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Abstract
Multimodal fake news detection often involves modelling heteroge-
neous data sources, such as vision and language. Existing detection
methods typically rely on fusion effectiveness and cross-modal con-
sistency to model the content, complicating understanding how
each modality affects prediction accuracy. Additionally, these meth-
ods are primarily based on static feature modelling, making it dif-
ficult to adapt to the dynamic changes and relationships between
different data modalities. This paper develops a significantly novel
approach, GAMED, for multimodal modelling, which focuses on
generating distinctive and discriminative features through modal
decoupling to enhance cross-modal synergies, thereby optimizing
overall performance in the detection process. GAMED leverages
multiple parallel expert networks to refine features and pre-embed
semantic knowledge to improve the experts’ ability in information
selection and viewpoint sharing. Subsequently, the feature distribu-
tion of each modality is adaptively adjusted based on the respec-
tive experts’ opinions. GAMED also introduces a novel classifica-
tion technique to dynamically manage contributions from different
modalities, while improving the explainability of decisions. Experi-
mental results on the Fakeddit and Yang datasets demonstrate that
GAMED performs better than recently developed state-of-the-art
models. The source code can be accessed at [ANONYMOUS].

1 Introduction
Imagine encountering a social media post with a seemingly innocu-
ous image and a captivating new headline. Unfortunately, a sinister
truth lurks beneath this alluring facade – it is well-crafted fake news
[10, 15, 22, 62]. As mentioned in an article1, “Nowadays everyone
is an editor and everyone can publish news – especially on social
media.” The news could comprise text and multimedia content. As a
result, there is an escalating threat of multimodal fake news [29, 57],
a potent weapon that weaponizes the synergy of text and visuals to
manipulate public discourse and erode trust in information [53, 55].
According to “Fake News: Understanding Media and Misinforma-
tion in the Digital Age” book2, fake news is defined as “purposefully
crafted, sensational, emotionally charged, misleading or fabricated
information that mimics the form of mainstream news”.

Traditional multimodal detection [4], typically rely on basic
fusion techniques [39, 59], striving to decipher the complex inter-
actions within multimodal narratives [8]. The result is that they
fail to capture the nuances that distinguish genuine news from
its fabricated counterparts [10, 52]. This critical gap in detection
capabilities stems from several inherent limitations, for instance,
fusion myopia because of many current fusion techniques that act

1https://shorturl.at/VQCzl
2https://direct.mit.edu/books/edited-volume/4625/Fake-NewsUnderstanding-Media-
and-Misinformation-in

like blinders, hindering the model’s ability to grasp the intricate
dance between textual and visual elements within a single content.
Another reason is the over-reliance on the inherent capabilities
of pre-trained models without any additional refinement step for
feature representations in the pipeline [3, 44], which is prone to
lose information that is crucial for classification. Similarly, exist-
ing methods often focus solely on identifying consistency between
modalities [62], and they fail to consider utilizing discriminative fea-
tures as a complement. However, in the real world, many fabricators
have learned to bypass the detection of previous consistency-centric
models [2, 42]. Moreover, the black-box nature of decision-making
processes in existing models shrouds the perspectives and contribu-
tions of each modality in mystery. This lack of transparency hinders
interpretability [17, 47] and erodes user trust [45].

Our primary objective is to create a novel approach called GAMED,
which autonomously models fake news within a multimodal con-
text, enhancing the current state-of-the-art by overcoming some of
its intrinsic limitations. In pursuit of this goal, we utilize publicly ac-
cessible multimodal datasets. For example, [62] presented the BMR
model for multimodal fake news detection. While BMR promotes
in-depth multimodal analysis and improved feature extraction, it
suffers from some key shortcomings. Firstly, BMR faces challenges
in integrating multimodal data and dynamically weighting different
modalities. Additionally, the bootstrapping process for multi-view
representations hinders BMR’s interpretability. Most importantly,
BMR fails to invoke valuable real-world factual knowledge as a
reference when the model encounters confusion [13, 24, 40, 43].
Another recent work by Xuan et al. [58] investigated multimodal
fake news detection with their LEMMA system which combines
vision language models with external knowledge, but it lacks the
feature refinement strategy, and this may also introduce additional
noise. Furthermore, Wang et al. [54] proposed a model that identi-
fies low-level and high-level features in multimodal data. However,
their model does not address cross-modal synergy and modality
management, among others.

Technical contributions:GAMED, based on modal-decoupling
modelling, exploits the potential of cross-modal synergies to im-
prove detection performance, which is distinct from existing multi-
modal fake news detection methods based on consistency learning
or fusion-only strategies, such as those in [19, 33, 49]. GAMED
combines the characteristics of expert networks and AdaIN [26]
to perform progressive feature refinement to obtain more discrim-
inative and distinctive feature representations, providing a novel
paradigm for dynamic screening and optimization of multimodal
data. GAMED demonstrates that external knowledge, e.g., seman-
tic knowledge graph information encoded in pre-trained language
models [50] is beneficial to help models better understand the com-
plex relationships and contexts in fake news, and extends with
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the influence from text to other modalities. GAMED introduces a
novel decision-making method, which is conducive to improving
the transparency and explainability of the decision-making process.
GAMED attains better detection performance on the publicly avail-
able Fakeddit3 and Yang datasets [61], presenting a novel solution
for automated fake news detection.

2 Related Work
Unimodal fake news methods: Unimodal fake news detection
[9, 14, 46] has made significant strides in tackling fake news [48].
Traditional machine learning algorithms, such as SVM, Decision
Trees, and Naïve Bayes [6, 20, 27], along with modern deep learning
approaches, including CNN, RNN, and LSTM [23, 37], have been
extensively compared and studied. For text analysis, transformer-
based models such as BERT [11] have paved the way for advance-
ments such as RoBERTa and GPT-3 [5], enhancing the detection of
subtle linguistic cues. Similarly, sophisticated architectures such
as ResNet and ViTs [28] have revolutionized image analysis, en-
abling the identification of manipulated visuals. However, unimodal
approaches have an inherent weakness: they struggle against mul-
timodal fake news that blends text, images, and other media for a
more convincing narrative [64].
Multimodal fake news methods:Multimodal fake news detec-
tion has emerged as a critical research area, which analyzes data
from multiple sources – text, images, videos, and social context – to
form a more holistic view of the information [25]. By leveraging the
complementary strengths, these approaches aim to uncover discrep-
ancies that might not be evident when analyzing text alone. This
field has gravitated towards leveraging the synergistic potential of
advanced fusion techniques and models such as VisualBERT [32],
ViLBERT [16], and LXMERT, which facilitate dynamic, context-
aware integration of text and images through self-attention mecha-
nisms. These models have significantly advanced the capacity to
understand and analyze the complex interplay between modalities,
often focusing on exploiting cross-modal dynamics and consisten-
cies as potent indicators of misinformation. Moreover, the integra-
tion of external knowledge sources [13, 38], through methods like
knowledge graph embeddings [15], has provided additional con-
text for verifying claims, enhancing the models’ ability to discern
truth from deception. Despite these advancements, multi-modal
detection still faces notable challenges, particularly in processing
effectiveness and the adaptive generalization to new forms of fake
content, such as deepfakes. The quest for explainability [63] in
these complex models remains an ongoing challenge. Moreover,
existing multimodal research predominantly focuses on innovative
fusion techniques, while how to leverage the distinctive potential
of each modality remains an unresolved issue.

According to dictionary.com, misinformation relates to “false
information that is spread, regardless of whether there is intent to
mislead”. Our work is significantly different from the multimodal
models developed to address misinformation. For instance, a recent
study focuses on identifying fake social media accounts spreading
spam by analyzing GAN-generated facial features [60]. Similarly,
the dissemination of misinformation to the public by social media

3https://github.com/entitize/Fakeddit

bots has been studied [12, 21]. However, these approaches are lim-
ited in their ability to handle dynamic interactions between modal-
ities and lack integration of external knowledge, which hampers
their effectiveness in tackling the complex landscape of misinfor-
mation spread.

Compared with previous works cited above, GAMED has made
significant progress in fake news detection. One of the key dif-
ferences is the construction of an expert network for feature re-
view. GAMED novel veto voting mechanism promotes the com-
munication of inputs from each modality, not done before. The
modal decoupling-based modelling in GAMED emphasizes the
cross-modal interactive and dynamic nature of its detection process.

3 Our Novel GAMED Model
The GAMED architecture, shown in Figure 1, is a novel design
for detecting fake news across text and vision modalities. It inte-
grates text and image information through four modal-decoupling
modules, each tailored to capture the unique characteristics of its
modality. The technical flow of GAMED is detailed in Algorithm 1.
As mentioned in Algorithm 1 and depicted in Figure 1, the process
starts with extracting features from text and images, followed by a
stage that simulates expert review and opinions using the MMoE-
Pro network to refine feature representations. Subsequently, the
distribution adjustment stage, guided by the AdaIN adaptive mech-
anism, dynamically fine-tunes the impact of each modality, giving
precedence to the most pertinent and trustworthy data. Finally, a
novel voting system with veto power is introduced in the decision-
making stage by combining consensus-based and confidence-based
evaluation methods. The entire GAMED workflow also benefits
from the semantic information encoded (KE) by pre-trained lan-
guage models that encode structured (e.g., knowledge graphs) and
unstructured text information. This layered and multifaceted in-
teractive strategy allows for a thorough and subtle examination
of fake news, while also equipping GAMED to keep pace with the
changing nature of fake news phenomena.
Feature Extraction:We represent our multimodal news data as
a collection N = [I,T] ∈ D, where I,T,D are the image, the text,
and the dataset, respectively. Each data point withinD allows us to
analyze the interplay between visual content and textual narrative.
We exploit the Inception-ResNet-v2 (IRNv2) [51] as a feature extrac-
tor to extract image patterns (IP), denoted by 𝑓𝑖𝑝 . We add a special
filter BayarConv [7] as an early layer. Our intuition is that when
images are tampered with, they often leave subtle traces of forgery
that are not easily detected by traditional convolutions, such as
artefacts, lighting, and texture. We capture image semantic (IS)
features on the global and local details of the image by combining
ViT with a masked auto-encoder model (MAE) [18, 36], denoted as
𝑓𝑖𝑠 . The use of data augmentation (DA), such as rotation, flipping,
and scaling, enables the model to better generalize inconsistencies
often encountered in fake images to enhance the robustness and
diversity of image semantic data.

Different from [62], we exploit the ERNIE2.0 [50] model to ex-
tract the text (T) representations, denoted as 𝑓𝑡 . ERNIE2.0 includes
several advantages such as modelling sentence-level relations (in
addition to word-level), and large-scale semantic knowledge stored
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Figure 1: Starting from raw data, the GAMED’s modality-specific pipeline performs feature extraction and progressive re-
finement. The knowledge enhancement mechanism provides an external background to the architecture. During the expert
review stage, features are selected and coarse predictions are made. The AdaIN component then adaptively adjusts the feature
distribution. The decisive voting stage orchestrates the final classification.

Figure 2: Left: The configuration of MMoE-Pro and the flow of processing representations. Right: The pipeline of four modules
from coarse prediction to adaptive feature distribution adjustment to obtain enhanced representations.

in knowledge graphs. With these improvements, ERNIE2.0 can bet-
ter evaluate the consistency of text content with visual information
in images, and analyze facts and entity relationships in text. More-
over, the structured knowledge encoded in ERNIE2.0 helps enhance
the reasoning ability of the entire architecture in global synergies
across modalities.
Expert Review and Opinions: The workflow of the novel expert
network is depicted in the model in Figure 2 (left). In this stage, we
simulate the scenario of experts with rich expertise to review. The
expert networks of different modalities accept features provided by
the extractors of their respective modules, and then the mixture of
experts will jointly review and select these features, and provide
preliminary predictions.

Our MMoE-Pro upgrades the traditional MMoE [41] mainly by
introducing token attention and relaxing the softmax constraint
in its gating mechanism. In particular, suppose the input 𝑓 , which
can be from IS, T, or fusion (MM) modules, consists of multiple
tokens, the process begins by calculating the importance score 𝛼𝑖
for each token representation using a shared-weight MLP 𝐴, for-
malized as 𝛼𝑖 = 𝐴(token𝑖 ). The normalized importance score 𝛽𝑖
is calculated as 𝛽𝑖 = 𝛼𝑖∑

𝑗 𝛼 𝑗
. This normalization allows for the ag-

gregation of token representations into a unified form, where the
aggregated representation 𝑓 is computed as a weighted sum of the
token representations: 𝑓 =

∑
𝑖 𝛽𝑖 · token𝑖 . This approach enhances
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the model’s ability to identify key features by dynamically evaluat-
ing the importance of different input features, thereby optimizing
the feature-sharing process in multi-task learning.

Furthermore, we adjust the gating mechanism by lifting the strict
positivity and normalization constraints traditionally imposed by
softmax. Specifically, the newweights𝑤𝑡,𝑖 (𝑓 ), used for determining
the contribution of each expert 𝑖 for task 𝑡 , are derived directly
from the raw scores, allowing weights to take on negative values
or exceed one. It is because there is no necessity to use constraints
to force the expert’s contribution to be positive in our setting. The
final output of the MMoE-Pro model is now formalized as

MMoE-Pro𝑡 (𝑓 ) =
𝑁∑︁
𝑖=1

𝑤𝑡,𝑖 (𝑓 )𝐸𝑖 (𝑓 ) . (1)

Here, 𝐸𝑖 (𝑓 ) represents the output of the 𝑖-th expert. Ultimately, the
output features r = MMoE-Pro𝑡 (𝑓 ) serve as the feature representa-
tion jointly selected by the expert team, including

[
𝑟0
𝑖𝑠
, 𝑟1
𝑖𝑠

]
,
[
𝑟0𝑡 , 𝑟

1
𝑡

]
and

[
𝑟0𝑚𝑚, 𝑟1𝑚𝑚

]
. Here, 𝑟1

𝑖𝑠
and 𝑟1𝑡 serve as the initial features for

the fusion module, 𝑓mm, and as inputs to the expert network in this
module. These new improvements can more flexibly and effectively
enhance the ability of the expert network to dynamically allocate
computing resources across different tasks and modalities.

We use an MLP classifier to accept the refined representations
from the MMoE-Pro and Projection (𝑓𝑖𝑝 ) to achieve the coarse
prediction function. This is depicted in the steps of coarse prediction
and consistency learning in Figure 2. For each refined representation
r from the expert network, we perform a 64-dimensional feature
reduction and produce the classification output. This combined
process can be expressed as O = MLP(r), where O represents the
coarse prediction output.
Distribution Adjustment: We depict this stage in Figure 2 (right)
which is significantly different from [62]. The key difference lies
in adaptive feature distribution adjustment guided by AdaIN. The
coarse prediction results from the previous stage are calculated
as mean and standard deviation as an acceptable input form for
AdaIN. AdaIN then adjusts the feature distribution according to
the contribution of each modality. This step ensures that the most
relevant and reliable information is prioritized.

We first calculate the parameters, mean 𝜇 and standard deviation
𝜎 , required by AdaIN. Unlike the standard AdaIN approach [26],
our 𝜇 and 𝜎 are generated through MLP networks rather than being
directly extracted from the style features. Specifically, for each
output 𝑂 from the coarse prediction, we use MLPs to generate the
mean and standard deviation, denoted as 𝜇 = MLP𝜇 (sigmoid(𝑂))
and 𝜎 = MLP𝜎 (sigmoid(𝑂)), where MLP𝜇 and MLP𝜎 represent the
MLPs for calculating the mean and standard deviation, respectively.
The adjustment process of AdaIN is then formalized as

𝑒 = 𝜎

(
𝑟 − 𝜇𝑟

𝜎𝑟

)
+ 𝜇. (2)

Here, 𝜇𝑟 and 𝜎𝑟 are respectively the mean and standard deviation
of the input feature 𝑟 , and e is the adjusted feature. The process of
combining information from each modality in AdaIN can be simpli-
fied as e = AdaIN(r, 𝜇, 𝜎). At this stage, for the mean and standard
deviation calculation of the prediction output from consistency
learning, we use (1 − sigmoid(O)) to invert it so that adjust the dis-
tribution of irrelevant representation rx to ex . Our intuition is that

Figure 3: Our novel veto model.

certain irrelevant information, such as emotional language, lengthy
background introduction, complex rhetoric, etc., can also serve as
clues for detecting fake news. Therefore, we decouple relevance
from consistency learning and leverage irrelevance as a synergistic
supplement. We directly use the fusion representation rmm as the
adjusted representation emm of the fusion module.
Veto Voting: The novel veto classifier is depicted in Figure 3. Before
the voting mechanism is triggered, the enhanced representations
of all modalities produced by AdaIN are concatenated and denoted
as emix (Figure 1), and then the MMoE-Pro performs the same re-
finement process to obtain rmix (Figure 1) and Omix successively.
Finally, this concatenated prediction output and the previous coarse
prediction output of each modality are used as input into the voting
stage. Our novel veto voting combines the inspiration of thresh-
olds and confidence to dynamically manage the contributions and
conflicts of each modality prediction to ensure the reliability and
transparency of the decision-making.

We define two thresholds to distinguish between high confi-
dence and low confidence, where 𝜃high and 𝜃low define the high
confidence and low confidence thresholds, respectively, used to
determine if a module’s prediction can be used as a decision ba-
sis. For the prediction output 𝑂𝑖 of each module 𝑖 , we apply the
sigmoid function to convert it into a confidence probability value
as P𝑖 = sigmoid(O𝑖 ) where 𝑃𝑖 is the confidence of the prediction
from module 𝑖 . Let the confidence of the concatenated output be
𝑃mix , initially set as Pmix = sigmoid(Omix ). Suppose 𝑃mix is used
as the basis for comparing other module confidences and for the
final decision. Let 𝑂𝑖 and 𝑂mix be the raw outputs of the module
prediction and the concatenated output, respectively. Let the major-
ity class be the class decided by the majority of module decisions;
whether module 𝑖 belongs to the majority class can be determined
by comparing it to other module predictions. We iterate through
each module and update the concatenated output according to the
following rules.
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Algorithm 1 PyTorch-style Pseudocode of GAMED
Require: Dataset: D; training epochs: 𝑁 ; batch size: 𝐵; and learn-

ing rate: 𝜂.
Ensure: Model parameters: Θ
1: Define loss function: LBCE
2: Define optimizer: AdamW
3: for epoch in range(𝑁 ) do
4: Load batch data (𝑇, 𝐼,𝑦)
5: Forward Propagation:
6: 𝑓 = 𝑡, 𝑖𝑠, 𝑖𝑝 = extract(𝑇, 𝐼 )
7: 𝑟 = experts(𝑡, 𝑖𝑠, 𝑖𝑝)
8: 𝑟𝑚𝑚 = experts(𝑚𝑚 = 𝑡 + 𝑖𝑠)
9: 𝑂 = class(reduc(𝑟0, 𝑟1, . . . , 𝑟𝑛))
10: 𝜇, 𝜎 = comp(𝑂, 1 −𝑂)
11: 𝑒 = AdaIN(𝑟, 𝜇, 𝜎)
12: 𝑓𝑚𝑖𝑥 = concat(𝑒0, 𝑒1, . . . , 𝑒𝑛)
13: 𝑟𝑚𝑖𝑥 = experts(𝑓𝑚𝑖𝑥 )
14: 𝑂𝑚𝑖𝑥 = class(reduc(𝑟𝑚𝑖𝑥 ))
15: 𝑦 = veto(𝑂0,𝑂1, . . . ,𝑂𝑛)
16: Back Propagation:
17: L = ComputeLoss(𝑂0,𝑂1, . . . ,𝑂𝑛)
18: L .backward()
19: optimizer.step()
20: end for

Rule 1: For the initial concatenated output, we denote the rule as
Pmix = sigmoid(Omix ).
Rule 2: If the module confidence 𝑃𝑖 is greater than the high con-
fidence threshold and 𝑃𝑖 > 𝑃mix , then replace the concatenated
output with the output from module 𝑖 . This is denoted as 𝑃mix =

𝑃𝑖 if 𝑃𝑖 > 𝜃high and 𝑃𝑖 > 𝑃mix .
Rule 3: If the module confidence 𝑃𝑖 is less than the low con-
fidence threshold, and module 𝑖 belongs to the majority class,
then ignore any output in the majority class, and reconsider the
maximum output from all modules. This is denoted as: 𝑃mix =
1
2 (𝑃mix +max 𝑃𝑖 ) if 𝑃𝑖 < 𝜃low and 𝑖 belongs to the majority class.
Rule 4: If the confidence is between the thresholds, maintain the
concatenated output. This is denoted as 𝑃mix = 𝑃mix if 𝜃low ≤ 𝑃𝑖 ≤
𝜃high.

In Algorithm 1, we present the detailed pseudo-code of GAMED.

4 Experiments and Results
To rigorously evaluate the efficacy of our proposed GAMED in
detecting fake news, we have carried out an extensive experimental
analysis. This section details the experimental framework, evalua-
tion criteria, and the notable results obtained. Our objective is to
investigate whether GAMED can surpass the performance of re-
cently developed robust comparative models. Additionally, we will
conduct ablation studies to ascertain the impact of each component.
Through a qualitative analysis, we aim to reveal some intriguing
aspects of GAMED that are not immediately apparent.

4.1 Experimental Setup
Datasets:We conducted training, validation, and test of GAMED
and other models on two publicly accessible datasets: Fakeddit and

Yang. Fakeddit is a vast collection with over one million labelled
samples, classified as real or fake news. It offers a balanced divi-
sion, consisting of 628,501 fake news instances and 527,049 real
news instances. Derived from a wide range of 22 subreddits, Faked-
dit provides a rich diversity of domains and topics, mirroring the
real-world scenario. Fakeddit is a dataset that offers fine-grained
categories. For our model, which focuses on binary classification
tasks, we utilize only the 2-way labels. The Yang dataset includes
20,015 news articles, with 11,941 marked as fake and 8,074 as real.
The fake news is sourced from more than 240 websites, while the
genuine news is obtained from reputable, authoritative outlets like
the New York Times andWashington Post. The dataset used in Ying
et al. [62] is not publicly accessible due to strict API restrictions
on obtaining image data from Twitter and Weibo. Our attempts to
contact the authors were unsuccessful.
Settings: The Fakeddit dataset comprises 563,612 training sam-
ples, 58,798 validation samples, and 59,271 test samples. In con-
trast, Yang’s dataset contains 4,655 training samples, 582 valida-
tion samples, and 583 test samples. Each text has a correspond-
ing image. In processing image data, we utilize two pre-trained
models: mae-pretrain-vit-base for semantic analysis and pytorch-
InceptionResNetV2 for pattern recognition. Text data is processed
with ernie-2.0-base-en. MAE-ViT and ERNIE have a hidden dimen-
sion of 768, with their parameters kept frozen. Our preprocessing
steps aim to optimize the handling of input data. This process in-
cludes resizing all images to a consistent size of 224 × 224 pixels.
We also set a maximum tokenization length of 197 for both text
and image data. To improve dataset quality, we replace any images
under 64 × 64 pixels and text entries with fewer than five words
with suitable placeholders. All MLPs in GAMED include one hid-
den layer and SiLU activation function. We use AdamW optimizer
with 1× 10−4 learning rate. The model typically reaches peak accu-
racy within 9–10 epochs on Fakeddit and 5–7 epochs on Yang. The
default setting is 14 epochs.
Evaluation Metrics: To align with comparative models, we use
the widely accepted metrics: Accuracy (Acc), Recall (R), Precision
(P), and F1 Score for this task.
Comparative Models: Our model is benchmarked against recent
robust comparative models. The EANN model [55], which effec-
tively filters out event-specific features while preserving event-
independent features through a Text-CNN and VGG-19 feature ex-
traction combination, was selected for its resilience to new events
in fake news detection. TheMVAE [30] model was chosen for its use
of a multimodal variational autoencoder that learns joint represen-
tations from text and image data, improving detection by capturing
the interactions between modalities with LSTM and VGG-19. Ad-
ditionally, our model is compared with BERT & ResNet, noted for
BERT’s advanced text encoding and ResNet50’s strong image fea-
ture extraction, which have shown effectiveness in multimodal fake
news detection and set a benchmark in the Fakeddit study. Fur-
thermore, the MMBT [31] and MTTV [54] models were included
due to their superior results over the baselines, becoming the new
state-of-the-art. MMBT integrates text features from BERT with
image features from ResNet-152 using a single transformer, and
MTTV employs a dual-level visual feature extraction approach
with BERT and ResNet to bolster the synergy between textual and
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Dataset Method Acc P R F1

Fakeddit

EANN 0.8750 0.9043 0.8811 0.8926
MVAE 0.8875 0.9011 0.9139 0.9074

BERT & ResNet 0.8942 0.9124 0.9122 0.9123
MMBT 0.9111 0.9274 0.9251 0.9263

CLIP & LLaVA N/A N/A N/A 0.9342
BMR 0.9165 0.9434 0.9288 0.9361
MTTV 0.9188 0.9348 0.9303 0.9325
GAMED 0.9393 0.9355 0.9371 0.9363

Yang

LR N/A 0.5703 0.4114 0.4780
CNN N/A 0.8722 0.9079 0.8897
LSTM N/A 0.9146 0.8704 0.8920
GRU N/A 0.8875 0.8643 0.8758

TI-CNN N/A 0.9220 0.9277 0.9210
BMR 0.9434 0.9523 0.9359 0.9415

GAMED 0.9846 0.9831 0.9859 0.9843

Table 1: Comparison between our GAMED and state-of-the-
art. The best results are highlighted in bold.

Fakeddit Dataset

Method Acc Fake News Real News
P R F1 P R F1

LLaVA (Direct) [35] 0.663 0.588 0.797 0.677 0.777 0.558 0.649
GPT-4 (Direct) [1] 0.677 0.598 0.771 0.674 0.776 0.606 0.680

GPT-4 (CoT) 0.691 0.662 0.573 0.614 0.708 0.779 0.742
GPT-4V (Direct) 0.734 0.673 0.723 0.697 0.771 0.742 0.764
GPT-4V (CoT) 0.754 0.858 0.513 0.642 0.720 0.937 0.814
LEMMA [58] 0.824 0.835 0.727 0.777 0.818 0.895 0.854
GAMED 0.939 0.954 0.944 0.949 0.917 0.930 0.923

Table 2: Comparison between GAMED and large language
models on Fakeddit. The best results are highlighted in bold.

visual data. We also selected the CLIP and LLaVA combination ar-
chitecture, which employs LoRA-based fine-tuning strategies and
knowledge transfer, effectively enhancing multimodal fact verifi-
cation by integrating visual and textual evidence [34]. Finally, we
included the BMRmodel from [62] because it bootstraps multi-view
representations to refine and reweigh features from text and image
for superior fake news detection performance.

4.2 Overall Results
The results in Table 1 demonstrate that our GAMED is quanti-
tatively superior in performance when compared with different
competitive models including those that are recently developed. On
Fakeddit, GAMED achieves 93.93% accuracy, which is 2.05% better
than the existing state-of-the-art open-source detection scheme
MTTV. Meanwhile, GAMED also ranks first in Precision, Recall,
and F1 on both Fakeddit and Yang. We tested recently developed
BMR architecture on both Fakeddit and Yang datasets, and the re-
sults demonstrate that our GAMED outperforms BMR in almost all
evaluation metrics, except for the Precision of Fakeddit.

Given the popularity of large language models (LLMs), in Ta-
ble 2, we compare GAMED with LLMs-based fake news detection
schemes, and the experiments are conducted on Fakeddit and de-
picted in Table 2. We obtained similar conclusions on the Yang

Figure 4: Heatmaps of cosine similarity on Fakeddit and
Yang. Each heatmap cell shows the pairwise cosine similarity
between the 64-dimensional representation from the coarse
predictor of four modules and the whole model.

dataset too. The Direct approach employs the model for fake news
detectionwithout any preprocessing of the input data, relying solely
on the model’s internal knowledge to directly generate predictions
and reasoning. In contrast, the Chain of Thought (CoT) [56] ap-
proach enhances the model’s ability to handle complex tasks by
prompting it to “think step by step”, guiding the model to first
produce a reasoning process before delivering a final prediction.
The state-of-the-art architecture LEMMA has an accuracy of only
82.4%, which is significantly lower than our GAMED by 11.5%. In
Precision, Recall and F1 score, our GAMED shows improvement
better than LLMs, except that it ranks second in Recall for the real
news category, slightly lower than GPT-4V using CoT.

There are several reasons why our model performs better than
the strong comparative models. As mentioned before, we address
some of the key shortcomings in the existing models. By employing
modal decoupling and cross-modal synergy, GAMED preserves and
enhances the discriminative features of each modality, avoiding the
fusion myopia that affects other models. The feature refinement
components dynamically emphasize the most relevant information,
in contrast to the static methods used before. Additionally, GAMED
exploits semantic knowledge from pre-trained models, deepening
its understanding of facts and relationships, which is a capability
that many comparative models lack. Finally, our novel veto voting
mechanism, which combines consensus and confidence, ensures
that the most reliable predictions drive the final decision, offering
greater flexibility than traditional voting or fusion methods.

As depicted in Figure 4, we randomly select ten fake and ten real
news samples to visualize the heat map. The colours of the heat map
range from dark blue (low similarity) to dark red (high similarity)
showing the degree of similarity between features. The fake news
features within a cell are more scattered than the real news features,
which is often the reason for the difficulty in detection. However,
GAMED successfully captures these discriminative news features.
The differences between modules reflect that each module can
provide distinctive perspectives and information when working.
This again verifies our intuition that leveraging the discriminability
and distinctiveness frommodal decoupling can enhance the model’s
overall detection performance.

Figure 5 illustrates the learning curves of accuracy and loss for
GAMED and its four modules over 11 epochs of training on the
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Figure 5: The comparison of accuracy (first row) and loss
(second row) illustrates the learning curves of GAMED and its
four modules during training. GAMED, IP, IS, and T exhibit
ideal training trajectories, while MM showsminimal changes
in both accuracy and loss. The training set on the left column
and right column is Fakeddit and Yang, respectively.

Test Accuracy
MM 0.614
IP 0.820
IS 0.855
IS+IP 0.885
T 0.901
IP+T 0.906
IS+T 0.909
IS+IP+T 0.914

Test Accuracy
MM-only ComputeStats 0.884
w/o AdaIN 0.908
w/o Coarse Prediction 0.916
Replace IRNv2 with Inception-v3 0.924
Replace MMoE-Pro with ViT block 0.926
w/o Consistency Learning 0.926
Replace ERNIE2.0 with BERT 0.927
Replace MMoE-Pro with MMoE 0.928
Replace MAE-ViT with ViT 0.931
w/o Veto Voting 0.933
Replace ERNIE2.0 with ERNIE1.0 0.936
GAMED 0.939

Table 3: Ablation results of important modules and compo-
nents in GAMED design. The tests were conducted on Faked-
dit. MM: Fusion; IP: Image Pattern; T: Text; and IS: Image
Semantic.

Fakeddit and Yang datasets. The learning curves on the Fakeddit
dataset show steady improvement, with accuracy gradually in-
creasing and loss sharply decreasing before stabilizing, indicating
efficient learning and convergence. In contrast, the Yang dataset
exhibits more variability, likely due to its smaller size and higher
diversity and complexity of samples, which makes it more chal-
lenging for the model to consistently capture and learn patterns.
The accuracy curves fluctuate before stabilizing, and although the
loss initially decreases, it also shows greater volatility, reflecting
the model’s difficulty in consistently optimizing when confronted
with diverse characteristics of the dataset. Despite these fluctua-
tions, both datasets demonstrate that the models are learning and
improving. Notably, although there are some fluctuations during
training, the fusion module (MM) shows a generally stable trend in
both accuracy and loss across these datasets, with no substantial im-
provements. This validates our view that the progress of the overall
architecture is primarily driven by the synergy of multiple modali-
ties, particularly the unimodal distinctiveness and discriminative
power, while early fusion contributes only minimally.

4.3 Ablation Study
Removing Individual Modules: In Table 3, we present the abla-
tion results. By removing modules, we find that the text module
performs the best among all individual modules, achieving an ac-
curacy of 90.1%, which even exceeds many excellent fake news
detection models. Next are IS and IP, but their combined perfor-
mance only reached 88.5%, still trailing the text module by 1.6%. The
worst-performing individual module is MM, with a peak accuracy
of only 61.4%, demonstrating the effectiveness of our weakened
fusion module design. However, the combination of individual IS
and T using the same data achieved an accuracy of 90.9%, signifi-
cantly outperforming the MM module by 29.5%. More importantly,
GAMED maintained strong detection capabilities despite the poor
performance of the MM module. This further supports our view
that the contributions of unimodal distinctiveness and their cross-
modal synergies to model performance outweigh standalone modal
fusion. Finally, compared with the high accuracy of GAMED, these
removals prove that no single modality or any combination can
reach the overall performance of GAMED.
Knowledge Enhancement:We used BERT to replace ERNIE to
process the text data, but the result dropped by 1.2%. Although
both two models are based on similar transformer architecture,
the advantage of ERNIE is that it further incorporates a structured
knowledge graph to enhance the understanding of facts and re-
lations. In addition, we used ERNIE1.0 instead of ERNIE2.0, and
the result dropped by 0.3%. This is because ERNIE2.0 introduced a
more complex knowledge increment strategy and larger knowledge
parameters than ERNIE1.0 during pre-training. In the previous indi-
vidual module removal, we found that the performance of a single
text module was stronger than the combined performance of images
modules, and the initial performance gap between IP and IS was
large; but after the enhancement of the text module, not only the
performance was greatly improved, both exceeded 90%; however,
the gap between IP and IS became very small. ERNIE’s victory high-
lights that external knowledge integration is crucial to enhancing
the overall performance in complex tasks, i.e., multimodal fake news
detection. In addition, to measure the impact of different feature
extractors, we used InceptionV3 instead of Inception-ResNet-v2
and ViT instead of MAE-ViT, which resulted in a 1.5% and 0.8%
drop in accuracy for GAMED, respectively.
Expert Network:We replaced MMoE-Pro with standard MMoE,
resulting in a 1.1% drop in GAMED’s accuracy. This decline is due
to MMoE-Pro’s enhancements in feature sharing and task relation-
ship modelling, which allow the model to effectively process and
fuse multimodal data. We replaced the MMoE-Pro networks with
the ViT blocks for feature refinement, but the accuracy dropped
by 1.3%. This suggests that sharing information is beneficial for
enhancing representations in our task, while the ViT blocks re-
duced the model’s ability to flexibly and dynamically select the
most relevant features for the task. We removed the coarse pre-
diction step and the accuracy of GAMED dropped by 2.3%, which
proves that the constraint of expert opinion is useful for evaluating
the importance of modalities.
Adaptive Adjustment: We experimented with the mean and stan-
dard deviation ofMMas the input of AdaIN to adjust the distribution
of other unimodal modules. We found that the accuracy of GAMED
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Figure 6: The interpretability of GAMED is illustrated
through the decision-making process. The images and text
are sourced from real examples in the Fakeddit test set. The
first three examples from left to right represent decisions
made by our GAMED, while the fourth example simulates
decisions from other black-box models.
dropped by 5.5%, which was a significant drop. In contrast, when
we removed the consistency learning, the accuracy of GAMED
dropped by 1.3%. This suggests that although consistency learning
can improve the model’s ability to identify fake news, prioritizing
it does not bring greater benefits. Instead, it undermines the contri-
bution of unimodal discriminability to the overall performance. We
then removed the AdaIN setting for all modalities, and the accuracy
of GAMED dropped by 3.1%. This is because AdaIN can adaptively
adjust the feature distribution of different modalities to ensure that
the most valuable features are provided for the interaction link.
Decision Making: We used concatenation-based late fusion in-
stead of veto voting, resulting in a 0.6% drop in the accuracy of
GAMED. This is because our carefully designed cross-modal interac-
tion rules for veto voting can dynamically adjust the key modalities
to ensure that the most reliable predictions have the greatest impact
on the final decision. At the same time, other methods lose such
flexibility and are more susceptible to noise.

4.4 Qualitative Analysis
Interpretability: As shown in Figure 6, we demonstrate the in-
terpretability of GAMED’s decisions through real examples. We
randomly selected three prediction results on the Fakeddit test set
and traced the corresponding samples. From left to right, follow-
ing the veto voting rule in the 3 section, the prediction result of
the first sample is “Real”, this is because the confidence of several
modalities is between the pre-set low threshold 𝜃low and the high
threshold 𝜃high, so the initial concatenated prediction 𝑃mix is di-
rectly used as the final prediction. 𝑃mix represents the result after
the multimodal features are concatenated, and it makes full use
of the complementarity of each modality to make the prediction
result more comprehensive and reliable. The second sample shows
that since the output confidence of the text module 𝑃𝑡 is higher
than the high threshold 𝜃high and higher than 𝑃mix , the prediction
of the initial 𝑃mix is replaced with the prediction 𝑃𝑡 as the final
decision. The text modality provides extremely reliable information
in this context. We can maximize the use of this reliable information
and improve the accuracy of the final decision. The third sample
reflects the decision made by GAMED when the output confidence
of the image pattern module 𝑃ip is lower than the low threshold
𝜃low. This is because too low confidence means that the informa-
tion of this modality may be unreliable or misleading, even if it
belongs to the majority class. By ignoring this unreliable prediction

Figure 7: Word cloud visualizations showing the high-
frequency words in misclassified fake news on the Fakeddit
(left) and Yang (right).

and comprehensively reconsidering the combination of the highest
output in all modalities and the concatenated output, the robust-
ness of the final decision is ensured. The fourth sample simulates
the black-box decision-making process of many current models,
in which the model cannot clearly explain the specific reasons for
its decision. This may not only lead to a decrease in user trust in
the model’s prediction results but also make it difficult to debug
and improve effectively when errors occur. In addition, GAMED’s
modal-decoupling design is also used for interpretability. For ex-
ample, when AdaIN adaptively adjusts the feature distribution of
different modules, we can judge the contribution of each modal-
ity and its discriminative features to the prediction. In contrast,
those black-box models do not have a clear explanation path when
processing input data. This means that the internal working mech-
anism of the model is invisible to users and developers, resulting in
people being unable to understand or verify the reasoning process
behind it even if the model makes a correct classification.
Error analysis: We compiled the GAMED’s misclassified samples
and visualized them using a word cloud, as shown in Figure 7. Our
analysis revealed that misclassifications in the Yang dataset were
heavily concentrated in the political domain, with terms like “Amer-
ica”, “Trump”, and “election” frequently appearing. Similarly, while
the errors in the Fakeddit dataset spanned a broader range of topics,
they also included significant mentions of political news, such as
“president”, “America”, and “Trump”. Both the Yang and Fakeddit
datasets underscore the increased difficulty in detecting fake news
within the political sphere. This challenge likely stems from the
inherent complexity and sensitivity of political content, which of-
ten involves nuanced rhetoric and sophisticated misinformation
tactics. Furthermore, the constantly evolving nature of political
events and potential biases in training data further complicates
accurate detection. The subtlety of political satire and commentary
adds another layer of difficulty, as these are easily mistaken for
authentic news.

5 Conclusions
This paper developed GAMED – a novel architecture that signifi-
cantly improves fake news detection. GAMED overcomes the short-
comings of current multimodal approaches through a dynamic
mechanism of modal decoupling and cross-modal synergy. It em-
beds the benefits of semantic information encoded in knowledge
graphs into the whole workflow from pre-trained language mod-
els. Feature selection is performed jointly by a mixture of experts,
accompanied by subsequent adaptive distribution adjustment, pro-
gressively refining the feature representation of each modality in
the pipeline and enhancing its discriminability and distinctiveness.
Finally, a flexible and transparent decision process is introduced.
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Our experiments on benchmark datasets, Fakeddit and Yang, show
that GAMED improves upon recent top-performingmodels in detec-
tion accuracy. Future work would explore adding more modalities
such as audio or video for a more holistic analysis of fake news.

6 Ethical Considerations
Some of the key ethical considerations include addressing the issues
when models can perpetuate existing societal biases if the training
data is biased. This can lead to discriminatory outcomes, such as un-
fairly targeting certain groups or individuals. Besides that, different
cultures have varying norms and understandings of truth and fake
news. Models trained on data from one culture may not perform
well or ethically in another. Another fundamental challenge lies in
overly aggressive detection models that could lead to the suppres-
sion of legitimate speech, particularly for marginalized voices or
those critical of authority. Incorrectly flagging accurate information
as fake news can damage reputations and stifle public discourse.
Our goal in this work is to develop a model that could understand
how it reached its conclusions. Black-box models make it difficult
to identify and address biases. Overreliance on automated detection
systems could erode trust in traditional media and journalism.
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