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A B S T R A C T

The construction known as Gauss diagrams or Gauss words is one of the oldest in knot theory and has been
studied extensively both in the context of knots and in the context of closed curves with self-intersections.
When we studied graphs induced by Gauss diagrams, we produced all examples of these graphs of small sizes,
and we published the number of these graphs as sequence A343358 in the OEIS. The aim of this article is to
clarify several subtle theoretical points concerning A343358. Most importantly, we explain why our numbers,
produced using graph-theoretical constructions, reflect the number of so-called mutant knots.
1. Introduction

An important concept in knot theory are objects called Gauss di-
agrams [1–4]. They can be studied using certain graphs induced by
Gauss diagrams, which are usually called interlacement graphs [5,6].
As a part of our research of Gauss diagrams and their interlacement
graphs [7–10], we produced all examples of these graphs of size
up to 13. The number of these examples, published in the OEIS as
A3433581 provides experimental cross-validation for some recent the-
oretical and experimental results produced by other researchers using
other methods.

The aim of this article is to clarify several subtle theoretical points
underlying the numbers in A343358. On the one hand, we revisit
the definitions of two other sequences in the OEIS, A0028642 and
A264759,3 and explain why the numbers in our sequence A343358 are
not the same as in A002864 and A264759 (see Table 1). On the other
hand, we compare A343358 with the number of examples of knots
in certain knot-theoretical datasets and explain why these numbers
coincide.

2. Definitions

A broad theme of this field of research is classifying types of
closed curves. Doing this, some researchers are interested primarily in
closed curves, whereas for other researchers, closed curves represent
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Table 1
Values of sequences for sizes 𝑛 = 3,… , 13.

size 𝑛 A343358 A002864 A264759

3 1 1 1
4 1 1 1
5 2 2 2
6 3 3 3
7 7 7 10
8 18 18 27
9 41 41 101

10 123 123 364
11 361 367 1 610
12 1257 1288 7 202
13 4573 4878 34 659

simplified representations of knots, called shadows (or projections) of
knots.

Naturally, if two closed curves on the plane can be transformed
into one another by a smooth transformation of the ambient plane,
these two curves are deemed equivalent. Now let us consider more
complicated constructions. Out of the two curves in Figs. 1 and 2,
one can be turned into the other by ‘turning it inside out’, informally
speaking. The most widely used way of expressing ‘turning inside out’
mathematically is to say that these two curves are drawn not on a plane
but on the surface of a sphere. On a sphere, you can transform one of
https://doi.org/10.1016/j.exco.2024.100162
Received 26 June 2024; Accepted 8 October 2024
vailable online 11 October 2024 
666-657X/© 2024 The Authors. Published by Elsevier B.V. This is an open access art
c-nd/4.0/ ). 
icle under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 

https://www.elsevier.com/locate/exco
https://www.elsevier.com/locate/exco
mailto:a.lisitsa@liverpool.ac.uk
mailto:asvern@essex.ac.uk
https://www.csc.liv.ac.uk/~alexei/
https://www.essex.ac.uk/people/VERNI23003/Alexei-Vernitski
https://oeis.org/A343358
https://oeis.org/A002864
https://oeis.org/A264759
https://doi.org/10.1016/j.exco.2024.100162
https://doi.org/10.1016/j.exco.2024.100162
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


A. Lisitsa and A. Vernitski

s

i

b
s

i
i
s

g
t
i
p
a
t

t
𝑎

O

Examples and Counterexamples 6 (2024) 100162 
Fig. 1. A curve with two crossings, example 1.

Fig. 2. A curve with two crossings, example 2.

Fig. 3. A curve with two crossings, example 3.

Fig. 4. Connected sum illustrated.

these curves into the other by a smooth transformation of the ambient
phere (and by changing the point from which you look at the sphere,

as needed).
What if you turn one side of the curve in Fig. 1 ‘inside out’, as shown

n Fig. 3? One way to speak of this transformation is to say that this
‘turning inside out’ of one fragment of the curve has been made possible
y the fact that the curve is so-called connected sum, that is, can be
plit into two fragments which are connected to each other only at two

connecting points, as highlighted in Fig. 4.
Every closed curve can be decomposed into a connected sum of

ndecomposable curves, that is, curves which cannot be decomposed
nto a connected sum of simpler curves. Hence, one concentrates on
tudying indecomposable curves; in particular, numbers in Table 1 are

produced for indecomposable curves.
Speaking of simplifying a curve, also it is considered ‘not interesting’

if a fragment of a curve goes in a loop from an intersection back to the
same intersection without passing through other intersections on the
way. Each of the curves in the three examples above consists of two
instances of these ‘not interesting’ loops. A curve that does not contain
such loops is called irreducible; the smallest irreducible curve, known
in knot theory as the trefoil, is presented in Fig. 5. Numbers in Table 1
are produced for irreducible curves.

Instead of turning curves or their fragments ‘inside out’, a more
eneral and powerful approach is to consider the order of crossings on
he curve instead of the curve itself. Consider travelling along the curve;
n mathematical terms, if the curve on the plane is represented in the
arametric way by a smooth function 𝑡 ↦ (𝑥, 𝑦), consider increasing 𝑡
nd recording the crossings that you encounter, until you have visited
he whole length of the curve. For this purpose, denote each crossing
2 
Fig. 5. An irreducible curve.

Fig. 6. The trefoil labelled up for producing its Gauss word.

Fig. 7. Producing the Gauss diagram of the trefoil.

by a letter. For example, suppose we travel along the trefoil curve as
shown in Fig. 6, along arcs 1, 2, 3, 4, 5, 6, in this order. If we denote
he three crossings of the curve by 𝑎, 𝑏, 𝑐, we visit them in the order
𝑏𝑐 𝑎𝑏𝑐.

The sequence of letters we have produced is called a Gauss word.
bviously, the actual word depends on the point from which you start

on the curve, and the choice of direction in which you travel along the
curve, and the choice of notation for letters; one does not distinguish
between Gauss words which differ from one another by these details.
To stress that these details are not important, one writes the letters of
the Gauss word consecutively around the circle (as shown in the first
half of Fig. 7), and then replaces each pair of identical letters with a
chord connecting these positions on the circle (see the second half of
Fig. 7). The produced chord diagram is called a Gauss diagram.

The Gauss diagram in the example above happens to be symmetric
relative to the mirror reflection. Not all of them are; as discussed above,
in the context of studying closed curves, we do not distinguish between
a Gauss diagram and its mirror reflection, since this difference is an
artefact of the choice of the direction of travel along the curve.
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To every chord diagram, a graph corresponds, in which the vertices
correspond to the chords of the chord diagram, and two vertices are
connected with an edge if and only if the two chords intersect in the
chord diagram. In graph theory, this type of graph is called a circle
graph, but in knot theory, the circle graph of a Gauss diagram is usually
alled the interlacement graph of the Gauss diagram.

3. Crunching the numbers

A Gauss diagram is called indecomposable if the set of chords cannot
be split into two subsets 𝐶 and 𝐷 such that none of the chords in 𝐶
intersects any of the chords in 𝐷. Equivalently, a Gauss diagram is
indecomposable if and only if its interlacement graph is connected.

A chord diagram is called realizable if it is a Gauss diagram of a
losed curve drawn on the plane. Not every chord diagram is realizable.

It is known [11,12] that there is a one-to-one correspondence
between indecomposable irreducible closed curves and indecomposable
realizable Gauss diagrams. Sequence A264759 in Table 1 presents the
number of indecomposable realizable Gauss diagrams with 𝑛 chords or,
equivalently, the number of indecomposable irreducible closed curves
with 𝑛 crossings. Further discussion and pictures of all indecomposable
realizable Gauss diagrams up to the size of 7 chords can be found
in [13].

It is known [6,10,14,15] that a Gauss diagram is realizable if and
nly if its interlacement graph satisfies certain conditions. Thus, one

can meaningfully speak of realizable interlacement graphs, that is, those
that correspond to realizable Gauss diagrams.

Our sequence A343358, quoted in Table 1, presents the number
f non-isomorphic connected realizable interlacement graphs with 𝑛
ertices.

Several chord diagrams can share the same interlacement graph.
ost importantly to us, several (indecomposable) realizable Gauss dia-

rams can share the same (connected) realizable interlacement graph.
n this sense, there are more indecomposable realizable Gauss diagrams
f size 𝑛 than realizable interlacement graphs of size 𝑛. This is why
he numbers in the column A343358 in Table 1 are smaller than the
umbers in the column A264759, starting from size 𝑛 = 7.

There are many knot diagrams corresponding to any given knot
hadow. However, if we consider only so-called alternating knots, and
o not distinguish between a knot and its mirror image, diagrams
f so-called alternating knots behave ‘almost’ like closed curves, with
nly some subtle differences. The number of alternating knots with
crossings is presented in Table 1 in column A002864. It is not

urprising that starting from size 𝑛 = 7 the number of alternating knots
s smaller than the number of shadows, because one knot can have
any shadows. However, it is surprising that starting from size 𝑛 = 11

he number of interlacement graphs is becoming just slightly smaller
han the number of alternating knots. What is the reason for this small
ifference?

A knot-theoretical construction of mutation is defined as follows.
uppose you have a knot diagram which consists of two fragments
aving four free ends each (such fragments are usually called tangles)
nd connected as shown in the first half of Fig. 8. A mutation is the

operation of rotating one of the tangles half a turn, as shown in the
second half of Fig. 8. In most cases, the result of a mutation is the same
not, but sometimes, it is a different knot; in this case, the knots that
an be produced from one another using mutations are called mutant
nots.

In [16] an operation on chord diagrams is described, called the
flip of shares, which expresses the operation of knot mutation in the
language of chord diagrams. Then in [16], Theorem in Section 4.8.5 is
proved, see also [17,18], which states that two chord diagrams share
he same interlacement graph if and only if they can be produced from
ne another using flips of shares.

Hence, the difference between A343358 and A002864 is explained
y the fact that starting from size 𝑛 = 11, families of alternating
3 
Fig. 8. Mutation of knots.

mutant knots start occurring. Let us demonstrate how this conclusion
is cross-validated by experimental data from other sources.

It is well known that no alternating mutant knots exist up to the size
0; that explains why A343358 and A002864 coincide up to 𝑛 = 10.
toimenov’s Knot Data Tables4 present explicit lists of mutant knots

(both alternating and non alternating) for 𝑛 = 11,… , 15. For 𝑛 = 11
there exist 6 pairs of mutant alternating knots, and that explains the
difference when 𝑛 = 11, that is, 367 = 361 + 6. Independently, this
conclusion for 𝑛 = 11 is also corroborated by Section 4 in [19] which
ists 6 pairs of alternating mutant knots of size 11.

For 𝑛 = 12, Knot Data Tables list 27 pairs of alternating mutant
knots and 2 triples of alternating mutant knots; this is again consistent
with our results, namely, 1288 = 1257 + 27 + 2 × 2. For size 𝑛 =
13, manual comparison becomes difficult, so we wrote a script which
counts mutant alternating knots in Knot Data Tables; it is known that
there are 4878 alternating knots of size 13, and Stoimenov’s list of
mutant knots of size 13 includes 574 alternating knots in 269 families of
mutant alternating knots; hence, there are 305 more alternating knots
than their families, and 4878 − 305 is our entry 4573.

4. Remarks on implementation

To produce A343358, we found all non-equivalent Gauss diagrams
sing our permutation-based algorithm from [7] (up to 𝑛 = 11) and
ncremental algorithm from [9] (for 𝑛 = 12), then for the case 𝑛 = 13

we have used Tait Curves program by J. Betrema.5 Checking if graphs
are isomorphic was done by calling a NetworkX library6 function in
Python code.

5. Conclusion

We presented a detailed definition of what examples have been
counted in our sequence A343358 in the OEIS; namely, A343358 counts
non-isomorphic connected realizable interlacement graphs.

We clarified why the numbers in A343358 differ from those in
A002864 (the number of alternating knots) and A264759 (the number
of curves). We explained how the numbers in A343358 cross-validate a
theorem in [16] and experimental data in Stoimenov’s Knot Data Tables
and in [19].

4 http://stoimenov.net/stoimeno/homepage/ptab/.
5 https://github.com/j2b2/TaitCurves.
6 https://networkx.org/.

http://stoimenov.net/stoimeno/homepage/ptab/
https://github.com/j2b2/TaitCurves
https://networkx.org/


A. Lisitsa and A. Vernitski

c
i

Examples and Counterexamples 6 (2024) 100162 
Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

Data availability

Data will be made available on request.

References

[1] C.F. Gauss, Werke, 1900.
[2] M. Dehn, Uber kombinatorishe Topologie, Acta Math. 67 (1936) 123–168,

http://dx.doi.org/10.1007/BF02401740.
[3] M.L. Marx, The Gauss realizability problem, Proc. Amer. Math. Soc. 22 (3) (1969)

610–613, URL http://www.jstor.org/stable/2037443.
[4] M. Polyak, O. Viro, Gauss diagram formulas for Vassiliev invariants, Int. Math.

Res. Not. IMRN 11 (1994) 445–453.
[5] H. de Fraysseix, Local complementation and interlacement graphs, Discrete

Math. (ISSN: 0012-365X) 33 (1) (1981) 29–35, http://dx.doi.org/10.1016/
0012-365X(81)90255-7, URL http://www.sciencedirect.com/science/article/pii/
0012365X81902557.

[6] H. de Fraysseix, P. Ossona de Mendez, A short proof of a Gauss problem, in: G.
DiBattista (Ed.), Graph Drawing, Springer Berlin Heidelberg, Berlin, Heidelberg,
ISBN: 978-3-540-69674-2, 1997, pp. 230–235.

[7] A. Khan, A. Lisitsa, A. Vernitski, Gauss-Lintel, an algorithm suite for ex-
ploring Chord diagrams, in: F. Kamareddine, C. Sacerdoti Coen (Eds.),
Intelligent Computer Mathematics, Springer International Publishing, Cham,
ISBN: 978-3-030-81097-9, 2021, pp. 197–202.

[8] A. Khan, A. Lisitsa, V. Lopatkin, A. Vernitski, Experimental mathematics
approach to Gauss diagrams realizability, 2021, arXiv:2108.02873.
4 
[9] A. Khan, A. Lisitsa, A. Vernitski, Circle graphs (chord interlacement graphs)
of Gauss diagrams: Descriptions of realizable Gauss diagrams, algorithms,
enumeration, 2021, arxiv:2103.02102.

[10] A. Lisitsa, V. Lopatkin, A. Vernitski, Describing realizable Gauss diagrams using
the concepts of parity or bipartite graphs, J. Knot Theory Ramif. 32 (10)
(2023) 2350059, http://dx.doi.org/10.1142/S0218216523500591, arXiv:https:
//doi.org/10.1142/S0218216523500591.

[11] J.S. Carter, Classifying immersed curves, Proc. Amer. Math. Soc. 111 (1) (1991)
281–287, http://dx.doi.org/10.1090/S0002-9939-1991-1043406-7.

[12] M. Chmutov, T. Hulse, A. Lum, P. Rowell, Plane and spherical curves: an
investigation of their invariants, in: Research Experiences for Undergraduates
(REU), Summer Mathematics Research Institute, REU 2006 Proceedings, Ore-
gon State University, 2006, URL http://sites.science.oregonstate.edu/~math_reu/
proceedings/2006.html.

[13] G. Valette, A classification of spherical curves based on Gauss diagrams, Arnold
Math. J. 2 (2016) 383–405, URL https://doi.org/10.1007/s40598-016-0049-3.

[14] P. Rosenstiehl, Solution algébrique du problème de Gauss sur la permutation
des points d’intersection d’une ou plusieurs courbes fermées du plan, C.R. Acad.
Sci. t. 283, série A (1976) 551–553, URL https://hal.archives-ouvertes.fr/hal-
00259712.

[15] B. Shtylla, L. Traldi, L. Zulli, On the realization of double occurrence words,
Discrete Math. 309 (6) (2009) 1769–1773, http://dx.doi.org/10.1016/j.disc.
2008.02.035.

[16] S. Chmutov, S. Duzhin, J. Mostovoy, Introduction to Vassiliev Knot
Invariants, Cambridge University Press, 2012, http://dx.doi.org/10.1017/
CBO9781139107846.

[17] A. Bouchet, Reducing prime graphs and recognizing circle graphs, Combina-
torica (ISSN: 0209-9683) 7 (3) (1987) 243–254, http://dx.doi.org/10.1007/
BF02579301.

[18] C.P. Gabor, K.J. Supowit, W.-L. Hsu, Recognizing circle graphs in polynomial
time, J. ACM (ISSN: 0004-5411) 36 (3) (1989) 435–473, http://dx.doi.org/10.
1145/65950.65951.

[19] L. Bishler, S. Dhara, T. Grigoryev, A. Mironov, A.Y. Morozov, A.Y. Morozov, A.
Morozov, A. Morozov, P. Ramadevi, V.K. Singh, A. Sleptsov, A. Sleptsov, Distin-
guishing mutant knots, J. Geom. Phys. (2020) URL https://api.semanticscholar.
org/CorpusID:220768913.

http://refhub.elsevier.com/S2666-657X(24)00028-4/sb1
http://dx.doi.org/10.1007/BF02401740
http://www.jstor.org/stable/2037443
http://refhub.elsevier.com/S2666-657X(24)00028-4/sb4
http://refhub.elsevier.com/S2666-657X(24)00028-4/sb4
http://refhub.elsevier.com/S2666-657X(24)00028-4/sb4
http://dx.doi.org/10.1016/0012-365X(81)90255-7
http://dx.doi.org/10.1016/0012-365X(81)90255-7
http://dx.doi.org/10.1016/0012-365X(81)90255-7
http://www.sciencedirect.com/science/article/pii/0012365X81902557
http://www.sciencedirect.com/science/article/pii/0012365X81902557
http://www.sciencedirect.com/science/article/pii/0012365X81902557
http://refhub.elsevier.com/S2666-657X(24)00028-4/sb6
http://refhub.elsevier.com/S2666-657X(24)00028-4/sb6
http://refhub.elsevier.com/S2666-657X(24)00028-4/sb6
http://refhub.elsevier.com/S2666-657X(24)00028-4/sb6
http://refhub.elsevier.com/S2666-657X(24)00028-4/sb6
http://refhub.elsevier.com/S2666-657X(24)00028-4/sb7
http://refhub.elsevier.com/S2666-657X(24)00028-4/sb7
http://refhub.elsevier.com/S2666-657X(24)00028-4/sb7
http://refhub.elsevier.com/S2666-657X(24)00028-4/sb7
http://refhub.elsevier.com/S2666-657X(24)00028-4/sb7
http://refhub.elsevier.com/S2666-657X(24)00028-4/sb7
http://refhub.elsevier.com/S2666-657X(24)00028-4/sb7
http://arxiv.org/abs/2108.02873
http://arxiv.org/abs/2103.02102
http://dx.doi.org/10.1142/S0218216523500591
https://doi.org/10.1142/S0218216523500591
https://doi.org/10.1142/S0218216523500591
https://doi.org/10.1142/S0218216523500591
http://dx.doi.org/10.1090/S0002-9939-1991-1043406-7
http://sites.science.oregonstate.edu/~math_reu/proceedings/2006.html
http://sites.science.oregonstate.edu/~math_reu/proceedings/2006.html
http://sites.science.oregonstate.edu/~math_reu/proceedings/2006.html
https://doi.org/10.1007/s40598-016-0049-3
https://hal.archives-ouvertes.fr/hal-00259712
https://hal.archives-ouvertes.fr/hal-00259712
https://hal.archives-ouvertes.fr/hal-00259712
http://dx.doi.org/10.1016/j.disc.2008.02.035
http://dx.doi.org/10.1016/j.disc.2008.02.035
http://dx.doi.org/10.1016/j.disc.2008.02.035
http://dx.doi.org/10.1017/CBO9781139107846
http://dx.doi.org/10.1017/CBO9781139107846
http://dx.doi.org/10.1017/CBO9781139107846
http://dx.doi.org/10.1007/BF02579301
http://dx.doi.org/10.1007/BF02579301
http://dx.doi.org/10.1007/BF02579301
http://dx.doi.org/10.1145/65950.65951
http://dx.doi.org/10.1145/65950.65951
http://dx.doi.org/10.1145/65950.65951
https://api.semanticscholar.org/CorpusID:220768913
https://api.semanticscholar.org/CorpusID:220768913
https://api.semanticscholar.org/CorpusID:220768913

	Counting graphs induced by Gauss diagrams and families of mutant alternating knots
	Introduction
	Definitions
	Crunching the numbers
	Remarks on implementation
	Conclusion
	Declaration of competing interest
	Data availability
	References


