
ESSAYS ON NETWORK FORMATION

Qingchao Zeng

A thesis submitted for the degree of

Doctor of Philosophy in Economics

Department of Economics

University of Essex

September 2024



Acknowledgments
I am very grateful to my supervisors Simon Weidenholzer and Friederike Mengel for their

invaluable guidance and support throughout my PhD.

I also would like to express my sincere gratitude to other researchers who have contributed to

my research and professional development with their helpful comments and suggestions. In partic-

ular, Thomas Brzustowski, Albin Erlanson, Daniel Friedman, Jayant Ganguli, Aditya Kuvalekar,

and Michel Serafinelli.

I would like to thank my friends and colleagues for their active presence and accompany.

In particular, Pavlos Balamatsias, Camila Comunello, Aitor Irastorza-Fadrique, Guohua He, Ziyi

Huang, Jingyi Li, Zeyu Liu, Yi Shi, Taichi Yoshida, and Bin Yu.

Lastly, I am deeply thankful to my parents for their unwavering support, unconditional love,

and boundless patience throughout this long journey. Their presence has been integral to every one

of my accomplishments.



Contents

Summary i

1 Network Formation with Local Benefits 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Strict Nash Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Stochastically Stable States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Network Formation with Local Benefits: Evidence from Simulation 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Network Formation Game . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 Learning Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 The Effects of Heterogeneous Constraints on Social Coordination and Network For-



CONTENTS

mation 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Nash Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Myopic best response learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A Mathematical Proofs 64

A.1 Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.1.1 Proofs in Section 1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.1.2 Proofs in Section 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A.2 Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.2.1 Proofs of Section 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.2.2 Proofs of Section 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



Summary

The importance of networks has been highlighted in numerous economic studies. To address the

key question of how networks emerge, several models have been developed to examine equilibrium

networks and assess the efficiency of various network structures. This thesis presents our research

on network formation, organized into three chapters.

In Chapter 1, we consider a non-cooperative model of network formations where agents de-

cide on whom to form costly links to. Links are unilaterally formed and payoff flows one way

to the active side. We study discontinuous information flows where agents only receive benefits

from other agents at a distance of two in the network. For the static game, we show that the set of

strict Nash equilibria encompasses a multiplicity of core-periphery network structures. We further

study a noisy best response process to obtain long-run predictions. By doing so, we find that the

set of stochastically stable states retains a multiplicity of network structures, many of which are

not efficient.

Chapter 2 provides supportive simulation evidence for the theoretical model of evolutionary

network formation, where agents form unilateral links and receive payoffs from others within

distance two. We present a MatLab program to mimic both unperturbed and perturbed myopic best

learning dynamics. The simulation of unperturbed dynamics shows that core-periphery networks

are absorbing when agents never make mistakes. Further, when there is a small probability that

agents make mistakes, the simulation of perturbed dynamics shows that core-periphery networks

i
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are uniquely stochastically stable.

In Chapter 3, we present an evolutionary model of coordination and network formation where

there are two groups of agents who face either high or low linking constraints on the number of

links. We study the agents’ choices of actions in the 2×2 coordination game and the set of agents

to whom they link. For the static game, we show that both monomorphic states (all agents play

the same action) and polymorphic states (agents play different actions) are Nash equilibria. We

then study a noisy best response learning dynamics to select among multiple Nash equilibria in

the static game. We find that if both low and high constraints are loose, the risk-dominant strategy

is selected. In contrast, if both low and high constraints are tight, the payoff-dominant action

arises. Moreover, we present that the co-existence of the risk- and payoff-dominant actions can be

observed for some game parameters.

In summary, the thesis contributes to the literature on network formation in both theoretical

and simulation respects by considering the constraints of information transmission distance. Addi-

tionally, Furthermore, the work also adds to the literature on the coevolution of social coordination

and network formation by incorporating heterogeneous linking constraints.



Chapter 1

Network Formation with Local Benefits

1.1 Introduction

The role of networks in various social and economic activities has attracted considerable atten-

tion in academic research. Networks have proven to be instrumental in explaining phenomena

within fields such as economics, sociology, and related disciplines. Comprehending the impact of

networks constitutes a pivotal area of inquiry across diverse contexts, ranging from R&D collab-

oration to labour markets.1 Thus, it is important to know which network configurations will form

and what drives the stability and efficiency of networks.

The motivation of this paper is based on the following two observations. First, many social

networks exhibit some structures with small diameters.2 The distance between any two nodes in

a network is usually relatively small. Second, friction in the spread of information is inevitable

in the real world due to noise or misinformation etc. This paper introduces a network formation

model that effectively captures these characteristics, based on the key assumption that information

transmission is constrained within two steps. Specifically, agents obtain information either directly

1Topics involve R&D networks (Goyal & Moraga-Gonzalez 2001; Goyal & Joshi 2003), networks in labour mar-
kets (Calvo-Armengol & Jackson 2004, 2007), public goods in networks (Bramoullé & Kranton 2007; Allouch 2015);
social coordination (Goyal & Vega-Redondo 2005; Staudigl & Weidenholzer 2014 and Cui & Weidenholzer 2021).

2Examples include the small-world phenomenon (Milgram 1967) and six degrees of separation (Guare 2016).

1
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(a) Wheel (b) Wheel + one additional link (c) Wheel + three additional links

Figure 1.1. Collapse of the wheel: consider an example of five agents, the wheel depicted in (a) is a
strict Nash network in Bala & Goyal’s one-way flow model without decay. When agents can only receive
information from others within distance two, agent 1 has an incentive to form an additional link to agent 3
to get information from 2 and 3 as shown in (b). Similarly, agent 4 and agent 5 also have incentives to form
additional links as shown in (c).

from their immediate connections (referred to as "friends") or indirectly from the connections of

their friends (commonly termed as "friends of friends").3 A typical example is the network of

citations within journal papers where researchers frequently cite the works of others, thus creating

a network of scientific papers.4 However, when analysing the citations of a specific paper, access

is limited to the papers cited within that particular work. Additionally, it is unknown which papers

are cited within the references cited in a given work. Consequently, to identify and access papers

referenced within those citations, additional time and effort are required to extract information

concerning the "citations of citations."

In this paper, we set up a non-cooperative model of network formation, where links are uni-

laterally formed and information flows one way. Under one-way flow, the payoff is only received

by the agent who initiates the link.5 The information carried by each agent is the source of payoffs.

By forming costly links, agents receive payoffs from their friends and friends of friends.

Bala & Goyal (2000) have shown that in the absence of limits on information transmission,

3This setup is featured as ’truncated connections’ in Jackson & Wolinsky (1996) or ’communication threshold’ in
Hojman & Szeidl (2008).

4See e.g. Price (1965) who analyses the growing citation networks and documents that they are scale-free networks.
5See e.g. Bala & Goyal 2000; Billand et al. 2008 and Cui et al. 2013. In contrast, two-way flow assumes that

both sides of a link receive the payoff (see e.g. Bala & Goyal 2000; Feri 2007; Billand et al. 2011 and De Jaegher &
Kamphorst 2015).
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the wheel is the unique strict Nash equilibrium. On an intuitive level, when the information flows

one way and the linking cost is low enough, the network will have to feature cycles, implying that

everybody has to be connected so that there exists a path from any agent to any other agents while

there also exists a path in the reverse direction. But it cannot be insistent where two paths cross in

a strict Nash equilibrium because that would imply that some agents are indifferent in their linking

choice; leaving the wheel as the only strict Nash equilibrium.

However, in the presence of constraint on distance, the wheel is not a strict Nash equilibrium

since agents have incentives to form additional links to those beyond distance two. Figure 1.1

illustrates this point. The main result under our key assumption shows that the network formation

game has multiple strict Nash network configurations, which we refer to core-periphery networks.6

In these strict Nash equilibria, there is a small set of core agents who maintain some links to other

core agents and periphery agents and a large set of periphery agents who maintain only links to

core agents. Figure 1.2 shows two examples of such equilibrium networks. The logic is that due to

the constraint imposed on information transmission, agents form links to keep others within a two-

step distance. Conversely, each agent has the incentive to minimize the number of links required to

fulfil this objective. In a core-periphery network, links formed by core agents ensure that any given

agent can keep others within two steps by forming links to all core agents. Besides, the compact

size of the core agent set enables agents to link to others with a minimal number of links.

Furthermore, due to the multiplicity of strict Nash equilibria, we study a noisy best response

process to characterize stochastically stable states. This approach has various applications to the

selection of multi-equilibria in the literature on network formations.7 Each agent has a positive

probability of receiving opportunities to update their linking strategies in a discrete time. Some-

times they make mistakes and fail to maximize their payoffs. We adopt the methodology developed

6Borgatti & Everett (2000) formalize the concept of core-periphery structure in the context of undirected networks.
In this paper, our definition and notions of core-periphery networks are closely related to the definition of the directed
core-periphery network in Elliott et al. (2020).

7See e.g. Jackson & Watts (2002a), Feri (2007) and Cui et al. (2013) for applications to network formation.
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(a) CP1-star (b) CP2 Network

Figure 1.2. Two core-periphery networks with 10 agents

by Kandori et al. (1993) and Young (1993), allowing us to identify stochastically stable states, i.e.

states in support of the invariant distribution of the Markov process as the probability of mistakes

vanishes. Our results show that the set of stochastically stable states retains a multiplicity of net-

work structures, which encompasses core-periphery networks. Additionally, we study the number

of links that efficient networks have and show that core-periphery networks however are inefficient

as they are payoff dominated by the star. Thus, with the constraint on the distance of information

transmission, we may observe inefficient outcomes. This is in contrast to the case where there is

no constraint and the unique strict Nash network, the wheel, is also efficient.

The paper is organized as follows. Section 1.2 discusses the relation between our paper and

the existing literature. In section 1.3, we describe the details of the setups of the network formation

game. In section 1.4, we present our results on strict Nash equilibria. Section 1.5 describes the

learning dynamics and our analytical results of the long-run predictions. We also have a short

discussion on the efficiency of stochastically stable states in section 1.5. Section 1.6 concludes.

Table 1.1 provides the list of notions and their definitions in the paper and the Appendix A.1

contains the proofs of our key results.
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Table 1.1. List of parameters and their definitions

Parameters Definitions

n Number of agents, which is larger than or equal to 4.
N Set of all agents.

gi j Linking decision of agent i to j.
gi A N-tuple of agent i’s linking strategy to each agent.
g A network, i.e. a strategy profile of all agents.

Gi Strategy profile of agent i.
G Set of all strategy profiles.

g−i Network formed by agents other than i.
g+ i j Network obtained by adding the link from i to j.
g− i j Network obtained by deleting the link from i to j.

d(i, j;g) Distance from j to i in a given network g.
Nd

i (g) d-neighbourhood of agent i, i.e. the set of agents who are at distance d to i.
nd

i (g) Number of agents in i’s d-neighbourhood.
dout

i Out-degree of agent i, i.e. the number of links that agent i actively forms.
din

i In-degree of agent i, i.e. the number of links that agent i passively receives.
C Component of N.
gi Sub-network on component Ci.
c Cost of forming a link.

G ⋆ Set of strict Nash equilibrium networks.
CPℓ Core-periphery network with ℓ core agents.

C(ℓ;g) Set of core-agents given a core-periphery network g.
P Set of periphery agents.
Pi Set of agent i’s periphery agents.

C Pℓ Set of strict Nash CPℓ networks.
ℓ̄ Maximum number of core agents in any strict Nash core-periphery network.

C P ℓ̄ Set of all strict Nash core-periphery networks.
G⋆⋆ Absorbing set.
G ⋆⋆ Set of all absorbing sets.

G ⋆⋆⋆ Set of stochastically stable states.
r(g,g′) Resistance of transition form network g to g′.

τi A G⋆⋆
i -tree, i.e. a spanning tree rooted in the absorbing set G⋆⋆

i .
Ti Set of all G⋆⋆

i -trees.
r(G⋆⋆

i ) Resistance of a G⋆⋆
i -tree.

γ(G⋆⋆
i ) Stochastic potential of the absorbing set G⋆⋆

i .
N Number of all absorbing sets.

W (g) Welfare generated by given network g.
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1.2 Literature review

The present paper is closely related to the broad literature on network formation. Jackson &

Wolinsky (1996) explore the truncated connection model with some bound D in the cooperative

network formation model where forming a link requires mutual consent of both parties. They show

that the pairwise stable networks exhibit a property that the maximum distance between any two

players is 2D− 1. Further, Bala & Goyal (2000) presents a non-cooperative network formation

model where Nash equilibrium can be used to characterise the stable network architectures. They

have broad discussions on models of one-way flow and two-way flow in cases with decay (where

there are frictions in information) and without decay (where there is no friction in information).

They provide characterizations of Nash equilibrium networks and efficient networks, which exhibit

some simple architectures, e.g. the wheel and the star. Based on Bala & Goyal (2000)’s two-

way flow model with decay, Hojman & Szeidl (2008) study a model where links have decreasing

returns and show that for some parameters, the unique non-empty Nash equilibrium network is the

periphery-sponsored star at the presence of communication threshold. Our work differs from these

models in one main direction. We introduce constraints on information transmission to Bala and

Goyal’s one-way flow model without decay and exhibit a different class of strict Nash equilibrium

networks – core-periphery networks – which include the star.

This paper also adds to the literature on the dynamics of social networks. Watts (2001)

presents a dynamic network formation with two-sided links through independent decisions and

shows that the star is both stable and efficient for some parameters.8 Jackson & Watts (2002a)

study a stochastic evolution of network formation and find that a stochastically stable network is

either pairwise stable or part of a closed cycle. Further, Feri (2007) considers the noisy best re-

8Two-sided link through independent decisions is that the formation of a link between two agents requires that
both sides wish it (see e.g. Goyal & Vega-Redondo 2005 and Fosco & Mengel 2011).
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sponse learning in Bala and Goyal’s two-way flow model with decay and shows that the periphery-

sponsored star is the unique stochastically stable network architecture. Cui et al. (2013) explore

the evolutionary version of Bala and Goyal’s one-way flow model with decay and find that either

the empty network or the wheel is the stochastically stable state. Our work contributes to these

results in two respects. First, we demonstrate that core-periphery networks exhibit stochastic sta-

bility, highlighting the potential for the emergence of networks other than simple architectures,

e.g. the wheel and the star. Second, we showcase the possibility of obtaining inefficient network

architectures in the long run.

Our paper also departs from the literature in modelling payoffs. Goyal & Vega-Redondo

(2007) study a model of pairwise links where two parties of a link split the payoffs. They show

that the star emerges in the absence of capacity constraints on links and the cycle network is

stochastically stable when the capacity of links is relatively small to the population. In Galeotti &

Goyal (2010), a player’s payoff depends on how much information she and her neighbours acquire.

They show that the equilibrium networks exhibit ’the Law of the Few’ and have a core-periphery

structure, i.e. few players in the core acquire information and many players in the periphery acquire

no information. In contrast to these studies, in our model each agent carries information of value

one and the payoff goes to the party who initiates the link.

A different branch in the literature analyses models of co-evolution of coordination games

and network formations, where in addition to their linking choice, they also have to decide the

action played in the coordination game. Jackson & Watts (2002b) study an evolutionary model

in social coordination games where the network is bilaterally formed, which prescribes the use

of the concept of pairwise stability in Jackson & Wolinsky (1996). They show that for some

parameters the networks in stochastically stable states exhibit fully connected configurations. In

Goyal & Vega-Redondo (2005), agents unilaterally decide on whom to link to. They show that the

equilibrium network is either empty or complete. Staudigl & Weidenholzer (2014) set up a model
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with a restricted maximum number of links that each agent can support and show a variety of the

equilibrium network structures in the long run. Cui & Weidenholzer (2021) consider a case where

an agent is able to receive payoffs from links that other agents form to her. They find that the Nash

equilibrium networks do not have to be fully connected and that architectures, where agents use

different actions, may sometimes be stochastically stable.

1.3 Model

We consider a one-way flow model of network formations.9 There is a population of n agents,

denoted by N = {1,2, · · · ,n} with n ≥ 4. Each agent i ∈ N decides the set of agents to whom

she forms links. A strategy used by agent i is given by a N-tuple gi = (gi1,gi2, · · · ,gin) where

gi j ∈ {0,1} is agent i’s linking decision to agent j. We say i links up to j if gi j = 1; otherwise,

gi j = 0. We assume that agents cannot link to themselves, i.e. gii = 0,∀i ∈ N. Further, let Gi be the

set of all possible link strategies that agent i can choose. One-way flow model implies that agent

i’s linking decision to j is independent with j’s decision to i, i.e. g ji and gi j are not necessarily

equal. A network g = (gi)i∈N ∈ G is the strategy profile of all agents, where G = ∏i∈N Gi is the

set of all networks. Moreover, let g−i = g−gi denote the network formed by agents other than i.

Further, we denote by g+ i j the network obtained by adding the link from agent i to j to network

g. Similarly, g− i j denotes the network obtained by deleting the link from i to j in network g.

We say there exists a path from agent j to i if either gi j = 1 or there is a set of agents

{k1,k2, · · · ,km}, such that gik1 = gk1k2 = · · · = gkm j = 1. The distance from j to i, denoted by

d(i, j;g), is the number of links of the shortest path from agent j to i.10 Further, we define

agent i’s d-neighbourhood as the set of agents who are at distance d to i, denoted by Nd
i (g) =

9We follow the notations introduced in Jackson & Wolinsky (1996) and Bala & Goyal (2000).
10In a directed network g, d(i, j;g) and d( j, i;g) can be different. We say d(i, j;g) = ∞ if j is not linked by i neither

directly nor indirectly.
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{ j ∈ N : d(i, j;g) = d}, with nd
i (g) = |Nd

i (g)| the number of agent i’s d-neighbours. We refer to

dout
i := n1

i (g) = ∑
j∈N

gi j as the out-degree of agent i, i.e. the number of active links that agent i

forms. We also denote by din
i = ∑

j∈N
g ji the in-degree of agent i, i.e. the number of passive links

that agent i receives from others.

A subset C ⊆ N is called a strongly connected component if ∀i, j ∈C with i ̸= j, there exists a

path from i to j as well as a path from j t i, and there is no strict superset, i.e. C ⊂C′ ⊆ N for which

this is true. A network g is strongly connected if it has a unique strongly connected component.

Let gi be the sub-network within agents in the strongly connected component Ci.

We now define the payoffs in our network formation game. As in Bala & Goyal (2000), each

agent receives information from others by forming costly links and benefits from doing so. Without

loss of generality, the value of information that each agent has is homogeneously normalized to

one. The cost of each link is c > 0. We assume that the cost is only incurred to the party who

initiates the link. We deviate from Bala & Goyal (2000) by studying the case where the distance

that information can travel is constrained. Let D be the constraint. This implies that agents can

receive information from others who are within a distance of D. As motivated in the introduction,

we assume that agents can only observe their neighbours and the neighbours of neighbours, i.e. we

focus on the case where D = 2.11

An agent’s payoff is calculated as the sum of benefits derived from the information she re-

ceives from others, minus the total cost incurred from forming links. More formally, given a

network g = (gi)i∈N , agent i’s payoff is given by

Ui(gi,g−i) = 1+n1
i (g)+n2

i (g)− c · ∑
j∈N

gi j (1.1)

11This is a special case of the communication threshold in Hojman & Szeidl (2008), which in contrast to our model
focuses on two-way flow. The existence of limits in communication is also observed in the one-way flow case, which
their model cannot characterize.
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where the constant captures the value of information of agent i self.

1.4 Strict Nash Networks

In the first step, we characterize some important properties of strict Nash networks. We follow the

definition of strict Nash networks in Bala & Goyal (2000), which is formalized as Definition 1.4.1.

Definition 1.4.1 (Strict Nash Networks). A network g = (gi)i∈N is a strict Nash network if and

only if Ui(gi,g−i)>Ui(g′i,g−i) for all g′i ∈ Gi and i ∈ N.

We denote by G ⋆ the set of all permissible strict Nash networks. The first two technical

lemmas establish some useful properties of the natures of out-degrees and in-degrees in a strict

Nash network.

Lemma 1.4.1. For any non-empty strict Nash network g ∈ G ⋆, dout
i ≥ 1 for any i ∈ N.

Lemma 1.4.1 provides that every agent supports at least one active link. The intuition is that if

supporting an active link is profitable for some agents, then it must be the case that it is profitable

for every agent. It is trivial for the case where c < 1, forming a link to another agent yields at least

1− c > 0. Note that in this case, any strict Nash network has to be non-empty. The next lemma

establishes a similar insight regarding the in-degrees of agents.

Lemma 1.4.2. For any non-empty strict Nash network g ∈ G ⋆, din
i ≥ 1 for any i ∈ N.

Lemma 1.4.2 implies that every agent receives at least one passive link. For the case c < 1,

this result is trivial because if an agent i receives no passive links, another agent j will get an

additional payoff 1− c by forming a link to i. Consider the other case c > 1, the intuition is more

complicated. The main idea in this case is based on the observation that agents without passive

links turn out to be either indifferent between whom to form links to or have profitable deviation.

This is incompatible with a strict Nash network.
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Figure 1.3. A network which is not strongly connected

We now move towards studying the implications of the two observations for the general struc-

tures of strict Nash networks. Recall the definition of strongly connected networks. Strong con-

nectedness implies that there exists a unique strongly connected component in the network, which

requires that for any two agents i and j, there is a path from i to j and a path from j to i. Any

network that is not strongly connected, has to consist of multiple strongly connected components.

These strongly connected components could be isolated from each other, or a path exists from

one component to another, but not vice versa. The network depicted in Figure 1.3 illustrates

such properties. In this network, there are five strongly connected components in the network:

{1,2,3},{4,5},{6},{7} and {8}. Component {8} is totally isolated from other components, while

components {6} and {4,5} are not strongly connected since there is no path from agent 6 to either

agent 4 or agent 5.

Lemma 1.4.3. Any non-empty strict Nash network is strongly connected.

Lemma 1.4.3 is trivial for the case c < 1. If a strict Nash network g is not strongly connected,

then there exist two agents i and j such that there is no path from i to j. Therefore, there is a

profitable deviation for agent i to form a link to j. For c > 1, the lemma follows from combining
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the previous two lemmas and pointing out that in any not strongly connected component some

agents will necessarily have an incentive to link to agents in other components.

While we are able to obtain the previous results for the general case where c may be larger than

one, for the following analysis we have to restrict ourselves to c < 1. Revisit networks depicted in

Fig 1.2. In the star network shown in Fig 1.2a, the agent in the centre links to everyone else whilst

receiving links from everyone. One can check that the star is a strict Nash network as the agent in

the centre and agents in the periphery all give a unique best response.

In fact, there also exists another class of networks that possess these properties. We refer to

these networks as core-periphery networks.12 Less formally, a core-periphery network consists

of two sets of agents: core and periphery. Each agent in the core (termed as core agent) links to

every agent in the core and also links to a subset of the other agents in the periphery. Each agent

in the periphery (termed as periphery agent) links to all core agents and forms no link to any other

periphery agent. The more formal definition is given as follows.

Definition 1.4.2. A network g is called a core-periphery network, denoted by CPℓ if

1) each agent is either a core agent or a periphery agent, i.e. N =C(ℓ;g)∪P(g) and C(ℓ;g)∩

P(g) = /0, where C(ℓ;g) = {1,2, · · · , ℓ} is the set of core agents and P(g) = {ℓ+ 1, ℓ+

2, · · · ,n} is the set of periphery agents;

2) core agents link to each other directly, i.e. gi j = 1,∀i, j ∈C(ℓ;g) with i ̸= j;

3) each core agent i links to a subset of periphery agents, i.e. Pi(g) = { j ∈ P(g) : gi j = 1};

4) each periphery agent is linked by a single core agent, i.e.
⋂

i∈C(ℓ;g)
Pi(g) = /0 and P(g) =

⋃
i∈C(ℓ;g)

Pi(g);

5) each periphery agent links to all core agents, i.e. gi j = 1,∀i ∈ P(g), j ∈C(ℓ;g);

12Core-periphery networks are also featured previously in the literature (see in Borgatti & Everett 2000 and Elliott
et al. 2020), but with slightly different definitions in our paper.
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6) there is no link between periphery agents, i.e. g jk = gk j = 0,∀ j,k ∈ P(g).

The network shown in Fig 1.2b depicts such a core-periphery network with two core agents.

Agents 1 and 2 are core agents and all other agents link up to them. The other eight agents are

periphery agents, each of whom is linked by either agent 1 or agent 2.

We classify the core-periphery networks by the number of core agents so that CPℓ denotes a

core-periphery network with ℓ core agents. Note that for a given number of core agents ℓ, there is a

multiplicity of different CPℓ networks, varying in the identities of core agents and their peripheries

with similar structures. The network in Fig 1.2b is a CP2 network and the star is the special case

of CP1 network. One can also check that the CP2 network depicted in Fig 1.2b is a strict Nash

network since core and periphery agents all give a unique best response.

Having defined core-periphery networks, we proceed to prove that the set of strict Nash net-

works includes CPℓ networks with a certain condition. The following proposition exhibits our main

results on strict Nash networks.

Proposition 1.4.1. Any CPℓ network g with |Pi(g)| ≥ 3,∀i ∈C(ℓ;g) is a strict Nash equilibrium.

The intuition of Proposition 1.4.1 is as follows. First, core agents link up to the other core

agents and their respective peripheries such that they can observe everyone. Adding any other

link yields no additional payoffs, and deleting any link means a reduction in payoffs. Further,

periphery agents observe everybody by linking to all core agents. Thus, they have no incentives

to form additional links. If they delete some links, they will lose access to the periphery agents

of these core agents, leading to a decrease in payoffs. More importantly, the condition on the

number of periphery agents ensures that the best response of each agent is unique, i.e. there is no

alternative strategy that yields the same payoffs as in a CPℓ network. Figure 1.4 (a) depicts a CP2

network where core agent 1 has only two periphery agents. In this network, the periphery agent 3

is indifferent between linking to agent 1 and agent 4 (see Figure 1.4b). Therefore, the CP2 network
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Figure 1.4. A core-periphery network where the core agent 1 has only two periphery agents.

in Figure 1.4 (a) is not a strict Nash equilibrium.

Proposition 1.4.1 shows that any core-periphery network in which each core agent links up to

at least three periphery agents is a strict Nash network. Now, we denote by C Pℓ the set of strict

Nash core-periphery networks with ℓ core agents. More formally, C Pℓ is defined by

C Pℓ := {g : g is a CPℓ network and |Pi(g)| ≥ 3, for all i ∈C(ℓ;g)}.

Note that the condition on the size of each set of periphery agents imposes an upper bound

on the number of core agents in a strict Nash core-periphery network. To be more precise, in a

strict Nash CPℓ network, each core agent has to have at least three periphery agents, therefore the

number of periphery agents is at least three times more than ℓ. Thus, given the number of all agents

n, the number of core agents can never exceed ⌊n
4⌋ := ℓ̄. If a core-periphery network has more than

L core agents, then it is not a strict Nash network. We denote by C P ℓ̄ the set of all strict Nash CPℓ

networks in which the number of core agents is less or equal to ℓ̄. More formally, the set C P ℓ̄ at
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a given n is defined as

C P ℓ̄ :=
⋃

1≤ℓ≤ℓ̄

C Pℓ.

Proposition 1.4.1 implies that there is a multiplicity of strict Nash network configurations.

This result differs from Bala & Goyal (2000) and Hojman & Szeidl (2008). In Bala & Goyal

(2000)’s one-way flow model without decay, the wheel is the unique strict Nash network for some

parameters within certain ranges. With local benefits in our model, the wheel is not permissible as

agents can never observe others who are more than distance two far away and thus have incentives

to form additional links to those who are not observed by them. In Hojman & Szeidl’s two-

way flow model, the non-empty strict Nash network is unique and exhibits a structure of either

periphery-sponsored stars or extended stars. Our model presents that the star, denoted by CP1, is

the unique strict Nash core-periphery network for any n < 8. For any n ≥ 8, Proposition 1.4.1

shows that there are multiple strict Nash networks which present similar structures, i.e. the core-

periphery networks (see also Figure 1.2 for an illustration).

Further, in the one-way flow case, the strict Nash networks have to feature cycles, implying

that each pair of two agents has to be connected by two paths in both directions. In the absence

of constraints on the distance of information transmission, the circumference of these cycles is

not limited but it requires there exist no crossing cycles. However, in the presence of constraints,

the circumference of the cycles is limited to the constraint but it allows the existence of crossing

cycles.
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1.5 Stochastically Stable States

Since there are multiple strict equilibria, we are interested in which kinds of network architectures

are more likely to be selected in the long run. Previous literature (see e.g. Jackson & Watts 2002a,

Feri 2007 and Cui et al. 2013 ) has established that the best response dynamics with random noise

may select a subset of them. For this reason, we consider a best response learning dynamics due

to Kandori et al. (1993) and Young (1993). An agent is randomly selected to renew her strategy at

each period t in discrete time, i.e. t = 0,1,2, · · · . The selected agent chooses a best response to the

strategy profile of other agents at the previous period t −1, i.e.

gi(t) ∈ argmax
gi∈Gi

Ui(gi,g−i(t −1))

where gi(t) refers to agent i’s strategy at period t, and g−i(t−1) means the strategy profile of other

agents except i at period t −1. In the case that there are multiple best responses, agents randomly

choose one with equal probability.

Given the equation above, the new network configuration in period t only depends on the

network in the previous period t −1. Technically, this revision process can be defined as a Markov

chain on the strategy space G ≡ G1 ×G2 × ·· ·Gn. Each network g is a state in this space. An

absorbing set is defined as a minimum subset of G with the property that the dynamics can never

leave it once reached. We denote by G⋆⋆ an absorbing set and G ⋆⋆ denotes the set of all absorbing

sets. First, we provide an important property of G ⋆⋆.

Proposition 1.5.1. All networks in C P ℓ̄ are absorbing. Each of them forms a singleton absorbing

set G⋆⋆ ∈ G ⋆⋆.

Proposition 1.5.1 implies that all strict Nash core-periphery networks are absorbing. The re-

sult derives from the fact that in a strict Nash equilibrium, no agent is indifferent between multiple
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strategies. Thus, all agents are playing their unique best response. As a consequence, they will

remain at their current strategy whenever they receive the opportunity to revise. Thus, the revi-

sion dynamics can never leave a strict Nash equilibrium without any mistakes, implying that all

networks in C P ℓ̄ are singleton absorbing sets.

Note that Proposition 1.5.1 does not provide a full characterization of all absorbing sets. That

is, other absorbing sets may exist, such as strict Nash networks different from core-periphery

networks, and a collection of Nash networks among which the dynamics could circulate but never

leave.13 Let a denote the number of all absorbing sets given the number of the population n.

Now, we proceed to characterize the selection among multiple absorbing sets, by adopting the

standard techniques developed by Kandori et al. (1993) and Young (1993). Consider that agents

might fail to choose the optimal strategy during the revision process, which we call a mistake. The

probability of agents making mistakes is positive, denoted by ε > 0. We assume that the agent

who makes a mistake chooses randomly among all strategies. Given the positive ε , the revision

process is ergodic and aperiodic. The Markov process is therefore irreducible and aperiodic, which

means it has a unique stationary distribution µ(ε). As ε goes to zero, µ(ε) converges to a limited

distribution µ⋆, i.e. lim
ε→0

µ(ε) = µ⋆. A network g is called stochastically stable if µ⋆(g) > 0. The

set of stochastically stable states is defined as G ⋆⋆⋆ ≡ {g ∈ G : µ⋆(g)> 0}.

The following algorithm introduced by Freidlin & Wentzell (1998) and Foster & Young

(1990) is used to identify the set of stochastically stable states. Consider two states in different

absorbing sets, g ∈ G⋆⋆
i and g′ ∈ G⋆⋆

j . Denote by r(g,g′) > 0 the resistance of transition from

g to g′, which is the minimum number of mistakes required for this transition. Further, a G⋆⋆
i -

tree is defined as a spanning tree rooted in G⋆⋆
i , such that there is a unique path from each other

absorbing set to G⋆⋆
i . Denote by τi a G⋆⋆

i -tree and Ti denotes the set of all τi. The resistance

13Despite our best efforts, we have not identified such strict Nash equilibria or such cycles. Therefore. we have not
been able to rule out the existence of such absorbing sets.
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Figure 1.5. The transition from a CP2 network to a CP1 star. The grey circles are core agents and the white
circles are periphery agents. The black circles are the agents who are revising their strategies.

of a G⋆⋆
i -tree is defined as the sum of resistances of its edges, i.e. r(τi) = ∑

(g,g′)∈τi

r(g′,g). The

stochastic potential of the absorbing set G⋆⋆
i is defined as the minimum resistance among all τi, i.e.

γ(G⋆⋆
i ) = arg min

τi∈Ti
r(τi). Finally, a state in the absorbing set G⋆⋆

i is stochastically stable if G⋆⋆
i has

the minimum stochastic potential, i.e. γ(G⋆⋆
i ) = min

G⋆⋆
j ∈G ⋆⋆

γ(G⋆⋆
j ). With this technique, we are able

to identify a class of stochastically stable states by analysing the relative robustness of absorbing

states to mistakes.

Before showing our main results, we exhibit two examples of transitions between the two

core-periphery networks, which will play a key role in our analysis.

Example 1. Consider the CP2 network in Figure 1.5 (a). Assume that agent 1 makes a mistake

and forms additional links to agent 2’s periphery agents as shown in Figure 1.5 (b). Following this,

given a revision opportunity, agent 2 will delete the links to agents 7, 8, 9 and 10 as shown in Figure

1.5 (c). In the next steps, any periphery agent receiving revision opportunities will consequently
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Figure 1.6. The transition from a CP1 star to a CP2 network.

delete the link to agent 2 as the network, see Figure 1.5 (d). Thus, with one mistake, we have

reached another absorbing state which is a CP1 network.

Example 2. Now consider a CP1 network in Figure 1.6 (a). Assume that agent 2 makes a mistake

and forms additional links to agents 7, 8, 9 and 10 as illustrated by Figure 1.6 (b). In the next step,

agent 1 receives the opportunity to revise and find it optimal to delete the links to agents 7, 8, 9,

and 10 as shown in Figure 1.6 (c). Following this, agents 7, 8, 9 and 10 receiving opportunities

to revise will form a link to agent 2, see Figure 1.6 (d). Thus, with one mistake the dynamics has

reached a CP2 network where agents 1 and 2 are the two core agents.

To predict which kinds of network configurations are stochastically stable, we construct a

sequence of absorbing sets where the transition between any two adjacent sets requires one mistake

such as the two examples illustrated above. To do so, we first establish that the transition from any

absorbing set to a CP1 network requires one mistake. Second, we show that the transition from a
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CPℓ network to a CPℓ+1 network with ℓ common core agents is able at the cost of one mistake. By

doing so, we argue that the stochastical potential of each absorbing set is equal to N−1, which is

the minimum stochastic potential. Thus, all absorbing sets characterized in Proposition 1.5.1 are

stochastically stable. The following proposition establishes this result.

Proposition 1.5.2. C P ℓ̄ ⊂ G ⋆⋆⋆.

The result that core-periphery networks are stochastically stable is significantly different to

Feri (2007) who predicts the periphery sponsored star for the two-way flow model with decay and

Cui et al. (2013) who predicts either the wheel or the empty network for the one-way flow model

with decay. Our model implies that there are multiple networks that are stochastically stable.

In the last step, we are interested in the welfare properties of stochastically stable states.

Welfare of a network g is defined as the sum of payoffs of individuals, i.e. W (g) = ∑i∈N Ui(g). A

network g is said to be efficient if and only if W (g)≥W (g′) for all g′ ∈G . We derive one important

property that efficient networks have to fulfil. The lemma proposes that the maximum number of

links in any efficient network has to be at most 2 · (n−1).

Lemma 1.5.1. A network g is not efficient if the number of links in g exceeds 2 · (n−1).

This lemma follows from the following observation. Note that the welfare of a CP1 network

is given as

W (CP1) = 1+(n−1)− c · (n−1)︸ ︷︷ ︸
payoff of agent in core

+(n−1) · [1+(n−1)− c]︸ ︷︷ ︸
payoff of agent in periphery

= n2 −2c · (n−1)

Without considering linking costs, n2 is the highest benefit that can be yielded by a network,

where each agent receives benefits from all agents. Thus, if the number of links in a network g
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is larger than 2 · (n− 1), the linking costs in g are larger than the linking cost in a CP1 network,

implying that g is not efficient since W (g)<W (CP1).

Lemma 1.5.1 implies that the set of stochastically stable states contains networks that are

not efficient. To see this, consider a CPℓ network in C P ℓ̄. By the definition of core-periphery

networks, the number of links between core agents is 2 · (ℓ− 1). The number of links from core

agents to periphery agents is n−ℓ as each periphery agent is linked by only one core agent. Further,

the number of links from periphery agents to core agents is (n−ℓ) ·ℓ as each periphery agent links

up to all core agents. We thus have that the number of links in a CPℓ network is

f (ℓ,n) = 2 · (ℓ−1)+n− ℓ+(n− ℓ) · ℓ=−ℓ2 +(n+1) · ℓ+n−2.

This function f (ℓ,n) is increasing provided that ℓ < n+1
2 . Note that any CPℓ network that is a strict

Nash equilibrium and further stochastically stable state requires that each core agent forms links

to at least three periphery agents. Thus given the number of agents n, the number of core agents

fulfils that ℓ≤ ⌊n
4⌋<

n+1
2 . Hence, the number of links in any g ∈ C P ℓ̄ increases with the number

of core agents. Thus we have that W (CP1) > W (CP2) > · · · > W (CPℓ̄).
14 Therefore, the set of

stochastically stable states contains network configurations that are not efficient.

The implication is that when benefits are global as in Bala & Goyal (2000), the wheel network

is efficient since the wheel exhibits a structure where every agent can use one link to get access to

all other agents. In contrast with local benefits, to observe other agents who are located two steps

away, forming additional links is necessary. This results in an increase in the number of links in

the network, causing a reduction in welfare. Therefore, network structures may arise in the long

run, which are dominated by others in terms of welfare.

14Whilst we have been able to use numerical calculations to show that CP1 networks are efficient for n = 5 and 6,
we have not been able to provide a general result showing that this for arbitrary n.
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1.6 Conclusion

In this paper, we explored a non-cooperative framework for modelling the process of network

formation, where agents unilaterally form costly links. The payoffs accrue to agents who initiate

the links. We focus on investigating how constraints on information transmission affect stable

networks in the long run.

In contrast to the conventional results of either the wheel or the periphery-sponsored star being

the unique strict Nash network or stochastically stable, we reveal that core-periphery networks

are strict Nash equilibria when agents can only receive information from their neighbours and

the neighbours of their neighbours. This finding sheds light on the diverse range of equilibrium

structures that can emerge in the context of network formation.

Additionally, because of the multiplicity of strict Nash networks, we study the selection be-

tween multiple equilibria in a perturbed best response learning dynamics, to find which kind of

networks are stochastically stable. We show that the set of stochastically stable states encompasses

multiple network configurations that exhibit the structure of the core-periphery networks. Surpris-

ingly, our analysis reveals that the set of stochastically stable states includes network configurations

that are inefficient from a welfare perspective.



Chapter 2

Network Formation with Local Benefits: Evidence from

Simulation

2.1 Introduction

The significance of social networks has been emphasized in numerous studies within both eco-

nomic and sociological literature. To address the question of which kinds of network configura-

tions will be formed, several models have been developed to explore the theoretical foundations

of how information networks emerge.1 Additionally, many experimental analyses based on these

theoretical models have been conducted, providing us with intuitive insights into the process of

network formation. 2

In Chapter 1, we have shown that constraints on the distance of information transmission sig-

nificantly influence the formation of networks. Specifically, when agents can receive information

only from their neighbours and neighbours of neighbours, core-periphery networks often emerge

as Nash equilibria. The multiplicity of core-periphery network structures then raises a critical ques-

tion of the stochastically stable states—those that persist in the long run within a model of noisy

1See e.g. Jackson & Wolinsky (1996), Jackson & Watts (2002a) for the cooperative model of network formation,
and see e,g, Bala & Goyal (2000), Feri (2007) and Hojman & Szeidl (2008) for the non-cooperative model.

2See e.g. Callander & Plott (2005), Berninghaus et al. (2007) and Falk & Kosfeld (2012).

23
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best-response learning dynamics. Results in Chapter 1 indicate that core-periphery networks are

stochastically stable as the probability of mistakes approaches zero. However, the theoretical work

offers only partial results of the set of stochastically stable states, leaving a full characterization

unexplored.

The main contribution of this work is the simulation of the evolution of network formation.

By simulating a model with constraints on information transmission, we analyze which types of

network configurations emerge in the long run by varying some important parameters in the model.

Our main aim is to confirm: first, whether core-periphery networks will emerge as predicted by the

theoretical model; second, whether core-periphery networks are uniquely selected (which has not

been proven by the analytical results).

There are two main findings in the paper. First, consistent with the analytical results, we pro-

vide that core-periphery networks emerge in both simulated unperturbed dynamics (where agents

are assumed to never make mistakes during the revision process) and perturbed dynamics (where

agents are allowed to make mistakes ). Second, and most importantly, we also find that with suffi-

cient large group sizes, the simulated processes consistently converge to core-periphery networks.

This finding of the uniqueness of core-periphery networks complements the analytical results, af-

firming that core-periphery networks are uniquely absorbing and stochastically stable.

The paper is organized as follows. In Section 2.2 we present the related literature. Section 2.3

describes the details of the network formation game and the noisy best-response learning dynamics.

In Section 2.4 we present in detail the simulation setups and results. Section 2.5 concludes.

2.2 Literature review

The present work adds to the theoretical literature on the evolution of social networks. Due to

Jackson & Wolinsky (1996)’s concept of pairwise stability, Jackson & Watts (2002a) study the
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evolution of network formation and show that pairwise stable networks are stochastically stable.

Feri (2007) studies an evolutionary version of Bala & Goyal (2000)’s two-way flow model with

decay, which predicts the periphery-sponsored star in the long run. Further, based on Bala & Goyal

(2000)’s one-way flow model with decay, Cui et al. (2013) consider a noisy best response learning

dynamics where agents can update their links in discrete time and may mistakes. They find that

the wheel is uniquely stochastically stable for some parameters. In our previous theoretical work,

we explore Bala & Goyal (2000)’s one-way flow model without decay with a bound D = 2, where

agents can only receive information from others within distance two.3 We show that core-periphery

networks are stochastically stable, highlighting the potential for the emergence of networks other

than simple architectures, e.g. the wheel and the star. However, the analytical results have not been

able to rule out other kinds of networks being stochastically stable. This paper contributes to these

results in two respects. First, we simulate the theoretical model to gain some important insights

into the network configurations selected in the long run. Second, our simulation results illustrate

that core-periphery networks are unique stochastically stable states.

Our paper also contributes to the literature on empirical studies of social networks. Callan-

der & Plott (2005) design a laboratory experiment to investigate the evolution of networks. Their

results find that concepts of equilibria are the principle behind the convergence of network dynam-

ics. Berninghaus et al. (2007)’s experimental results show that periphery-sponsored stars are the

unique strict Nash equilibria, which is in line with the analytical results in Bala & Goyal (2000). In

Goeree et al. (2009)’ experiment, they extend Bala & Goyal (2000)’s two-way flow model with de-

cay by considering heterogeneous agents with lower costs or higher benefits. They show that star

networks are not formed with identical agents, while stars frequently occur with heterogeneous

agents. Further, Falk & Kosfeld (2012) present an experiment based on Bala & Goyal (2000).

3See also in Jackson & Wolinsky (1996). They study the effect of such bound D in the cooperative network
formation model where connection requires mutual consent.
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Their results only support the prediction of the one-way flow model in Bala & Goyal (2000).

The contributions of the present paper are mainly in two directions. First, instead of de-

signing a laboratory experiment, this paper uses a simulation method to illustrate the evolution of

network formation. As the convergence of the evolutionary dynamics of networks usually takes

a significantly long time to occur, the disadvantage of laboratory experiments is that there are al-

ways limits on the duration, which may not be long enough for convergence. However, we are

able to set the evolutionary dynamics to last as long as possible till the convergence is observed

by using simulation. Fosco & Mengel (2011) also present a simulation of the coevolution of net-

works and Prisoner’s Dilemma games, where the results strongly support the model’s prediction

of core-periphery networks.

Second, the present work is based on a model where agents can only receive payoffs from

others within distance two, which extends to Bala & Goyal (2000)’s one-way flow model without

decay. Our results show that the simulated processes converge to core-periphery networks other

than simple architectures, e.g. the wheel and the star. This supports the analytical results that core-

periphery networks are stochastically stable. Further, this also complements that core-periphery

networks are unique, which has not been proven by analytical methods.

2.3 Model

2.3.1 Network Formation Game

We consider a one-way flow model of network formations.4 There is a population of n agents,

denoted by N = {1,2, · · · ,n} with n ≥ 4. Each agent i ∈ N decides the set of agents to whom

she forms links. A strategy used by agent i is given by a N-tuple gi = (gi1,gi2, · · · ,gin) where

gi j ∈ {0,1} is agent i’s linking decision to agent j. We say i links up to j if gi j = 1; otherwise,

4We follow the notations introduced in Jackson & Wolinsky (1996) and Bala & Goyal (2000).
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gi j = 0. We assume that agents cannot link to themselves, i.e. gii = 0,∀i ∈ N. Further, let Gi be the

set of all possible link strategies that agent i can choose. One-way flow model implies that agent

i’s linking decision to j is independent with j’s decision to i, i.e. g ji and gi j are not necessarily

equal. A network g = (gi)i∈N ∈ G is the strategy profile of all agents, where G = ∏i∈N Gi is the set

of all networks.

We say there exists a path from agent j to i if either gi j = 1 or there is a set of agents

{k1,k2, · · · ,km}, such that gik1 = gk1k2 = · · · = gkm j = 1. The distance from j to i, denoted by

d(i, j;g), is the number of links of the shortest path from agent j to i. Further, we define agent

i’s d-neighbourhood as the set of agents who are at distance d to i, denoted by Nd
i (g) = { j ∈ N :

d(i, j;g) = d}, with nd
i (g) = |Nd

i (g)| the number of agent i’s d-neighbours.

We now define the payoffs in our network formation game. As in Bala & Goyal (2000), each

agent receives information from others by forming costly links and benefits from doing so. Without

loss of generality, the value of information that each agent has is homogeneously normalized to

one. The cost of each link is c > 0. We assume that the cost is only incurred to the party who

initiates the link. We deviate from Bala & Goyal (2000) by studying the case where the distance

that information can travel is constrained. As motivated in the introduction, we assume that agents

can only observe their neighbours and the neighbours of neighbours, i.e. we focus on the case

where the constraint D = 2.5

Thus, an agent’s payoff is calculated as the sum of benefits derived from the information she

receives from others, minus the total cost incurred from forming links. More formally, given a

network g ∈ G , agent i’s payoff is given by

Ui(gi,g−i) = 1+n1
i (g)+n2

i (g)− c · ∑
j∈N

gi j (2.1)

5This is a special case of the communication threshold in Hojman & Szeidl (2008), which in contrast to our model
focuses on two-way flow. Limits in communication are also observed in the one-way flow case, which their model
cannot characterize.
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where the constant captures the value of information of agent i self.

2.3.2 Learning Dynamics

We consider a noisy best response learning dynamics due to Kandori et al. (1993) and Young

(1993). An agent is randomly selected to renew her strategy at each period t in discrete time, i.e.

t = 0,1,2, · · · . The selected agent chooses a best response to the strategy profile of other agents at

the previous period t −1, i.e.

gi(t) ∈ argmax
gi∈Gi

Ui(gi,g−i(t −1))

where gi(t) refers to agent i’s strategy at period t, and g−i(t − 1) means the strategy profile of

other agents except i at period t − 1. In the case that there are multiple best responses, agents

randomly choose one with equal probability. Agents might fail to choose the optimal strategy

during the revision process, which we call a mistake. The probability of agents making mistakes is

positive, denoted by ε > 0. We assume the agent who makes a mistake chooses randomly among

all strategies.

2.4 Simulation

In this section, we illustrate and complement the analytical results from previous literature through

simulations. Two key features of the model are particularly important: the group size n and the

probability of making mistakes ε . According to the analytical results, the probability of making

mistakes differentiates between unperturbed and perturbed learning dynamics. The group size

significantly influences the network configurations within the set of stochastically stable states.

Therefore, we conduct twelve simulations varying these two factors. Specifically, we examine
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Table 2.1. Regression between the relative frequencies and the independent variables

Dependent variable:

Core-periphery Networks Other Nash Networks

(1) (2)

Prob. Mistakes −21.257∗∗ −0.607
(8.221) (2.149)

Group Size 0.024∗ −0.035∗∗∗

(0.014) (0.003)

Period 0.040 0.005
(0.031) (0.008)

Cons −0.096 0.340∗∗∗

(0.183) (0.044)

Observations 51 54
R2 0.186 0.673
Adjusted R2 0.134 0.654
Residual Std. Error 0.264 (df = 47) 0.071 (df = 50)
F Statistic 3.586∗∗ (df = 3; 47) 34.350∗∗∗ (df = 3; 50)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

twelve set-ups involving four different group sizes: 5, 6, 8, and 10, and for each group size, we

consider three different probabilities of making mistakes: 0, 10−3 and 10−2. This approach allows

us to illustrate the effect of varying population sizes on network configurations in both unperturbed

and perturbed dynamics, as well as the impact of mistake probabilities on convergence within a

given group size.

Moreover, in all simulations, we focus on scenarios where the linking cost is lower than each

agent’s information value, specifically c = 0.5. Additionally, each simulation is conducted over

three different periods: 103, 104 and 106 periods, and each setup is repeated 100 times. We monitor

the network structures across various time periods of the dynamics and assess the frequency of

core-periphery networks and other types of Nash equilibrium networks.

The main variable we look at is the relative frequencies of core-periphery networks and other

permissible Nash networks. Table 2.1 presents the regression analyses examining the relationship

between the relative frequencies of core-periphery networks, other Nash networks, and various
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influencing variables. e.g. probability of mistakes, group size and period.

We find that variables significantly associated with the emergence of core-periphery networks

include the probability of mistakes and group size. Specifically, the probability of mistakes has a

negative impact on the relative frequency of core-periphery networks at the 1% significance level,

indicating that core-periphery networks are more likely to emerge as the probability of mistakes

approaches zero. Additionally, group size has a positive effect at the 10%significance level, sug-

gesting that larger group sizes are associated with a significantly higher relative frequency of core-

periphery networks. Conversely, group size exerts a significantly negative effect on the relative

frequency of other Nash networks at the 1% significance level. Furthermore, our regressions show

that the effects of time periods are insignificant for both core-periphery and other Nash networks.

Following this, we proceed to analyze the effects of the probability of mistakes, group size,

and periods individually, offering our explanations for the observed results.

We present our first results of simulations of the unperturbed dynamics (i.e. the scenarios

where the probability of making mistakes ε is 0), concerning different group sizes.

Result 2.4.1. Core-periphery networks always emerge for all group sizes. With a large enough

group size, the simulated unperturbed process converges to core-periphery networks with approx-

imately 100 percent.

Support for Result 2.4.1 is provided by Figure 2.1. Figure 2.1 displays the relative frequencies

of core-periphery networks and other types of Nash equilibrium networks in scenarios where the

probability of making mistakes is zero, i.e. within the unperturbed best response learning dynam-

ics. First, we look at the results for group sizes n = 5 and n = 6. We observe a high occurrence of

non-Nash networks and a relatively high frequency of other Nash networks. Precisely, at t = 106,

the emergence of Nash networks is 35 percent for n = 5, with 8 percent core-periphery networks,

whilst for n = 6, the frequency of Nash networks is 11 percent, with only 3 percent corresponding
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Figure 2.1. Relative frequencies of core-periphery networks and other Nash networks in the unperturbed
dynamics

to core-periphery networks. In contrast to Nash networks, however the frequency is relatively low,

we observe that core-periphery networks are the unique strict Nash networks.

One possible way to account for the low frequencies of core-periphery networks and other

Nash networks is as follows. In smaller group sizes, there is a higher prevalence of Nash networks

that are not strict Nash equilibria. Note that in a non-strict Nash network, agents may randomly

choose among multiple best response strategies. Thus, a single agent switching to an alternative

best response can cause the dynamics to reach toward a non-Nash network, as the transition in

Figure 2.2. The higher prevalence of Nash networks prolongs the probability of such transitions,

reducing the likelihood of the emergence of core-periphery networks within a given period t.

If we look at two graphs for group sizes n = 8 and n = 10 in Figure 2.1, the results are

significantly different. The findings related to the convergence toward core-periphery networks are

more compelling: the relative frequency of other Nash networks remains zero and the frequency

of core-periphery networks approaches approximately 100 percent over time. Specifically, the
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Figure 2.2. Transition from a Nash network to a non-Nash network

relative frequency of core-periphery networks for a group size of n = 8 is 73 percent at t = 103

and reaches 100 percent by t = 104. For a group size of n = 10, the frequency of core-periphery

reaches 99 percent by t = 106. This reveals that with sufficiently large group sizes, the dynamics

will inevitably converge to a core-periphery network, suggesting that core-periphery networks are

uniquely absorbing states.

Our second result concerns the stochastical stability of networks, i.e. which kinds of networks

that the dynamics coverage to if the probability of mistakes approaches zero.

Result 2.4.2. The relative frequencies of core-periphery networks increase when the probability

of mistakes approaches zero. With a large enough group size, the simulated stochastic process

converges to core-periphery networks with approximately 100 percent.

Support for Result 2.4.2 is provided by Figure 2.3. Figure 2.3 shows the relative frequencies

of core-periphery networks and other Nash networks at period t = 106, across various group sizes

and probabilities of mistakes.

First, note that stochastically stable states are the states in the support of the invariant dis-

tribution of the revision dynamics as introduced in the previous section. Figure 2.3 reveals that
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Figure 2.3. Frequencies of core-periphery Networks and other Nash networks at t = 106, varying in proba-
bilities of mistakes

for group sizes n = 5,6,8 and 10, the set of stochastically stable states contains core-periphery

networks. For instance, for group sizes n = 5 and n = 6, although the prevalence of core-periphery

networks is relatively low, the frequency remains positive and increases as the probability of mak-

ing mistakes approaches zero. As argued above, the low frequency of core-periphery networks

may be attributed to the high prevalence of non-strict Nash networks. However, for these two

smaller group sizes, the emergence of other network structures suggests that we cannot entirely

rule out the possibility that other types of network configurations may also be stochastically stable.

Further, for sufficient large group sizes, such as n= 8 and n= 10, simulation results imply that

core-periphery networks are the unique stochastically stable states. As shown in Figure 2.3, the

relative frequency of core-periphery networks is 67 percent at ε = 10−3 and reaches 100 percent

at ε = 0 for n = 8. For n = 10, although the relative frequency of core-periphery networks remains

low at ε = 10−3, at just 2 percent. However, as the probability of mistakes approaches zero, this

frequency increases to 99 percent. This provides empirical evidence supporting the uniqueness of
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the stochastical stability of core-periphery networks.

2.5 Conclusion

The present paper provides a simulation analysis of the evolution of non-cooperative network

formation. Our simulation is based on a model extending to the one-way flow model of Bala &

Goyal (2000), where agents can only receive information within a distance of two. The simulation

results show that the prediction regarding absorbing sets and stochastically stable states of the

model are consistent with the model. Core-periphery networks are observed across all different

setups, indicating that they are not only absorbing but also stochastically stable. In addition, with

sufficient large group sizes, the uniqueness of core-periphery networks is observed in the long

run. Starting with any network, the noisy best-response learning dynamics will converge to core-

periphery networks.



Chapter 3

The Effects of Heterogeneous Constraints on Social

Coordination and Network Formation

3.1 Introduction

In various social and economic activities, people often benefit from adopting the same actions

or adhering to some common standards (e.g. Latex vs. Microsoft, C ++ vs. Python, Windows

vs. MacOS, etc.). This can be characterized as coordination games, which have two pure Nash

equilibria, i.e. payoff-dominant equilibrium and risk-dominant equilibrium (see in Harsanyi et al.

1988). Related literature points out that agents usually coordinate on the same action (see e.g.

Kandori et al. 1993; Young 1993; Blume 1993, 1995; or Ellison 1993, 2000, etc.). However, some

examples in our real world reveal that it is often the case people do not choose the same action as

others, for example, both C++ and Python have positive market shares. Thus, it is important to

know what drives people to choose different actions and which actions will be selected in the long

run.

To solidify the idea, consider a group of students collaborating on a project. A student is bet-

ter off if she forms a team with somebody using the same software, i.e. either C++ or Python. In

addition to which software to use, her payoff from this joint project also depends on the choice of

35
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her teammates. Therefore, each student has to make two decisions: software and collaborators to

maximize her payoff. This example gives rise to the co-evolutionary model of 2×2 coordination

games and network formation (see e.g. Jackson & Watts 2002b, Goyal & Vega-Redondo 2005,

Staudigl & Weidenholzer 2014). Moreover, although agents have the flexibility to choose whom

they interact with, the number of interactions they can maintain is often limited due to constraints

on socialising, through e.g. decreasing marginal payoff from socialising or increasing marginal

cost of interaction (see e.g. Jackson & Watts 2002b, Staudigl & Weidenholzer 2014, Cui & Wei-

denholzer 2021, or Cui & Shi 2022). Previous work assumes that constraints on interactions are

homogeneous for all agents. However, there is empirical evidence in real-life social networks like

Twitter revealing that the number of links that agents can support is different (see e.g. Albert et al.

1999 and Kwak et al. 2010). Thus, it seems more realistic to assume that such constraints on in-

teractions are heterogeneous across agents. Therefore, in this paper, we set up a co-evolutionary

model of coordination game and network formation, to study how such heterogeneous constraints

affect agents’ action choices and linking decisions, and further, which action in the coordination

game is selected in the long run.1

To be more specific, we follow the model of Staudigl & Weidenholzer (2014) but assume that

agents face heterogeneous linking constraints. More precisely, we consider a 2× 2 coordination

game played among a finite number of agents. Every agent makes two choices simultaneously:

the action played in the coordination game and a set of agents she plays the game with. Forming

links is costly. The payoff of each agent is the sum of payoffs from the coordination game played

with each agent she links to, minus the total cost of forming links. We assume that there are two

groups of agents who face two different linking constraints: high and low. The size of the low-

constraint group (i.e. the number of agents in the group) is assumed to be larger than the size of the

1See also Zeng (2019) for some static properties of Nash equilibria with heterogeneous constraints in 2×2 coor-
dination games and Lu & Shi (2023) for a dynamics analysis of size-dependent minimum effort game.
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high-constraint group.2 Linking costs are assumed to be low enough so that in principle any link

is beneficial. Thus, it is optimal for each agent to form as many links as her constraint. However,

the optimal actions in the coordination game may be different for low- and high-constraint groups.

In fact, our model shows that polymorphic states (where agents with different constraints

play different actions) may be Nash equilibria for some given game parameters. Specifically, the

profiles where agents in the low-constraint group play the payoff-dominant action and agents in

the high-constraint group play the risk-dominant action can be Nash equilibria if the low and high

constraints are significantly different. To see this point, consider a polymorphic state as described

above. Then it may be the case that agents in the low-constraint group focus all of their links

on agents playing payoff-dominant action and thus get the highest possible payoff, which is the

mechanism that drives the results in Staudigl & Weidenholzer (2014). However, agents in the

high-constraint group may lack sufficient potential interaction partners with the payoff-dominant

action. Instead, they face a distribution of mixed actions involving both risk-dominant and payoff-

dominant actions, such that playing the risk-dominant action may yield a higher expected payoff.

This is similar to the mechanism in Goyal & Vega-Redondo (2005) where the complete network

is formed and the risk-dominant action does well. Thus, such a polymorphic state can be Nash

equilibria for some given parameters. However, the other kind of polymorphic state where agents in

the low-constraint group play the risk-dominant action and agents in the high-constraint group play

the payoff-dominant action, can never be Nash equilibrium. The reason is that if agents with the

higher constraint find there are sufficient potential interaction partners with the payoff-dominant

action, it has to be also the case for agents with the lower constraint. Thus, it is always profitable

for agents in the low-constraint group to deviate from the risk-dominant action. In addition, in line

with Goyal & Vega-Redondo (2005) and Staudigl & Weidenholzer (2014), monomorphic states

2This assumption has support from the empirical literature (see e.g. Goyal et al. 2006 and Jackson & Rogers 2007)
who find that a minority of agents support a large number of links.
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(where all agents play the same action) are always Nash equilibria since when all other agents play

the same action, an agent will always be better off if she chooses the same action as others.

Further, given the multiplicity of Nash equilibria, we study the co-evolution of the above

static game in discrete time, to predict which kind of profiles will be selected in the long run.

We assume that at each period agents may receive opportunities to revise their strategies based

on a noisy myopic best-response rule. That is, agents choose actions and links that optimize their

payoffs against the distribution of actions in the previous period. There is however a probability

that agents make mistakes and choose a random strategy. We follow the standard methodology

developed by Kandori et al. (1993), Young (1993) and Freidlin & Wentzell (1998) to identify the

stochastically stable states as the long-run prediction, which are the states in the support of a unique

invariant distribution when the probability of making mistakes approaches zero. Naturally, states

that are more robust to mistakes are stochastically stable.

In the first step, we identify the absorbing sets, which are the sets of states once reached

can never be left without mistakes. The literature considering homogeneous constraints (see e.g.

Staudigl & Weidenholzer 2014 and Cui & Shi 2022) shows that the absorbing sets consist of only

monomorphic states. In contrast, in our model, polymorphic states can also be absorbing if the two

constraints on links are significantly different. Following this, we characterize the set of stochasti-

cally stable states by comparing the robustness of absorbing states to mistakes. In cases where the

low and high constraints are close, the set of stochastically stable states contains only monomor-

phic states, which is in line with the model in Goyal & Vega-Redondo (2005) and Staudigl &

Weidenholzer (2014). More precisely, the payoff-dominant action emerges in the long run if both

constraints are small. In contrast, the risk-dominant action will be selected if both constraints are

high. Surprisingly, we also find that if the low and the high constraints are significantly different

from one another, the polymorphic states where agents in the low-constraint group play the payoff-

dominant action and agents in the high-constraint group play the risk-dominant action, can also be
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stochastically stable.

The structure of this paper is as follows. In section 3.2, we review the related literature.

Section 3.3 outlines our model. In section 3.4, we characterize the Nash equilibria of the static

game. Section 3.5 presents our results on the set of stochastically stable states for different levels

of linking constraints. Section 3.6 concludes. Formal proofs of our results are relegated to the

Appendix A.2.

3.2 Literature review

This paper adds to the literature on the co-evolution of coordination and network formation games

(see e.g. Jackson & Watts 2002b, Goyal & Vega-Redondo 2005, Staudigl & Weidenholzer 2014.).

Jackson & Watts (2002b) consider a model where the network is bilaterally formed based on the

concept of pairwise stability provided by Jackson & Wolinsky (1996) and point out that whether

risk-dominant or payoff-dominant conventions are stochastically stable depends on the relation-

ships between payoffs in the coordination games and linking costs. Goyal & Vega-Redondo (2005)

consider the case where agents non-cooperatively form unilateral links and find that which conven-

tion will emerge also depends on the relative level of linking costs to payoffs. As the adjustment

process in Goyal & Vega-Redondo (2005) is different to the one used in Jackson & Watts (2002b),

the precise nature of the relationship between payoffs and linking costs differs too.3 Goyal & Vega-

Redondo (2005) show that agents will coordinate on the risk-dominant action if the linking cost is

low, and they will select the payoff-dominant action if the linking cost is high. Further, Staudigl &

Weidenholzer (2014) extend Goyal & Vega-Redondo’s model by considering homogeneous con-

straints on the number of links agents can support. Their study shows that if the constraint is low

3As argued by Goyal & Vega-Redondo (2005), the main source of this discrepancy lies in the fact that in Goyal &
Vega-Redondo (2005) actions and links are chosen simultaneously but follow independent process in Jackson & Watts
(2002b).



3.2. LITERATURE REVIEW 40

compared to the population, the payoff-dominant action is selected, while the risk-dominant action

will be selected in the long run if the constraint is high. Cui & Weidenholzer (2021) consider

the effect of lock-in on the selection of conventions based on Staudigl & Weidenholzer (2014)’s

model, where agents receive payoffs not only from links they form but also from the links they

receive. They show that agents using different actions sometimes can also be stochastically stable.

Our model differs from these studies in that agents face heterogeneous constraints on the number

of links. Agents are distinguished by two different levels of linking constraints: high and low. We

find that such heterogeneous linking constraints will lead to the co-existence of both risk-dominant

and payoff-dominant actions.

The most closely related literature to the present work is the paper by Lu & Shi (2023). They

also study a co-evolutionary model with heterogeneous constraints on links, featuring a minimum-

effort game. They find that all agents will choose high effort levels if everybody faces low con-

straints, while low effort levels will be chosen if constraints are high for everybody. The coexis-

tence of different effort levels happens if constraints are significantly different. We remark that at

first sight the mechanism and results are similar. However, there are some important differences

between their model and ours. While they focus on the size-dependent minimum-effort games,

we study 2× 2 coordination games. In minimum-effort games, agents always want to match the

effort level of the lowest of their interaction partners. This implies that agents choosing the high

effort level can never interact with agents choosing lower effort levels. In contrast, agents with

payoff-dominant actions may interact with those with risk-dominant actions in equilibria of our

model. Furthermore, our results emphasise that the coexistence is not driven by the particular best

response structures of minimum-effort games, where it is always best to keep the effort level in

line with the weakest link but carry over to games where the best response to a mixed profile de-

pends on the exact distribution of actions. In addition, Bilancini & Boncinelli (2018) also study

heterogeneous agents and build a model with two different types of agents, where interactions be-
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tween different types result in additional costs. They show that when the costs of interactions with

different types are high, one type will play the risk-dominant action and the other type will play

the payoff-dominant action.

In addition to the literature on coordination and network formation games, there is also a

strand of literature where agents can determine their interaction partners by moving among a set

of locations or islands (see e.g. Oechssler 1997, Dieckmann 1999, Anwar et al. 2002, Bhaskar &

Vega-Redondo 2004, and Pin et al. 2017). when there are restrictions on the mobility between

locations, or constraints on the capacity of each location, the co-existence of conventions might be

observed. However, the co-existence of conventions depends on the limited interaction between

locations. In contrast, in our model agents have the flexibility to interact with anybody.

3.3 Model

We consider a 2 × 2 coordination game played among the population of n agents, denoted by

N = {1,2, · · · ,n} (n ≥ 3). Each agent i can choose an action ai from the action set A = {A,B}.

The payoff of agent i is given by u(ai,a j) when she plays this coordination game against agent j.

An agent who chooses action A in the coordination game is called an A-agent. Similarly, B-agents

are those who play action B. The payoff matrix of this coordination game is given in the following

table.

A B

A (a, a) (c, d)
B (d, c) (b, b)

We assume that b > c and a > d, so that strategy (A,A) and (B,B) are two pure strategy

Nash-Equilibria. Further, we assume b > a so that (B,B) is the payoff-dominant equilibrium that

yields the highest payoff. Moreover, we assume that a+ c > b+d so that (A,A) is risk-dominant
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equilibrium according to Harsanyi et al. (1988), meaning that A is the best response against an

agent who plays both actions with equal probability (1
2 ,

1
2). Given all those assumptions, we can

simply have c > d. Further, we assume a > c such that A-agents prefer playing against A-agents

over playing against B-agents. Combining all assumptions together we have the following order of

payoffs b > a > c > d.

Apart from their actions in the coordination game, agents may also determine the set of agents

that they link to. We denote by gi j the link decision to agent j made by agent i, where gi j = 1

denotes that agent i forms a link to agent j and otherwise gi j = 0. We consider the case where

links are unilaterally formed, i.e. agent i decides on the link gi j and agent j does not have a say

in this link.4 We assume that agents cannot link to themselves, i.e. gii = 0. Agent i’s linking

strategy gi can be defined as a n-dimensional vector, i.e. gi = (gi1,gi2, · · · ,gin) ∈ Gi = {0,1}n. The

out-degree of agent i is denoted by dout
i = ∑ j gi j, i.e. the number of links that agent i forms. The

network formed by all agents is denoted by g = (gi)i∈N . Agent i’s pure strategy si includes her

action choice ai ∈ A and linking strategy gi ∈ Gi, i.e. si = (ai,gi) ∈ A ×Gi = Si. Further, a

strategy profile is denoted by s = (s1,s2, · · · ,sn) ∈ Πi∈NSi = S .

Agents play the coordination game only with those agents they link to. We assume that the

payoff generated by the coordination game only goes to the agent who forms the link. The agent

who is passively linked gets zero from the coordination game played.5 Forming links is costly and

the cost is denoted by γ . The total payoff of an agent is given by the sum of payoffs she receives

by playing the coordination game with each agent she links to, minus the total cost incurred by

forming those links. Thus, given a strategy profile s = (si)i∈N , the total payoff for agent i is given

4There is also some literature considering bilateral links (e.g. Jackson & Wolinsky 1996, Dutta & Mutuswami 1997
or Jackson & Watts 2002b) where forming a link requires the consents of both parties.

5Goyal & Vega-Redondo (2005) and Cui & Weidenholzer (2021) also consider a model where agents receive
benefits from passive links as well.
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by

Ui(si,s−i) =
n

∑
j=1

gi j ·ui(ai,a j)− γ ·dout
i . (3.1)

We focus on a case where the number of links that agent i can support is limited by ki, i.e.

dout
i ≤ ki as in Staudigl & Weidenholzer (2014).6 In addition, we are interested in a scenario where

linking constraints are heterogeneous among agents. Particularly, we consider a case where there

are two types of agents, one with a lower constraint kℓ and the other with a higher constraint kh,

i.e. kℓ < kh. We define the set of agents with the lower constraint as low-constraint group, denoted

by Nℓ with nℓ = |Nℓ| the number of agents. Similarly, high-constraint group is the set of agents

with the higher constraint, denoted by Nh with nh = |Nh|. We focus on the case nℓ > nh where the

low-constraint group is larger than the high-constraint group.

Consider a scenario where the linking cost is low, i.e. γ < d, so that in principle an agent

wants to form links to any other agents regardless of their actions. In this case, agents will form

the maximum number of links they can support, i.e. kℓ or kh. Thus, the total payoff function above

is equivalent to

Ui(si,s−i) =
n

∑
j=1

gi j ·ui(ai,a j)− γ · ki (3.2)

where ki ∈ {kℓ,kh} is the linking constraint for agent i.

3.4 Nash Equilibrium

In our characterization of Nash equilibrium, two types of states play an important role. Firstly, we

denote by
−→
XX the set of monomorphic states, where X ∈ {A,B}. In a monomorphic state, every

6Alternatively. we can think of this assumption as links becoming prohibitively expensive as a certain threshold is
crossed.
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Figure 3.1. A monomorphic state in
−→
AA when nℓ = 4,nh = 2,kℓ = 1 and kh = 2.

agent chooses the same action and forms the maximum number of links. More formally, the set of

monomorphic states is given by

−→
XX = {s ∈ S|(ai = a j = X)∧ (dout

i = kℓ,dout
j = kh),∀i ∈ Nℓ, j ∈ Nh}.

For example, in a monomorphic state s ∈ −→
AA, all agents play action A, agents in the low-

constraint group support kℓ links, and agents in the high-constraint group support kh links. Fig 3.1

depicts an example of a monomorphic state in
−→
AA when nℓ = 4,nh = 2,kℓ = 1 and kh = 2.

Secondly, we denote by
−→
XY the set of polymorphic states where X ,Y ∈ {A,B} and X ̸= Y .

Less formally, in a polymorphic state, all agents in the low-constraint group play one action and

all agents in the high-constraint group play the other action. And in terms of linking strategy, all

agents exhaust their constraints. Furthermore, agents will first form links to other agents within

the same group, and then link to agents in the other group to fill up their remaining slots if any.

More formally,
−→
XY is defined by

−→
XY = {s ∈ S|(ai = X ,a j = Y,a j ̸= ai)∧ (dout

i = kℓ,dout
j = kh)∧ ( ∑

i′∈Nℓ

gii′

= min{kℓ,nℓ−1}, ∑
j′∈Nh

g j j′ = min{kh,nh −1}),∀i ∈ nℓ, j ∈ Nh}.
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Figure 3.2. A polymorphic state in
−→
BA when nℓ = 4,nh = 2,kℓ = 1 and kh = 2.

For example, in a polymorphic state s ∈ −→
AB, all agents in the low-constraint group play the

same action A and support kℓ links, whereas all agents in the high-constraint group Nh play action

B and support kh links. A- agents link to other A-agents first and then link to B-agents if they still

have remaining slots, e.g. if kℓ > nℓ−1. Similarly, B- agents link to other B-agents first and then

link to A-agents if kh > nh − 1. Fig 3.2 depicts an example of a polymorphic state in
−→
BA when

nℓ = 4,nh = 2,kℓ = 1 and kh = 2.

Following the same mechanism as in Staudigl & Weidenholzer (2014), finding the best re-

sponse can be divided into two steps: First, for each of the two actions, determine the payoff

optimizing linking strategy and calculate the payoffs associated with it. This is summarized by

the link-optimized payoff functions (for short, the LOPs). And second, compare the LOPs across

actions and choose the one with the highest payoff.

We denote by m the number of A-agents at a given strategy profile s. The number of B-agents

is thus n−m. The LOPs are thus given by

vi(ai,m) = max
gi∈Gi

Ui((ai,gi),m), ∀i ∈ N.

where Ui((ai,gi),m) is agent i’s payoff given her strategy si = (ai,gi) and the number of A-agents

m. Consider an agent i whose linking constraint is ki ∈ {kℓ,kh}. Given the distribution of actions
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(m,n−m), her LOP of choosing action A is given by

vi(A,m) = a ·min{ki,m−1}+ c · (ki −min{ki,m−1})−M · ki.

Intuitively, given the order of payoffs a > c, A-agents prefer playing against other A-agents

over playing against B-agents. Thus, agent i will first link to other A-agents. Considering different

levels between the constraint ki and the number of other A-agents m−1, the maximum number of

links to A agents that i could form is min{ki,m−1}. After forming links to A-agents, agent i will

then fill her remaining slots ki −min{ki,m− 1} by linking to B-agents if there are any remaining

slots left.

Similarly, the order of payoffs b > d implies that B-agents prefer forming links with other B-

agents first. Then they will fill up their remaining slots by linking to A-agents. Note that a B-agents

faces n− (m− 1) other B-agents if agent i chooses to play action B. Agent i’s LOP of choosing

action B is thus given by

vi(B,m) = b ·min{ki,n−m−1}+d · (ki −min{ki,n−m−1})−M · ki.

Given the LOPs, we now define the concept of Nash equilibrium in our game. Consider a

strategy profile s ∈ S and the corresponding distribution of actions (m,n−m). Strategy profile s

is a Nash equilibrium if the following two conditions hold:

i) vi(A,m)≥ vi(B,m−1) for all i with ai = A;

ii) v j(B,m)≥ v j(A,m+1) for all j with a j = B.

We denote by S ⋆ the set of Nash equilibria. Given the previous observations, we are now

able to state the following proposition which characterizes the set of Nash equilibria. In particular,

Nash equilibria correspond to the monomorphic states and the polymorphic states.
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Proposition 3.4.1. There exist two thresholds kℓ= (b−d)(nℓ−1)−(a−c)nh
(c−d) and kh = (b−d)nℓ−(a−c)(nh−1)

(c−d) ,

such that:

i) if kℓ ≤ kℓ and kh ≥ kh, then S ⋆ =
−→
AA∪−→

BB∪−→
BA;

ii) if kℓ > kℓ or kh < kh, then S ⋆ =
−→
AA∪−→

BB.

The proof to Proposition 3.4.1 proceeds using a series of lemmas. Note that each agent’s strat-

egy consists of two parts: action choice and linking choice. First, we prove that only monomorphic

states and polymorphic states can potentially be a Nash equilibrium, i.e. S ⋆ ⊆−→
AA∪−→

BB∪−→
AB∪−→

BA.

Next, we show that any strategy profile in
−→
AB is not a Nash equilibrium. That is, a Nash equilib-

rium cannot be a state where agents in the low-constraint group play the risk-dominant action and

agents in the high-constraint group play the payoff-dominant action. Then, we prove that for any

kℓ and kh, monomorphic states are always Nash equilibria. In the last step, we prove that a strategy

profile in
−→
BA is Nash equilibrium if and only if kℓ ≤ kℓ and kh ≥ kh.

Lemma 3.4.1. If s /∈ −→
AA∪−→

BB∪−→
AB∪−→

BA, then s is not a Nash equilibrium.

Intuitively, since agents in the same group have the same constraints, they face the same

situation. This implies that whenever it is optimal for one agent to stay at her action, then it is also

optimal for agents with the other action to switch. It follows that all agents in the same group have

to choose the same action in a Nash equilibrium.

The next lemma establishes that all monomorphic states are Nash equilibria.

Lemma 3.4.2.
−→
AA∪−→

BB ⊂ S ⋆ for any kℓ,kh and n.

The proof of Lemma 3.4.2 is straightforward. First, consider a strategy profile s in the

monomorphic set
−→
AA. The corresponding distribution of actions is (n,0). Since there are only

A-agents, none of them will deviate from playing action A as switching to B will lower their payoff

per link by a−d. Additionally, no agent has incentives to form fewer links since each link yields
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a−γ , which is strictly positive. Thus, no one wants to deviate either from her current action choice

or from her linking choice. Therefore, s is a Nash equilibrium. Following the same argument as

s ∈ −→
AA, we can also prove that any strategy profile s ∈ −→

BB is also a Nash equilibrium.

Note that coordinating on the same action always yields a higher payoff than not coordinating.

when all agents choose the same action, no one has incentives to switch to the other action. The

next two lemmas extend the discussion on Nash equilibrium to the polymorphic states.

Lemma 3.4.3. No state s ∈ −→
AB is a Nash equilibrium.

Intuitively, independent of the sizes of the two groups, a Nash equilibrium cannot be a state

where agents in the low-constraint group choose the risk-dominant action and agents in the high-

constraint group choose the payoff-dominant action. If agents in the high-constraint group choose

the payoff-dominant action, it implies that there are sufficient B-agents around for agents with

the higher constraint. Thus, for agents with the lower constraint, the number of B-agents is also

sufficient. Their best response therefore is choosing the payoff-dominant action B.

The following lemma establishes that a polymorphic state s ∈−→
BA could be a Nash equilibrium

for some constraints kℓ and kh.

Lemma 3.4.4.
−→
BA ⊂ S ⋆ iff kℓ ≤ kℓ and kh ≥ kh.

Lemma 3.4.4 provides us with conditions for the co-existence of the risk-dominant action and

the payoff-dominant action in a Nash equilibrium. Such a Nash equilibrium is characterized by

agents in the low-constraint group choosing the payoff-dominant action, and agents in the high-

constraint group choosing the risk-dominant action. We provide two examples to develop intuition

for our findings.

Example 3.4.1. Figure 3.2 depicts a polymorphic state in
−→
BA where nℓ = 4,nh = 2,kℓ = 1 and kh =

2. For any payoffs (a,b,c,d) fulfilling our assumptions, one can check that kℓ ≤ (b−d)·3−(a−c)·2
c−d
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and kh < (b−d)·4−(a−c)
c−d hold, so that the second condition for polymorphic equilibrium is violated.7

Therefore, there exists no polymorphic equilibrium. To develop intuition, consider the strategy

profile depicted in Figure 3.2. If agents in the high-constraint group choose action B, their optimal

linking choice is to link to two B-agents and they will get 2 · b by doing so. If they choose action

A, the highest payoff is a+ c by linking to one A-agent and one B-agent. Since b > a > c > d, we

have 2 ·b > a+ c, then agents in the high-constraint group will always switch to action B.

Example 3.4.1 highlights that if the conditions identified in Lemma 3.4.4 fail, then there

cannot be polymorphic equilibrium. Intuitively, while the low-constraint group has a small enough

constraint so that choosing B is optimal, the constraint of agents in the high-constraint group is so

small that choosing B would be optimal for them too. If they had a larger constraint, it may be

optimal for them to stay with A as the following example shows.

Example 3.4.2. Figure 3.3 depicts another example of a polymorphic state in
−→
BA. Assume that

a+3c ≥ 3b+d.8 Agents in the low-constraint group will stay with B provided b > a. Furthermore,

agents in the high-constraint group will stay with A provided a+ 3c ≥ 3b+ d. To see this, note

that each agent in Nh forms three links with B-agents and one link with the other A-agent. By

playing action A, she gets 3c from playing against all B-agents and a from playing against the

other A-agent. If she switches to B, she gets 3b from playing against all B-agents and d from

playing against the other A-agent. Given that a+3c ≥ 3b+d, she will stay with action A. Thus,

the state depicted in Figure 3.3 is a Nash equilibrium.9

7Note that b > a > c > d. Inequality kℓ ≤ (b−d)·3−(a−c)·2
c−d holds since that (b−d)·3−(a−c)·2

c−d = (b−d)+(b−a+c−d)·2
c−d >

(b−d)
c−d > 1= kℓ. Inequality kh < (b−d)·4−(a−c)

c−d holds since that (b−d)·4−(a−c)
c−d = (b−d)·3+(b−a+c−d)

c−d > (b−d)·3
c−d > 3> 2= kh.

8One can check that a+3c ≥ 3b+d is plausible, e.g. (a,b,c,d) = (10,11,9,1).
9If a+3c≥ 3b+d, then kℓ ≤ (b−d)·2−(a−c)·2

c−d and kh ≥ (b−d)·3−(a−c)
c−d hold so that the constraints fulfill the conditions

identified in Lemma 3.4.4.
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Figure 3.3. A polymorphic state in
−→
BA for nℓ = 3,nh = 2,kℓ = 1 and kh = 4, which is a Nash equilibrium

in a coordination game if a+3c ≥ 3b+d. White circles represent four agents in the low-constraint group.
Grey circles represent two agents in the high-constraint group.

3.5 Myopic best response learning

As we have seen in the previous section, our model may feature a multiplicity of equilibria. To

assess which of these equilibria is most likely to arise in the long run, we consider a model of

myopic best response learning where agents make occasional mistakes in the spirit of Kandori et al.

(1993), Young (1993) and Ellison (1993, 2000). The unperturbed model is defined as follows. In

discrete-time t = 0,1,2,3, · · · , each agent may receive the opportunity to revise her strategy (both

action and links) with a positive probability λ ∈ (0,1). This probability is independent among

all agents and periods. When getting the opportunity to revise in period t, each agent chooses

a strategy that maximizes her payoff in the last period t − 1. More formally, agent i chooses a

strategy in the period t as follows:

st
i ∈ arg max

si∈Si
Ui(si,st−1

−i )

where st−1
−i is the strategy profile played by agents except i in the last period t − 1. If there are

multiple best responses, agents choose one of them at random.
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In light of our discussion in the previous section, this revision protocol can be analyzed in

two steps: i) for each action, agents first determine the optimal linking strategy, and ii) given the

optimal linking strategies for both actions, agents then determine which of two actions is optimal.

This approach is captured by the LOPs. Formally, an agent i chooses her action in the following

way:

i) when at−1
i = A, switch to B if vi(B,mt−1 −1)> vi(A,mt−1), remain with A if vi(B,mt−1 −

1)< vi(A,mt−1), randomize between A and B if vi(B,mt−1 −1) = vi(A,mt−1);

ii) when at−1
i = B, switch to A if vi(A,mt−1+1)> vi(B,mt−1), remain with B if vi(A,mt−1+

1)< vi(B,mt−1), randomize between A and B if vi(A,mt−1 +1) = vi(B,mt−1),

where at−1
i denotes i’s action and mt−1 is the number of A-agents in the last period t −1.

The revision rule outlined above gives rise to a Markov chain on the state space S ≡ S1 ×

S2×·· ·×Sn. In this context, a state s in the space S is equivalent to a strategy profile s= (si)i∈N .

We are interested in sets of states to which this process converges. These sets are known

as absorbing sets (see e.g. Kandori et al. (1993), Young (1993), Freidlin & Wentzell (1998), and

Ellison (2000)). An absorbing set, denoted by S⋆⋆, is a minimum subset of S such that:

i) for any pair of states s,s′ ∈ S⋆⋆, the probability of a transition from s to s′ is positive;

ii) for any two states s ∈ S⋆⋆ and s′′ /∈ S⋆⋆, the probability of a transition from s to s′′ is zero.

We denote the set of all absorbing sets by S ⋆⋆.

We now proceed to characterize those absorbing sets. By considering various ranges of the

game parameters m, n, kℓ, and kh, we have computed the switching thresholds for agents in both

groups, that is, we provide conditions on the distribution of actions when agents find it optimal to

switch actions and when they will remain at their current actions. These results are summarized in
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the Table 3.1. This allows us to have a full characterization of absorbing sets which is presented as

the following proposition. 10

Table 3.1. Where "a.s" means that an agent always switches to the other action and "n.s" means that an
agent never switches to the other action.

Switching Thresholds for A-agents

v(B,m−1)≥ v(A,m) kh > kℓ ≥ m−1 kh ≥ m−1 > kℓ m−1 > kh > kℓ

kh > kℓ ≥ n−m kh > kℓ ≥ n−m kh > kℓ ≥ n−m

i ∈ Nℓ m ≤ (n−1)(b−d)−kℓ(c−d)
a+b−c−d +1 := M1

ℓ m ≤ n− a−d
b−d kℓ := M2

ℓ m ≤ n− a−d
b−d kℓ

j ∈ Nh m ≤ (n−1)(b−d)−kh(c−d)
a+b−c−d +1 := M1

h m ≤ (n−1)(b−d)−kh(c−d)
a+b−c−d +1 m ≤ n− a−d

b−d kh := M2
h

kh > kℓ ≥ m−1 kh ≥ m−1 > kℓ m−1 > kh > kℓ

kh ≥ n−m > kℓ kh ≥ n−m > kℓ kh ≥ n−m > kℓ

i ∈ Nℓ a.s. a.s. a.s.

j ∈ Nh m ≤ (n−1)(b−d)−kh(c−d)
a+b−c−d +1 m ≤ (n−1)(b−d)−kh(c−d)

a+b−c−d +1 m ≤ n− a−d
b−d kh

n−m > kh > kℓ

i ∈ Nℓ a.s. a.s. a.s.
j ∈ Nh a.s. a.s. a.s.

Switching Thresholds for B-agents

v(A,m+1)≥ v(B,m) kh > kℓ > m kh > m ≥ kℓ m ≥ kh > kℓ

kh > kℓ > n−m−1 kh > kℓ > n−m−1 kh > kℓ > n−m−1

i ∈ Nℓ m ≥ (n−1)(b−d)−kℓ(c−d)
a+b−c−d m ≥ n−1− a−d

b−d kℓ m ≥ n−1− a−d
b−d kℓ

j ∈ Nh m ≥ (n−1)(b−d)−kh(c−d)
a+b−c−d m ≥ (n−1)(b−d)−kh(c−d)

a+b−c−d m ≥ n−1− a−d
b−d kh

kh > kℓ > m kh > m ≥ kℓ m ≥ kh > kℓ

kh > n−m−1 ≥ kℓ kh > n−m−1 ≥ kℓ kh > n−m−1 ≥ kℓ

i ∈ Nℓ n.s. n.s. n.s.

j ∈ Nh m ≥ (n−1)(b−d)−kh(c−d)
a+b−c−d m ≥ (n−1)(b−d)−kh(c−d)

a+b−c−d m ≥ n−1− a−d
b−d kh

n−m−1 ≥ kh > kℓ

i ∈ Nℓ n.s. n.s. n.s.
j ∈ Nh n.s. n.s. n.s.

Proposition 3.5.1. There exist thresholds kℓ = (b−d)(nℓ−1)−(a−c)nh
(c−d) and kh = (b−d)nℓ−(a−c)(nh−1)

(c−d) ,

such that:

i) if kℓ < kℓ and kh > kh, then S ⋆⋆ =
−→
AA∪−→

BB∪−→
BA;

ii) if kℓ ≥ kℓ or kh ≤ kh, then S ⋆⋆ =
−→
AA∪−→

BB.
10The existence of different classes of absorbing sets in this setting has already been characterized by Zeng (2019).

This proposition goes beyond that result by identifying relevant thresholds.
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Proposition 3.5.1 shows that when linking constraints kℓ and kh sufficiently differ from one

another, polymorphic states could be contained in S ⋆⋆. This implies that the co-existence of the

payoff-dominant action and the risk-dominant action, in the long run, could emerge. Intuitively,

agents in the low-constraint group have a constraint low enough such that they can fill sufficiently

many of their slots with B-agents. On the other hand, the constraint of agents in the high-constraint

group is too large to do so and they will consequently find it optimal to choose A.

As we have seen in above, there may be a multiplicity of absorbing sets under the unperturbed

myopic best response learning dynamics. To find which kind of profile is more likely to emerge in

the long run we now move forward to characterize which absorbing sets are stochastically stable.

In order to do this, we consider a case where agents may make occasional mistakes, which is also

known as perturbed myopic best response learning.

Agents are assumed to make mistakes probability ε ∈ (0,1), i.e. they choose a state different

to the one prescribed by the unperturbed myopic best response learning dynamics. The probabil-

ity ε is assumed to be independent across agents, periods, and payoffs. Foster & Young (1990)

demonstrate that if the perturbed dynamics is ergodic, irreducible, and aperiodic, then it, which is

captured by a Markov process, has a unique invariant distribution µ(ε) for each fixed ε . The limit

of this invariant distribution exists and is µ⋆ = lim
ε→0

µ(ε). A state s such that µ⋆(s)> 0 is a so-called

stochastically stable state or a long-run equilibrium. We denote the set of all stochastically stable

states by S ⋆⋆⋆ = {s ∈ S |µ⋆(s)> 0}.

With this technique, we move forward to identify the set of stochastically stable states. Which

profile turns out to be stochastically stable will depend on the level of linking constraints. The

following propositions establish our main results for various ranges of linking constraints kℓ and

kh.

In the first step, we focus on the case where there are only two monomorphic absorbing sets

−→
AA and

−→
BB. After that, we turn to the case where

−→
BA is also absorbing.
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Proposition 3.5.2. For any given kh ≤ kh, there exist two thresholds kℓ ≤ kℓ, such that: i) if kℓ < kℓ,

then S ⋆⋆⋆ =
−→
BB; ii) if kℓ ∈ [kℓ,kℓ], then S ⋆⋆⋆ =

−→
BB∪−→

AA; iii) if kℓ > kℓ, then S ⋆⋆⋆ =
−→
AA.

And for any kh and kℓ such that kh > kh and kℓ ≥ kℓ , we have that S ⋆⋆⋆ =
−→
AA .

Now, we provide technical intuitions for the results by using the case when both constraints

are less than half of the number of the other agents, i.e. kℓ < kh < n−1
2 . First, consider the transition

from
−→
AA to

−→
BB. Assume that there are kℓ agents who mutate to action B and choose any linking

strategy. Then, A-agents in Nℓ will find it optimal to switch to B and link to kℓ B-agents. It follows

that the number of B-agents now is at least nℓ. Since kh < n−1
2 < nℓ, the number of B-agents

is sufficient for A-agents in Nh to switch. Thus, kℓ mutations are sufficient for this transition, i.e.

r(
−→
AA,

−→
BB)≤ kℓ. Next, consider the transition from

−→
BB to

−→
AA. Note that kℓ mutations are insufficient

for this transition. To see this, assume that kℓ agents mutate to A. After this, there will still be N−kℓ

agents playing B. Since kℓ < kh ≤ n−1
2 , we have kh ≤ n− kℓ− 1. This implies that any revising

agent (either in Nℓ or Nh) will find it optimal to either stay with B or switch back to B. It follows that

r(
−→
BB,

−→
AA) > kℓ. We thus have that r(

−→
BB,

−→
AA) > r(

−→
AA,

−→
BB). Thus,

−→
BB is the unique stochastically

stable set.

In the Appendix, we provide the proof with both necessary and sufficient conditions for the

transitions to occur and thus provide a complete characterization of the set of stochastically stable

states for the case where there are only two monomorphic absorbing sets.

Intuitively, when the constraints kℓ and kh are both small, a small number of B-agents is

enough for all agents to make choosing the payoff-dominant action optimal. With a logic similar

to Staudigl & Weidenholzer (2014), the payoff-dominant convention thus will emerge in the long

run. In contrast, if both constraints are sufficiently large, the payoff-dominant action being optimal

requires more B-agents to show up. There is increased uncertainty concerning agents’ actions with

whom one forms links. Consequently, in the long run, agents tend to choose the risk-dominant
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action, which yields a higher expected payoff.

We now turn to the case where the polymorphic set
−→
BA is also absorbing. The following

proposition shows our main results of the stochastically stable set when two constraints kℓ and kh

are significantly various.

Proposition 3.5.3. If kh > kh and kℓ < kℓ, there exist two thresholds kℓ⋆ < kℓ and kh⋆ > kh, such

that whenever kℓ ≤ kℓ⋆ and kh ≥ kh⋆,
−→
BA ⊆S ⋆⋆⋆. Further, for kℓ⋆⋆ < kℓ⋆ and kh⋆⋆ > kh⋆, such that

whenever kℓ < kℓ⋆⋆ and kh > kh⋆⋆, S ⋆⋆⋆ =
−→
BA.

Thus we have identified a region of parameters such that co-existence occurs.11 Proposi-

tion 3.5.3 shows that if constraints are significantly heterogeneous, the risk-dominant profile and

payoff-dominant profile can co-exist. To be more specific, the polymorphic states that agents in

the low-constraint group play the payoff-dominant action and agents in the high-constraint group

play the risk-dominant action can be stochastically stable if the lower constraint is tighter and the

higher constraint is looser.

We now revisit Example 3.4.2 for the intuition of Proposition 3.5.3.

Example 3.4.2 revisited. Recall that when the parameters are nℓ = 3,nh = 2,kℓ = 1 and kh = 4,

and the payoffs in the coordination game fulfils that a + 3c ≥ 3b + d,
−→
BA is an absorbing set.

Figure 3.4 depicts transitions from monomorphic states to polymorphic states and the other way

around, with which we can determine the robustness of these profiles to mistakes. Note that white

circles are the agents who play the risk-dominant action B and grey circles are agents who play the

payoff-dominant action A.

First, we study the transition from
−→
BB to

−→
BA as Figure 3.4a shows. Agents 1 and 2 can support

four links, while agents 3, 4, and 5 can only support one link. Now assume that agent 1 makes a

mistake and switches to A. In the next step, agent 2 will also switch since switching to A yields
11In the cases not covered by the parameter ranges of the Proposition 3.5.3, i.e. kℓ ≥ kℓ⋆ or kh ≤ kh⋆, either the

risk-dominant convention
−→
AA or the payoff-dominant convention

−→
BB arises as stochastically stable states. While we

have been able to obtain partial results, unfortunately, a complete characterization has eluded us.
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a+2c, which is larger than 3b+d from reaming at B. Following this, agents in the low-constraint

group will remain at B and link with other B-agents. Thus, with one mistake we have reached a

state in
−→
BA.

Then, consider the transition from
−→
BA to

−→
BB as Figure 3.4b. Assume that agent 2 makes a

mistake and switches to B. Following this, agent 1 will switch since there are no other A-agents.

B-agents in the low-constraint group will remain since there are sufficient B-agents around. Hence,

we have reached a state in
−→
BB with one mistake.

The transition from
−→
AA to

−→
BA is similar to the above (see Figure 3.4c). One mistake is suffi-

cient. To see this, assume that agent 4 makes a mistake and switches to B. In the next step, one

B-agent is enough for other agents in the low-constraint group to switch. However, in the present

setting, i.e. a+3c ≥ 3b+d, agents 1 and 2 may choose to remain. We thus have reached a state in

−→
BA with one mutation.

Now, consider the transition from
−→
BA to

−→
AA. For agents in the low-constraint group to switch

requires there are no B-agents around. Hence, three mistakes are required for this transition.

Thus,
−→
BB and

−→
BA can be reached from each absorbing set via a sequence of one mistake

for parameters in the present example. Consequently, both
−→
BB and

−→
BA are stochastically stable.

However,
−→
AA cannot be reached via such a sequence, implying that more mistakes are required

and thus
−→
AA is not stochastically stable.

Transitions among absorbing sets are similar to the spread of actions. Transitions between

two monomorphic absorbing sets
−→
AA and

−→
BB can be split into two steps: transitions into and out

of the intermediate state
−→
BA. Thus, it can be the case that from

−→
AA and

−→
BB, transitions into

−→
BA

is easier than out of it. To see this point, if constraints are tight, transition into B is easier, while

if constraints are loose, transition into A is easier instead, which is the mechanism that drives

the results in Staudigl & Weidenholzer (2014). Note that significantly different constraints in our

model imply that the lower constraint is tight and the higher constraint is loose. Thus, for the
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(a) −→BB to
−→
BA (b)

−→
BA to

−→
BB (c)

−→
AA to

−→
BA (d)

−→
BA to

−→
AA

Figure 3.4. Tansitions among absorbing sets. Grey circles are agents who are playing action A, and white
circles represent agents who are playing action B.
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low-constraint group, the payoff-dominant action B is more robust to mistakes, i.e. transition from

−→
AA into

−→
BA requires fewer mistakes than the other way around. Similarly, for the high-constraint

group, the risk-dominant action A is more robust to mistakes, i.e. transition from
−→
BB into

−→
BA

requires fewer mistakes than the other way around, which is similar to the mechanism in Goyal &

Vega-Redondo (2005). Hence, transition into
−→
BA from each other may require the fewest mistakes

than transitions into the other two absorbing sets
−→
AA and

−→
BB. Consequently,

−→
BA is stochastically

stable.

3.6 Conclusion

In this paper, we present an evolutionary model of coordination and network formation where there

are two groups of agents who face either high or low linking constraints on the number of links

they can form. We show that the heterogeneous constraints significantly affect the selection of

conventions.

First, the present work reinforces the results of homogeneous constraints where the payoff-

dominated action is selected if agents face tight constraints while the risk-dominant action is

favoured if the constraints are loose. Moreover, in contrast to the conventional results of only

monomorphic states being stochastically stable, we reveal that the co-existence of conventions can

be observed when the constraints are significantly different. In this paper, we provide both neces-

sary and sufficient conditions such that the risk-dominant convention and the payoff-dominant con-

vention may co-exist. Specifically, if a large portion of the population has a very tight constraint,

with the other having a very loose constraint, the larger group tends to choose the payoff-dominant

action and the smaller group is more likely to choose the risk-dominant action.
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Appendix A

Mathematical Proofs

A.1 Appendix A

A.1.1 Proofs in Section 1.4

Proof of Lemma 1.4.1. Suppose g is a non-empty strict Nash network. Thus, there exists one

agent i who maintains at least one link. Suppose now there exists one agent j who supports no

links. Consider payoffs received by agents i and j. If Ui(g) > 1, agent j is strictly better off by

replicating i’s links; if Ui(g) < 1, agent i is better off by deleting all her links; if Ui(g) = 1, agent

j is indifferent between maintaining no links and replicating i’s links. All cases contradict g being

a strict Nash network. This implies that there exists no agent who supports no links. Thus, every

agent supports at least one link in a non-empty strict Nash network.

Proof of Lemma 1.4.2. Given a non-empty strict Nash network g, note that there can exist at

most one agent without any incoming links. To see this, assume that there exist two agents without

incoming links, denoted by i and j. If Ui(g)<U j(g), i is strictly better off by replicating j’s links.

Analogously, if Ui(g)>U j(g), j is strictly better off by replicating i’s links. Otherwise, if Ui(g) =

U j(g), either agent i or j is indifferent between maintaining her current links and replicating the

64
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other’s links. All cases contradict g being a strict Nash network. Thus, there cannot exist more

than one agent without any incoming links.

In the next step, we show that in fact there cannot exist a single agent without any incoming

links. To see this, assume an agent i has no incoming links. First, consider the case where there

is an agent k, such that Uk(g) > Ui(g). Note that payoffs of all other agents are independent of

i’s linking strategy. So by deleting her current links and forming the links that k supports, agent

i can assure herself the same payoff as k gets, contradicting the assumption that g is a strict Nash

equilibrium.

Second, we consider the case where there exists an agent k whose payoff is equal to i’s i.e.

Uk(g) = Ui(g). In the first sub-case gi ̸= gk, i is indifferent between replicating k’s links and

maintaining her current links, contradicting g being a strict Nash network. Then consider the

second sub-case gi = gk. According to Lemma 1.4.1, k has at least one incoming link. Suppose

that agent ℓ is the agent who forms a link to k. Since i and k have the same linking strategies, ℓ is

indifferent between linking to k and to i, which also contradicts g being a strict Nash equilibrium.

Thus, it is impossible to have an agent k whose payoff is equal to i’s.

Third, we consider the case where agent i’s payoff is the highest among all agents, i.e.

Ui(g) > Uk(g),∀k ∈ N. In the first sub-case, there are some agents from whom the distance to

agent i is larger than two, i.e. ∃ j ∈ N,d(i, j;g) > 2. As a result of the restriction on information

transition, agent i’s payoff is independent of j’s linking strategy. Agent j is strictly better off by

replicating i’s links, which contradicts g being a strict Nash equilibrium. In the second sub-case, the

furthest distance from any agent to i is two. There exists an agent ℓ with d(i, ℓ;g) = 2. Sort i’s 1−

neighbours by the number of links they form. Without loss generality, rename them i1, i2, · · · , in1
i
,

where the number of their links weakly increases with subscripts, i.e. n1
i1 ≤ n1

i2 ≤ ·· · ≤ n1
in1

i

. We
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can rewrite i’s payoff function in the following way:

Ui(gi,g−i) = 1+
n1

x

∑
x=1

(1+n1
ix − c) (A.1)

Analogously, sort ℓ’s 1− neighbours by the numbers of links they form and without loss generality,

rename them ℓ1, ℓ2, · · · , ℓn1
ℓ
, where the number of their links weakly increases with subscripts, i.e.

n1
ℓ1
≤ n1

ℓ2
≤ ·· · ≤ n1

ℓn1
ℓ

. Agent ℓ’s payoff function can be written as:

Ul(gℓ,g−ℓ) = 1+
n1
ℓ

∑
x=1

(1+n1
ℓx
− c) (A.2)

There are two sub-subcases:

i) The number of ℓ’s links is at least as large as i’s, i.e. n1
ℓ ≥ n1

i . Since Ui(g) > Uℓ(g), the

largest number of links that agents in N1
i (g) form must be larger than the smallest number

of links that agents in N1
ℓ (g) form, i.e. n1

in1
i

> n1
ℓ1

.1 Then, agent ℓ is strictly better off by

deleting the link to ℓ1 and replicating i’s link to in1
i
, which contradicts g being a strict Nash

equilibrium.2

ii) Agent ℓ forms less links than i does, i.e. n1
ℓ < n1

i . Again there are two sub-cases.

a) If n1
ℓn1

ℓ

≥ n1
i1 , then i is strictly better off by deleting the link to i1 and replicating ℓ’s

link to ℓn1
ℓ
.3

b) If n1
ℓn1

ℓ

< n1
i1 , then ℓ is better off by deleting the link to ℓ1 and replicating i’s link to

1Consider an inequality a1 +a2 + · · ·+an > b1 +b2 + · · ·+bn′ , with a1 ≤ a2 ≤ ·· · ≤ an, b1 ≤ b2 ≤ ·· · ≤ bn′ and
n ≤ n′. Since n ·an > a1 +a2 + · · ·+an > b1 +b2 + · · ·+bn′ > n′ ·b1 > n ·b1, it must be true that an > b1 must be true.

2Even though agents i and ℓ may have some common neighbours, we can always find an agent ix who is not in
N1
ℓ (g) and forms more links than ℓ1. To see this, consider the inequality a1+a2+ · · ·+an > b1+b2+ · · ·+bn′ . Agents

i and ℓ have common neighbours implying that there exists at least one pair of ai and b j, such that ai = b j. We can
eliminate ai and b j on both sides and still apply the property above.

3Analogously, even if i and ℓ have common neighbours, following an argument similar to the one in the footnote
2, we can always find an agent ℓx that n1

ℓx
≥ n1

i1 .
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in1
i
.

Thus, if there exists a single agent i such that Ui(g)>Uk(g),∀k∈N, it follows that the distance

from any agent to agent i is less than one, i.e. d(i,k;g) ≤ 1,∀k ̸= i. In other words, agent i links

up to all other agents, i.e. k ∈ N1
i ,∀k ̸= i. According to Lemma 1.4.1, note that every agent must

have at least one outgoing link, and by assumption, there exists no agent linking to i. It follows

that ∃m,n ∈ N1
i ,m ̸= n, such that m links up to n, or vice versa. This contradicts g being a strict

Nash network since i is strictly better off by deleting the link to n.

Thus, it follows that it is impossible to have a single agent without incoming links. Conse-

quently, every agent has at least one incoming link.

Proof of Lemma 1.4.3. The proof proceeds by contradiction. Consider a non-empty strict Nash

network g that is not strongly connected. Assume that there exists a non-empty network g ∈ G

which is a strict Nash network but not strongly connected. So there are multiple strongly connected

components {C1,C2, · · · ,Cm} with m ≥ 2. Without loss of generality, we consider the case where

m = 2. 4. Let g1 and g2 be the two sets of strategies used by agents in C1 and C2 respectively Note

that g consists of several strongly connected components. Without loss of generality, consider any

two strongly connected components C1 and C2. Lemma 1.4.1 and Lemma 1.4.2 imply that both C1

and C2 contain multiple agents. Then there are two cases:

i) C1 and C2 are separated. Consider two agents i,m ∈C1 and two agents j,k ∈C2. We assume

that m forms a link to i, i.e. i ∈ N1
m(g) and k forms a link to j, i.e. j ∈ N1

k (g). Since g is a strict Nash

network, the payoff of m’s link to i is positive and no larger than 1+n1
i − c. 5 Therefore, it must

be true that 1+n1
i −c > 0. Then, consider agent k in C2. Since k does not receive benefit from any

agent in C1, she is strictly better off by forming a link to i since 1+n1
i − c > 0. It contradicts the

assumption that g is a strict Nash network. Now consider the link from k to j. By the same logic,

4For any m ≥ 3, we can start with any two of the components and iteratively apply the same logic as with m = 2.
5It is possible that m links to agents in N1

i (g) directly or via other paths
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m is strictly better off by forming a link to agent j.

ii) There exist paths from agents in C1 to agents in C2, but not vice versa. Following a similar

argument in the case above, an agent in C2 is strictly better off by forming a link to an agent in C1.

Therefore, C1 and C2 are strongly connected and contained in one strongly connected compo-

nent. Consequently, all strongly connected components are strongly connected. The network g is

strongly connected.

Proof of Proposition 1.4.1. Consider a core-periphery network CPℓ in which |Pi| ≥ 3 for any

i ∈C(ℓ;g). A core agent i’s payoff is given by

Ui(gi,g−i) = N − c · ∑
j∈N

gi j = N − c · (ℓ+ |Pi|)

Notice that agent i

i) has no incentives to form more links. Since choosing gi already allows i to receive benefits

from every other agent, adding more links increases i’s cost but her benefit remains the same.

ii) has no incentives to delete any link. If i deletes one link to her periphery j, she would

reduce her cost by c but lose the benefit from j. Since linking costs c < 1, i’s payoff would

decrease by 1− c. If i deletes one link to another core agent k, she would at least lose the benefits

from k’s periphery agents. Agent i’s payoff would decrease by at least |Pk| − c. In both cases,

player i is worse off by deleting a link.

Now consider a periphery agent j, her payoff is given by

U j(g j,g− j) = N − c · ∑
k∈N

g jk = N − c · ℓ

we argue in the following that agent j

i) has no incentives to delete any link to core agents. If j deletes one link to a core agent i, she
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would lose the benefit from i’s periphery agents. The payoff of j would decrease by |Pi|− c. Note

that |Pi| ≥ 3 and c < 1. Agent j is worse off by deleting a link to the core agent.

ii) has no incentives to form any link to other periphery agents. Since by linking to all core

agents, j receives benefits from every agent, adding more links only increases j’s cost.

Moreover, we consider a case where no agent has incentives to replace any one of her links

with another. To see this, replacing one link can be divided into two steps: deleting a link and

forming a new link. Note that any agent already links to all core agents. An agent is unable to

choose to form a new link to any other core agent since she has already linked to all core agents.

Thus, there are two sub-cases for a core agent i to discuss.

a) Deleting a link to a core agent k and forming a new link to a periphery agent j. The first

step reduces i’s payoff by at least |Pk|−c. The second step can increase i’s benefit by at most

1−c.6 Overall, i’s payoff is reduced by |Pk|−1. Since |Pk| ≥ 3, agent i is worse off by doing

so.

b) Deleting a link to a periphery agent and forming a new link to another periphery agent.

The first step reduces i’s payoff by 1− c. The second step reduces i’s payoff by c since she

can observe every other periphery agent via other core agents. Thus, i’s payoff decreases by

1− c+ c = 1.

In both sub-cases, i is worse off. Thus, i doesn’t have any incentives to replace any of her links.

Note that periphery agents form no links to other periphery agents. The discussion of link replace-

ment of a periphery agent can focus only on the sub-case a).

To conclude, neither core agents nor periphery agents have incentives to change their links.

6If j is k’s periphery agent, forming the link to j yields 1− c. If j is the periphery agent of another core agent, this
link only costs c since she already receives the benefit from j via another core agent.
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A.1.2 Proofs in Section 1.5

Proof of Proposition 1.5.1. Consider a network g ∈ C P ℓ̄. Note that all networks in C P ℓ̄ are

strict Nash networks. Any agent i revising her strategy will remain at her current strategy since

Ui(gi,g−i)>Ui(g′i,g−i) for all g′i. Thus, without any mistakes, the network will remain unchanged.

Proof of Proposition 1.5.2. First, consider the transition from any state g ∈ C P ℓ̄ to a state

g′ ∈ C P1 with agent i as the unique core agent. One mistake is sufficient for this transition, i.e.

r(g,g′) = 1. To see this, assume that agent i makes a mistake and forms links to all other agents.

Now, consider other agents who get the chance to revise. Forming a single link to agent i is a best

response for them. Consequently, the dynamics reaches the CP1 network with i as the unique core

agent.

Then, consider the transition from g ∈ C P1 to g′ ∈ C P2 where the core agent in g is still a

core agent in g′. One mistake is sufficient for this transition. To see this, consider the case where

a periphery agent j makes a mistake and forms three extra links to other periphery agents of core

agent i. Now, given the revision opportunity the core agent i will find it optimal to delete links to

those periphery agents of j. Following this, give the revision opportunity to other periphery agents.

Their best response is forming one additional link to agent j to get access to the periphery agents

of j. Consequently, the dynamics reaches a CP2 network with i and j as two core agents.

Now, consider two states g ∈ C Pℓ and g′ ∈ C Pℓ+1 where they have ℓ common core agent,

i.e. C(ℓ;g) ⊂ C(ℓ+ 1;g′). The resistance of the transition from g to g′ is also one. Following

a similar argument as above, a periphery agent j makes a mistake and links to three periphery

agents. Consider core agents who link to the three periphery agents. They are indifferent or

have a profitable deviation by deleting the links to these periphery agents and forming a link to j.

Following this, consider other core agents and periphery agents. Their best response is to form an
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link to j. Consequently, the dynamics reaches a state in C Pℓ+1 with j as the ℓ+ 1 core agent.

The cost of this transition is one, i.e. r(g,g′) = 1.

Now, consider the transition from a state g in any C Pℓ to g′ in any C Pℓ′ . Note that g

and g′ are different in two dimensions. First, the numbers of core agents are different, i.e. ℓ ̸= ℓ′.

Second, the identities of core agents vary, i.e. C(ℓ;g) ̸=C(ℓ′;g′). To identify the resistance of this

transition, we conduct a path of states {s0,s1,s2, · · · ,sℓ′−1,sℓ′} with s0 = g and sℓ′ = g′, which are

characterized by the following properties: sk ∈C Pk such that C(k−1;sk−1)⊂C(k;sk)⊆C(ℓ′;g′),

and Pj(si) = Pj(g′) for each j in the core, for all k = 2,3, · · · , ℓ′.

(i) s1 ∈ C P1 such that C(1;s1)⊆C(ℓ′;g′), i.e. the core agent in s1 is also a core agent in g′;

(ii) sk ∈ C Pk such that C(k−1;sk−1) ⊂C(k;sk) ⊆C(ℓ′;g′), and Pj(si) = Pj(g′) for each j

in the core, for all k = 2,3, · · · , ℓ′.

As argued above, the resistance of transition from si to si+1 is one. Thus, the resistance of this path

is equal to the sum of resistances, i.e. r(g,g′) =
ℓ′

∑
i=1

r(si−1,si) = ℓ′.

Now we move on to characterize the set of stochastically stable states. Note that the number

of all absorbing sets is N. Recall that a G⋆⋆
i -tree consists of edges that connect every absorbing

set. Thus, the number of edges of every permissible G⋆⋆
i -tree is N − 1. Note that the stochastic

potential of an absorbing set G⋆⋆
i is defined as the minimum sum of resistances of edges of the

G⋆⋆
i -tree. The minimum is obtained when the resistance of every edge of the G⋆⋆

i -tree is one.

Following this, we move forward to calculate the stochastical potential of each absorbing set

characterized by Proposition 1.5.1. First, consider the stochastic potential of absorbing set G⋆⋆
i

formed by a g ∈ C P1. Consider the G⋆⋆
i -tree where the transition from each absorbing set to G⋆⋆

i

is direct as the structure depicted in Figure A.1. Note that as we argued above, the resistance from

any state to a CP1 network is one. The stochastic potential of this G⋆⋆
i -tree is given by the sum of

resistances of all edges, i.e. γ(G⋆⋆
i ) = N−1.
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Figure A.1. The structure of a G⋆⋆
i -tree formed by g ∈ C P1.

Figure A.2. An sketch structure of a G⋆⋆
j -tree with any g ∈ C Pℓ.
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Next, consider the absorbing sets G⋆⋆
ℓ formed by a state g∈C Pℓ. We first conduct a sequence

of absorbing sets {G⋆⋆
1 ,G⋆⋆

2 , · · · ,G⋆⋆
ℓ−1,G

⋆⋆
ℓ } with G⋆⋆

j formed by a state si in C P j, j = 1,2, · · · , ℓ,

where si holds the same property as above. Then, for those absorbing sets not included in this

sequence, consider the transition from them to G⋆⋆
1 directly. Figure A.2 depicts such a G⋆⋆

ℓ -tree.

According to the above construction, the resistance of transition from G⋆⋆
i to G⋆⋆

i+1 is one, for any

i = 1,2, · · · , ℓ−1. Further, from other N−ℓ−1 absorbing sets, one mistake is sufficient from each

absorbing set to G⋆⋆
1 . Thus, the sum of resistance of this G⋆⋆

j -tree is ℓ+N−ℓ−1, i.e. the stochastic

potential of this G⋆⋆
j -tree is γ(G⋆⋆

j ) = N−1.

Since N − 1 is the minimum stochastic potential, for any absorbing state g ∈ C P ℓ̄ is thus

stochastically stable according to Kandori et al. (1993) and Young (1993).

A.2 Appendix B

A.2.1 Proofs of Section 3.4

Proof of Lemma 3.4.1. First, consider the case where some agents do not form the maximum

number of links they can support. Given γ < d < c < a < b, those agents will fill their remaining

slots as any extra link yields at least d−γ . As a result, every agent will form the maximum number

of links.

Next, consider the case where agents within the same group play different actions, e.g. some

agents in the low-constraint group play action A and the other agents play action B. Note that

the LOPs for any agent in the same group are identical given any strategy profile. First, consider

agents in the low-constraint group. Their LOPs are given by

v(A,m) = a ·min{kℓ,m−1}+ c · (kℓ−min{kℓ,m−1})− γ · kℓ (A.3)
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and

v(B,m) = b ·min{kℓ,n−m−1}+d · (kℓ−min{kℓ,n−m−1})− γ · kℓ (A.4)

Consider two agents i and j in Nℓ. Assume that agent i plays action A and agent j plays action B.

If agent i behaves optimally, then it must be the case v(A,m) ≥ v(B,m− 1). By equations (A.3)

and (A.4), we have

a ·min{kℓ,m−1}+c ·(kℓ−min{kℓ,m−1})≥ b ·min{kℓ,n−m}+d ·(kℓ−min{kℓ,n−m}). (A.5)

Similarly, agent j behaves optimally if v(B,m)≥ v(A,m+1). We thus have

b ·min{kℓ,n−m−1}+d ·(kℓ−min{kℓ,n−m−1})≥ a ·min{kℓ,m}+c ·(kℓ−min{kℓ,m}). (A.6)

Note that for agents in the low-constraint group to choose different actions as best responses,

inequalities (A.5) and (A.6) have to hold simultaneously. We solve inequalities (A.5) and (A.6)

independently by discussing different levels of kℓ. Table A.1 presents the solutions for these two

inequalities for various relevant ranges of thresholds.

One can check that inequalities (A.5) and (A.6) never have a common solution for various

levels of kℓ. This implies that both agents can’t behave optimally simultaneously. Thus, a strategy

profile where agents in the low-constraint group play different actions is not a Nash equilibrium.

The argument for agents in the high-constraint group follows the same logic and is omitted.

Therefore, for any s /∈ −→
AA∪−→

BB∪−→
AB∪−→

BA, s is not a Nash equilibrium.

Proof of Lemma 3.4.3. The proof proceeds by contradiction. Consider two agents i ∈ Nℓ and

j ∈ Nh. Note that the distribution of actions in a strategy profile s ∈ −→
AB is (nℓ,nh). Then agent i

is now playing action A and agent j is playing action B. We assume that s is a Nash equilibrium,



A.2. APPENDIX B 75

Table A.1. Conditions on m such that i and j behave optimally at different levels of kℓ.

kℓ > m−1 and kℓ > n−m kℓ ≤ m−1 and kℓ > n−m kℓ ≤ n−m

v(A,m)≥ v(B,m−1) m ≥ (n−1)(b−d)−kℓ(c−d)
a+b−c−d +1 m ≥ n− a−d

b−d kℓ never

kℓ > m and kℓ > n−m−1 kℓ ≤ m and kℓ > n−m−1 kℓ ≤ n−m−1

v(B,m)≥ v(A,m+1) m ≤ (n−1)(b−d)−kℓ(c−d)
a+b−c−d m ≤ n−1− a−d

b−d kℓ always

then neither i nor j will deviate.

Consider agent i. Agent i will stay with A if

vi(A,nℓ) = a ·min{kℓ,nℓ−1}+ c · (kℓ−min{kℓ,nℓ−1})−M · kℓ

≥ b ·min{kℓ,nh}+d · (kℓ−min{kℓ,nh})−M · kℓ = vi(B,nℓ−1).

(A.7)

Similarly, agent j will stay with B if

v j(B,nℓ) = b ·min{kh,nh −1}+d · (kh −min{kh,nh −1})−M · kh

≥ a ·min{kh,nℓ}+ c · (kh −min{kh,nℓ})−M · kh = v j(A,nℓ+1).

(A.8)

Note that in a Nash equilibrium, inequalities (A.7) and (A.8) have to hold simultaneously. First,

we solve inequality (A.7) to find the switching threshold for agent i. We have three sub-cases by

considering the order of kℓ, nℓ−1, and nh.

i) if kℓ ≤ nh ≤ nℓ−1, we have

a · kℓ+ c · (kℓ− kℓ)≥ b · kℓ+d · (kℓ− kℓ)⇒ a · kℓ ≥ b · kℓ ⇒ a ≥ b

which is in contradiction to the order of payoffs in the coordination game. Thus, agent i will

deviate.
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ii) if nh < kℓ ≤ nℓ−1, we have

a · kℓ+ c · (kℓ− kℓ)≥ b ·nh +d · (kℓ−nh)⇒ kℓ ≥ b−d
a−d

·nh. (A.9)

One can check that inequality (A.9) holds iff b−d
a−d ·nh ≤ nℓ−1.7 Note that b−d

a−d ·nh > nh holds as b−

d > a−d. The solution to inequality (A.9) is b−d
a−d ·nh ≤ kℓ ≤ nℓ−1. Moreover, if b−d

a−d ·nh ≤ nℓ−1,

then we have that nh ≤ a−d
b−d ·nℓ− (a−d). Thus, agent i will stay with A if nh ≤ a−d

b−d ·nℓ− (a−d).

iii) if nh ≤ nℓ−1 < kℓ, we have

a · (nℓ−1)+ c · (kℓ− (nℓ−1))≥ b ·nh +d · (kℓ−nh)⇒ kℓ ≥ (b−d)nh − (a− c)(nℓ−1)
c−d

.

Agent i will stay with A if kℓ ≥ max{ (b−d)nh−(a−c)(nℓ−1)
c−d ,nℓ − 1}. Furthermore, one can check

that nh ≤ a−d
b−d · nℓ − (a − d) if (b−d)nh−(a−c)(nℓ−1)

c−d ≤ nℓ − 1. Thus, we have that kℓ > nℓ − 1 if

nh ≤ a−d
b−d ·nℓ− (a−d) and kℓ ≥ (b−d)nh−(a−c)(nℓ−1)

c−d if nh >
a−d
b−d ·nℓ− (a−d).

Summary up, agent i will stay with A if

kℓ ≥


b−d
a−d ·nh, if nh ≤ a−d

b−d ·nℓ− (a−d).

(b−d)nh−(a−c)(nℓ−1)
c−d , if nh >

a−d
b−d ·nℓ− (a−d).

(A.10)

Similarly, we solve inequality (A.8) by considering various ranges of kh.

i) if kh ≤ nh −1 < nℓ, we have

b · kh +d · (kh − kh)≥ a · kh + c · (kh − kh)⇒ b · kh ≥ a · kh ⇒ b ≥ a

which is consistent with the order of payoffs in the coordination game. Thus, agent j will stay with

7If b−d
a−d ·nh > nℓ−1, then nh >

a−d
b−d ·nℓ− (a−d). Thus, we have that kℓ ≤ nℓ−1 which contradicts kℓ ≥ b−d

a−d ·nh.
In this case, inequality (A.9) does not hold. This implies that agent i will deviate.
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B.

ii) if nh −1 < kh < nℓ, we have

b · (nh −1)+d · (kh − (nh −1))≥ a · kh + c · (kh − kh)⇒ kh ≤ b−d
a−d

· (nh −1).

Agent j will stay with B if kh ≤ min{b−d
a−d · (nh −1),nℓ}. Moreover, we obtain that nh <

a−d
b−d ·

nℓ+(b−d) from b−d
a−d ·(nh−1)< nℓ. Thus, we have that kh ≤ b−d

a−d ·(nh−1) if nh <
a−d
b−d ·nℓ+(b−d)

and kh < nℓ if nh ≥ a−d
b−d ·nℓ+(b−d).

iii) if nh −1 < nℓ ≤ kh, we have

b ·(nh−1)+d ·(kh−(nh−1))≥ a ·nℓ+c ·(kh−nℓ)⇒ kh ≤ (b−d)(nh −1)− (a− c)nℓ
c−d

. (A.11)

Inequality (A.11) has solution if and only if (b−d)(nh−1)−(a−c)nℓ
c−d ≥ nℓ.8 Furthermore, we have that

nh ≥ a−d
b−d · nℓ+(b− d) if (b−d)(nh−1)−(a−c)nℓ

c−d ≥ nℓ. Thus, agent j will stay with B if nℓ ≤ kh ≤

(b−d)(nh−1)−(a−c)nℓ
c−d , in the case where nh ≥ a−d

b−d ·nℓ+(b−d).

Summary up, agent j will stay with B if

kh ≤


b−d
a−d · (nh −1), if nh <

a−d
b−d ·nℓ+(b−d).

(b−d)(nh−1)−(a−c)nℓ
c−d , if nh ≥ a−d

b−d ·nℓ+(b−d).

(A.12)

Note that equations (A.10)) and (A.12) have to hold simultaneously in a Nash equilibrium. To find

the solution to these two equations, there are three sub-cases for the various ranges of nℓ and Nh.

First, consider the sub-case where nh ≤ a−d
b−d ·nℓ− (a−d). We have that agent i will stay with

A if kℓ ≥ b−d
a−d · nh. As a−d

b−d · nℓ− (a− d) < a−d
b−d · nℓ+(b− d), we have agent j will stay with B if

8If (b−d)(nh−1)−(a−c)nℓ
c−d < nℓ, then nh < a−d

b−d · nℓ + (b − d). Thus, we have that kh ≤ (b−d)(nh−1)−(a−c)nℓ
c−d which

contradicts kh ≥ nℓ . In this case, inequality (A.11) does not have a solution, and agent j will deviate.
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and only if kh ≤ b−d
a−d · (nh −1). Therefore, the condition for both i and j staying in their action is

kh ≤ b−d
a−d · (nh −1)< b−d

a−d ·nh ≤ kℓ, which contradicts our assumption kℓ < kh. Thus, either agent i

or j will switch.

Next, consider the sub-case where a−d
b−d ·nℓ− (a−d)< nh <

a−d
b−d ·nℓ+(b−d). We have that

agent i will stay with A if kℓ ≤ (b−d)nh−(a−c)(nℓ−1)
c−d and agent j will stay with B if kh ≤ b−d

a−d ·(nh−1).

Since nh >
a−d
b−d · nℓ− (a− d) and kℓ ≥ (b−d)nh−(a−c)(nℓ−1)

c−d , we obtain that kℓ > nℓ− 1. And since

nh < a−d
b−d · nℓ+(b− d) and kh ≤ b−d

a−d · (nh − 1), we have that kh < nℓ. Moreover, since nℓ is an

integer, kℓ ≥ nℓ−1 implies that kℓ ≥ nℓ, and kh < nℓ implies that kh ≤ nℓ−1. Thus, we have that

kh ≤ nℓ−1 < nℓ ≤ kℓ, which contradicts kℓ < kh. Therefore, either agent i or j will deviate.

Finally, consider the sub-case where nh ≥ a−d
b−d · nℓ+(b− d). We have that agent j will stay

with B if kh ≤ (b−d)(nh−1)−(a−c)nℓ
c−d . As a−d

b−d ·nℓ+(b−d)> a−d
b−d ·nℓ− (a−d), from equation (A.10)

we find that agent i will stay with A if and only if kℓ ≥ (b−d)nh−(a−c)(nℓ−1)
c−d . Thus, the condition for

both agents staying in their actions is kℓ ≥ (b−d)nh−(a−c)(nℓ−1)
c−d > (b−d)(nh−1)−(a−c)nℓ

c−d ≥ kh, which

contradicts kℓ < kh. Therefore, either agent i or j will switch in this sub-case.

Consequently, there does not exist any nℓ and nh such that both agents i and j stay with their

actions, i.e. either i or j will deviate. Thus, s ∈ −→
AB is not a Nash equilibrium.

Proof of Lemma 3.4.4. Note that the distribution of actions in a strategy profile s ∈−→
BA is (nh,nℓ).

Consider two agents i ∈ Nℓ and j ∈ Nh. Note that agent i is playing action B and agent j is playing

action A. As s is a Nash equilibrium, neither i nor j will deviate from their current actions.

First, consider agent i. She will stay with B if and only if

vi(B,nh) = b ·min{kℓ,nℓ−1}+d · (kℓ−min{kℓ,nℓ−1})−M · kℓ

≥ a ·min{kℓ,nh}+ c · (kℓ−min{kℓ,nh})−M · kℓ = vi(A,nh +1).

(A.13)
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Similarly, agent j will stay with A if and only if

v j(A,nh) = a ·min{kh,nh −1}+ c · (kh −min{kh,nh −1})−M · kh

≥ b ·min{kh,nℓ}+d · (kh −min{kh,nℓ})−M · kh = v j(B,nh −1).

(A.14)

Note that in a Nash equilibrium, inequalities (A.13) and (A.14) have to hold simultaneously. First,

we solve inequalities (A.13) to obtain switching thresholds for agent i. There are three sub-cases

by considering various orders of kℓ, nℓ−1, and nh.

i) if kℓ ≤ nh < nℓ−1, we have

b · kℓ+d · (kℓ− kℓ)≥ a · kℓ+ c · (kℓ− kℓ)⇒ b · kℓ ≥ a · kℓ ⇒ b ≥ a

which coincides with the order of payoffs in the coordination game. Thus, agent i will stay.

ii) if nh < kℓ ≤ nℓ−1, we have

b · kℓ+d · (kℓ− kℓ)≥ a ·nh + c · (kℓ−nh)⇒ kℓ ≥ a− c
b− c

·nh.

Note that a−c
b−c ·nh < nh holds as a−c < b−c. Following that, we have kℓ > a−c

b−c ·nh whenever

nh < kℓ ≤ nℓ−1. Thus, inequality (A.13) holds in the relevant range of kℓ. This implies that agent

i will stay with action B whenever nh < kℓ ≤ nℓ−1.

iii) if nh ≤ nℓ−1 < kℓ, we have

b · (nℓ−1)+d · (kℓ− (nℓ−1))≥ a ·nh+c · (kℓ−nh)⇒ kℓ ≤ (b−d)(nℓ−1)− (a− c)nh

c−d
= kℓ.

One can check that kℓ > (nℓ− 1).9 Thus, inequality (A.13) holds if and only if nℓ− 1 < kℓ ≤ kℓ

9 This is obtained by considering (b−d)(nℓ−1)−(a−c)nh
c−d − (nℓ − 1) = (b−d)(nℓ−1)−(a−c)nh−(c−d)(nℓ−1)

c−d =
(b−c)(nℓ−1)−(a−c)nh

c−d ≥ (b−c)nh−(a−c)nh
c−d > 0.
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and agent i will stay with B in the relevant range. As we have seen in cases i) and ii), agents will

stay with B if kℓ ≤ nh < nℓ− 1 and nh < kℓ ≤ nℓ− 1. Combining these results with the condition

obtained in case iii) yields that agent i will stay with action B if and only if kℓ ≤ kℓ.

Now, consider agent j. Similarly, we solve inequality (A.14) by considering different orders

of kh, nh −1 and nℓ.

i) if kh ≤ nh −1 < nℓ, we have

a · kh + c · (kh − kh)≥ b · kh +d · (kh − kh)⇒ a · kh ≥ b · kh ⇒ a ≥ b

which contradicts the order of payoffs b > a. Thus, agent j will deviate.

ii) if nh −1 < kh < nℓ, we have

a · (nh −1)+ c · (kh − (nh −1))≥ b · kh +d · (kh − kh)⇒ kh ≤ a− c
b− c

· (nh −1).

Note that a−c
b−c ·(nh−1)< nh−1 holds since b> a. There is a contradiction between kh > nh−1

and kh ≤ a−c
b−c · (nh −1). This implies that inequality (A.14) does not hold and agent j will deviate

in this range.

iii) if nh −1 < nℓ ≤ kh, we have

a · (nh−1)+c · (kh− (nh−1))≥ b ·nℓ+d · (kh−nℓ)⇒ kh ≥ (b−d)nℓ− (a− c)(nh −1)
c−d

= kh.

Note that kh > nℓ.10 Thus, agent j will stay with action A if and only if kh ≥ kh. Attending

the results in cases i) and ii), agents will stay with B if kh ≤ nh − 1 < nℓ and nh − 1 < kh ≤ nℓ.

Combining these results with the condition obtained in case iii) yields that agent j will stay with

10This is obtained by considering (b−d)nℓ−(a−c)(nh−1)
c−d − nℓ =

(b−d)nℓ−(a−c)(nh−1)−(c−d)nℓ
c−d = (b−c)nℓ−(a−c)(nh−1)

c−d >
(b−c)nh−(a−c)nh+(a−c)

c−d > 0.



A.2. APPENDIX B 81

action A if and only if kh ≥ kh.

Consequently, for both agents i and j to stay with their current actions requires that kℓ ≤ kℓ

and kh ≥ kh. Furthermore, if both kℓ ≤ kℓ and kh ≥ kh hold, then both agents i and j with stay with

their current actions.

A.2.2 Proofs of Section 3.5

Proof of Proposition 3.5.1. This proof proceeds in two steps. In the first step, we prove that

from any state s, the dynamics leads to a monomorphic or polymorphic state, i.e. a state s′ ∈

−→
AA∪−→

BB∪−→
AB∪−→

BA, with a positive probability. In the second step, we show that from each state

s′, this process converges to a Nash equilibrium.

We prove the first step by constructing a sequence of revisions leading to a monomorphic or

polymorphic state from any state s. This sequence of revisions consists of multiple rounds where

in each round, one of the two groups is selected and all agents in this selected group can revise

their strategies.11 Moreover, we assume that if agents are indifferent between two actions, they

will remain with their current actions.12

Consider an initial state s with distribution of actions (m,n−m). In the first round, give the

revision opportunity to agents in Nℓ. Consider the case where A-agents in Nℓ remain. This implies

that v(A,m)≥ v(B,m−1), i.e. m ≥ M1
ℓ (or m ≥ M2

ℓ ). Table 3.1 reveals that for any B-agents in Nℓ,

the optimal choice is to switch. Thus, we have reached a state where all agents in Nℓ play action

A. Now, consider the case where A-agents in Nℓ switch. This implies that v(B,m− 1) > v(A,m),

i.e. m < M1
ℓ (or m < M2

ℓ ). This implies that m ≤ M1
ℓ − 1 (or m ≤ M2

ℓ − 1), and furthermore,

v(A,m+1)≤ v(B,m). Thus, B-agents will remain and we have reached a state where all agents in

11This sequence occurs with positive probability since the probability of each agent receiving the revision opportu-
nity is positive.

12Note that since agents randomize between two actions when they are indifferent, the probability of their remains
is positive.
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Nℓ play action B.

In the second round, give the revision opportunity to agents in Nh. Assume that the distribution

of actions is (m′,n−m′) after agents in Nℓ have revised. Agents in Nh decide whether to remain

or to switch based on this new distribution of actions. Following similar arguments as for those

agents in Nℓ, we will arrive at a state where all agents in Nh play the same action A or B.

Consequently, after two rounds of revisions, we have reached a state where agents in the same

group play the same action, i.e. a state s′ ∈ −→
AA∪−→

BB∪−→
AB∪−→

BA.

In the second step, we show this process will converge to a Nash equilibrium from any state

s′. First, consider any state s′ ∈−→
AA∪−→

BB. If all agents play action A (and also B), no one will switch

since vi(A,n)> vi(B,n−1),∀i ∈ N (and since vi(B,0)> vi(A,1)).

Now consider a state s′ ∈ −→
AB. If agents in Nℓ find it optimal to play action A, then we have

that vi(A,nℓ)> vi(B,nℓ−1),∀i ∈ Nℓ, which implies that nℓ ≥ M1
ℓ (or nℓ ≥ M2

ℓ ). Note that M2
ℓ > M2

h

and M1
ℓ > M1

h holds (see in Table 3.1). We thus obtain that nℓ > M1
h (or nℓ > M2

h ). Table 3.1 reveals

that it is optimal for B-agents in Nh to switch to A. Similarly, one can check that if agents in Nh

find it optimal to play action B, then it is optimal for A-agents in Nℓ to switch to B. Thus, we will

arrive at a state s ∈ −→
AA∪−→

BB.

Then, consider a state s′ ∈ −→
BA. In the proof of Lemma 3.4.4 we have argued that it is optimal

for agents in Nℓ to play B and for agents in Nh to play A iff kℓ ≤ kℓ and kh ≥ kh. This implies

that whenever kℓ < kℓ and kh > kh, agents will strictly prefer to remain at their actions when they

receive the revision opportunity. It follows that if kℓ ≥ kℓ, agents in Nℓ will find it optimal to play

A and switch. Similarly, if kh ≤ kh, agents in Nh will find it optimal to play B and switch. Then we

will reach a state s ∈ −→
AA∪−→

BB.

Consequently, this process will finally converge to a state s ∈ −→
AA∪−→

BB∪−→
BA if kℓ < kℓ and

kh > kh, and will converge to a state s ∈ −→
AA∪−→

BB otherwise. According to Proposition 3.4.1, s is a

Nash equilibrium for the relevant ranges of kℓ and kh.
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Now, we proceed to show that this process moves between any pair of states s and s′ in
−→
AA

(and also for any pair in
−→
BB and

−→
BA) with positive probability. Note that s and s′ only differ in the

linking strategies of agents. As agents are indifferent between linking to any of those agents with

the same action, this process will move between any such two strategies with a positive probability.

Thus, all states in
−→
AA ( also in

−→
BB and

−→
BA) form an absorbing set.13

Proof of Proposition 3.5.2. First, note that if kℓ ≥ kℓ or kh ≤ kh,
−→
AA and

−→
BB are the only two

absorbing sets.

First, consider the transition from
−→
AA to

−→
BB.

Note that A-agents with the lower constraint kℓ require fewer mutations to switch than agents

with the higher constraint kh. To find the minimum number of mutations required for this transition,

we thus start with agents in Nℓ. Denote by n−mAB
ℓ the minimum number of B-agents required for

the successful transition of agents in Nℓ. Consequently, mAB
ℓ is the maximum number of remaining

A-agents.

First, note that A-agents with the lower constraint will always switch if mAB
ℓ ≤ n− kℓ. Since

that mAB
ℓ ≤ n−kℓ implies kℓ ≤ n−mAB

ℓ , the number of B-agents is sufficient such that A-agents can

fill all their slots with B-agents. Thus, we now turn to the case where mAB
ℓ > n−kℓ, i.e. the number

of B-agents is insufficient such that A-agents cannot fill all their slots with B-agents. We now need

to determine the payoff A-agents get when they stay with A. Hence we need to distinguish two

sub-cases: i) A-agents can fill all their slots with other A-agents, i.e. mAB
ℓ ≥ kℓ+1, and ii) A-agents

have to link to both A- and B-agents, i.e. mAB
ℓ < kℓ+1.

Consider sub-case i). According to Table 3.1, the switching threshold for A-agents is mAB
ℓ =⌊

M2
ℓ

⌋
. Observe now that this sub-case will happen if indeed mAB

ℓ =
⌊
M2

ℓ

⌋
≥ kℓ+ 1. Attending to

the definition of M2
ℓ and solving for kℓ, we have that kℓ ≤ (n−1)(b−d)

a+b−2d .

13The discussion regarding states in
−→
BA is consistently established on the condition kℓ < kℓ and kh > kh.
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Now, consider sub-case ii). According to Table 3.1, the switching threshold for A-agents in

this sub-case is given by mAB
ℓ =

⌊
M1

ℓ

⌋
. Solving for kℓ yields kℓ > (n−1)(b−d)

a+b−2d .

Recall that if there are n− kℓ or less A-agents, all agents in Nℓ will switch to B. Thus, the

maximum number of A-agents for the transition to occur is characterized by

mAB
ℓ =


max{

⌊
M2

ℓ

⌋
,n− kℓ}, if kℓ ≤ (n−1)(b−d)

a+b−2d .

max{
⌊
M1

ℓ

⌋
,n− kℓ}, if kℓ > (n−1)(b−d)

a+b−2d .

One can check that
⌊
M2

ℓ

⌋
> n− kℓ always holds for any kℓ, and

⌊
M1

ℓ

⌋
> n− kℓ holds whenever

kℓ > (n−1)(a−c)
a+b−2c . Since (n−1)(a−c)

a+b−2c < (n−1)(b−d)
a+b−2d , we thus have

mAB
ℓ =


⌊
M2

ℓ

⌋
, if kℓ ≤ (n−1)(b−d)

a+b−2d .

⌊
M1

ℓ

⌋
, if kℓ > (n−1)(b−d)

a+b−2d .

Therefore, the minimum number of mutations required for the transition of A-agents in Nℓ is

n−mAB
ℓ =


n−

⌊
M2

ℓ

⌋
, if kℓ ≤ (n−1)(b−d)

a+b−2d .

n−
⌊
M1

ℓ

⌋
, if kℓ > (n−1)(b−d)

a+b−2d .

Now, we assess the largest number of B-agents after the mutations and switches (excluding

switches among agents in Nh for now), i.e. agents who have mutated and agents in Nℓ who have

switched to B. For this, assume all mutations occur in Nh. Thus, the number of B-agents is

nℓ+ n−mAB
ℓ . It follows that the number of remaining A-agents in Nh is mAB

ℓ − nℓ. We have that

mAB
ℓ − nℓ < nh holds for any relevant range of kℓ since the mutations occur among Nh and every

agent in Nℓ switched.

Now consider agents in Nh. First, denote by mAB
h the number of A-agents required for agents
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in Nh to switch. Following the same argument as for agents in Nℓ, attending to Table 3.1 reveals

that mAB
h is given by

mAB
h =


⌊
M2

h

⌋
, if kh ≤ (n−1)(b−d)

a+b−2d .

⌊
M1

h

⌋
, if kh > (n−1)(b−d)

a+b−2d .

If the number of A-agents mAB
ℓ − nℓ is less than mAB

h , then agents in Nh switch without requiring

more mutations. Otherwise, extra mutations are needed for their transition.

First, consider the case where kh ≤ (n−1)(b−d)
a+b−2d . One can check that

⌊
M2

h

⌋
> nh holds. Thus,

we have that mAB
ℓ −nℓ <

⌊
M2

h

⌋
, i.e. the number of existing A-agents is smaller than the number of

A-agents required for the transition. Therefore, the number of B-agents is sufficient for A-agents

in Nh to switch.

Next, consider the case where (n−1)(b−d)
a+b−2d < kh ≤ kh. We have that

⌊
M1

h

⌋
≥ nh holds. This

implies that no extra mutation is required for A-agents in Nh to switch.

Now, consider the case where kh > kh. We have that
⌊
M1

h

⌋
< nh. Recall that we are now

focusing on the case where there are only two absorbing sets. Thus, the range of kℓ is restricted on

kℓ ≥ kℓ whenever kh > kh. One can check that mAB
ℓ −nℓ ≤ 0 if kℓ ≥ kℓ. Note that if mAB

ℓ −nℓ ≤ 0,

all agents are now playing B and we have reached
−→
BB.

Combining the results of all three cases, the number of B-agents after mutations and switches

among Nℓ is sufficient for agents in Nh to switch. Denote by n−mAB the minimum number of

B-agents for the transition among Nℓ and Nh. In summary, we have that

n−mAB =



n−
⌊
M2

ℓ

⌋
, if kℓ ≤ (n−1)(b−d)

a+b−2d ,kh ≤ (b−d)nℓ−(a−c)(nh−1)
(c−d) .

n−
⌊
M1

ℓ

⌋
, if kℓ > (n−1)(b−d)

a+b−2d ,kh ≤ (b−d)nℓ−(a−c)(nh−1)
(c−d) .

n−
⌊
M1

ℓ

⌋
, if kℓ ≥ (b−d)(nℓ−1)−(a−c)nh

(c−d) ,kh > (b−d)nℓ−(a−c)(nh−1)
(c−d) .

(A.15)
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Since there are only two absorbing sets, we have that the stochastic potential of
−→
BB is given by

r(
−→
AA,

−→
BB) = n−mAB.

Second, consider the transition from
−→
BB to

−→
AA.

Note that fewer mutations are required for B-agents with the higher constraint to switch. Thus,

to obtain the minimum number of mutations required for this transition, we start with agents in the

high-constraint group. Denote by mBA
h the minimum number of mutations required for B-agents in

Nh to switch.

Whenever mBA
h ≤ n− kh − 1, B-agents in Nh will always stay since there are sufficient other

B-agents for them to link to. Thus, we turn to the case where mBA
h > n−kh−1, i.e. B-agents have to

link to both A- and B-agents. Now we have to determine the payoff B-agents get when they switch

to A. Thus, we have to consider two sub-cases: i) A-agents have to link to both A- and B-agents

after they switch, i.e. mBA
h < kh, and ii) A-agents can fill all their slots with other A-agents, i.e.

mBA
h ≥ kh.

In sub-case i), the switching threshold for B-agents is given by mBA
h =

⌈
M1

h

⌉
−1 according to

Table 3.1. Solving
⌈
M1

h

⌉
−1 < kh yields that kh ≥ (b−d)n

a+b−2d +
a−c

a+b−2d .

In sub-case ii), the switching threshold for B-agents is mBA
h =

⌈
M2

h

⌉
− 1 according to Table

3.1. Then by solving
⌈
M2

h

⌉
−1 ≥ kh, we obtain that kh < (b−d)n

a+b−2d .14

It remains to be classified what happens in the range kh ∈
[

(b−d)n
a+b−2d ,

(b−d)n
a+b−2d +

a−c
a+b−2d

)
. As-

sume that mBA
h < kh. Since the number of A-agents is less than the constraint, A-agents will

have to link to both A- and B-agents. Attending Table 3.1 reveals that for B-agents to switch

requires that mBA
h ≥

⌈
M1

h

⌉
− 1, which can in turn be written as kh ≥ (b−d)n

a+b−2d + a−c
a+b−2d . This lies

out of our interval, yielding a contradiction. Thus, we consider mBA
h ≥ kh. Now observe that for

14Note that kh is a positive integer. If kh >
⌈
M1

h

⌉
−1, then kh ≥ M1

h . Similarly, if kh ≤
⌈
M2

h

⌉
−1, then kh < M2

h .
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mBA
h = kh, we have that vi(A,kh + 1) ≥ vi(B,kh) holds, provided that kh ≥ (n−1)(b−d)

a+b−2d . Because

kh ∈
[

(b−d)n
a+b−2d ,

(b−d)n
a+b−2d +

a−c
a+b−2d

)
, exactly kh mutation are sufficient for the transition in this range.

In summary, we have that

mBA
h =



⌈
M2

h

⌉
−1 if kh < n(b−d)

a+b−2d .

kh if kh ∈
[

n(b−d)
a+b−2d ,

n(b−d)+(a−c)
a+b−2d

)
.

⌈
M1

h

⌉
−1 if kh ≥ n(b−d)+(a−c)

a+b−2d .

(A.16)

Now, observe that kh =
⌈
M2

h

⌉
− 1 if kh < M2

h ≤ kh + 1. This holds for (n−1)(b−d)
a+b−2d ≤ kh <

n(b−d)
a+b−2d . Similarly, we find that kh =

⌈
M1

h

⌉
−1 if kh < M1

h ≤ kh +1 which can in turn be written as

kh ∈ [ (n−1)(b−d)
a+b−2d , n(b−d)

a+b−2d +
(a−c)

a+b−2d ). Thus, the equation (A.16) is equivalent to

mBA
h =


⌈
M2

h

⌉
−1 if kh < (n−1)(b−d)

a+b−2d .

⌈
M1

h

⌉
−1 if kh ≥ (n−1)(b−d)

a+b−2d .

(A.17)

Moreover, we find that
⌈
M2

h

⌉
− 1 > n− kh − 1 holds for any kh, and

⌈
M1

h

⌉
− 1 > n− kh − 1

Whenever kh > (n−1)(a−c)
a+b−2c . As (n−1)(a−c)

a+b−2c < (n−1)(b−d)
a+b−2d , equation (A.17) is true in the relevant range

of kh.

Now, denote by mBA the minimum number of mutations for agents among both Nℓ and Nh

to switch. To maximize the impact of the mutations, assume that all mutations occur in the low-

constraint group Nℓ. Thus, after all B-agents in Nh have switched, the maximum number of A-

agents is min{n,mBA
h +nh}. It follows that the minimum number of B-agents now is max{0,nℓ−

mBA
h }. If nℓ−mBA

h ≤ 0, i.e. if there are no B-agents, then we have reached
−→
AA and no extra mutations

are required. Thus, we have mBA = mBA
h for the relevant range of kh.

Consider the case where there are still mBA
h +nh A-agents left after the mutation and switch, i.e.
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nℓ−mBA
h > 0. Now, we have to determine whether the number of A-agents is enough for B-agents

in Nℓ to switch. Following the same argument as above, the switching threshold for B-agents in Nℓ

is given by

mBA
ℓ =


⌈
M2

ℓ

⌉
−1 if kℓ < (n−1)(b−d)

a+b−2d .

⌈
M1

ℓ

⌉
−1 if kℓ ≥ (n−1)(b−d)

a+b−2d .

where mBA
ℓ is the minimum number of A-agents required for agents in Nℓ to switch to A. It follows

that if mBA
h +nh > mBA

ℓ , then no extra mutation are required for this transition. If mBA
h +nh ≤ mBA

ℓ ,

an additional mBA
ℓ −(mBA

h +nh) mutations are needed. Then total number of mutations is mBA
ℓ −nh.

In summary, the minimum number of mutations required is

mBA = max{mBA
h ,mBA

ℓ −nh} (A.18)

Since there are only two absorbing sets, we have that the stochastic potential of
−→
BB for the relevant

ranges of kℓ and kh is given by

r(
−→
BB,

−→
AA) = mBA.

Having characterized the stochastic potentials of the absorbing sets, we now proceed to

identify the set of stochastically stable states S ⋆⋆⋆ for the various ranges of kℓ and kh. De-

note by ∆(kℓ,kh) the difference between the stochastic potentials of
−→
BB and

−→
AA, i.e. ∆(kℓ,kh) =

r(
−→
AA,

−→
BB)− r(

−→
BB,

−→
AA). If ∆(kℓ,kh)> 0, then S ⋆⋆⋆ =

−→
AA; if ∆(kℓ,kh) = 0, then S ⋆⋆⋆ =

−→
AA∪−→

BB,

and if ∆(kℓ,kh)< 0, then S ⋆⋆⋆ =
−→
BB.

First, consider the case where kℓ < kh < (n−1)(b−d)
a+b−2d . We have obtained above that r(

−→
BB,

−→
AA) =

max{
⌈
M2

h

⌉
− 1,

⌈
M2

ℓ

⌉
− 1− nh} and r(

−→
AA,

−→
BB) = n−

⌊
M2

ℓ

⌋
for the relevant ranges of kℓ and kh.
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Thus, we have that

∆(kℓ,kh) = min{n−
⌊
M2

ℓ

⌋
−
⌈
M2

h
⌉
+1,n+nh +1−

⌊
M2

ℓ

⌋
−
⌈
M2

ℓ

⌉
}

= min{
⌈

a−d
b−d

· kℓ
⌉
+

⌊
a−d
b−d

· kh
⌋
−n+1,

⌈
a−d
b−d

· kℓ
⌉
+

⌊
a−d
b−d

· kℓ
⌋
−nℓ+1}.

One can check that n−
⌊
M2

ℓ

⌋
−
⌊
M2

h

⌋
+1 < 0 holds whenever kℓ < kh < (n−1)(b−d)

a+b−2d , which implies

that ∆(kℓ,kh)< 0. Thus, S ⋆⋆⋆ =
−→
BB. In this case, the two thresholds in the proposition are given

by kℓ = kℓ = (n−1)(b−d)
a+b−2d .

Second, consider the case where kℓ ≤ (n−1)(b−d)
a+b−2d ≤ kh ≤ kh. We have that r(

−→
BB,

−→
AA) =

max{
⌈
M1

h

⌉
−1,

⌈
M2

ℓ

⌉
−1−nh}, and r(

−→
AA,

−→
BB) = n−

⌊
M2

ℓ

⌋
. Thus,

∆(kℓ,kh) = min{n−
⌊
M2

ℓ

⌋
−
⌈
M1

h
⌉
+1,n+nh +1−

⌊
M2

ℓ

⌋
−
⌈
M2

ℓ

⌉
}

= min{
⌈

a−d
b−d

· kℓ
⌉
+

⌊
kh(c−d)− (n−1)(b−d)

a+b− c−d

⌋
,

⌈
a−d
b−d

· kℓ
⌉
+

⌊
a−d
b−d

· kℓ
⌋
−nℓ+1}

:= min{φ(kℓ,kh),ψ(kℓ,kh)}.

Given that b > a > c > d, ∆(kℓ,kh) is weakly increasing in both kℓ and kh. Thus, ∆(kℓ,kh) obtains

its minimum at the boundary where kℓ = 1 and kh = (n−1)(b−d)
a+b−2d . At this point, we have that

φ(1,
(n−1)(b−d)

a+b−2d
) =

⌈
a−d
b−d

⌉
−
⌊
(n−1)(b−d)

a+b−2d

⌋
≤ 0;

ψ(1,
(n−1)(b−d)

a+b−2d
) = 2−nℓ ≤ 0.

Thus, we have that ∆(1, (n−1)(b−d)
a+b−2d )≤ 0. 15 When n is sufficiently large, we have that ∆(1, (n−1)(b−d)

a+b−2d )

is strictly negative.

We now assess the maximum of ∆(kℓ,kh), which is obtained at the boundary where kℓ =

15Notice that ∆(1, (n−1)(b−d)
a+b−2d ) = 0 hold if and only if n= 3 and nℓ = 2, otherwise, ∆(1, (n−1)(b−d)

a+b−2d )< 0. Furthermore,

note that when n = 3 and nℓ = 2, we have that kℓ = 1 and kh = 2. The transition from
−→
AA to

−→
BB requires one mutation

and the transition from
−→
BB to

−→
AA requires two mutations. Thus,

−→
BB is the unique set of stochastically stable states.

Thus, in the main context, we only discuss the case when n is sufficiently large.
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(n−1)(b−d)
a+b−2d and kh = kh. We have that

φ(
(n−1)(b−d)

a+b−2d
,kh) =

⌈
nℓ−

(n−1)(b−d)
a+b−2d

⌉
;

ψ(
(n−1)(b−d)

a+b−2d
,kh) =

⌈
(n−1)(a−d)

a+b−2d

⌉
+

⌊
(n−1)(a−d)

a+b−2d

⌋
−nℓ+1.

We find that φ( (n−1)(b−d)
a+b−2d ,kh)= 0 if (n−1)(b−d)

a+b−2d −1< nℓ≤ (n−1)(b−d)
a+b−2d . Thus, we have that φ( (n−1)(b−d)

a+b−2d ,kh)<

0 holds whenever nℓ ≤ (n−1)(b−d)
a+b−2d − 1 and φ( (n−1)(b−d)

a+b−2d ,kh) > 0 holds whenever nℓ >
(n−1)(b−d)

a+b−2d .

Similarly, we find that ψ( (n−1)(b−d)
a+b−2d ,kh) = 0 whenever 2(n−1)(a−d)

a+b−2d ≤ nℓ <
2(n−1)(a−d)

a+b−2d + 2. Thus,

we have that ψ( (n−1)(b−d)
a+b−2d ,kh)< 0 holds whenever nℓ ≥ 2(n−1)(b−d)

a+b−2d +2 and ψ( (n−1)(b−d)
a+b−2d ,kh)> 0

holds whenever nℓ <
2(n−1)(b−d)

a+b−2d . In summary, we have that



∆( (n−1)(b−d)
a+b−2d ,kh)< 0 if nℓ ∈ (2, (n−1)(b−d)

a+b−2d −1]∪ [2(n−1)(a−d)
a+b−2d +2,n−1);

∆( (n−1)(b−d)
a+b−2d ,kh) = 0 if nℓ ∈ ( (n−1)(b−d)

a+b−2d −1, (n−1)(b−d)
a+b−2d ]∪ [2(n−1)(a−d)

a+b−2d , 2(n−1)(a−d)
a+b−2d +2);

∆( (n−1)(b−d)
a+b−2d ,kh)> 0 if nℓ ∈ ( (n−1)(b−d)

a+b−2d , 2(n−1)(a−d)
a+b−2d ).

Consequently, whenever nℓ ∈ (2, (n−1)(b−d)
a+b−2d −1]∪ [2(n−1)(a−d)

a+b−2d +2,n−1), we have that ∆(kℓ,kh)<

0 for any kℓ and kh in the relevant ranges , which implies that S ⋆⋆⋆ =
−→
BB. In this case, the two

thresholds in the proposition are given by kℓ = kℓ = (n−1)(b−d)
a+b−2d .

It follows that if nℓ ∈ ( (n−1)(b−d)
a+b−2d −1, (n−1)(b−d)

a+b−2d ]∪ [2(n−1)(a−d)
a+b−2d , 2(n−1)(a−d)

a+b−2d +2), we have that

∆(kℓ,kh) = 0 holds if and only if kℓ = (n−1)(b−d)
a+b−2d and kh = kh, which implies S ⋆⋆⋆ =

−→
BB∪−→

AA.

Furthermore, we have that ∆(kℓ,kh)< 0 for any pair of kℓ and kh such that kℓ < (n−1)(b−d)
a+b−2d ≤ kh <

kh, which implies that S ⋆⋆⋆ =
−→
BB. The two thresholds in this case are thus given by kℓ = kℓ =

(n−1)(b−d)
a+b−2d .

Moreover, if nℓ ∈ ( (n−1)(b−d)
a+b−2d , 2(n−1)(a−d)

a+b−2d ), we have that the maximum of ∆(kℓ,kh) is positive,

i.e. ∆( (n−1)(b−d)
a+b−2d ,kh) > 0 and the minimum is negative, i.e. ∆(1, (n−1)(b−d)

a+b−2d ) < 0. Thus, for each
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kh ∈ [ (n−1)(b−d)
a+b−2d ,kh), there exists a corresponding interval of kℓ, such that for any kℓ in this interval

we have that ∆(kℓ,kh) = 0. Note that ∆(kℓ,kh) is weakly increasing in both kℓ and kh. We have that

∆(kℓ,kh) < 0 if kℓ falls below this interval and ∆(kℓ,kh) > 0 if kℓ falls above. Therefore, for each

kh ∈ [ (n−1)(b−d)
a+b−2d ,kh), we have that

S ⋆⋆⋆ =



−→
BB, if kℓ < kℓ.

−→
BB∪−→

AA, if kℓ ∈ [kℓ,kℓ].

−→
AA, if kℓ > kℓ.

where kℓ and kℓ are the two thresholds which are given by the upper and lower boundaries of this

interval respectively.

Now, consider the case where (n−1)(b−d)
a+b−2d < kℓ< kh ≤ kh. we have that r(

−→
BB,

−→
AA)=max{

⌈
M1

h

⌉
−

1,
⌈
M1

ℓ

⌉
−1−nh}, and r(

−→
AA,

−→
BB) = n−

⌊
M1

ℓ

⌋
. Thus,

∆(kℓ,kh) = min{n−
⌊
M1

ℓ

⌋
−
⌈
M1

h
⌉
+1,n+nh +1−

⌊
M1

ℓ

⌋
−
⌈
M1

ℓ

⌉
}

= min{n+
⌈

kℓ(c−d)− (n−1)(b−d)
a+b− c−d

⌉
+

⌊
kh(c−d)− (n−1)(b−d)

a+b− c−d

⌋
−1,

n+nh +

⌈
kℓ(c−d)− (n−1)(b−d)

a+b− c−d

⌉
+

⌊
kℓ(c−d)− (n−1)(b−d)

a+b− c−d

⌋
−1}

:= min{φ(kℓ,kh),ψ(kℓ,kh)}.

As above, ∆(kℓ,kh) is weakly increasing in both kℓ and kh. Thus, ∆( (n−1)(b−d)
a+b−2d , (n−1)(b−d)

a+b−2d ) <

∆(kℓ,kh)< ∆(kh,kh). One can check that ∆(kh,kh)> 0 hold since both φ(kh,kh) and ψ(kh,kh) are

strictly positive. We now assess the sign of ∆( (n−1)(b−d)
a+b−2d , (n−1)(b−d)

a+b−2d ). Note that ∆( (n−1)(b−d)
a+b−2d , (n−1)(b−d)

a+b−2d )=

min{φ( (n−1)(b−d)
a+b−2d , (n−1)(b−d)

a+b−2d ),ψ( (n−1)(b−d)
a+b−2d , (n−1)(b−d)

a+b−2d )} where

φ(
(n−1)(b−d)

a+b−2d
,
(n−1)(b−d)

a+b−2d
) = n−

⌈
(n−1)(b−d)

a+b−2d

⌉
−
⌊
(n−1)(b−d)

a+b−2d

⌋
−1 < 0.
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and

ψ(
(n−1)(b−d)

a+b−2d
,
(n−1)(b−d)

a+b−2d
) = n+nh −

⌈
(n−1)(b−d)

a+b−2d

⌉
−
⌊
(n−1)(b−d)

a+b−2d

⌋
−1.

Since φ( (n−1)(b−d)
a+b−2d , (n−1)(b−d)

a+b−2d ) < 0 holds, we have that ∆( (n−1)(b−d)
a+b−2d , (n−1)(b−d)

a+b−2d ) < 0. Thus, for

each kh ∈ ( (n−1)(b−d)
a+b−2d ,kh], there exists a corresponding interval of kℓ, such that for any kℓ in this

interval we have ∆(kℓ,kh) = 0. As above, We have that ∆(kℓ,kh)< 0 if kℓ falls below this interval

and ∆(kℓ,kh)> 0 if kℓ falls above. Therefore, for each kh ∈ ( (n−1)(b−d)
a+b−2d ,kh], we have that

S ⋆⋆⋆ =



−→
BB, if kℓ < kℓ.

−→
BB∪−→

AA, if kℓ ∈ [kℓ,kℓ].

−→
AA, if kℓ > kℓ.

where kℓ and kℓ are the two thresholds which are given by the upper and lower boundaries of this

interval respectively.

Finally, consider the case where kℓ≥ kℓ and kh > kh. In this case, we also have that r(
−→
BB,

−→
AA)=

max{
⌈
M1

h

⌉
−1,

⌈
M1

ℓ

⌉
−1−nh}, and r(

−→
AA,

−→
BB) = n−

⌊
M1

ℓ

⌋
. Thus,

∆(kℓ,kh) = min{n−
⌊
M1

ℓ

⌋
−
⌈
M1

h
⌉
+1,n+nh +1−

⌊
M1

ℓ

⌋
−
⌈
M1

ℓ

⌉
}

= min{n+
⌈

kℓ(c−d)− (n−1)(b−d)
a+b− c−d

⌉
+

⌊
kh(c−d)− (n−1)(b−d)

a+b− c−d

⌋
−1,

n+nh +

⌈
kℓ(c−d)− (n−1)(b−d)

a+b− c−d

⌉
+

⌊
kℓ(c−d)− (n−1)(b−d)

a+b− c−d

⌋
−1}

:= min{φ(kℓ,kh),ψ(kℓ,kh)}.

One can check that both φ(kℓ,kh) and ψ(kℓ,kh) are strictly positive if kℓ ≥ kℓ and kh > kh. There-

fore, we have that ∆(kℓ,kh) > 0 and consequently, S ⋆⋆⋆ =
−→
AA for any kℓ and kh with kℓ ≥ kℓ and
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kh > kh. In this case, the two thresholds in the proposition are given by kℓ = kℓ = kℓ.

Proof of Proposition 3.5.3. First, note that according to Proposition 3.5.1, for any kℓ and kh with

kℓ < kℓ and kh > kh there are three absorbing sets
−→
AA,

−→
BB and

−→
BA. The proof proceeds by using

techniques by Young (1993) and Kandori et al. (1993), which include three steps: i) calculate the

resistance of transition from one absorbing set to another; ii) calculate the stochastic potential of

each absorbing set, and iii) compare the stochastic potentials and find the smallest one.

i) Calculate the resistances of transitions.

First, we consider the transition from
−→
AA to

−→
BA. Following the same argument as in the proof

of Proposition 3.5.2, the minimum number of mutations for the transitions of agents in Nℓ is given

by

n−mAB
ℓ =


n−

⌊
M2

ℓ

⌋
, if kℓ ≤ (n−1)(b−d)

a+b−2d .

n−
⌊
M1

ℓ

⌋
, if (n−1)(b−d)

a+b−2d < kℓ < kℓ.

Assume that all mutations occur in Nℓ. After the mutations and consequent switches have occured,

we have reached a state in
−→
BA. Note that

−→
BA is absorbing. Thus, no agent will switch without

further mutations. Therefore, the resistance of the transition from
−→
AA to

−→
BA is given by

r(
−→
AA,

−→
BA) =


n−

⌊
M2

ℓ

⌋
, if kℓ ≤ (n−1)(b−d)

a+b−2d .

n−
⌊
M1

ℓ

⌋
, if (n−1)(b−d)

a+b−2d < kℓ < kℓ.

(A.19)

Second, we consider the transition from
−→
BA to

−→
AA. Following the same argument as in the

proof of Proposition 3.5.2, we have that the minimum number of A-agents required for agents in
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Nℓ to switch from B to A is given by

mBA
ℓ =


⌈
M2

ℓ

⌉
−1, if kℓ < (n−1)(b−d)

a+b−2d .

⌈
M1

ℓ

⌉
−1, if (n−1)(b−d)

a+b−2d ≤ kℓ < kℓ.

Since there are already nh A-agents before the mutations, the number of mutations required for

agents in Nℓ to switch is mBA
ℓ −nh. Thus, for any kh > kh, the resistance of the transition from

−→
BA

to
−→
AA is given by

r(
−→
BA,

−→
AA) =


⌈
M2

ℓ

⌉
−nh −1, if kℓ < (n−1)(b−d)

a+b−2d .

⌈
M1

ℓ

⌉
−nh −1, if (n−1)(b−d)

a+b−2d ≤ kℓ < kℓ.

(A.20)

Third, consider the transition from
−→
BB to

−→
BA . Consider agents in Nh. Attending to Table

3.1 reveals that the minimum number of mutations required for agents in Nh to switch from B to

A is given by mBA
h =

⌈
M1

h

⌉
− 1. Assume that all mutations occur in Nh. After the mutations and

consequent switches have occured, we have reached a state in
−→
BA. Since

−→
BA is absorbing, no agent

will switch without further mutations. Thus, the resistance of the transition from
−→
BB to

−→
BA is given

by

r(
−→
BB,

−→
BA) =

⌈
M1

h
⌉
−1. (A.21)

Next, consider the transition from
−→
BA to

−→
BB. Denote by n−mAB

h the minimum number of B-

agents required for agents in Nh to switch form action A to B. Thus, mAB
h is the maximum number

of A-agents allowed for this transition. According to Table 3.1, we have that mAB
h =

⌊
M1

h

⌋
. Since

there are already nℓ B-agents before the mutations, the minimum number of mutations required is
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thus n−mAB
h −nℓ. Hence, the resistance of the transition from

−→
BA to

−→
BB is given by

r(
−→
BA,

−→
BB) = nh −

⌊
M1

h
⌋
. (A.22)

Now, consider the transition from
−→
AA to

−→
BB. Following the same argument as in the proof of

Proposition 3.5.2, the minimum number of mutations for the transitions of agents in Nℓ is given by

n−mAB
ℓ =


n−

⌊
M2

ℓ

⌋
, if kℓ ≤ (n−1)(b−d)

a+b−2d .

n−
⌊
M1

ℓ

⌋
, if (n−1)(b−d)

a+b−2d < kℓ < kℓ.

We now assess the largest number of B-agents after the mutations and switches (excluding switches

among agents in Nh for now), i.e. agents who have mutated and agents in Nℓ who have switched

to B. For this, assume all mutations occur in Nh. Thus, the largest number of B-agents is nℓ+

n−mAB
ℓ . It follows that the minimum number of remaining A-agents in Nh is mAB

ℓ −nℓ. Consider

the transitions of agents in Nh now. As above, the maximum number of A-agents allowed for the

transitions of agents in Nh is mAB
h =

⌊
M1

h

⌋
whenever kh > kh. If the number of A-agents mAB

ℓ −nℓ is

less than mAB
h , then agents in Nh will switch without further mutations. In this case, the resistance

of the transition is given by

r(
−→
AA,

−→
BB) =


n−

⌊
M2

ℓ

⌋
, if kℓ ≤ (n−1)(b−d)

a+b−2d .

n−
⌊
M1

ℓ

⌋
, if (n−1)(b−d)

a+b−2d < kℓ < kℓ.

Otherwise, if mAB
ℓ − nℓ ≥ mAB

h , additional mutations are needed. In this case, assume that the

minimum number of mutations required is x. Then, we have that n− (nℓ+ x) < mAB
h must hold,

i.e. the number of A-agents left after the mutations and switched in Nℓ is less than the switching

threshold. Thus, we have that x > nh −mAB
h . Since x is the minimum number, x = nh −mAB

h + 1.
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One can check that nh −mAB
h +1 > n−mAB

ℓ . Therefore, we have that

r(
−→
AA,

−→
BB)≥ n−mAB

ℓ = r(
−→
AA,

−→
BA). (A.23)

Finally, consider the transition from
−→
BB to

−→
AA. As above, the minimum number of mutations

required for agents in Nh to switch from B to A is given by mBA
h =

⌈
M1

h

⌉
−1.

To maximize the impact of the mutations, assume that all mutations occur in the low-constraint

group Nℓ. Thus, after all B-agents in Nh have switched, the maximum number of A-agents is

min{n,mBA
h + nh}. It follows that the minimum number of B-agents now is max{0,nℓ−mBA

h }. If

nℓ−mBA
h ≤ 0, i.e. if there are no B-agents, then we have reached

−→
AA and no extra mutations are

required. Thus, we have mBA = mBA
h for the relevant range of kh.

Consider the case where there are still mBA
h +nh A-agents left after the mutation and switch, i.e.

nℓ−mBA
h > 0. Now, we have to determine whether the number of A-agents is enough for B-agents

in Nℓ to switch. Following the same argument as above, the switching threshold for B-agents in Nℓ

is given by

mBA
ℓ =


⌈
M2

ℓ

⌉
−1 if kℓ < (n−1)(b−d)

a+b−2d .

⌈
M1

ℓ

⌉
−1 if kℓ ≥ (n−1)(b−d)

a+b−2d .

where mBA
ℓ is the minimum number of A-agents required for agents in Nℓ to switch to A. It follows

that if mBA
h +nh > mBA

ℓ , then no extra mutation are required for this transition. In this case, we have

that

r(
−→
BB,

−→
AA) =

⌈
M1

h
⌉
−1.

If mBA
h +nh ≤ mBA

ℓ , an additional mBA
ℓ − (mBA

h +nh) mutations are needed. Then total number
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of mutations is mBA
ℓ −nh. In this case, we have that

r(
−→
BB,

−→
AA) =


⌈
M2

ℓ

⌉
−nh −1 if kℓ < (n−1)(b−d)

a+b−2d .

⌈
M1

ℓ

⌉
−nh −1 if kℓ ≥ (n−1)(b−d)

a+b−2d .

One can check that in both cases, we have that

r(
−→
BB,

−→
AA)≥

⌈
M1

h
⌉
−1 = r(

−→
BB,

−→
BA). (A.24)

ii) Calculate the stochastic potential of each absorbing set.

Having obtained the resistances of transitions, we are now able to compute the stochastic

potentials of each absorbing set. We denote by r j(S⋆⋆i ) the resistance of the j-th S⋆⋆i -tree. Figure

A.3 depicts all possible
−→
AA,

−→
BB and

−→
BA-trees.

First, consider all
−→
AA-trees depicted as sub-figures A.3a to A.3c in Figure A.3. The resistances

of these trees are given by

r1(
−→
AA) = r(

−→
BA,

−→
BB)+ r(

−→
BB,

−→
AA),

r2(
−→
AA) = r(

−→
BB,

−→
BA)+ r(

−→
BA,

−→
AA),

r3(
−→
AA) = r(

−→
BB,

−→
AA)+ r(

−→
BA,

−→
AA).

Given inequality (A.24), we have that r3(
−→
AA) ≥ r2(

−→
AA). Thus, the stochastic potential of

−→
AA is

given by

γ(
−→
AA) = min{r1(

−→
AA),r2(

−→
AA)}. (A.25)

Now, consider all
−→
BB-trees depicted as sub-figures A.3d to A.3f in Figure A.3. The resistances
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(a) 1st
−→
AA-tree (b) 2nd

−→
AA-tree (c) 3rd

−→
AA-tree

(d) 1st
−→
BB-tree (e) 2nd

−→
BB-tree (f) 3rd

−→
BB-tree

(g) 1st
−→
BA-tree (h) 2nd

−→
BA-tree (i) 3rd

−→
BA-tree

Figure A.3. All S⋆⋆i -trees

of these trees are given by

r1(
−→
BB) = r(

−→
AA,

−→
BA)+ r(

−→
BA,

−→
BB),

r2(
−→
BB) = r(

−→
BA,

−→
AA)+ r(

−→
AA,

−→
BB),

r3(
−→
BB) = r(

−→
BA,

−→
BB)+ r(

−→
AA,

−→
BB).

Given inequality (A.23), we have that r3(
−→
BB) ≥ r1(

−→
BB). Thus, the stochastic potential of

−→
BB is

given by

γ(
−→
BB) = min{r1(

−→
BB),r2(

−→
BB)}. (A.26)

Finally, consider all
−→
BB-trees depicted as sub-figures A.3g to A.3i in Figure A.3. The resis-



A.2. APPENDIX B 99

tances of these trees are given by

r1(
−→
BA) = r(

−→
AA,

−→
BB)+ r(

−→
BB,

−→
BA),

r2(
−→
BA) = r(

−→
BB,

−→
AA)+ r(

−→
AA,

−→
BA),

r3(
−→
BA) = r(

−→
BB,

−→
BA)+ r(

−→
AA,

−→
BA).

Given the two inequalities (A.23) and (A.24) , we have that r1(
−→
BA)≥ r3(

−→
BA) and r2(

−→
BA)≥ r3(

−→
BA).

Thus, the stochastic potential of
−→
BA is given by

γ(
−→
BA) = r3(

−→
BA) =


n−

⌊
M1

ℓ

⌋
+
⌈
M1

h

⌉
−1 if kℓ ≥ (n−1)(b−d)

a+b−2d .

n−
⌊
M2

ℓ

⌋
+
⌈
M1

h

⌉
−1 if kℓ < (n−1)(b−d)

a+b−2d .

(A.27)

iii) Find the region of kℓ and kh such that the stochastic potential of
−→
BA is the smallest.

Having obtained the stochastic potentials, we now move on to find the regions of kℓ and kh

where the stochastic potential of
−→
BA is the smallest. To do so, both γ(

−→
BA) ≤ γ(

−→
AA) and γ(

−→
BA) ≤

γ(
−→
BB) must hold. Given equations (A.25), (A.26) and (A.27), we thus have that

γ(
−→
AA)− γ(

−→
BA) = min{r1(

−→
AA)− r3(

−→
BA),r2(

−→
AA)− r3(

−→
BA)} ≥ 0. (A.28)

and

γ(
−→
BB)− γ(

−→
BA) = min{r1(

−→
BB)− r3(

−→
BA),r2(

−→
BB)− r3(

−→
BA)} ≥ 0. (A.29)

Note that the above two inequalities (A.28) and (A.29) hold if and only if the following four
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inequalities hold

r1(
−→
AA)≥ r3(

−→
BA), r2(

−→
AA)≥ r3(

−→
BA);

r1(
−→
BB)≥ r3(

−→
BA), r2(

−→
BB)≥ r3(

−→
BA).

(A.30)

By substituting the above equations of the resistances, we rewrite inequalities in (A.30) as

follows:

r(
−→
BA,

−→
BB)+ r(

−→
BB,

−→
AA)≥ r(

−→
BB,

−→
BA)+ r(

−→
AA,

−→
BA), (A.31a)

r(
−→
BA,

−→
AA)− r(

−→
AA,

−→
BA)≥ 0, (A.31b)

r(
−→
BA,

−→
BB)− r(

−→
BB,

−→
BA)≥ 0, (A.31c)

r(
−→
BA,

−→
AA)+ r(

−→
AA,

−→
BB)≥ r(

−→
BB,

−→
BA)+ r(

−→
AA,

−→
BA). (A.31d)

Now, we substitute our results of resistances of transitions in the above four inequalities

(A.31a) to (A.31d), we have that

nh +1−⌊M1
h⌋−⌈M1

h⌉ ≥ 0, (A.32a)

⌊Mℓ⌋+ ⌈Mℓ⌉−n−nh −1 ≥ 0, (A.32b)

⌊Mℓ⌋−⌊M1
h⌋−nℓ ≥ 0, (A.32c)

⌈Mℓ⌉−⌈M1
h⌉−nh ≥ 0. (A.32d)

where

Mℓ =


M2

ℓ , if kℓ ≤ (n−1)(b−d)
a+b−2d .

M1
ℓ , if (n−1)(b−d)

a+b−2d < kℓ < kℓ.
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Let Φ(kh) = nh +1−⌊M1
h⌋−⌈M1

h⌉ and Ψ(kℓ) = ⌊Mℓ⌋+ ⌈Mℓ⌉−n−nh −1. We have that

Φ(kh) = nh −1−
⌊
(n−1)(b−d)− kh(c−d)

a+b− c−d

⌋
−
⌈
(n−1)(b−d)− kh(c−d)

a+b− c−d

⌉
. (A.33)

and

Ψ(kℓ) =


⌊
(n−1)(b−d)−kℓ(c−d)

a+b−c−d

⌋
+
⌈
(n−1)(b−d)−kℓ(c−d)

a+b−c−d

⌉
−n−nh +1 if kℓ ≥ (n−1)(b−d)

a+b−2d .

⌊
n− a−d

b−d · k
ℓ
⌋
+
⌈
n− a−d

b−d · k
ℓ
⌉
−n−nh −1 if kℓ < (n−1)(b−d)

a+b−2d .

(A.34)

We find that Φ(kh)= 0 whenever kh ∈ [2(n−1)(b−d)−nh(a+b−c−d)
2(c−d) − a+b−c−d

c−d , 2(n−1)(b−d)−nh(a+b−c−d)
2(c−d) ).

Let kh⋆ ≡ 2(n−1)(b−d)−nh(a+b−c−d)
2(c−d) − a+b−c−d

c−d . Note that Φ(kh) is weakly increasing in kh. Thus,

for any kh ≥ kh⋆, we have that Φ(kh)≥ 0.

Moreover, Ψ(kℓ) is weakly decreasing in kℓ with kℓ < kℓ. Thus, we have that

Ψmin(kℓ)> Φ(kℓ) = 1−nℓ < 0. (A.35)

and

Ψmax(kℓ) = Φ(1) = nℓ−2 ≥ 0. (A.36)

Thus, there exists an interval of kℓ, such that for any kℓ in this interval we have Ψ(kℓ) = 0. Since

Ψ(kℓ) is weakly decreasing in kℓ, we have that Ψ(kℓ)> 0 if kℓ falls below this interval and Ψ(kℓ)<

0 if kℓ falls above. Let kℓ⋆ equal to the upper bound of this interval. Thus, for any kℓ ≤ kℓ⋆ we have

that Ψ(kℓ)≥ 0.

Whenever kℓ ≤ kℓ⋆ and kh ≥ kh⋆, one can check that ⌊Mℓ⌋−⌊M1
h⌋−nℓ ≥ 0 and ⌈Mℓ⌉−⌈M1

h⌉−

nh ≥ 0 hold. Thus, for any kℓ and kh with kℓ ≤ kℓ⋆ and kh ≥ kh⋆, we have that γ(
−→
BA)≤ γ(

−→
AA) and
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γ(
−→
BA)≤ γ(

−→
BB). Consequently,

−→
BA ⊆ S ⋆⋆⋆.

Now, we proceed to identify thresholds for kℓ and kh such that
−→
BA is the unique set of stochas-

tically stable states. The proof is almost the same as the argument above. The only difference is

in inequalities (A.32a) to (A.32d), which now are required to be strictly positive. Then, instead of

solving Φ(kh)≥ 0 and Ψ(kℓ)≥ 0 as above, we now solve Φ(kh)> 0 and Ψ(kℓ)> 0 for the ranges

of kℓ and kh. In this case, kh⋆⋆ is the upper bound of the solution such that Φ(kh) = 0. Similarly,

kℓ⋆⋆ is now the lower bound of the solution such that Ψ(kℓ) ≥ 0. Consequently, for any kℓ and kh

with kℓ < kℓ⋆⋆ and kh > kh⋆⋆, we have that γ(
−→
BA)< γ(

−→
AA) and γ(

−→
BA)< γ(

−→
BB). Thus, S ⋆⋆⋆ =

−→
BA.
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