This again is done by a voting-like procedure that is used to decide the order of the agents that 
approve the second facility relative to the two candidate locations that are closest to where the first facility has been placed.

• For general instances, we show a tight bound of 3 by splitting the class of all instances into those that consist of at least one agent 
that approves both facilities (in which case we employ the mechanism for doubleton instances) and the remaining instances 
which are singleton (and we employ the corresponding mechanism).

Finally, in Section 5, we consider a slightly simpler model in which the two facilities are allowed to be placed at the same candidate 
location. For this model, we manage to show improved, tight bounds on the approximation ratio of deterministic mechanisms for 
doubleton and general instances for both the social and the max cost (the problem is not interesting for singleton instances). This is 
possible because we can now avoid possible misreports by agents with doubleton preferences, which in turn allows us to consider a 
class of mechanisms that is not strategyproof when the facilities are constrained to be placed at different locations.

1.2. Related work

For an overview of the many different truthful facility location problems that have been considered in the literature, we refer 
the reader to the survey of Chan et al. [4]. Here, we will briefly discuss and compare the papers that are most related to our work. 
Most of the papers discussed below differ from ours in at least one modeling dimension in terms of the definition of the individual 
cost of the agents, the possible constraints on the locations of the facilities, and what type of information related to the positions and 
preferences of the agents is assumed to be private or public.

The truthful two-facility location problem was first considered in the original work of Procaccia and Tennenholtz [23], in which 
the goal is to locate two identical facilities (even at the same location) and the individual cost of an agent is the distance between 
her position and the closest facility. For deterministic mechanisms, Procaccia and Tennenholtz showed a constant lower bound and 
a linear upper bound on the approximation ratio in terms of the social cost, and a tight bound of 3 in terms of the max cost. They 
also showed how randomization can lead to further improvements. Lu et al. [21] improved the lower bound for the social cost and 
deterministic mechanisms to an asymptotically linear one, before Fotakis and Tzamos [13] finally showed that the exact bound for 
this case is 𝑛− 2.

Sui and Boutilier [25] were among the first to consider truthful facility location problems with candidate locations (referred to as 
constrained facility location), with a focus on achieving approximate strategyproofness by bounding the incentives of the agents to 
manipulate; for multiple facilities, they considered only doubleton instances where each agent’s individual cost is the distance to the 
closest facility. As already mentioned, Feldman et al. [10] considered a candidate selection problem with a fixed set of candidates, a 
model which translates into a single-facility location problem where the facility can only be placed at a location from a given set of 
discrete candidate locations. They focused on the social cost objective and, among other results, proved that the Median mechanism 
that places the facility at the location closest to the position reported by the median agent, achieves an upper bound of 3; they also 
showed that this is the best possible bound among deterministic mechanisms.

Serafino and Ventre [24] considered a slightly different discrete facility location problem, where agents occupy nodes on a line 
graph and have approval preferences over two different facilities that can only be placed at different nodes of the line. In contrast to 
our work here, where we assume that the positions of the agents are private and their preferences public information, Serafino and 
Ventre assumed that the positions are known and the preferences unknown. They showed several bounds on the approximation ratio 
for deterministic and randomized strategyproof mechanisms for the social cost and the max cost. Some of their results for deterministic 
mechanisms were improved by Kanellopoulos et al. [18]. The alternative continuous model (with the same assumptions about the 
positions and preferences of the agents as Serafino and Ventre [24]) where the agents have positions on the line of real numbers and 
the two facilities can be located at any point of the line was considered by Chen et al. [5] and in the follow-up work of Li et al. [19]. 
Chen et al. showed bounds on the approximation ratio of strategyproof mechanisms for two different individual cost definitions 
depending on whether the cost of an agent is determined by closest or the farthest approved facility; Li et al. [19] showed improved 
bounds for the former individual cost definition.

Tang et al. [26] considered a setting in which two identical facilities can be placed at locations chosen from a set of candidate 
ones, allowing the facilities to be placed even at the same location. The positions of the agents are assumed to be private information 
and an agent’s individual cost is defined as her distance from the closest facility. They proved an upper bound of 2𝑛 − 3 for the 
social cost objective and a tight bound of 3 for the max cost. They also considered the case of a single facility and the max cost 
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objective, for which they showed a bound of 3 (extending the work of Feldman et al. [10] who only focused on the social cost). 
Walsh [27] considered a similar setting, where one or more facilities can only be placed at different subintervals of the line, and 
showed bounds on the approximation ratio of strategyproof mechanisms for many social objective functions, beyond the classic 
ones. Zhao et al. [29] studied a slightly different setting, in which the agents have known approval preferences over two different 
facilities and their individual costs are defined as their distance from the farthest facility among the ones they approve. For doubleton 
instances, they showed a tight bound of 3 for both the social cost and the max cost objectives, while for general instances they showed 
an upper bound of 2𝑛+1 for the social cost and an upper bound of 9 for the max cost; their results for general instances were recently 
improved by Lotfi and Voudouris [20] to 11 and 5 for the social cost and the max cost, respectively. As already mentioned, Lotfi 
and Voudouris [20] also showed a bound of 22 via a reduction between their individual max cost model and the individual sum cost 
model that we focus here; we improve this bound to 7.

Xu et al. [28] considered a setting where two facilities must be located so that there is a minimum distance between them (not 
at specific given candidate locations). They showed results for two types of individual costs. The first one is, as in our case, the total 
distance (assuming that the facilities play a different role, and thus the agents are interested in both of them) and showed that, for any 
minimum distance requirement, the optimal solution for the social cost or the max cost can be attained by a strategyproof mechanism. 
The second one is the minimum distance (assuming that the facilities are of the same type, and thus the agents are interested only 
in their closest one), and showed that the approximation ratio of strategyproof mechanisms is unbounded. They also considered the 
case where the facility is obnoxious and showed a bound that depends on the minimum distance parameter. Duan et al. [8] later 
generalized the minimum distance setting by allowing for private fractional preferences over the two facilities.

2. Preliminaries

We consider the two-facility location problem with candidate locations. An instance 𝐼 of this problem consists of a set 𝑁 of 𝑛 ≥ 2
agents and two facilities {𝐹1, 𝐹2}. Each agent 𝑖 ∈𝑁 has a private position 𝑥𝑖 ∈ ℝ on the line of real numbers, and a known approval 
preference 𝑝𝑖𝑗 ∈ {0,1} for each 𝑗 ∈ [2], indicating whether she approves facility 𝐹𝑗 (𝑝𝑖𝑗 = 1) or not (𝑝𝑖𝑗 = 0), such that 𝑝𝑖1 + 𝑝𝑖2 ≥ 1. 
There is also a set of 𝑚 ≥ 2 candidate locations 𝐶 where the facilities can be located. To be concise, we denote an instance using the 
tuple 𝐼 = (𝐱,𝐩,𝐶), where 𝐱 = (𝑥𝑖)𝑖∈𝑁 is the position profile of all agent positions, and 𝐩 = (𝑝𝑖𝑗 )𝑖∈𝑁,𝑗∈[2] is the preference profile of all 
agent approval preferences.

A feasible solution (or, simply, solution) is a pair 𝐜 = (𝑐1, 𝑐2) ∈ 𝐶2 of candidate locations with 𝑐1 ≠ 𝑐2, where the two facilities can 
be placed; that is, for each 𝑗 ∈ [2], 𝐹𝑗 is placed at 𝑐𝑗 .1 A mechanism 𝑀 takes as input an instance 𝐼 of the problem and outputs a 
feasible solution 𝑀(𝐼). Our goal is to design mechanisms so that (a) some social objective function is (approximately) optimized, and 
(b) the agents truthfully report their private positions.

The individual cost of an agent 𝑖 ∈𝑁 for a solution 𝐜 is her total distance from the locations of the facilities she approves:

cost𝑖(𝐜|𝐼) = ∑
𝑗∈[2]

𝑝𝑖𝑗 ⋅ 𝑑(𝑖, 𝑐𝑗 ),

where 𝑑(𝑥, 𝑦) denotes the distance on the line between any 𝑥, 𝑦 ∈𝑁 ∪𝐶 . Since the line is a special metric space, the distances satisfy 
the triangle inequality, which states that 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) for any three points 𝑥, 𝑦 and 𝑧 on the line, with the equality being 
true when 𝑧 ∈ [𝑥, 𝑦]. We consider the following two natural social objective functions that have been considered extensively within 
the truthful facility location literature:

• The social cost of a solution 𝐜 is the total individual cost of the agents:

SC(𝐜|𝐼) = ∑
𝑖∈𝑁

cost𝑖(𝐜|𝐼).
• The max cost of a solution 𝐜 is the maximum individual cost over all agents:

MC(𝐜|𝐼) = max
𝑖∈𝑁

cost𝑖(𝐜|𝐼).
The approximation ratio of a mechanism 𝑀 in terms of a social objective function 𝑓 ∈ {SC,MC} is the worst-case ratio (over all 
possible instances) of the 𝑓 -value of the solution computed by the mechanism over the minimum possible 𝑓 -value over all possible 
solutions:

sup
𝐼

𝑓 (𝑀(𝐼)|𝐼)
min𝐜∈𝐶2 𝑓 (𝑐|𝐼) .

A mechanism is said to be strategyproof if the solution 𝑀(𝐼) it returns when given as input any instance 𝐼 = (𝐱,𝐩,𝐶) is such that 
there is no agent 𝑖 with incentive to misreport a position 𝑥′

𝑖
≠ 𝑥𝑖 to decrease her individual cost, that is,

1 We remark that 𝐶 could in general be a multiset, in which case a feasible solution would consist of different elements of 𝐶 that might have, however, the same 
value. Our results hold even for this more general case; for clarity, we first focus on the case where each element of 𝐶 is unique, and handle the case with multiplicities 
in Section 5.
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cost𝑖(𝑀(𝐼)|𝐼) ≤ cost𝑖(𝑀((𝑥′
𝑖
,𝐱−𝑖),𝐩,𝐶)|𝐼),

where (𝑥′
𝑖
,𝐱−𝑖) is the position profile obtained by 𝐱 when only agent 𝑖 reports a different position 𝑥′

𝑖
.

Finally, let us introduce some further notation and terminology that will be useful. For each 𝑗 ∈ [2], we denote by 𝑁𝑗 the set of 
agents that approve facility 𝐹𝑗 , i.e., 𝑖 ∈𝑁𝑗 if 𝑝𝑖𝑗 = 1. Any agent that approves both facilities belongs to the intersection 𝑁1 ∩𝑁2 and has 
a doubleton preference. Any agent that approves one facility belongs to either 𝑁1 ⧵𝑁2 or 𝑁2 ⧵𝑁1 and has a singleton preference. Besides 
general instances (with agents that have any type of approval preferences), we will also pay particular attention to the following two 
classes of instances:

• Doubleton: All agents have a doubleton preference, that is, 𝑁1 ∩𝑁2 =𝑁 ;

• Singleton: All agents have a singleton preference, that is, 𝑁1 ∩𝑁2 = ∅.

We will also denote by 𝑚𝑗 , 𝓁𝑗 , and 𝑟𝑗 the median,2 leftmost, and rightmost, respectively, agent in 𝑁𝑗 . In addition, for any agent 𝑖 we 
denote by 𝑡(𝑖) and 𝑠(𝑖) the closest and the second closest, respectively, candidate location to 𝑖.

3. Social cost

In this section we will focus on the social cost. We will show that the best possible approximation ratio of strategyproof mechanisms 
is between 1 +

√
2 and 3 for doubleton instances, exactly 3 for singleton instances, and between 3 and 7 for general instances.

3.1. Doubleton instances

We start with the case of doubleton instances in which all agents approve both facilities. Recall that for the single-facility location 
problem, Feldman et al. [10] showed that the best possible approximation ratio of 3 is achieved by the Median mechanism, which 
places the facility at the candidate location closest to the position reported by the median agent 𝑚. We can generalize this mechanism 
by placing the two facilities at the two candidate locations that are closest to the position reported by 𝑚; that is, 𝐹1 is placed at 
𝑤1 = 𝑡(𝑚) and 𝐹2 is placed at 𝑤2 = 𝑠(𝑚); see Mechanism 1. It is not hard to show that this is a strategyproof mechanism; the median 
agent minimizes her cost and any other agent would have to become the median agent to manipulate the outcome which could only 
lead to placing the facilities farther away. We next show that the mechanism achieves an approximation ratio of at most 3, but cannot 
do better; we remark that this result has also been independently shown by Gai et al. [15] when all agents are of type-II in their 
model.

Mechanism 1: Median.

Input: Reported positions of agents with doubleton preferences;

Output: Facility locations 𝐰 = (𝑤1,𝑤2);
𝑚← median agent in 𝑁1 ∩𝑁2 ;

𝑤1 ← 𝑡(𝑚);
𝑤2 ← 𝑠(𝑚);

Theorem 3.1. For doubleton instances, the approximation ratio of the Median mechanism is at most 3, and this is tight.

Proof. Let 𝐨 = (𝑜1, 𝑜2) be an optimal solution. Since the position of the median agent minimizes the total distance of all agents, we 
have that∑

𝑖∈𝑁
𝑑(𝑖,𝑚) ≤

∑
𝑖∈𝑁

𝑑(𝑖, 𝑥)

for any point 𝑥 of the line (including 𝑜1 and 𝑜2), and thus

2
∑
𝑖∈𝑁

𝑑(𝑖,𝑚) ≤
∑
𝑖∈𝑁

𝑑(𝑖, 𝑜1) +
∑
𝑖∈𝑁

𝑑(𝑖, 𝑜2) = SC(𝐨).

Also, since 𝑡(𝑚) and 𝑠(𝑚) are the two closest candidate locations to 𝑚, we have that 𝑑(𝑚, 𝑡(𝑚)) ≤ 𝑑(𝑚,𝑥) for any candidate location 
𝑥, and there exists 𝑜 ∈ {𝑜1, 𝑜2} such that 𝑑(𝑚,𝑠(𝑚)) ≤ 𝑑(𝑚,𝑜); let �̃� ∈ {𝑜1, 𝑜2} ⧵ {𝑜}. Therefore, using these facts and the triangle 
inequality, we obtain

SC(𝐰) =
∑
𝑖∈𝑁

(
𝑑(𝑖, 𝑡(𝑚)) + 𝑑(𝑖, 𝑠(𝑚))

)

2 Without loss of generality, we break potential ties in favor of the leftmost median agent.
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≤ 2
∑
𝑖∈𝑁

𝑑(𝑖,𝑚) +
∑
𝑖∈𝑁

𝑑(𝑚, 𝑡(𝑚)) +
∑
𝑖∈𝑁

𝑑(𝑚,𝑠(𝑚))

≤ SC(𝐨) +
∑
𝑖∈𝑁

𝑑(𝑚,𝑜) +
∑
𝑖∈𝑁

𝑑(𝑚,𝑜)

≤ SC(𝐨) + 2
∑
𝑖∈𝑁

𝑑(𝑖,𝑚) +
∑
𝑖∈𝑁

𝑑(𝑖, 𝑜) +
∑
𝑖∈𝑁

𝑑(𝑖, 𝑜)

≤ 3 ⋅ SC(𝐨).

The analysis of the mechanism is tight due to the following instance: There are four candidate locations at 0, 𝜀, 1 − 𝜀, and 1, for 
some infinitesimal 𝜀 > 0. There are also two agents positioned at 1∕2 − 𝜀 and 1, respectively. Let the first agent be the median one 
(in case the second agent is the median, there is a symmetric instance). Then, the two facilities are placed at 0 and 𝜀 for a social cost 
of approximately 3, whereas the optimal solution is to place the facilities at 1 − 𝜀 and 1 for a social cost of approximately 1, leading 
to a lower bound of nearly 3. □

We next show a lower bound of 1 +
√
2 on the approximation ratio of any strategyproof mechanism. This improves the lower 

bound of 2 shown by Gai et al. [15] for type-II agents in their model.

Theorem 3.2. For doubleton instances, the approximation ratio of any strategyproof mechanism is at least 1+
√
2 − 𝛿, for any 𝛿 > 0.

Proof. Let 𝜀 > 0 be an infinitesimal. We will consider instances with four candidate locations, two in the 𝜀-neighborhood of 0 (for 
example, −𝜀 and 𝜀) and two in the 𝜀-neighborhood of 2 (for example, 2−𝜀 and 2+𝜀). To simplify the calculations in the remainder of 
the proof, we will assume that there can be candidate locations at the same point of the line, so that we have two candidate locations 
at 0 and two at 2. Similarly, we will set 𝜀 to be 0 in the calculation of the social cost.

First, consider the following generic instance 𝐼 with the aforementioned candidate locations: There is at least one agent at 0, at 
least one agent at 2, while each remaining agent is arbitrarily located at a location from {0,1 − 𝜀,1 + 𝜀,2}. We make the following 
observation: Any solution returned by a strategyproof mechanism when given as input 𝐼 must also be returned when given as input 
any of the following two instances:

• 𝐽1: Same as 𝐼 with the difference that an agent 𝑗1 has been moved from 0 to 1 − 𝜀.
• 𝐽2: Same as 𝐼 with the difference that an agent 𝑗2 has been moved from 2 to 1 + 𝜀.

Suppose towards a contradiction that this is not true for 𝐽1; similar arguments can be used for 𝐽2. We consider the following cases:

• Both facilities are placed at 2 in 𝐼 . If this is not done in 𝐽1, then 𝑗1 can misreport her position as 1 − 𝜀 in 𝐼 so that the instance 
becomes 𝐽1 and at least one facility moves to her true position 0.

• Both facilities are placed at 0 in 𝐼 . If this is not done in 𝐽1, then 𝑗1 can misreport her position as 0 in 𝐽1 so that the instance 
becomes 𝐼 and both facilities move to 0 which is closer to her true position 1 − 𝜀, a contradiction.

• One facility is placed at 0 and the other is placed at 2 in 𝐼 . Observe that it cannot be the case that both facilities are placed at 0
in 𝐽1 since that would mean that 𝑗1 can misreport her position in 𝐼 as 1 − 𝜀 so that the instance becomes 𝐽1 and both facilities 
move to her true position 0. So, the only possibility of having a different solution in 𝐼 and 𝐽1 is that both facilities are placed at 
2 in 𝐽1. But then, 𝑗1 can misreport her true position as 0 in 𝐽1 so that the instance becomes 𝐼 and one of the facilities moves to 
0 which is closer to her true position.

Hence, the same solution must be computed by the mechanism when given 𝐼 or 𝐽1 as input.

Now, consider an arbitrary strategyproof mechanism and let 𝛼 =
√
2 − 1; note that 𝛼 is such that 1+𝛼1−𝛼 = 1

𝛼
= 1 +

√
2. Let 𝐼1 be 

the following instance with the aforementioned candidate locations: 𝛼𝑛 agents are at 0 and (1 − 𝛼)𝑛 agents are at 2. See Fig. 1a. We 
consider the following cases depending on the solution returned by the mechanism when given 𝐼1 as input:

Case 1: The mechanism places both facilities at 0. We consider the sequence of instances obtained by moving one by one the 𝛼𝑛
agents that are positioned at 0 in 𝐼1 to 1− 𝜀; see Fig. 1b. By the observation above, the mechanism must return the same solution for 
any two consecutive instances of this sequence (essentially, the first one is of type 𝐼 and the second one is of type 𝐽1), which means 
that the mechanism must eventually return the same solution for all of them. Therefore, the mechanism must place both facilities at 
0 in the last instance of this sequence, where 𝛼𝑛 agents are at 1− 𝜀 and the remaining (1−𝛼)𝑛 agents are at 2. This solution has social 
cost 2𝛼𝑛+4(1−𝛼)𝑛= 2(2−𝛼)𝑛. However, the solution that places both facilities at 2 has social cost 2𝛼𝑛, leading to an approximation 
ratio of 2

𝛼
− 1 > 1 +

√
2.

Case 2: The mechanism places both facilities at 2. Similarly to Case 1 above, we now consider the sequence of instances obtained 
by moving one by one the (1 − 𝛼)𝑛 agents that are positioned at 2 in 𝐼1 to 1 + 𝜀; see Fig. 1c. Again, by the observation above, 
the mechanism must return the same solution for any two consecutive instances of this sequence (the first one is of type 𝐼 and the 
second one is of type 𝐽2), which means that the mechanism must eventually return the same solution for all of them. Therefore, the 
mechanism must place both facilities at 2 in the last instance of this sequence, where 𝛼𝑛 agents are at 0 and the remaining (1 − 𝛼)𝑛
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𝐴 𝐵

0 2

(a) The initial instance 𝐼1.

𝐴 𝐵

0 21 − 𝜀

(b) The instance obtained after moving the agents in 𝐴 from 0 to 1 − 𝜀 in Case 1 and Case 3.

𝐴 𝐵

0 21 + 𝜀

(c) The instance obtained after moving the agents in 𝐵 from 2 to 1 + 𝜀 in Case 2.

Fig. 1. The instances used in the proof of the lower bound of 1 +
√
2 in terms of the social cost for doubleton instances (Theorem 3.2). Set 𝐴 consists of 𝛼𝑛 agents 

and set 𝐵 consists of (1 − 𝛼)𝑛 agents; all of them approve both facilities. Rectangles represent candidate locations; recall that we assume that there are two candidate 
locations arbitrarily close to 0 and two candidate locations arbitrarily close to 2.

𝑖, 𝑗

−1 1𝜀

(a) Instance 𝐼1.

𝑖 𝑗

−1 1𝜀

(b) Instance 𝐼2.

Fig. 2. The two instances used in the proof of the lower bound of 3 in terms of the social cost for the general case (Theorem 3.3). Agent 𝑖 approves 𝐹1 and agent 𝑗
approves 𝐹2 . Rectangles represent candidate locations.

agents are at 1 + 𝜀. This solution has social cost 4𝛼𝑛+2(1 − 𝛼)𝑛 = 2(1 + 𝛼)𝑛. However, the solution that places both facilities at 0 has 
social cost 2(1 − 𝛼)𝑛, leading to an approximation ratio of 1+𝛼1−𝛼 = 1 +

√
2.

Case 3: The mechanism places one facility at 0 and the other at 2. We consider the same sequence of instances as in Case 1. This 
results in that the mechanism must place one facility at 0 and the other at 2 when given as input the instance where 𝛼𝑛 agents are 
at 1 − 𝜀 while the remaining (1 − 𝛼)𝑛 agents are at 2. This solution has social cost 2𝛼𝑛 + 2(1 − 𝛼)𝑛 = 2𝑛. However, the solution that 
places both facilities at 2 has social cost 2𝛼𝑛, leading to an approximation ratio of 1

𝛼
= 1 +

√
2. □

3.2. Singleton instances

It is not hard to observe that our two-facility problem with singleton instances is more general than the single-facility location 
problem studied by Feldman et al. [10]; indeed, there are singleton instances in which all agents approve the same facility, and 
thus the location of the other facility does not affect the social cost nor the approximation ratio. Consequently, we cannot hope to 
achieve an approximation ratio better than 3. For completeness, we include here a slightly different proof of the lower bound of 3 for 
all strategyproof mechanisms with instances that involve agents that approve different facilities. Recall that, for singleton instances, 
𝑁1 ∩𝑁2 = ∅.

Theorem 3.3. For singleton instances, the approximation ratio of any strategyproof mechanism is at least 3− 𝛿, for any 𝛿 > 0.

Proof. Let 𝜀 > 0 be an infinitesimal and consider an instance 𝐼1 with two candidate locations at −1 and 1, and two agents positioned 
at 𝜀 > 0 such that one of them approves 𝐹1 while the other approves 𝐹2; see Fig. 2a. There are two possible solutions, (−1,1) or 
(1,−1). Without loss of generality, suppose that (1,−1) is the solution chosen by an arbitrary strategyproof mechanism.

Next, consider instance 𝐼2, which is the same as 𝐼1, with the only difference that the agent that approves 𝐹2 is moved from 𝜀 to 
1; see Fig. 2b. To maintain strategyproofness, the solution (1,−1) must be returned in 𝐼2 as well; otherwise, the moving agent would 
have decreased her cost in 𝐼1 from 1 + 𝜀 to 1 − 𝜀. This solution has social cost 1 − 𝜀 + 2 = 3 − 𝜀, whereas the other solution (−1,1)
has social cost just 1 + 𝜀, leading to a lower bound of 3 − 𝛿, for any 𝛿 > 0. □
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Since there is an adaptation of the Median mechanism that achieves an approximation ratio of 3 for doubleton instances (see 
Theorem 3.1), one might wonder if there is a variant that can do so for singleton instances as well. In particular, the natural extension 
of Median is to place 𝐹1 at the candidate location closest to the (leftmost) median agent 𝑚1 of 𝑁1, and 𝐹2 at the available candidate 
location closest to the (leftmost) median agent 𝑚2 of 𝑁2. While this seems like a good idea at first glance, the following example 
shows that it fails to achieve the desired approximation ratio bound.

Example 3.4. Consider an instance with two candidate locations at 0 and 2. For some 𝑥 ≥ 1, there are 2𝑥 + 1 agents that approve 
only 𝐹1 such that 𝑥+1 of them are located at 1− 𝜀 and the other 𝑥 are located at 2. There are also 2𝑥+1 agents that approve only 𝐹2
and are all located at 0. According to the definition of the mechanism, 𝐹1 is placed at 0 (which is the candidate location closest to the 
median agent in 𝑁1), and then 𝐹2 is placed at 2 as 0 is now occupied and 2 is available. This solution has social cost approximately 
(𝑥+2𝑥) + 4𝑥 = 7𝑥, whereas the solution that places 𝐹1 at 2 and 𝐹2 at 0 has social cost approximately 𝑥, leading to an approximation 
ratio of nearly 7.

The issue with the aforementioned variant of the Median mechanism is the order in which it decides to place the facilities. If 
it were to place 𝐹2 first and 𝐹1 second then it would have made the optimal choice in the example. However, there is a symmetric 
example that would again lead to a lower bound of approximately 7. So, the mechanism needs to be able to dynamically determine 
the order in which it places 𝐹1 and 𝐹2. This brings us to the following idea: We will again place each facility one after the other at 
the closest candidate location to the median among the agents that approve it. However, the facility that is placed first (and thus has 
priority in case the median agents of 𝑁1 and 𝑁2 are closer to the same candidate location) is the one with stronger majority in terms 
of the number of agents that approve it who are closer to the top choice of the median agent rather than her second choice; ties are 
broken in favor of the facility that is approved by most agents, which is assumed to be 𝐹1 without loss of generality. We refer to this 
mechanism as Stronger-Majority-Median; see Mechanism 2 for a more formal description.

Mechanism 2: Stronger-Majority-Median.

Input: Reported positions of agents with singleton preferences;

Output: Facility locations 𝐰 = (𝑤1,𝑤2);
for 𝑗 ∈ [2] do

𝑚𝑗 ← median agent in 𝑁𝑗 ;

𝑆𝑗 ← set of agents in 𝑁𝑗 (weakly) closer to 𝑡(𝑚𝑗 ) than to 𝑠(𝑚𝑗 );
if 2|𝑆1|− |𝑁1| ≥ 2|𝑆2|− |𝑁2| then

𝑗← 1;

else

𝑗← 2;

𝑤𝑗 ← 𝑡(𝑚𝑗 );
if 𝑡(𝑚3−𝑗 ) is available then

𝑤3−𝑗 ← 𝑡(𝑚3−𝑗 );
else

𝑤3−𝑗 ← 𝑠(𝑚3−𝑗 );

We first show that this mechanism is strategyproof; it is not hard to observe that this must be true as the mechanism is a composition 
of variants of two simple strategyproof mechanisms (median plus majority voting).

Theorem 3.5. Stronger-Majority-Median is strategyproof.

Proof. Clearly, if 𝑡(𝑚1) ≠ 𝑡(𝑚2) then no agent has incentive to deviate as then the facilities are placed at 𝑡(𝑚1) and 𝑡(𝑚2) independently 
of whether 2|𝑆𝑗 |− |𝑁𝑗 | ≥ 2|𝑆3−𝑗 |− |𝑁3−𝑗 | or not for 𝑗 ∈ [2]. So, it suffices to consider the case where 𝑡(𝑚1) = 𝑡(𝑚2) and 2|𝑆𝑗 |− |𝑁𝑗 | ≥ 
2|𝑆3−𝑗 |− |𝑁3−𝑗 | for some 𝑗 ∈ [2], leading to 𝑤𝑗 = 𝑡(𝑚𝑗 ) and 𝑤3−𝑗 = 𝑠(𝑚3−𝑗 ), solving ties in favor of 𝐹1.

• 𝑚𝑗 and any agent 𝑖 ∈𝑁𝑗 that is closer to 𝑡(𝑚𝑗 ) than to 𝑠(𝑚𝑗 ) have no incentive to deviate as 𝑡(𝑚𝑗 ) is the best choice for them.

• Any agent 𝑖 ∈𝑁𝑗 that is closer to 𝑠(𝑚𝑗 ) than to 𝑡(𝑚𝑗 ) has no incentive to deviate, as going closer to 𝑡(𝑚𝑗 ) can either increase the 
quantity 2|𝑆𝑗 |− |𝑁𝑗 | without changing the outcome, or move the median agent and the corresponding nearest location farther 
away.

• 𝑚3−𝑗 and any agent 𝑖 ∈𝑁3−𝑗 that is closer to 𝑡(𝑚3−𝑗 ) than to 𝑠(𝑚3−𝑗 ) have no incentive to deviate as moving closer to 𝑠(𝑚3−𝑗 )
would either decrease the quantity 2|𝑆3−𝑗 |− |𝑁3−𝑗 | without changing the outcome, or move the median and the corresponding 
nearest location farther away.

• Any agent 𝑖 ∈𝑁3−𝑗 that is closer to 𝑠(𝑚3−𝑗 ) than to 𝑡(𝑚3−𝑗 ) has no incentive to deviate as 𝑠(𝑚3−𝑗 ) is the best choice for her.

So, the mechanism is strategyproof. □

Next, we show the upper bound of 3 on the approximation ratio.
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Theorem 3.6. The approximation ratio of Stronger-Majority-Median is at most 3.

Proof. Let 𝐨 = (𝑜1, 𝑜2) be an optimal solution; without loss of generality, we can assume that 𝑤1 <𝑤2 and 𝑜1 < 𝑜2. We consider the 
following two cases:

Case 1: 𝑡(𝑚1) ≠ 𝑡(𝑚2). Then, we have that 𝑤1 = 𝑡(𝑚1) and 𝑤2 = 𝑡(𝑚2). By the properties of the median, for any 𝑗 ∈ [2], we have that∑
𝑖∈𝑁𝑗

𝑑(𝑖,𝑚𝑗 ) ≤
∑
𝑖∈𝑁𝑗

𝑑(𝑖, 𝑥)

for any point 𝑥 of the line, including 𝑜𝑗 . Also, by the definition of 𝑡(𝑚𝑗 ), we have that 𝑑(𝑚𝑗, 𝑡(𝑚𝑗 )) ≤ 𝑑(𝑚𝑗,𝑥) for any candidate location 
𝑥, again including 𝑜𝑗 . Therefore, using these facts and the triangle inequality, we obtain

SC(𝐰) =
∑
𝑗∈[2]

∑
𝑖∈𝑁𝑗

𝑑(𝑖, 𝑡(𝑚𝑗 ))

≤
∑
𝑗∈[2]

∑
𝑖∈𝑁𝑗

𝑑(𝑖,𝑚𝑗 ) +
∑
𝑗∈[2]

∑
𝑖∈𝑁𝑗

𝑑(𝑚𝑗, 𝑡(𝑚𝑗 ))

≤
∑
𝑗∈[2]

∑
𝑖∈𝑁𝑗

𝑑(𝑖,𝑚𝑗 ) +
∑
𝑗∈[2]

∑
𝑖∈𝑁𝑗

𝑑(𝑚𝑗, 𝑜𝑗 )

≤ 2 ⋅
∑
𝑗∈[2]

∑
𝑖∈𝑁𝑗

𝑑(𝑖,𝑚𝑗 ) +
∑
𝑗∈[2]

∑
𝑖∈𝑁𝑗

𝑑(𝑖, 𝑜𝑗 )

≤ 3 ⋅
∑
𝑗∈[2]

∑
𝑖∈𝑁𝑗

𝑑(𝑖, 𝑜𝑗 )

= 3 ⋅ SC(𝐨).

Case 2: 𝑡(𝑚1) = 𝑡(𝑚2). We can without loss of generality focus on the case where 2|𝑆1| − |𝑁1| ≥ 2|𝑆2| − |𝑁2|; the case where the 
inequality is the other way around can be handled using similar arguments. So, 𝑤1 = 𝑡(𝑚1) and 𝑤2 = 𝑠(𝑚2). Note that |𝑆1| ≥ |𝑁1|∕2
and |𝑆2| ≥ |𝑁2|∕2. If 𝑚2 is closer to 𝑠(𝑚2) than to 𝑜2, then we can repeat the arguments of Case 1 to obtain an upper bound of 3. So, 
it suffices to focus on the case where 𝑚2 is closer to 𝑜2 than to 𝑠(𝑚2), which means that 𝑜2 = 𝑡(𝑚2), and thus 𝑜1 <𝑤1 = 𝑜2 <𝑤2. Now, 
observe the following:

• We can first eliminate any candidate location besides the three locations 𝑜1 , 𝑤1 = 𝑜2 and 𝑤2. This clearly does not affect either 
the optimal social cost or the social cost of the solution computed by the mechanism.

• Since 𝑚1 is closer to 𝑤1 than to 𝑜1, we can move the agents in 𝑆1 to 𝑜1+𝑤1
2 and the remaining |𝑁1| − |𝑆1| agents to 𝑜1. Doing 

this, the approximation ratio cannot decrease: Observe that moving the agents of 𝑆1 can only decrease the optimal social cost 
and increase the social cost of the mechanism (since we move closer to 𝑜1), while moving the agents of 𝑁1 ⧵𝑆1 can only decrease 
the optimal social cost (since we move to 𝑜1), and either decrease the social cost of the mechanism by the same amount (in case 
an agent is to the left of 𝑜1 before moving) or increase it (in case an agent is to the right of 𝑜1 before moving). In addition, 𝑚1
remains the median agent of 𝑁1 since |𝑆1| ≥ |𝑁1|∕2, and it is still true that 𝑡(𝑚1) =𝑤1.

• We have that 𝑚2 is closer to 𝑜2 than to 𝑤2. If 𝑚2 ≤ 𝑜2, then we can move the agents of 𝑁2 as follows: each agent in 𝑆2 is moved 
at 𝑜2 and the remaining |𝑁2|− |𝑆2| agents of 𝑁2 (who are closer to 𝑤2 than to 𝑜2) at 𝑜2+𝑤2

2 . Doing this, the approximation ratio 
cannot decrease for the same reason as above, 𝑚2 remains the median agent of 𝑁2 as |𝑆2| ≥ |𝑁2|∕2, and clearly, it is still true 
that 𝑠(𝑚2) =𝑤2.

If 𝑚2 > 𝑜2, then we can move the agents of 𝑁2 as follows: |𝑁2|∕2 agents at 𝑜2, |𝑆2| − |𝑁2|∕2 agents at 𝑚2, and the remaining |𝑁2|− |𝑆2| agents (who are closer to 𝑤2 than to 𝑜2) at 𝑜2+𝑤2
2 . Doing this, the approximation ratio cannot decrease, 𝑚2 remains 

the median agent of 𝑁2 as |𝑆2| ≥ |𝑁2|∕2, and clearly, it is still true that 𝑠(𝑚2) =𝑤2.

It is not hard to observe that the first case (𝑚2 ≤ 𝑜2) is worse in terms of approximation ratio than the second case (𝑚2 > 𝑜2) as 
more agents are exactly at their optimal location. So, it suffices to consider this one.

Based on the above, in the worst case, we have

SC(𝐰) = (|𝑁1|− |𝑆1|)(𝑤1 − 𝑜1) + |𝑆1|𝑤1 − 𝑜1
2

+ |𝑆2|(𝑤2 − 𝑜2) + (|𝑁2|− |𝑆2|)𝑤2 − 𝑜2
2

,

and

SC(𝐨) = |𝑆1|𝑤1 − 𝑜1
2

+ (|𝑁2|− |𝑆2|)𝑤2 − 𝑜2
2

.

Hence,

SC(𝐰)
SC(𝐨)

= 1 + 2 ⋅
(|𝑁1|− |𝑆1|)(𝑤1 − 𝑜1) + |𝑆2|(𝑤2 − 𝑜2)|𝑆1|(𝑤1 − 𝑜1) + (|𝑁2|− |𝑆2|)(𝑤2 − 𝑜2)
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≤ 1 + 2 ⋅
|𝑁1|− |𝑆1|+ |𝑆2||𝑆1|+ |𝑁2|− |𝑆2|

≤ 3,

where the last inequality holds as 2|𝑆1|− |𝑁1| ≥ 2|𝑆2|− |𝑁2| and the first inequality follows since |𝑆1| ≥ |𝑁1|∕2, |𝑆2| ≥ |𝑁2|∕2, and 
𝑤2 − 𝑜2 ≤ 𝑜2 − 𝑜1 =𝑤1 − 𝑜1; the last is true as 𝑠(𝑚2) =𝑤2 and thus 𝑚2, who is located at 𝑜2 =𝑤1 in this worst-case instance, is closer 
to 𝑤2 than to 𝑜1. □

3.3. General instances

To tackle the general case, we consider the following mechanism. Let 𝑗∗ = argmax𝑗∈[2] |𝑁𝑗 ⧵𝑁3−𝑗 |.
• If |𝑁1 ∩𝑁2| ≥ |𝑁𝑗∗ ⧵𝑁3−𝑗∗ |, then run the Median mechanism with input the agents of 𝑁1 ∩𝑁2 (ignoring all other agents).

• Otherwise, choose 𝑤𝑗∗ to be the candidate location closest to the median 𝑚𝑗∗ of 𝑁𝑗∗ ⧵𝑁3−𝑗∗ (we slightly abuse notation here 
as 𝑚𝑗∗ would normally be the median of 𝑁𝑗∗ ), and 𝑤3−𝑗∗ to be the available candidate location closest to the median 𝑚3−𝑗∗ of 
𝑁3−𝑗∗ ; we refer to this mechanism as Alternate-Median.

Note that Median was shown to be strategyproof in Section 3.1. As for Alternate-Median, it is strategyproof since agents in 
𝑁𝑗∗ ⧵𝑁3−𝑗∗ have no incentive to misreport and affect the choice of 𝑚𝑗∗ and 𝑤𝑗∗ , while agents in 𝑁3−𝑗∗ cannot affect the choice 
of 𝑤𝑗∗ and have no incentive to misreport and affect the choice of 𝑚3−𝑗∗ and 𝑤3−𝑗∗ ; any misreport can only push the median, and 
the corresponding nearest location, farther away. Since the two cases are independent (the cardinalities of the sets of agents with 
different approval preferences are known), the mechanism combining Median and Alternate-Median is strategyproof.

We will bound the approximation ratio of the mechanism with the following two theorems which bound the approximation ratio 
of the mechanism in the two cases. Without loss of generality, to simplify our notation, let 𝑗∗ = 1.

Theorem 3.7. For general instances with |𝑁1 ∩𝑁2| ≥ |𝑁1 ⧵𝑁2|, the approximation ratio of Median is at most 7.

Proof. By Theorem 3.1, we have that

∑
𝑖∈𝑁1∩𝑁2

∑
𝑗∈[2]

𝑑(𝑖,𝑤𝑗 ) ≤ 3 ⋅
∑

𝑖∈𝑁1∩𝑁2

∑
𝑗∈[2]

𝑑(𝑖, 𝑜𝑗 ).

For the agents in 𝑁1 ⧵𝑁2, by the triangle inequality and since |𝑁1 ⧵𝑁2| ≤ |𝑁1 ∩𝑁2|, we have

∑
𝑖∈𝑁1⧵𝑁2

𝑑(𝑖,𝑤1) ≤
∑

𝑖∈𝑁1⧵𝑁2

𝑑(𝑖, 𝑜1) + |𝑁1 ⧵𝑁2| ⋅ 𝑑(𝑤1, 𝑜1)

≤
∑

𝑖∈𝑁1⧵𝑁2

𝑑(𝑖, 𝑜1) +
∑

𝑖∈𝑁1∩𝑁2

𝑑(𝑤1, 𝑜1)

≤
∑

𝑖∈𝑁1⧵𝑁2

𝑑(𝑖, 𝑜1) +
∑

𝑖∈𝑁1∩𝑁2

(
𝑑(𝑖,𝑤1) + 𝑑(𝑖, 𝑜1)

)
.

Similarly, for the agents in 𝑁2 ⧵𝑁1, since |𝑁2 ⧵𝑁1| ≤ |𝑁1 ⧵𝑁2| ≤ |𝑁1 ∩𝑁2|, we have

∑
𝑖∈𝑁2⧵𝑁1

𝑑(𝑖,𝑤2) ≤
∑

𝑖∈𝑁2⧵𝑁1

𝑑(𝑖, 𝑜2) +
∑

𝑖∈𝑁1∩𝑁2

(
𝑑(𝑖,𝑤2) + 𝑑(𝑖, 𝑜2)

)
.

By combining these, we have

SC(𝐰) ≤ 3 ⋅ SC(𝐨) +
∑

𝑖∈𝑁1∩𝑁2

∑
𝑗∈[2]

(
𝑑(𝑖,𝑤𝑗 ) + 𝑑(𝑖, 𝑜𝑗 )

)

≤ 3 ⋅ SC(𝐨) + 4 ⋅
∑

𝑖∈𝑁1∩𝑁2

∑
𝑗∈[2]

𝑑(𝑖, 𝑜𝑗 )

≤ 7 ⋅ SC(𝐨).

Therefore, the approximation ratio is at most 7. □

Theorem 3.8. For general instances with |𝑁1 ∩𝑁2| ≤ |𝑁1 ⧵𝑁2|, the approximation ratio of Alternate-Median is at most 7.

Proof. We consider the following cases:
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Case 1: 𝑡(𝑚1) ≠ 𝑡(𝑚2). Then, we have that 𝑤1 = 𝑡(𝑚1) and 𝑤2 = 𝑡(𝑚2). By the properties of the median, we have that∑
𝑖∈𝑁1⧵𝑁2

𝑑(𝑖,𝑚1) ≤
∑

𝑖∈𝑁1⧵𝑁2

𝑑(𝑖, 𝑥)

and ∑
𝑖∈𝑁2

𝑑(𝑖,𝑚2) ≤
∑
𝑖∈𝑁2

𝑑(𝑖, 𝑥)

for any point 𝑥 of the line, including 𝑜1 and 𝑜2. Also, by the definition of 𝑡(𝑚𝑗 ) for 𝑗 ∈ [2], we have that 𝑑(𝑚𝑗,𝑤𝑗 ) ≤ 𝑑(𝑚𝑗,𝑥) for any 
candidate location 𝑥, including 𝑜𝑗 . Therefore, using these facts and the triangle inequality, we bound the contribution of the different 
types of agents to the social cost of 𝐰. In particular, for the agents of 𝑁1 ⧵𝑁2, we have

∑
𝑖∈𝑁1⧵𝑁2

𝑑(𝑖,𝑤1) ≤
∑

𝑖∈𝑁1⧵𝑁2

(
𝑑(𝑖,𝑚1) + 𝑑(𝑚1,𝑤1)

)

≤
∑

𝑖∈𝑁1⧵𝑁2

(
𝑑(𝑖,𝑚1) + 𝑑(𝑚1, 𝑜1)

)

≤
∑

𝑖∈𝑁1⧵𝑁2

(
2 ⋅ 𝑑(𝑖,𝑚1) + 𝑑(𝑖, 𝑜1)

)

≤ 3 ⋅
∑

𝑖∈𝑁1⧵𝑁2

𝑑(𝑖, 𝑜1).

Similarly, for the agents of 𝑁2, we have∑
𝑖∈𝑁2

𝑑(𝑖,𝑤2) ≤ 3 ⋅
∑
𝑖∈𝑁2

𝑑(𝑖, 𝑜2).

For the agents of 𝑁1 ∩𝑁2 in terms of 𝑤1, using the triangle inequality, we obtain∑
𝑖∈𝑁1∩𝑁2

𝑑(𝑖,𝑤1) ≤
∑

𝑖∈𝑁1∩𝑁2

𝑑(𝑖, 𝑜1) + |𝑁1 ∩𝑁2| ⋅ 𝑑(𝑤1, 𝑜1)

≤
∑

𝑖∈𝑁1∩𝑁2

𝑑(𝑖, 𝑜1) +
∑

𝑖∈𝑁1⧵𝑁2

𝑑(𝑤1, 𝑜1)

=
∑

𝑖∈𝑁1∩𝑁2

𝑑(𝑖, 𝑜1) +
∑

𝑖∈𝑁1⧵𝑁2

(
𝑑(𝑖,𝑤1) + 𝑑(𝑖, 𝑜1)

)

≤
∑

𝑖∈𝑁1∩𝑁2

𝑑(𝑖, 𝑜1) + 4 ⋅
∑

𝑖∈𝑁1⧵𝑁2

𝑑(𝑖, 𝑜1).

By putting everything together, we obtain an upper bound of 7.

Case 2: 𝑡(𝑚1) = 𝑡(𝑚2). In this case, we have that 𝑤1 = 𝑡(𝑚1) = 𝑡(𝑚2) and 𝑤2 = 𝑠(𝑚2). Clearly, if 𝑑(𝑚2,𝑤2) ≤ 𝑑(𝑚2, 𝑜2), we get an upper 
bound of 7, similarly to Case 1. So, we can assume that 𝑑(𝑚2,𝑤2) > 𝑑(𝑚2, 𝑜2), which combined with the fact that 𝑤2 = 𝑠(𝑚2), implies 
that 𝑜2 = 𝑡(𝑚2) =𝑤1. For the agents in 𝑁1 ⧵𝑁2, since 𝑤1 = 𝑡(𝑚1), we have a 3-approximation guarantee (using the same arguments 
as above):∑

𝑖∈𝑁1⧵𝑁2

𝑑(𝑖,𝑤1) ≤ 3 ⋅
∑

𝑖∈𝑁1⧵𝑁2

𝑑(𝑖, 𝑜1).

For the agents in 𝑁1 ∩𝑁2 in terms of 𝑤1, similarly to Case 1, we have

∑
𝑖∈𝑁1∩𝑁2

𝑑(𝑖,𝑤1) ≤
∑

𝑖∈𝑁1∩𝑁2

(
𝑑(𝑖, 𝑜1) + 𝑑(𝑜1,𝑤1)

)
=

∑
𝑖∈𝑁1∩𝑁2

𝑑(𝑖, 𝑜1) + |𝑁1 ∩𝑁2| ⋅ 𝑑(𝑜1,𝑤1).

For the agents in 𝑁2 = (𝑁2 ⧵𝑁1)∪ (𝑁1 ∩𝑁2) in terms of 𝑤2, since 𝑑(𝑚2,𝑤2) ≤ 𝑑(𝑚2, 𝑜1), 𝑤1 = 𝑜2, and 𝑚2 minimizes the total distance 
of the agents in 𝑁2 from any other point of the line, by the triangle inequality, we have

∑
𝑖∈𝑁2

𝑑(𝑖,𝑤2) ≤
∑
𝑖∈𝑁2

(
𝑑(𝑖,𝑚2) + 𝑑(𝑚2,𝑤2)

)

≤
∑
𝑖∈𝑁2

(
𝑑(𝑖,𝑚2) + 𝑑(𝑚2, 𝑜1)

)
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≤
∑
𝑖∈𝑁2

(
𝑑(𝑖,𝑚2) + 𝑑(𝑚2, 𝑜2) + 𝑑(𝑜1, 𝑜2)

)

≤
∑
𝑖∈𝑁2

(
2𝑑(𝑖,𝑚2) + 𝑑(𝑖, 𝑜2) + 𝑑(𝑜1,𝑤1)

)

≤ 3 ⋅
∑
𝑖∈𝑁2

𝑑(𝑖, 𝑜2) + |𝑁2| ⋅ 𝑑(𝑜1,𝑤1).

So, by putting everything together and using the fact that |𝑁2| = |𝑁2 ⧵𝑁1|+ |𝑁2 ∩𝑁1|, we have

SC(𝐰) ≤ 3 ⋅
∑

𝑖∈𝑁1⧵𝑁2

𝑑(𝑖, 𝑜1) + 3 ⋅
∑
𝑖∈𝑁2

𝑑(𝑖, 𝑜2) +
∑

𝑖∈𝑁1∩𝑁2

𝑑(𝑖, 𝑜1)

+ |𝑁1 ∩𝑁2| ⋅ 𝑑(𝑜1,𝑤1) + |𝑁2| ⋅ 𝑑(𝑜1,𝑤1)

≤ 3 ⋅ SC(𝐨) +
(|𝑁2 ⧵𝑁1|+ 2 ⋅ |𝑁1 ∩𝑁2|

)
⋅ 𝑑(𝑜1,𝑤1).

Since 𝑤1 = 𝑡(𝑚1), half of the agents in 𝑁1 ⧵𝑁2 suffer a cost of at least 𝑑(𝑜1,𝑤1)∕2 in the optimal solution. Also, all the agents of 
𝑁1 ∩𝑁2 suffer a cost of at least 𝑑(𝑜1, 𝑜2)∕2 = 𝑑(𝑜1,𝑤1)∕2, and thus

SC(𝐨) ≥
(|𝑁1 ⧵𝑁2|

4
+

|𝑁1 ∩𝑁2|
2

)
𝑑(𝑜1,𝑤1).

Hence, since |𝑁2 ⧵𝑁1| ≤ |𝑁1 ⧵𝑁2|, the approximation ratio is at most

3 + 4 ⋅
|𝑁2 ⧵𝑁1|+ 2|𝑁1 ∩𝑁2||𝑁1 ⧵𝑁2|+ 2|𝑁1 ∩𝑁2| ≤ 7.

Consequently, the approximation ratio is overall at most 7. □

Using Theorem 3.7 and Theorem 3.8, we obtain the following result.

Corollary 3.9. For general instances, there is a strategyproof mechanism with approximation ratio at most 7.

4. Max cost

In this section, we turn our attention to the max cost objective for which we show that the best possible approximation ratio of 
strategyproof mechanisms is between 2 and 3 for doubleton instances, and exactly 3 for singleton and general preferences.

4.1. Doubleton instances

For the upper bound, we consider a simple mechanism that places both facilities at the candidate locations that are closest to 
the leftmost agent 𝓁. We refer to this mechanism as Leftmost; see Mechanism 3. It is not hard to show that this mechanism is 
strategyproof and that it achieves an approximation ratio of 3.

Mechanism 3: Leftmost.

Input: Reported positions of agents;

Output: Facility locations 𝐰 = (𝑤1,𝑤2) ;

𝓁← leftmost agent in 𝑁1 ∩𝑁2 ;

𝑤1 ← 𝑡(𝓁);
𝑤2 ← 𝑠(𝓁);

Theorem 4.1. For doubleton instances, Leftmost is strategyproof and achieves an approximation ratio of at most 3.

Proof. For the strategyproofness of the mechanism, consider any agent 𝑖; recall that 𝑖 approves both facilities. To affect the outcome, 
agent 𝑖 would have report a position that lies at the left of 𝓁. However, changing the leftmost agent position can only lead to placing 
the facilities at locations farther away from 𝑖, and hence 𝑖 has no incentive to misreport.

For the approximation ratio, let 𝐨 = (𝑜1, 𝑜2) be an optimal solution. Clearly, there exist 𝑥 ∈ {𝑜1, 𝑜2} and 𝑦 ∈ {𝑜1, 𝑜2} ⧵ {𝑥} such 
that 𝑑(𝓁,𝑤1) ≤ 𝑑(𝓁, 𝑥) and 𝑑(𝓁,𝑤2) ≤ 𝑑(𝓁, 𝑦). Let 𝑖 be the (rightmost) agent who determines the max cost of the mechanism. Using 
the triangle inequality, we have
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𝑖 𝑗

−1 10 𝜀−𝜀

(a) Instance 𝐼1.

𝑖 𝑗

−1 10 𝜀

(b) Instance 𝐼2.

Fig. 3. The two instances used in the proof of the lower bound of 2 in terms of the max cost for doubleton instances (Theorem 4.2). Both agents 𝑖 and 𝑗 approve both 
facilities. Rectangles represent candidate locations.

𝑖 𝑗

−1 1𝜀−𝜀

(a) Instance 𝐼1.
𝑖 𝑗

−2 −1 1𝜀

(b) Instance 𝐼2.

Fig. 4. The two instances used in the proof of the lower bound of 3 in terms of the max cost for singleton instances (Theorem 4.3). Both agents 𝑖 and 𝑗 approve facility 
𝐹1 . Rectangles represent candidate locations.

MC(𝐰) = 𝑑(𝑖,𝑤1) + 𝑑(𝑖,𝑤2) ≤
(
𝑑(𝑖, 𝑥) + 𝑑(𝓁, 𝑥) + 𝑑(𝓁,𝑤1)

)
+
(
𝑑(𝑖, 𝑦) + 𝑑(𝓁, 𝑦) + 𝑑(𝓁,𝑤2)

)

≤ 3max
𝑗∈𝑁

(
𝑑(𝑗, 𝑥) + 𝑑(𝑗, 𝑦)

)
= 3 ⋅MC(𝐨).

Therefore, the approximation ratio is at most 3. □

We next show a slightly weaker lower bound of 2 on the approximation ratio of any strategyproof mechanism.

Theorem 4.2. For doubleton instances, the approximation ratio of any deterministic strategyproof mechanism is at least 2− 𝛿, for any 𝛿 > 0.

Proof. Consider the following instance 𝐼1: There are three candidate locations at −1, 0, and 1 and two agents (that approve both 
facilities) positioned at −𝜀 and 𝜀, respectively, for some infinitesimal 𝜀 > 0. Since there are two facilities to be located, at least one 
of them must be placed at −1 or 1; see Fig. 3a. Without loss of generality, let us assume that a facility is placed at 1.

Now, consider the instance 𝐼2, which is the same as 𝐼1 with the only difference that the agent at −𝜀 has been moved to −1; see 
Fig. 3b. To maintain strategyproofness, a facility must be placed at 1 in 𝐼2 as well; otherwise, the agent at −𝜀 in 𝐼1 would misreport 
her location as −1 to affect the outcome and decrease her cost. So, in 𝐼2, any strategyproof mechanism either places one facility at 
−1 and one facility at 1, for a max cost of 2, or one facility at 0 and one facility at 1, for a max cost of 3. However, placing one facility 
at −1 and one facility at 0 leads to max cost 1 + 𝜀, and thus an approximation ratio of at least 2 − 𝛿, for any 𝛿 > 0. □

4.2. Singleton instances

As argued at the beginning of Section 3.2, instances in which all agents approve one of the facilities are equivalent to having just 
this one facility to place. Consequently, by the work of Tang et al. [26], we cannot hope to achieve an approximation ratio better 
than 3 for singleton instances. For completeness, we include a simple proof of this lower bound here.

Theorem 4.3. For singleton instances, the approximation ratio of any strategyproof mechanism is at least 3− 𝛿, for any 𝛿 > 0.

Proof. Consider the following instance 𝐼1: There are two candidate locations at −1 and 1 and two agents approving only 𝐹1 positioned 
at −𝜀 and 𝜀, respectively, for some infinitesimal 𝜀 > 0; see Fig. 4a. Without loss of generality, we can assume that 𝐹1 is placed at 1
and 𝐹2 at −1.

Now, consider the instance 𝐼2, which is the same as 𝐼1 with the only difference that the agent at −𝜀 has been moved to −2; see 
Fig. 4b. To maintain strategyproofness, 𝐹1 must be placed at 1 in 𝐼2 as well; otherwise, the agent at −𝜀 in 𝐼1 would misreport her 
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position as −2 to decrease her cost from 1 + 𝜀 to 1 − 𝜀. This leads to a max cost of 3, when a max cost of 1 + 𝜀 is possible by placing 
𝐹1 at −1. Therefore, the approximation ratio is at least 3 − 𝛿, for any 𝛿 > 0. □

A first idea towards an upper bound could be to place 𝐹1 at the closest candidate location to the leftmost agent 𝓁1 of 𝑁1, and 
𝐹2 at the closest available candidate location to an agent of 𝑁2 , such as the leftmost agent 𝓁2 or the rightmost agent 𝑟2. While these 
mechanisms are clearly strategyproof, it is not hard to observe that they cannot achieve a good enough approximation ratio.

Example 4.4. If we place 𝐹1 at 𝑡(𝓁1) and 𝐹2 at 𝑡(𝑟2) or 𝑠(𝑟2) depending on availability, then consider the following instance: There are 
three candidate locations at 0, 2, and 6. There is an agent 𝓁1 that approves 𝐹1 at 1+ 𝜀, an agent 𝓁2 that approves 𝐹2 at 1, and another 
agent 𝑟2 that approves 𝐹2 at 3 + 𝜀, for some infinitesimal 𝜀 > 0. So, we place 𝐹1 at 2 and 𝐹2 at 6 for a max cost of 5 (determined by 
𝓁2). On the other hand, we could place 𝐹1 at 0 and 𝐹2 at 2 for a max cost of approximately 1, leading to an approximation ratio of 
5. Clearly, if we chose 𝓁2 instead of 𝑟2 to determine the location of 𝐹2, there is a symmetric instance leading again to the same lower 
bound.

The above example illustrates that it is not always a good idea to choose a priori 𝓁2 or 𝑟2 to determine where to place 𝐹2, especially 
when the closest candidate location to them might not be available after placing 𝐹1 . Instead, we need to carefully decide whether 𝓁2
or 𝑟2 or neither of them is the best one to choose where to place 𝐹2. We make this decision as follows: We “ask” 𝓁2 and 𝑟2 to “vote” 
over two candidate locations; the candidate location 𝐿 that is the closest at the left of 𝑡(𝓁1) (where 𝐹1 is placed) and the candidate 
location 𝑅 that is the closest at the right of 𝑡(𝓁1). If 𝓁2 and 𝑟2 “agree”, then they are both on the same side of the midpoint of the 
interval defined by 𝐿 and 𝑅, and thus depending on whether they are on the left side (agree on 𝐿) or the right side (agree on 𝑅), we 
allow 𝑟2 or 𝓁2, respectively, to make the choice of where to place 𝐹2. If they “disagree”, they are on different sides of the interval’s 
midpoint, so neither 𝓁2 nor 𝑟2 should make a choice of where to place 𝐹2 ; in this case, the closest of 𝐿 and 𝑅 to 𝑡(𝓁1) is a good 
candidate location to place 𝐹2. This idea is formalized in Mechanism 4, which we call Vote-for-Priority.

Mechanism 4: Vote-for-Priority.

Input: Reported positions of agents with singleton preferences;

Output: Facility locations 𝐰 = (𝑤1,𝑤2);
𝓁1 ← leftmost agent in 𝑁1 ;

𝓁2 ← leftmost agent in 𝑁2 ;

𝑟2 ← rightmost agent in 𝑁2 ;

𝑤1 ← 𝑡(𝓁1);
𝐿← closest candidate location at the left of 𝑤1 ;

𝑅← closest candidate location at the right of 𝑤1 ;

// (case 1) 𝓁2 and 𝑟2 agree that 𝐿 is closer, so 𝑟2 gets to choose

if 𝓁2 and 𝑟2 are both closer to 𝐿 than to 𝑅 then

if 𝑡(𝑟2) is available then

𝑤2 ← 𝑡(𝑟2);
else

𝑤2 ← 𝑠(𝑟2);

// (case 2) 𝓁2 and 𝑟2 agree that 𝑅 is closer, so 𝓁2 gets to choose

else if 𝓁2 and 𝑟2 are both closer to 𝑅 than to 𝐿 then

if 𝑡(𝓁2) is available then

𝑤2 ← 𝑡(𝓁2);
else

𝑤2 ← 𝑠(𝓁2);

// (case 3) 𝓁2 and 𝑟2 disagree, so choose the closest of 𝐿 and 𝑅 to 𝑤1
else

𝑤2 ← argmin𝑥∈{𝐿,𝑅}{|𝑤1 − 𝑥|};

We first show that Vote-for-Priority is strategyproof.

Theorem 4.5. For singleton instances, Vote-for-Priority is strategyproof.

Proof. Observe that no agent in 𝑁1 has incentive to misreport as facility 𝐹1 is located at the closest candidate location to 𝓁1; indeed, 
𝓁1 is content while no agent would like to misreport to become the leftmost agent of 𝑁1 as then 𝐹1 will either remain at the same 
location or could be moved farther away. For the agents of 𝑁2 , we consider each case of the mechanism separately. Denote by 𝑤2
the location where the mechanism places 𝐹2.

(Case 1) Clearly, 𝑟2 has no incentive to deviate. Consider an agent 𝑖 ∈𝑁2, other than 𝑟2, that deviates and misreports a position 𝑧.

• If 𝑧 ≤ 𝑟2, then the location 𝐹2 is still 𝑤2.
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• If 𝑧 ∈
(
𝑟2,

𝐿+𝑅
2

]
, agent 𝑖 becomes the rightmost agent but we are still in Case 1. So, the location of 𝐹2 becomes the closest 

available location to 𝑧, which is either 𝑤2 or some candidate location at the right of 𝑤2 . This means that the cost of 𝑖 either 
remains the same or increases, and thus 𝑖 has no incentive to misreport such a position.

• If 𝑧 > 𝐿+𝑅
2 , agent 𝑖 becomes the rightmost agent and the location of 𝐹2 is determined by Case 3, i.e., becomes 𝑦 = 

argmin𝑥∈{𝐿,𝑅}{|𝑤1 − 𝑥|}. Since the true rightmost agent 𝑟2 is closer to 𝐿 than to 𝑅, it holds that 𝑤2 ≤𝐿 ≤ 𝑦. This again means 
that the cost of 𝑖 either remains the same or increases, and thus 𝑖 has no incentive to misreport such a position.

(Case 2) This is symmetric to Case 1.

(Case 3) Observe that any deviation that still leads to Case 3 does not affect the outcome of the mechanism as 𝑤2 = 
argmin𝑥∈{𝐿,𝑅}{|𝑤1 − 𝑥|}. Hence, no agent 𝑖 ∈ 𝑁2 ⧵ {𝓁2, 𝑟2} can affect the outcome as any possible misreported position can ei-

ther be at the left of 𝓁2 or the right of 𝑟2, which means that we are still in Case 3. Now, let us assume that 𝑟2 misreports so that 
the location of 𝐹2 is determined by Case 1. Since, in that case, all agents are closer to 𝐿 than to 𝑅, and there are no other available 
candidate locations in the interval [𝐿,𝑅] (since 𝑤1 is occupied by 𝐹1), 𝐹2 can only be placed at some location 𝑦 ≤𝐿, which is clearly 
not better for 𝑟2. A symmetric argument for 𝓁2 shows that again no agent can misreport. □

Next, we show that Vote-for-Priority achieves an approximation ratio of at most 3.

Theorem 4.6. For singleton instances, the approximation ratio of Vote-for-Priority is at most 3.

Proof. If the max cost of the mechanism is due to an agent 𝑖 ∈𝑁1, the choice 𝑤1 = 𝑡(𝓁1) implies that 𝑑(𝓁1,𝑤1) ≤ 𝑑(𝓁1, 𝑜1), and thus, 
by the triangle inequality, we have that

MC(𝐰) = 𝑑(𝑖,𝑤1) ≤ 𝑑(𝑖, 𝑜1) + 𝑑(𝓁1, 𝑜1) + 𝑑(𝓁1,𝑤1) ≤ 𝑑(𝑖, 𝑜1) + 2 ⋅ 𝑑(𝓁1, 𝑜1) ≤ 3 ⋅MC(𝐨).

So, we now focus on the case where the max cost of the mechanism is determined by an agent in 𝑁2 and we may assume that 𝑤2 ≠ 𝑜2
as otherwise the claim holds trivially. Due to the symmetry of Case 1 and Case 2, it suffices to bound the approximation ratio in Case 
1 and in Case 3. In any of these cases, if there is an agent of 𝑁2 that is closer to 𝑤2 than to 𝑜2, then, similarly to above, by applying 
the triangle inequality, we can again show that the approximation ratio is at most 3. Thus, we will assume that all agents of 𝑁2 are 
closer to 𝑜2 than to 𝑤2, which means that 𝑤1 = 𝑜2. To see that, note that, in Case 1, 𝑜2 has to be unavailable as it must hold 𝑡(𝑟2) = 𝑜2, 
while in Case 3, 𝑤2 is the closest candidate location among 𝐿 and 𝑅 to 𝑤1 (and thus 𝓁2 cannot be at the left of 𝐿 if 𝐿 is chosen and 
𝑟2 cannot be at the right of 𝑅 if 𝑅 is chosen). Due to this, 𝑜1 cannot be 𝑤1 and we have the following two possibilities:

• If 𝑜1 ≤𝐿, then 𝑑(𝓁1, 𝑜1) ≥ 𝑑(𝓁1,𝐿).
• If 𝑜1 ≥𝑅, then 𝑑(𝓁1, 𝑜1) ≥ 𝑑(𝓁1,𝑅).

(Case 1) Since 𝑡(𝑟2) =𝑤1 = 𝑜2 and 𝑤2 is the closest available candidate location to 𝑟2 , it has to be the case that 𝑤2 =𝐿. Let 𝑖 ∈ {𝓁2, 𝑟2}
be the agent of 𝑁2 that gives the max cost.

• If 𝑜1 ≤𝐿, then due to the triangle inequality, and the facts that 𝑜2 =𝑤1 and 𝑑(𝓁1, 𝑜1) ≥ 𝑑(𝓁1,𝐿), we have

MC(𝐰) = 𝑑(𝑖,𝐿) ≤ 𝑑(𝑖, 𝑜2) + 𝑑(𝓁1, 𝑜2) + 𝑑(𝓁1,𝐿)

= 𝑑(𝑖, 𝑜2) + 𝑑(𝓁1,𝑤1) + 𝑑(𝓁1,𝐿)

≤ 𝑑(𝑖, 𝑜2) + 𝑑(𝓁1, 𝑜1) + 𝑑(𝓁1, 𝑜1)

≤ 3 ⋅ MC(𝐨).

• If 𝑜1 ≥𝑅, then due to the triangle inequality, and the facts that 𝑜2 =𝑤1, 𝑑(𝑖,𝐿) ≤ 𝑑(𝑖,𝑅) and 𝑑(𝓁1, 𝑜1) ≥ 𝑑(𝓁1,𝑅), we have

MC(𝐰) = 𝑑(𝑖,𝐿) ≤ 𝑑(𝑖,𝑅) ≤ 𝑑(𝑖, 𝑜2) + 𝑑(𝓁1, 𝑜2) + 𝑑(𝓁1,𝑅)

= 𝑑(𝑖, 𝑜2) + 𝑑(𝓁1,𝑤1) + 𝑑(𝓁1,𝑅)

≤ 𝑑(𝑖, 𝑜2) + 𝑑(𝓁1, 𝑜1) + 𝑑(𝓁1, 𝑜1)

≤ 3 ⋅MC(𝐨).

(Case 3) Without loss of generality, let us assume that 𝑤2 = 𝑅; the case where 𝑤2 = 𝐿 is symmetric. So, 𝑑(𝑅,𝑤1) = 𝑑(𝑅,𝑜2) ≤ 
𝑑(𝐿,𝑜2) = 𝑑(𝐿,𝑤1). Since 𝑟2 ≤𝑅, the max cost of the mechanism is determined by agent 𝓁2.
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• If 𝑜1 ≥𝑅, then due to the triangle inequality, and the facts that 𝑤1 = 𝑜2 and 𝑑(𝓁1, 𝑜1) ≥ 𝑑(𝓁1,𝑅), we have

MC(𝐰) = 𝑑(𝓁2,𝑅) ≤ 𝑑(𝓁2, 𝑜2) + 𝑑(𝓁1, 𝑜2) + 𝑑(𝓁1,𝑅)

= 𝑑(𝓁2, 𝑜2) + 𝑑(𝓁1,𝑤1) + 𝑑(𝓁1,𝑅)

≤ 𝑑(𝓁2, 𝑜2) + 𝑑(𝓁1, 𝑜1) + 𝑑(𝓁1, 𝑜1)

≤ 3 ⋅MC(𝐨).

• If 𝑜1 ≤𝐿, then due to the triangle inequality, and the facts that 𝑑(𝑅,𝑜2) ≤ 𝑑(𝐿,𝑜2), 𝑤1 = 𝑜2 and 𝑑(𝓁1, 𝑜1) ≥ 𝑑(𝓁1,𝐿), we have

MC(𝐰) = 𝑑(𝓁2,𝑅) ≤ 𝑑(𝓁2, 𝑜2) + 𝑑(𝑅,𝑜2)

≤ 𝑑(𝓁2, 𝑜2) + 𝑑(𝐿,𝑜2)

≤ 𝑑(𝓁2, 𝑜2) + 𝑑(𝓁1, 𝑜2) + 𝑑(𝓁1,𝐿)

= 𝑑(𝓁2, 𝑜2) + 𝑑(𝓁1,𝑤1) + 𝑑(𝓁1,𝐿)

≤ 𝑑(𝓁2, 𝑜2) + 𝑑(𝓁1, 𝑜1) + 𝑑(𝓁1, 𝑜1)

≤ 3 ⋅MC(𝐨).

This completes the proof. □

4.3. General instances

To tackle the general case, we consider a mechanism that runs Leftmost in case the instance consists of at least one agent 
with doubleton preference, and Vote-for-Priority in case the instance is singleton. It is not hard to observe that Leftmost is 
strategyproof even when there are agents with singleton preference; its decision is fully determined by the leftmost agent with 
doubleton preference and the input of any other agent is ignored. Hence, the mechanism is overall strategyproof. We will now show 
that Leftmost still achieves an approximation ratio of at most 3 when it is applied, which will allow us to show an overall bound of 
3.

Theorem 4.7. For instances with at least one agent with doubleton preference, the approximation ratio of Leftmost is at most 3.

Proof. We consider cases depending on the preference of the agent 𝑖 that determines the max cost of the mechanism. Let 𝓁 be the 
leftmost agent in 𝑁1 ∩𝑁2, and recall that 𝑤1 = 𝑡(𝓁) and 𝑤2 = 𝑠(𝓁).

(Case 1) The max cost is determined by an agent 𝑖 ∈𝑁1 ⧵𝑁2. Then, by the triangle inequality and since 𝑑(𝓁,𝑤1) ≤ 𝑑(𝓁, 𝑜2), we have

MC(𝐰) = 𝑑(𝑖,𝑤1) ≤ 𝑑(𝑖, 𝑜1) + 𝑑(𝓁, 𝑜1) + 𝑑(𝓁,𝑤1)

≤ 𝑑(𝑖, 𝑜1) + 𝑑(𝓁, 𝑜1) + 𝑑(𝓁, 𝑜2)

≤ 2 ⋅MC(𝐨).

(Case 2) The max cost is determined by an agent 𝑖 ∈𝑁2 ⧵𝑁1. Since 𝑤2 = 𝑠(𝓁), there exists 𝑥 ∈ {𝑜1, 𝑜2} such that 𝑑(𝓁,𝑤2) ≤ 𝑑(𝓁, 𝑥) ≤ 
MC(𝐨). Hence, by the triangle inequality, we have

MC(𝐰) = 𝑑(𝑖,𝑤2) ≤ 𝑑(𝑖, 𝑜2) + 𝑑(𝓁, 𝑜2) + 𝑑(𝓁,𝑤2) ≤ 3 ⋅MC(𝐨).

(Case 3) The max cost is determined by an agent 𝑖 ∈𝑁1 ∩𝑁2. Then, following the proof of Theorem 4.1 for doubleton instances, we 
can show an upper bound of 3. □

By combining Theorem 4.7 and Theorem 4.6, we obtain the following result.

Corollary 4.8. For general instances, there is a strategyproof mechanism with approximation ratio at most 3.

5. Allowing same facility locations

In this last section we explore the simpler model in which the two facilities can be placed at the same candidate location; this can be 
thought of as the set 𝐶 of candidate locations being a multiset that includes every distinct element twice. We show tight bounds on 
the approximation ratio of deterministic mechanisms for doubleton and general instances (we will not consider singleton instances 
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Table 2

Overview of the tight bounds for the model where the two facilities are 
allowed to be placed at the same candidate location.

Social cost Max cost

Doubleton 1 +
√
2 2

General 3 3

separately as the approximation ratio turns out to be exactly the same as for general instances). Our results for this model are 
summarized in Table 2.

All the mechanisms we will consider in this section place the facilities at the closest locations to some fixed agents that approve 
them. In particular, given the positions reported by the agents, for some 𝑞𝑗 ∈ [𝑛], we place each facility 𝐹𝑗 at 𝑡(𝑖𝑗 ), where 𝑖𝑗 is the 
𝑞𝑗 -th ordered agent in 𝑁𝑗 . It is not hard to verify that all such mechanisms are strategyproof. Indeed, to change the outcome of the 
mechanism, an agent in 𝑁𝑗 would have to report a position that changes the 𝑞𝑗 -th ordered agent in 𝑁𝑗 , but this would mean that the 
facilities that this agent approves might move farther away from the true position of the agent.

Before we continue we remark that the fact that facilities can be placed at the same location is crucial for our mechanisms to be 
strategyproof since this eliminates possible misreports by the 𝑞𝑗 -th ordered agents who determine where the facilities are placed. To 
be more specific, suppose that we try to adapt this mechanism for the main model that we considered in the previous sections in 
which the two facilities can only be placed at different locations. Then, in case 𝑡(𝑖1) = 𝑡(𝑖2) we would have to resolve this collision 
somehow, for example by giving priority to one of these agents, say 𝑖1, and placing 𝐹1 at 𝑤1 = 𝑡(𝑖1) and then 𝐹2 at some other 
location 𝑤2 that is a function of 𝑖2 such as 𝑠(𝑖2). However, if 𝑖1 approves both facilities, it might be the case that 𝑤2 is not close 
to her position, and thus she prefers to misreport such that she is closer to 𝑠(𝑖1) rather than 𝑡(𝑖1), leading to 𝐹1 being placed at 
𝑠(𝑖1) and then 𝐹2 at 𝑡(𝑖2) = 𝑡(𝑖1). This is essentially the reason why mechanisms like Stronger-Majority-Median from Section 3.2

are not stratetyproof for general instances. Such misreports cannot happen when the facilities are allowed to be placed at the same 
location.

5.1. Social cost

We start with the case of doubleton instances for which we show a tight bound of 1 +
√
2. The lower bound follows by observing 

that the proof of Theorem 3.2 holds even when facilities are allowed to be placed at the same location; in particular, in the proof of 
that theorem we made the simplification that there are two candidate location at 2 and −2, thus having capacity for both facilities. 
For the upper bound, first observe that the Median mechanism from Section 3.1 can also be adapted to the current model (by placing 
both facilities to the location closest to the median agent), but it is not hard to show that it still cannot achieve an approximation 
ratio better than 3. To improve upon the bound of 3, we consider a family of mechanisms, which, for a parameter 𝛼 ∈ (0,1∕2), 
place one facility at the candidate location closest to the position reported by the 𝛼𝑛-leftmost agent, and the other facility at the 
candidate location closest to the position reported by the (1 − 𝛼)𝑛-leftmost agent.3 We refer to such mechanisms as 𝛼-Statistic; 
see Mechanism 5 for a description. It is not hard to observe that, for any 𝛼 ∈ (0,1∕2), the mechanism is strategyproof since it falls 
within the class of mechanisms we described earlier with 𝑞1 = 𝛼𝑛 and 𝑞2 = (1 − 𝛼)𝑛. We now focus on bounding the approximation 
ratio.

Mechanism 5: 𝛼-Statistic.

Input: Reported positions of agents with doubleton preferences;

Output: Facility locations 𝐰 = (𝑤1,𝑤2);
𝑖← 𝛼𝑛-leftmost agent;

𝑗← (1 − 𝛼)𝑛-leftmost agent;

𝑤1 ← 𝑡(𝑖);
𝑤2 ← 𝑡(𝑗);

Theorem 5.1. For doubleton instances, the approximation ratio of 
(√

2 − 1
)

-Statistic is at most 1 +
√
2.

Proof. We have 𝛼 =
√
2 − 1 and note that 1+𝛼1−𝛼 = 1

𝛼
= 1 +

√
2. If 𝑜 is a location that minimizes the total distance from the agent 

positions, then for any 𝑥 and 𝑦 such that 𝑜 ≤ 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥 ≤ 𝑜, it holds that 
∑
𝑖∈𝑁 𝑑(𝑖, 𝑜) ≤

∑
𝑖∈𝑁 𝑑(𝑖, 𝑥) ≤

∑
𝑖∈𝑁 𝑑(𝑖, 𝑦). Hence, since 

the individual cost of each agent is the sum of distances from both facilities, there exists an optimal solution 𝐨 = (𝑜1, 𝑜2) such that 
𝑜1 = 𝑜2 = 𝑜. Without loss of generality, we assume that 𝑤1 ≤𝑤2, and it must be the case that 𝑤1 ≠ 𝑜 or 𝑤2 ≠ 𝑜 since otherwise the 
approximation ratio would be 1. We consider the following cases:

3 Formally, it would be the ⌈𝛼𝑛⌉-leftmost and the ⌈(1−𝛼)𝑛⌉-leftmost agent, respectively, and we require that ⌈𝛼𝑛⌉< ⌈(1−𝛼)𝑛⌉. This can be guaranteed by creating 
an identical number of copies for each agent and running the mechanism on the modified instance; the approximation ratio for the modified instance is exactly the 
same as for the original instance. We omit the ceilings to make the exposition clearer.
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Case 1: 𝑤1 < 𝑜 =𝑤2 (the case 𝑤1 = 𝑜 < 𝑤2 is symmetric).

By the definition of the mechanism, there is a set 𝑆 of 𝛼𝑛 agents that are closer to 𝑤1 than to 𝑜. Hence, we have

SC(𝐰) =
∑
𝑖∈𝑆
𝑑(𝑖,𝑤1) +

∑
𝑖∉𝑆
𝑑(𝑖,𝑤1) +

∑
𝑖∈𝑁

𝑑(𝑖, 𝑜)

≤
∑
𝑖∈𝑆
𝑑(𝑖, 𝑜) +

∑
𝑖∉𝑆

(
𝑑(𝑖, 𝑜) + 𝑑(𝑤1, 𝑜)

)
+
∑
𝑖∈𝑁

𝑑(𝑖, 𝑜)

= SC(𝐨) + (1 − 𝛼)𝑛 ⋅ 𝑑(𝑤1, 𝑜)

and

SC(𝐨) ≥ 2 ⋅ 𝛼𝑛 ⋅
𝑑(𝑤1, 𝑜)

2
= 𝛼𝑛 ⋅ 𝑑(𝑤1, 𝑜).

Therefore, the approximation ratio is at most 1 + 1−𝛼
𝛼

= 1
𝛼
= 1 +

√
2.

Case 2: 𝑤1 < 𝑜 <𝑤2.

By the definition of the mechanism, there is a set 𝑆1 of 𝛼𝑛 agent that are closer to 𝑤1 than to 𝑜, i.e., 𝑑(𝑖,𝑤1) ≤ 𝑑(𝑖, 𝑜) for every 𝑖 ∈ 𝑆1, 
and thus 𝑑(𝑖, 𝑜) ≥ 𝑑(𝑜,𝑤1)∕2. Similarly, there is another set 𝑆2 of 𝛼𝑛 agents that are closer to 𝑤2 than to 𝑜, i.e., 𝑑(𝑖,𝑤2) ≤ 𝑑(𝑖, 𝑜) for 
every 𝑖 ∈ 𝑆2, and thus 𝑑(𝑖, 𝑜) ≥ 𝑑(𝑜,𝑤2)∕2. By combining these facts with the triangle inequality, we have

SC(𝐰) =
∑
𝑖∈𝑆1

(
𝑑(𝑖,𝑤1) + 𝑑(𝑖,𝑤2)

)
+

∑
𝑖∈𝑆2

(
𝑑(𝑖,𝑤1) + 𝑑(𝑖,𝑤2)

)
+

∑
𝑖∉𝑆1∪𝑆2

(
𝑑(𝑖,𝑤1) + 𝑑(𝑖,𝑤2)

)

≤
∑
𝑖∈𝑆1

(
2 ⋅ 𝑑(𝑖, 𝑜) + 𝑑(𝑜,𝑤2)

)
+

∑
𝑖∈𝑆2

(
2 ⋅ 𝑑(𝑖, 𝑜) + 𝑑(𝑜,𝑤1)

)

+
∑

𝑖∉𝑆1∪𝑆2

(
2 ⋅ 𝑑(𝑖, 𝑜) + 𝑑(𝑜,𝑤1) + 𝑑(𝑜,𝑤2)

)

= SC(𝐨) + (1 − 𝛼)𝑛
(
𝑑(𝑜,𝑤1) + 𝑑(𝑜,𝑤2)

)
.

We can also bound the optimal social cost as follows:

SC(𝐨) ≥ 2 ⋅ 𝛼𝑛
𝑑(𝑜,𝑤1)

2
+ 2 ⋅ 𝛼𝑛

𝑑(𝑜,𝑤2)
2

= 𝛼𝑛
(
𝑑(𝑜,𝑤1) + 𝑑(𝑜,𝑤2)

)

Consequently, the approximation ratio is at most 1 + 1−𝛼
𝛼

= 1∕𝛼 = 1 +
√
2.

Case 3: 𝑜 < 𝑤 =𝑤1 =𝑤2 (the case 𝑤1 =𝑤2 =𝑤< 𝑜 is symmetric).

By the definition of the mechanism, there is a set 𝑆 of (1−𝛼)𝑛 agents that are closer to 𝑤 than to 𝑜. Hence, by the triangle inequality, 
we have

SC(𝐰) = 2 ⋅
∑
𝑖∈𝑆
𝑑(𝑖,𝑤) + 2 ⋅

∑
𝑖∉𝑆
𝑑(𝑖,𝑤)

≤ 2 ⋅
∑
𝑖∈𝑆
𝑑(𝑖, 𝑜) + 2 ⋅

∑
𝑖∉𝑆

(
𝑑(𝑖, 𝑜) + 𝑑(𝑜,𝑤)

)

= SC(𝐨) + 2𝛼𝑛 ⋅ 𝑑(𝑜,𝑤),

and

SC(𝐨) ≥ 2 ⋅ (1 − 𝛼)𝑛 ⋅ 𝑑(𝑜,𝑤)
2

= (1 − 𝛼)𝑛 ⋅ 𝑑(𝑜,𝑤)

Therefore, the approximation ratio is at most 1 + 2𝛼
1−𝛼 = 1+𝛼

1−𝛼 = 1 +
√
2.

Case 4: 𝑜 < 𝑤1 <𝑤2 (the case 𝑤1 <𝑤2 < 𝑜 is symmetric).

Clearly, since 𝑜 < 𝑤1 < 𝑤2, 𝑑(𝑜,𝑤2) = 𝑑(𝑜,𝑤1) + 𝑑(𝑤1,𝑤2). By the definition of the mechanism, there is a set 𝑆 of (1 − 𝛼)𝑛 agents 
who are closer to 𝑤1 than to 𝑜, i.e., 𝑑(𝑖,𝑤1) ≤ 𝑑(𝑖, 𝑜) for every 𝑖 ∈ 𝑆 , and thus 𝑑(𝑖, 𝑜) ≥ 𝑑(𝑜,𝑤1)∕2. Also, there is a set 𝑇 ⊂ 𝑆 of 𝛼𝑛
agents who are closer to 𝑤2 than to 𝑤1, i.e., 𝑑(𝑖,𝑤2) ≤ 𝑑(𝑖,𝑤1) ≤ 𝑑(𝑖, 𝑜) for every 𝑖 ∈ 𝑇 , and thus 𝑑(𝑖, 𝑜) ≥ 𝑑(𝑜,𝑤1) + 𝑑(𝑤1,𝑤2)∕2. By 
combining these two facts with the triangle inequality, we have

SC(𝐰) =
∑
𝑖∉𝑆

(
𝑑(𝑖,𝑤1) + 𝑑(𝑖,𝑤2)

)
+

∑
𝑖∈𝑆⧵𝑇

(
𝑑(𝑖,𝑤1) + 𝑑(𝑖,𝑤2)

)
+
∑
𝑖∈𝑇

(
𝑑(𝑖,𝑤1) + 𝑑(𝑖,𝑤2)

)

≤
∑
𝑖∉𝑆

(
2 ⋅ 𝑑(𝑖, 𝑜) + 𝑑(𝑜,𝑤1) + 𝑑(𝑜,𝑤2)

)
+

∑
𝑖∈𝑆⧵𝑇

(
2 ⋅ 𝑑(𝑖, 𝑜) + 𝑑(𝑜,𝑤2)

)
+ 2 ⋅

∑
𝑖∈𝑇
𝑑(𝑖, 𝑜)
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= SC(𝐨) + 𝛼
(
𝑑(𝑜,𝑤1) + 𝑑(𝑜,𝑤2)

)
+ (1 − 2𝛼)𝑑(𝑜,𝑤2)

= SC(𝐨) + 𝛼𝑑(𝑜,𝑤1) + (1 − 𝛼)𝑑(𝑜,𝑤2)

= SC(𝐨) + 𝑑(𝑜,𝑤1) + (1 − 𝛼)𝑑(𝑤1,𝑤2).

For the optimal social cost, we have

SC(𝐨) ≥ 2|𝑆 ⧵ 𝑇 |𝑑(𝑜,𝑤1)
2

+ 2|𝑇 |(𝑑(𝑜,𝑤1) +
𝑑(𝑤1,𝑤2)

2

)
= 𝑑(𝑜,𝑤1) + 𝛼𝑑(𝑤1,𝑤2).

Hence, the approximation ratio is at most 1 + 1−𝛼
𝛼

= 1∕𝛼 = 1 +
√
2. □

For general instances we show a tight bound of 3. The lower bound follows by the fact that when all agents have singleton 
preferences, then the problem reduces to two independent single-facility location problems, and the best possible approximation 
ratio for each of them is 3 [10]; alternatively, one can verify that the proof of Theorem 3.3 holds even when the facilities can be 
placed at the same location. For the upper bound, we consider the Two-Medians mechanism, which independently places each 
facility 𝐹𝑗 at the location closest to the median agent 𝑚𝑗 ∈𝑁𝑗 .

Theorem 5.2. For general instances, the approximation ratio of Two-Medians is at most 3.

Proof. Using the fact that the median agent 𝑚𝑗 minimizes the total distance of all the agents in 𝑁𝑗 , the fact that 𝑤𝑗 = 𝑡(𝑚𝑗 ), and the 
triangle inequality, we have

SC(𝐰) =
∑
𝑗∈[2]

∑
𝑖∈𝑁𝑗

𝑑(𝑖,𝑤𝑗 )

≤
∑
𝑗∈[2]

∑
𝑖∈𝑁𝑗

(
𝑑(𝑖,𝑚𝑗 ) + 𝑑(𝑚𝑗,𝑤𝑗 )

)

≤
∑
𝑗∈[2]

∑
𝑖∈𝑁𝑗

(
𝑑(𝑖,𝑚𝑗 ) + 𝑑(𝑚𝑗, 𝑜𝑗 )

)

≤
∑
𝑗∈[2]

∑
𝑖∈𝑁𝑗

(
2 ⋅ 𝑑(𝑖,𝑚𝑗 ) + 𝑑(𝑖, 𝑜𝑗 )

)

≤ 3 ⋅
∑
𝑗∈[2]

∑
𝑖∈𝑁𝑗

𝑑(𝑖, 𝑜𝑗 ),

and thus the approximation ratio is at most 3. □

5.2. Max cost

We now consider the max cost and start by showing a tight bound of 2 for doubleton instances. The lower bound follows by a 
sequence of instances similar to those in the proof of Theorem 4.2 but just with two candidate locations.

Theorem 5.3. For doubleton instances, the approximation ratio of any deterministic strategyproof mechanism is at least 2− 𝛿, for any 𝛿 > 0.

Proof. Consider an arbitrary deterministic mechanisms and the following instance 𝐼1 : There are two candidate locations at −1 and 
1 and two agents (that approve both facilities) positioned at −𝜀 and 𝜀, respectively, for some infinitesimal 𝜀 > 0.

First, suppose that the mechanism places both facilities at one of the two locations, say −1. Then, consider the instance 𝐼2 in 
which the agent at 𝜀 in 𝐼1 moves to 1 in 𝐼2, while the other agent remains at −𝜀. The mechanism must still place both facilities at 
−1 in 𝐼2 since otherwise the agent that moved would decrease her cost. However, MC(−1,−1) ≈ 6 and MC(1,1) ≈ 2, leading to an 
approximation ratio of at least 3.

Second, support that the mechanism places one facility at −1 and the other at 1. Then, consider the instance 𝐼3 in which the 
agent at 𝜀 in 𝐼1 moves to 2 in 𝐼3, while the other agent remains at −𝜀. The mechanism must either still output the solution (−1,1)
or the solution (−1,−1), but it cannot output (1,1) as then the agent that moved would decrease her cost. However, MC(−1,1) ≈ 4, 
MC(−1,−1) = 6, and MC(1,1) = 2, leading to an approximation ratio of at least 2. □

For the upper bound, we consider the mechanism that places 𝐹1 at the candidate location closest to the leftmost agent 𝓁 and 𝐹2
at the candidate location closest to the rightmost agent 𝑟. We refer to this mechanism as Leftmost-Rightmost; see Mechanism 6.

Theorem 5.4. For doubleton instances, the approximation ratio of Leftmost-Rightmost is at most 2.
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Mechanism 6: Leftmost-Rightmost.

Input: Reported positions of agents with doubleton preferences;

Output: Facility locations 𝐰 = (𝑤1,𝑤2) ;

𝓁← leftmost agent in 𝑁1 ∩𝑁2 ;

𝑟← rightmost agent in 𝑁1 ∩𝑁2 ;

𝑤1 ← 𝑡(𝓁);
𝑤2 ← 𝑡(𝑟);

Proof. Let 𝑖 ∈ {𝓁, 𝑟} be the agent that determines the max cost of the mechanism, and 𝑗 ∈ {𝓁, 𝑟} ⧵ {𝑖}. Let 𝐨 = (𝑜1, 𝑜2) be an optimal 
solution. Since 𝑤1 = 𝑡(𝓁) and 𝑤2 = 𝑡(𝑟), by the triangle inequality and the definition of 𝑡(⋅), we have

MC(𝐰) = 𝑑(𝑖, 𝑡(𝑖)) + 𝑑(𝑖, 𝑡(𝑗))

≤ 𝑑(𝑖, 𝑡(𝑖)) + 𝑑(𝑖, 𝑜2) + 𝑑(𝑗, 𝑜2) + 𝑑(𝑗, 𝑡(𝑗))

≤ 𝑑(𝑖, 𝑜1) + 𝑑(𝑖, 𝑜2) + 𝑑(𝑗, 𝑜2) + 𝑑(𝑗, 𝑜1) ≤ 2 ⋅ MC(𝐨).

Therefore, the approximation ratio is at most 2 in any case. □

For general instances, it is not hard to obtain a tight upper bound of 3. The lower bound follows again by the fact that with 
singleton preferences the problem is equivalent to two independent single-facility location problems, while the upper bounds follows 
by the variant of the Leftmost mechanism that places 𝐹𝑗 at the leftmost agent 𝓁𝑗 ∈𝑁𝑗 .

Theorem 5.5. For general instances, the approximation ratio of Leftmost is at most 3.

Proof. Let 𝑖 be the agent that determines the max cost of the mechanism. By the triangle inequality and the definition of 𝑡(⋅), we 
have

MC(𝐰) =
∑

𝑗∈[2]∶𝑖∈𝑁𝑗

𝑑(𝑖,𝑤𝑗 ) ≤
∑

𝑗∈[2]∶𝑖∈𝑁𝑗

(
𝑑(𝑖, 𝑜𝑗 ) + 𝑑(𝓁𝑗 , 𝑜𝑗 ) + 𝑑(𝓁𝑗 ,𝑤𝑗 )

)

≤
∑

𝑗∈[2]∶𝑖∈𝑁𝑗

(
𝑑(𝑖, 𝑜𝑗 ) + 2 ⋅ 𝑑(𝓁𝑗 , 𝑜𝑗 )

)

≤ 3 ⋅ MC(𝐨).

Hence the approximation ratio is at most 3. □

6. Conclusion

In this paper we studied a truthful two-facility location problem with candidate locations and showed bounds on the best possible 
approximation ratio of deterministic strategyproof mechanisms in terms of the social cost and the max cost. An obvious question that 
our work leaves open is to close the gaps between our lower and upper bounds (for doubleton and general instances for the social 
cost, and doubleton instances for the max cost). Also, it would be interesting to consider the design of randomized strategyproof 
mechanisms with improved approximation guarantees. There are also multiple ways to extend our model. One such way is to change 
the assumption about what type of information is public or private, and instead of considering the case where the positions are 
private and the preferences are known as we did in this paper, focus on the case where the positions are public and the preferences 
are private (which is a generalization of the models studied by Serafino and Ventre [24] and Kanellopoulos et al. [18]). Other ways 
of extending our model include settings with more than just two facilities to place, and more general metric spaces than just the 
line.
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