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      Abstract—Brain-Computer interface (BCI) technology enables 

the control of external devices by recognizing user intentions. 

Steady-state visual evoked potential (SSVEP)-based BCI 

technology has been widely applied in the field of Internet of things 

(IoT) device control, including smart healthcare, smart homes, 

and robotics, and has achieved significant results. However, as the 

field of BCI-based IoT device control is still in its development 

stage, there remains considerable room for improvement in terms 

of accuracy, efficiency, and cost. Therefore, enhancing the 

classification accuracy of SSVEP decoding using a short time 

window, reducing both human and material costs, and improving 

work efficiency are crucial for the theoretical research and 

engineering applications of BCI technology in IoT device control. 

Based on this, we propose a novel approach to address the 

challenge of high accuracy feature extraction within brief 

timeframes. Our approach integrates a multi-scale convolutional 

neural network with a squeeze excitation module (SEMSCNN). 

This fusion leverages CNNs' local feature learning capacity and 

the advantageous feature importance distinction offered by the 

squeeze excitation mechanism. First, the EEG signals are band-

pass filtered into distinct frequency bands and frequency band and 

channel features are extracted by a two-layer convolution. Then, 

temporal features are extracted via a multi-branch convolution of 

different scales. Finally, the squeeze and excitation (SE) module is 

introduced to learn the interdependence between features to 

improve the quality of the extracted features. The first stage of 

training exploits statistical commonalities across research 

participants by learning the global model, and the second stage 

fine-tunes each participant’s features separately by exploiting 

participant-specific differences in features. We evaluate our 

SEMSCNN model on two large public datasets, Benchmark and 

BETA, and we compare our model to other state-of-the-art models 

in order to evaluate the effectiveness of our proposed network. 
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Our experimental results indicate that our method effectively 

improves the accuracy of target recognition and information 

transfer rate under short-duration stimuli, showing a significant 

advantage compared to other baseline methods. This provides a 

broad prospect for the practical application of BCIs in the field of 

IoT. 
Index Terms—Multiscale fusion, convolutional neural network 

(CNN), squeeze and excitation module (SEM), Brain–computer 

interface (BCI), steady-state visual evoked potentials (SSVEP) 

I. INTRODUCTION 

rain-computer interfacing (BCI) is a technology that 

enables a connection between the brain and external 

devices [1-4]. In recent years, Brain-Computer 

interfaces (BCIs) have become increasingly popular in fields 

such as IoT device control, entertainment, and communication 

[5]. Electroencephalogram (EEG) signal components that are 

commonly used to control BCIs include event-related potentials 

(ERPs) [6-10], steady-state visual evoked potentials (SSVEPs) 

[11-14], slow cortical potentials (SCPs) [15], and sensorimotor 

rhythms [16-19]. Among them, SSVEP has become an 

important set of control signals due to its high signal-to-noise 

ratio (SNR) [20-23]. This characteristic allows SSVEP-based 

BCI technology to achieve high-precision decoding, high 

information transfer rates, and short window length decoding 

[24] . Particularly in the context of IoT device control, users can 

generate SSVEP signals by focusing on specific visual stimuli. 

These signals can be decoded into control commands to operate 

devices such as lights, air conditioning, and music players. This 

contactless control method significantly enhances convenience  
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Fig.1. Flowchart for controlling external devices using Brain-Computer Interface

and accessibility, especially for users with limited mobility (as 

shown in Fig.1). Furthermore, when integrated with IoT 

technology, SSVEP-based BCI can create smarter home 

environments, greatly improving the quality of life for users. 

A BCI system based on SSVEP signals attempts to detect 

changes in EEG signals in the occipital visual area that are 

informative about the stimulus the BCI user is attending to. 

When we experience a visual stimulus that oscillates at a fixed 

frequency, the potential activity within our cerebral cortex will 

be modulated so as to produce a continuous response which has 

a periodic rhythm similar to the stimulus frequency (the 

fundamental frequency or the harmonic frequency of the 

stimulus frequency). This periodic response to a regular 

stimulus is referred to as the SSVEP. In the SSVEP BCI control 

paradigm, the BCI user is asked to fixate on a flashing target 

while the EEG is recorded. To recognize the intention of the 

BCI user, the collected EEG signals are analyzed to identify 

which target frequency they relate to most strongly. 

Different recognition methods have been attempted to 

improve decoding accuracy of SSVEP-based BCIs. Canonical 

correlation analysis (CCA) is often used to perform frequency 

identification of SSVEPs [25-29]. Specifically, recognition is 

performed by calculating the correlation between the collected 

EEG signals and template signals of the stimulus target. 

However, the recognition performance of this method is poor 

when using short time windows. To boost the SSVEP 

recognition accuracy for short time windows, an improved 

CCA method called CCA-M3 was proposed [26]. In traditional 

CCA, there is no significant difference in the classification 

accuracy of the reference signals with different numbers of 

harmonic frequencies [25]. Therefore, some researchers have 

proposed a filter bank CCA (FBCCA) method, which combines 

the fundamental frequency and harmonic frequency 

components to improve the classification performance [24, 30, 

31]. 

The correlation component Analysis (CORRCA) algorithm 

maximizes the correlation between the multi-channel template 

signal (calculated by averaging SSVEP signals from multiple 

trials for each frequency in the training set) and the multi-

channel test signal. The frequency with the highest correlation 

then indicates the final recognition target [30]. Maximization in 

CORRCA [30] is a single projection across channels, while 

maximization in standard-CCA [27] is two projections, one of 

which is across channels and the other uses harmonics in the 

reference. An extension of CORRCA, filter-bank CORRCA 

(FBCORRCA), uses a filter-bank approach [30], while 

hierarchical feature CORRCA (HFCORRCA) uses 

exponentially decaying weights to fuse information from other 

correlation coefficients [32], and two stage CORRCA 

(TSCORRCA) uses spatial filters for all stimulus frequencies to 

form a better performing extension [30]. In contrast to the 

traditional CCA method, in order to extract and enhance the 

EEG components most relevant to a specific visual stimulation 

task, a method called task-related component analysis may be 

used for stimulus target recognition of SSVEPs [24]. This 

method uses the participant’s own EEG signal as a template to 

effectively extract task-relevant components by maximizing 

reproducibility during the task. However, the stability of task 

related component analysis (TRCA) is easily affected by the 

participants. In order to improve the generalization ability of 

TRCA, an ensemble learning framework, eTRCA, was 

introduced to provide a more accurate and stable processing of 

SSVEP signals [24]. eTRCA makes up for the disadvantage of 

TRCA's weak adaptability, and further improves the 
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recognition performance of SSVEPs. 

Over the last few years, deep learning (DL) methods have 

been gradually applied to stimulus target recognition of 

SSVEPs. For example, the convolutional neural network 

(CNN) method, a popular image classification method, may be 

used to learn the local key features of an image. This better 

learning ability provides a blueprint for analyzing EEG signals 

using CNN. Although there are many examples of SSVEP 

classification achieving impressive performance [33-35], 

further advancements in accuracy are still possible. 

CNN are one of the biggest advances in machine learning in 

recent years [36-39]. CNNs allow for automatic feature 

extraction within their layers, which means the model is capable 

of learning features without the need for manual feature 

extraction. In addition, SSVEPs have rich internal information. 

CNNs have advantages over traditional machine learning 

models in dealing with such internal information including 

good fault tolerance, self-learning ability, good adaptive 

performance, and high resolution. 

CNNs have been used to decode brain signals in some recent 

studies [40-42]. For example, Cecotti proposed a CNN 

architecture that simulates the FFT process to classify SSVEP 

signals in the time domain [34]. In 2017, Kwak et al. proposed 

a deep classifier based CNN that uses frequency features as 

inputs for robust SSVEP detection and found very encouraging 

SSVEP decoding results [35]. However, most CNNs rely on the 

frequency domain features after performing a Fast Fourier 

Transform (FFT) as the inputs to the network. These features 

have obvious long time window characteristics [43, 44]. 

Considering that methods such as FT have poor ability to 

extract frequency features for signals with short time windows, 

rich time domain information will also be lost. To resolve this 

issue, Guney et al. proposed a novel BCI SSVEP speller DNN 

architecture, which processed SSVEP signals in the time 

domain as an end-to-end system from EEG acquisition to target 

feature prediction [45]. 

Considering the singularity of the network structure of the 

DNN architecture and the imperfection of feature extraction, we 

propose a new network architecture called SEMSCNN to 

classify SSVEPs. First, the original EEG is band-pass filtered 

to obtain different frequency bands of EEG and the frequency 

and channel features are extracted by two-layer convolution. 

Then the temporal features are extracted by multi-branch 

convolution at different scales and the features of different 

branches are fused. Finally, the squeeze and excitation (SE) 

module is introduced to learn the interdependence between 

features to improve the quality of the extracted features. The 

contributions of our proposed work are summarized as follows. 

 

⚫ First, in contrast to the single-branch network 

architecture, our proposed SEMSCNN architecture 

contains three convolution kernels of different scales. 

This approach aims to improve the extracted time domain 

information while correcting the issues of insufficient 

feature extraction using single branches. 

⚫ Second, we introduce an SE module after the feature 

merging over different scales. We aim to improve the 

quality of feature extraction by learning the 

interdependence between features through the SE 

module. 

⚫ Finally, our proposed SEMSCNN architecture achieves 

ITRs of 204.55 bits/min and 141.18 bits/min with only 0.2 

seconds of stimulus time on the Benchmark and BETA 

datasets. The ITR is higher than the performance results 

reported by DNN on these datasets. The high decoding 

accuracy lays a solid foundation for the practical 

application of BCI technology in the field of the IoT. 

The rest of this article is organized as follows. Section II 

presents a detailed introduction to our proposed method. To 

evaluate the effectiveness of our proposed network, our 

experimental results are showed in Section III. Section Ⅳ and 

V then report the discussion and conclusion. 

 

 
(A) 

 
(B) 

Fig.2. (A) Stimulus target distribution on the Benchmark dataset, (B) Stimulus 

target distribution on the BETA dataset. 

 

II. MATERIALS AND METHODS 

We first introduce the datasets we are using and then describe 

our proposed SESCNN architecture and its main design 

components. 

 

A. Public Dataset 

The first dataset we used is the Benchmark dataset. This 

dataset is obtained from a SSVEP-BCI speller with 40 targets. 

Joint frequency-phase modulation (JFPM) was used to encode 

all stimulus flicker frequencies and stimulation frequencies 

ranged from 8 Hz to 15.8 Hz with 0.2 Hz intervals. The phase 

ranged from 0 to 1.5π with an interval of 0.5π. A 64-electrode 

EEG recorder was employed for acquisition, sampling EEG at 

250 Hz. The dataset consists of EEG recordings from 35 healthy 

participants. For each participant, the data consisted of 6 blocks 

of 40 trials corresponding to all 40 targets displayed by visual  

 .0  

0

 .0  

0.5  

10.0  

1  

1 .0  

0.5  
11.0  

0

 .   

0.5  

 .   

1  

10.   

1.5  

1 .   

1  

11.   

0.5  

 .   

1  
 .   

1.5  
10.   

0

1 .   

1.5  

11.   

1. 

 .   

1.5  
 .   

0

10.   

0.5  
1 .   

0

11.   

1.5  

 .   

0

 .   

0.5  

10.   

1.5  
1 .   

0.5  
11.   

0

1 .0  

1  

15.0  

0.5  
1 .0  

0

1 .   

1.5  

15.   

1  

1 .   

0.5  

1 .   

0

15.   

1.5  

1 .   

1  

1 .   

1  
15.   

0

1 .   

1.5  

1 .   

1.5  
15.   

0.5  
1 .   

0

1   

  

1 .   

1.5  

1 .   

0

1 .   

0.5  

1 .   

 

15  

1.5  

15.   

0

15.   

0.5  

15.   

  

1 .   

0.5  

 .   

  

11.   

1.5  

1   

0.5  

 .   

1.5  

1   

0  

1 .   

  

1 .   

1.5  

1 .   

1.5  

10.   

1.5  

11.   

0.5  

11.   

  

 .   

1.5  

1 .   

0.5  

 .   

  

 .   

0

 .   

0.5  

10  

  

10.   

0

10.   

0.5  

10.   

  

1 .   

0  

1 .   

  

   

0.5  

1 .   

0

 .   

0

11.   

0

11  

1.5  

   

0

15.   

1.5  

 .   

0.5  



1 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

Fig. 3. (A) Detailed framework of SEMSCNN, (B) Detailed network of SEblock

cues in random order. The target stimulus distribution is shown 

in Fig. 2(A). Each trial comprised 0.5 seconds of EEG recording 

both before and after the 5-second stimulus. For more detailed 

descriptions of the data acquisition, please refer to [46]. 

The second dataset we used is the BETA dataset. The BETA 

dataset is similar to the Benchmark dataset, but there are some 

differences. A total of 70 healthy participants are recorded in 

this dataset. Each experiment consisted of four blocks. A 

blinking target character is displayed in the form of a keyboard 

(see Fig. 2(B)). The experiments were performed outside the 

laboratory environment and the SNR is, consequently, low 

compared to the Benchmark dataset. Therefore, object 

recognition is more challenging in this dataset. The stimulus 

duration is 2 seconds for the first 15 participants and 3 seconds 

for the remainder of the participants. The average visual delay 

of the participants in this dataset is about 130ms. For a detailed 

description of the data, please refer to [47]. To minimize 

computational complexity, the collected data are filtered to 

improve the feature learning ability of our network. The EEG 

signals within the frequency bands 8-90 Hz, 16-90 Hz, and 24-

90 Hz are then obtained by the Butterworth bandpass filter. 

 

B. Proposed SEMSCNN Architecture 

Our SEMSCNN is an end-to-end system designed to process 

multichannel raw EEG signals. Instead of relying on manually 

extracted features, the method learns and extracts features based 

on the properties of the raw data, ultimately realizing the multi-

target recognition task of SSVEP identification. First, the 

network extracts band and channel information through two 

convolution layers, it then extracts different time domain 

features through three parallel multi-scale convolutions. Then, 

the time domain features over different scales are fused and 

depth separable convolution is used to extract the depth 

information from the fused time domain features. An SE 

module is then introduced to enhance the network's ability to 

represent the input data and realize feature recalibration. This 

allows the network to enhance important features and suppress 

unimportant features. Finally, the multi-stimulus target 

classification of SSVEPs is realized by the fully connected 

layer, the activation layer, and the classification layer. The 

entire framework of our network is shown in Fig. 3(A). The 

network elements are explained in detail below. 

The first layer for frequency band feature extraction: The 

contribution of different harmonics in the SSVEP signal may 

vary with the frequency of the flicker stimulation of the target 

signal. In general, the lower harmonics have a higher amplitude, 

while the higher harmonics, although fewer in number, often 

show a higher signal-to-noise ratio because they interfere less 

with other ongoing activities in the brain due to the 1/f 

frequency power distribution of the EEG [48] [49]. However, it 

is not trivial to decide which harmonic is more informative 

when dealing with multiple sub-band signals of the SSVEP 

separately  or when using restricted  models for  signal  fusion  

[48] [50]. However, the optimal method to accurately set the 

weight of each harmonic has not been fully explored in the 

literature. 

In our SEMSCNN design, we choose to remain agnostic 

about the normalization of harmonics and instead let the 

network learn, in a data-driven manner, the normalization 

weights. Therefore, we perform bandpass filtering on multi-

channel SSVEP signals.  For each channel, the lowest cutoff 

frequency of the SSVEP signal 𝑥 ∈ 𝑅𝐶×𝑁  is 𝑟 × min{𝑓𝑗} −

𝜖𝐻𝑍  (eg. 8 HZ for r=1) and the highest cutoff frequency is 

6 × max{𝑓𝑗} + 𝜖𝐻𝑍 (eg. 90 HZ). Here, 𝜖 is the small margin. A 

zero-phase Chebyshev type 1 filter with filter order 2 and 

passband ripple of 1 dB is designed using the MATLAB design 
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filter function. Thus, each filter excludes harmonics of order 

less than 𝑟 and includes the remaining harmonics up to order 6 

(the maximum order is set to 6, since in EEG frequency 

components over 100 HZ is usually considered to be noise). 

The first layer of our SEMSCNN network learns the weights 

𝑤 ∈ 𝑅𝑁𝑆×1 of the subbands, linearly combining the subbands 

for normalization across harmonics, such that 𝑧 =

 [𝑥(1), . . . , 𝑥(𝑟), . . . , 𝑥(𝑁𝑆)]𝑤 , where the input to the layer is 

[𝑥(1), . . . ] 𝑥(𝑟), . . . , 𝑥(𝑁𝑠)] ∈ 𝑅𝐶×𝑁×𝑁𝑠 (i.e. for 𝐶 =  9, 𝑁 =
 50 =  𝑇 ×  𝑓𝑠, 𝑇 =  0.2𝑠, 𝑓𝑠 =  250𝐻𝑍, 𝑁𝑠 =  3, the size is 

9 ×  50 ×  3),  the size of the convolution kernel is (1,1), and 

the output 𝑧1 ∈ 𝑅𝐶 × 𝑁  (i.e. for C = 9, N = 50, the size is 

9 ×  50 ×  1). Therefore, our SESCNN network can learn the 

weights according to the properties of the data itself and extract 

effective frequency band information 

The second layer for the extraction of channel 

information： In the process of collecting EEG containing 

SSVEP signals, multiple electrodes are typically used to capture 

brain activity from multiple scalp locations. This method of 

signal capture allows researchers to analyze brain responses to 

visual stimuli from multiple perspectives. Multi-channel data 

provides information about the spatial distribution of electrical 

activity in the brain, which helps to localize the signal source 

more accurately. Within the visual cortex different regions may 

have different responses to specific frequencies of visual 

stimuli and, by analyzing the activity of these regions, SSVEP 

signals can be better understood and utilized. In our neural 

network architecture for processing these signals the second 

layer of the network plays the crucial role of extracting 

information from each channel. In this layer, it is common 

practice to use a convolution operation, which can extract 

features from each channel efficiently. The convolution 

operation processes the input multi-channel EEG signals by 

applying multiple filters, each designed to capture specific 

signal characteristics, such as the spatial pattern or frequency 

distribution of the signal. Consequently, the convolutional layer 

can integrate information from various electrodes, leading to a 

more complete understanding and utilization of the complex 

SSVEP-related information found in EEG signals. 

The size of the convolution kernel in the second layer of our 

network is (9,1) and the number of output neurons is 120. After 

extracting the frequency band information, the output size of 

the data is 9 ×  50 ×  1 and this data is used as the input to the 

channel convolution layer. After the channel convolution, the 

output size of the data is 1 ×  50 ×  1 (when using the above 

data as an example, with a time window of 0.2 seconds). We 

hypothesize that the information between channels is crucial to 

improve the performance of SSVEP target recognition. 

Multi-scale convolutions for temporal domain feature 

extraction： In the visual cortex of the brain, SSVEPs are 

produced in response to visual stimuli presented at designated 

frequencies. These SSVEP responses may behave differently at 

different time scales. Multi-scale convolution can be used to 

capture these feature changes over time to distinguish stimuli 

with different frequency distributions more effectively. To this 

end, we introduce a multi-scale convolution layer. By using 

filters of different sizes to analyze the signals, the time domain 

information can be extracted at different time scales. We 

introduce three parallel convolution branches into our 

SEMSCNN network architecture, the convolution kernel size is 

(1,3), (1,9), (1,13) and the number of output features is 120. 

Our network architecture directly processes the raw electrical 

signal and is an end-to-end system. Multi-scale convolution not 

only reduces the noise in EEG signals but also effectively 

extracts useful signal features. This is particularly advantageous 

in situations involving weak signals or significant background 

noise, as it helps retain key information more effectively. 

Due to the large inter-person differences in SSVEP signals, 

multi-scale convolution may be suitable to adapt to the specific 

signal characteristics of different users by adjusting filters at 

different scales, improving the generalization ability and 

flexibility of the system. Using multi-scale convolution can, 

therefore, potentially improve the recognition performance of 

SSVEPs over multiple participants. 

Concatenation, depth wise separable convolution and SE 

modules for feature enhancement: After multi-scale 

convolution, features at different scales usually capture 

different information. When processing SSVEPs, larger-scale 

features may capture more global and stable signal properties, 

while smaller-scale features may be more sensitive to rapidly 

changing signal details. To obtain a richer and more 

comprehensive signal representation it is necessary to 

concatenate the features over different scales. Therefore, a 

concatenation layer is introduced. Comprehensive use of multi-

scale features can help the model better distinguish the target 

signal from the background noise, which is helpful to improve 

the performance of our SEMSCNN model. 

To further extract deep temporal features, we introduce 

depth-wise separable convolution. Depth-wise Separable 

Convolution is an efficient convolutional neural network 

architecture originally proposed by Chollet [51]. This 

technology achieves the purpose of reducing computational 

cost, reducing model size and improving operating efficiency 

by reconstructing the traditional convolution. Specifically, 

depth-wise separable convolution consists of two steps: depth 

wise convolution and pointwise convolution ( 1 × 1 

convolution). When performing deep convolution, if the 

number of channels in the input feature map is N, a convolution 

kernel is used for each of the N channels to obtain N feature 

maps with 1 channel each. Then the N feature maps are 

concatenated in order to obtain an output feature map with N 

channels. Finally, a 1 × 1 convolution operation is performed 

to fuse different channels. 

In the traditional CNN architecture, convolutional and 

pooling layers are usually used to extract features. However, 

this approach does not explicitly model the relationship 

between feature channels, resulting in some channels 

contributing relatively little to a specific task while others are 

more important. The SE module aims to solve this problem. In 

the realm of DL, the SE module is recognized as a promising 

attention mechanism with superior adaptive feature extraction 

performance. Proposed by Jie Hu et al. in 2017, it aims to  
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Table Ⅰ 

Parameters of each layer of our SESCNN network (L=time×sampling frequency) 

Layer type Output 

dimension 

Kernel size Step size Output Shape Options 

Input    (9, L,3)  

Conv2d 1 (1,1) 1 (9, L,1)  

Conv2d 120 (9,1) 1 (1, L, 1)  

Dropout     Ratio=0.1 

Conv2d 120 (1,3) 1 (1, L, 1) Mode=same 

Conv2d 120 (1,9) 1 (1, L, 1) Mode=same 

Conv2d 120  (1,13) 1 (1, L, 1) Mode=same 

Concatenate  360   (1, L, 1)  

DpwConv2d 120 (1,3) 1 (1, L, 1)  

Dropout     Ratio=0.95 

SE 120   (1, L, 1)  

Dense  40     

Activation     softmax 

 

 

improve the efficiency of information transfer between CNN 

channels [52]. The SE module models the relationship between 

channels by introducing a Squeeze operation and an Excitation 

operation.  

In the Squeeze stage, the module compresses the output feature 

map of the convolutional layer into a feature vector via a global 

average pooling operation (e.g. the output feature map is of size 

𝑊 × 𝐻 × 𝐶, which becomes 1 × 1 × 𝐶 after squeezing). Then, 

in the Excitation stage, a fully connected layer and a nonlinear 

activation function are used to learn to generate a vector of 

weights for a channel (still of data size 1 × 1 × 𝐶). This weight 

vector is applied to each channel on the original feature map to 

weight the features of the different channels (the weights are 

multiplied with the original feature map and the data size is 

restored to 𝑊 × 𝐻 × 𝐶). In this way, the SE module is able to 

adaptively learn the importance of each channel, and the 

channel contributions in the feature map are weighted 

according to the needs of the task. By learning the 

interdependence between features, the quality of the extracted 

features is improved. In our proposed SEMSCNN network, all 

fully-connected layers in the conventional SE module are 

replaced by 1-D convolutional layers with kernel 1 × 1. The 

specific structure of our SEMSCNN network is shown in Fig.3 

(B). 

After the temporal feature extraction, the final classification 

results are output by the Final Layer (FL). In Fig. 3 (A), the FL 

specific package contains three layers, the first layer is a fully 

connected layer, the second layer is a sigmoid activation layer, 

and classification occurs in the third layer. The parameters of 

the network are shown in Table Ⅰ (note: DpwConv2d is 

shorthand for depth wise separable convolution). 

C. Two-Staged Training of SEMSCNN 

When attempting SSVEP target recognition, training an 

effective neural network model is crucial for improving 

recognition accuracy. To ensure the model captures a broad 

range of data features and trends a two-stage training method is 

employed. First, the initial phase involves global training using 

the entire training set (the training method in the first phase is 

leave-one-block out cross-validation), which provides a global 

perspective that helps ensure the model's generalizability and 

robustness across different SSVEP tasks. However, each 

SSVEP target may be associated with specific frequencies or 

other conditions, necessitating a more detailed understanding 

and optimization of the model for these specific scenarios. 

Therefore, the second stage, the participant-specific fine-

tuning stage, seeks to further enhance the responsiveness of the 

model to each specific target or frequency. In this stage, the 

model is trained for each participant using only the subset of 

data from that participant taken from the global model 

parameters obtained in the first stage. This targeted training 

enables the model to better adjust and optimize the processing 

of each specific target, improving the recognition accuracy and 

recognition speed for each participant.  

In stage 1 “Global training” the full training set is used to 

construct a base architecture with a broad field of view, which 

is able to capture the common characteristics of various SSVEP 

signals, thus laying the foundation for DL of specific targets. 

Training the model using all available training data over all 

participants, helps the model find universally applicable 

patterns across different types of input data.
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(A)                                                                                                                      (B) 

       
 

(C)                                                                                                                   (D) 

Fig.4. (A) Classification accuracies achieved on the Benchmark dataset. (B) ITRs achieved on the Benchmark dataset. (C) Classification accuracies achieved on 

the BETA dataset. (D) ITRs achieved on the BETA dataset. The single asterisk * denotes p<0.05; ** denotes p<0.01; and ***denotes p<0.001

In stage 2 “Participant-specific Fine-tuning” the model is 

refined and specialized according to the specific requirements 

of the SSVEP task (e.g., specific frequency identification). 

From the model parameters obtained by global training, a 

subset of data relevant to a particular participant is selected to 

retrain or fine-tune the model. This targeted optimization can 

make the model perform better under certain conditions. 

Specifically, in each iteration, we train the network based on the 

training batch data {(𝑥𝑖，𝑦𝑖)}
𝑖=1

𝐷𝑏
 ,where 𝐷𝑏  is the number of 

trials in the batch, by minimizing the categorical cross-entropy 

loss 

1

𝐷𝑏

∑ −log (𝑠𝑖(𝑦𝑖))

𝐷𝑏

𝑖=1

+ 𝜆|𝑤|2 

via the Adam optimizer [53] with a learning rate 𝜈 =  0.0001 

(without decaying), where 𝜆  is the constant of the L2 

regularization, which we set as 𝜆 =  0.001, 𝑠𝑖 ∈  [0, 1]𝑀×1 is 

the softmax output for the instance 𝑥𝑖, 𝑠𝑖(𝑦𝑖) is the 𝑦𝑖 ′th entry 

of 𝑠𝑖  and the final prediction is 𝑦𝑖̂ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑠𝑖(𝑗) . Here, 𝑤 

represents all the SEMSCNN weights. 

This two-stage training strategy is very valuable in SSVEP 

target recognition, because it combines the advantages of global 

learning and local fine adjustment, which can not only ensure 

the generalization ability of the model, but also meet the needs 

of specific tasks. In this way, the performance and accuracy of 

the model can be effectively improved. 

The hardware information of the computer used in our 

experiments is as follows: 11th Gen Intel(R) Core (TM) 

Intel(R) Core (TM) i9-14900HX @ 2.20GHz, NVIDIA 

GeForce RTX 4080 Laptop GPU. 

 

D. Comparison Algorithms 

We compare our proposed model to the following state-of-the-

art models for SSVEP decoding. 

1) CORRCA [8]: The final prediction is generated by 

maximizing the correlation between the multichannel 

template signals, computed by averaging the SSVEP 

signal across multiple trials for each frequency in the 

training set, and the multichannel test signal, and then 

selecting the frequency with the highest correlation. 

2) m-Extended-CCA [54]: An extension based on the 

CCA method to improve the classification 

performance of SSVEP target recognition. 

3) TSCORRCA [8]: A spatial filter over all stimulus 

frequencies is utilized to produce more discriminative 

features for SSVEP target frequency identification. 

0

10

 0

 0

 0

50

 0

 0

 0

 0

100

0. 0. 0. 0. 1

M
ea
n
 a
cc
u
ra
cy
 (
 
 

Si nal len th (s 

C   C m-Extended-CC  SC   C 

ms-e  C  NN  ur model

   

 
   

   
   

   

n.s
   

   
   

   

n.s
   

   
   

   

  
   
   
   

   

  
   
   
   

0

 0

 0

 0

1 0

150

1 0

 10

  0

  0

0. 0. 0. 0. 1

M
ea
n
  
 
 
 (
 
it
 m

in
 

Si nal len th (s 

C   C m-Extended-CC  SC   C 

ms-e  C  NN  ur model

   

   
   

   
   

   

  
   
   
   

   

n.s
   

   
   

   

n.s
   

   
   

   

   
   

   
   

0

10

 0

 0

 0

50

 0

 0

 0

 0

0. 0. 0. 0. 1

M
ea
n
 a
cc
u
ra
cy
 (
 
 

Si nal len th (s 

C   C m-Extended-CC  SC   C 

ms-e  C  NN  ur model

   
   

   

   
   

   
   

   

   
   

  
   

   

   
   

n.s
   

   

   
   

 
   

   

   
   

0

 0

 0

 0

1 0

150

1 0

 10

0. 0. 0. 0. 1

M
ea
n
  
 
 
 (
 
it
 m

in
 

Si nal len th (s 

C   C m-Extended-CC  SC   C 

ms-e  C  NN  ur model

   
   

   

   
   

   
   

   

   
   

  
   

   

   
   

n.s
   

   

   
   

 
   

   

   
   



2 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

4) ms-eTRCA [55]: A cross-multiple stimulus learning 

scheme is used for frequency stimulus target 

recognition. This scheme is suitable not only for 

learning data corresponding to the target stimulus, but 

also for learning data corresponding to other stimuli. 

5) DNN [15]: DNN processes the multi-channel SSVEP  

with convolutions across the sub-bands of harmonics, 

channels, and time. It then performs classification in 

the fully connected layer. 

 

Table Ⅱ 

Accuracy (%) and standard deviation (%) with 0.4s 

time length 

Dataset 

Benchmark BETA 

3 channels 53.21±2.98 43.29±3.54 

6 channels 77.21±3.01 45.43±3.20 

9 channels 81.65±3.31 68.07±3.47 

32 channels 82.24±3.29 66.30±3.57 

 

 

E. Performance Evaluations 

In order to verify the effectiveness of our proposed method, 

we conducted experiments on two public datasets: Benchmark 

and Beta. We compare our model to five methods: CORRCA, 

Extended-CCA, TSCORRCA, ms-eTRCA, and DNN. In our 

comparisons, the same test procedure for all these methods is 

followed. Accuracy and Information Transfer Rate (ITR) are 

used to evaluate the target recognition system. 

The ITR is a measure of system efficiency, which takes into 

account not only the accuracy, but also the recognition speed, 

and number of conditions. ITR is measured in bits per minute 

(bpm) and reflects how much information can be transferred per 

second by the BCI. A high ITR value implies not only a high 

accuracy but also a fast response, which is particularly 

important for BCI application environments. The ITR in bits 

per minute (bpm) is calculated by[42]: 

 

𝐼𝑇𝑅 =
60

𝑇𝑊

[𝑙𝑜𝑔2𝑁𝑓 + 𝑃𝐿𝑜𝑔2𝑃 + (1 − 𝑃)𝑙𝑜𝑔2

1 − 𝑃

𝑁𝑓 − 1
] 

 

where  𝑇𝑊  is the time length of the test signal, 𝑁𝑓 is the number 

of stimulus targets (𝑁𝑓=40 on our two public datasets), and P is 

the classification accuracy. The statistically significant 

difference between the two conditions is determined by 

employing the paired t-test. 

 

III. RESULTS 

A. Performance Evaluations with the Benchmark dataset 

A total of 35 participants are included in the Benchmark 

dataset and each completed 6 blocks with 40 target SSVEPs. 

EEG signals with three frequency bands and nine channels were 

used as input to the SEMSCNN network for multi-stimulus 

target classification. The time window lengths used are 0.2s, 

0.4s, 0.6s, 0.8s, and 1s. The average accuracy over all 

participants and time windows is shown in Fig. 4(A).  
 

 
(A) 

 
(B) 

Fig.5. (A) Confusion matrix of SEMSCNN based on the Benchmark dataset. 

(B) Confusion matrix of SEMSCNN based on the BETA dataset. 

 

 

Specifically, in a short time window of 0.2s, the average 

accuracy over all participants is as high as 60.10%. With the 

increase in the length of the time window, the accuracy 

increases: 81.65% (0.4s), 89.17% (0.6s), 93.6% (0.8s) and 

95.64% (1s). Fig.5(A) shows the stimulus confusion matrix 

with 9 channels and 0.4 second windows. The diagonal lines 

identify the correct number of classifications for each target. As 

the length of the time window increases, the accuracy increases 

as the extracted features become richer due to the increasing 

amount of data. In the time window of 0.2s, the accuracy of our 

proposed method is 2.34% higher than the accuracy achieved 

with DNN and 12% higher than the accuracy achieved with ms-

eTRCA. Our proposed method shows a highly significant (p < 

0.001) improvement in accuracy compared with CORRCA, m-

Channels 
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Extended-CCA, TSCORRCA, ms-eTRCA, and a significant (p 

< 0.01) improvement compared with DNN. In addition, in the 

time windows of 0.4s and 0.6s, compared with the other five 

methods, SEMSCNN achieves significantly better accuracies. 

When we compare our method with DNN in the 0.8s and 1s 

time windows, although there is no significant difference, the 

accuracy is approximately 1% higher. 

The ITR in different time windows is shown in Fig.4(B). For 

the average ITR over 35 participants, our proposed method can 

reach up to 256.33bits/min, which is 15.6 bits/min higher than 

the ITR of DNN, within a time window of 0.4s. The ITR of our 

proposed method reaches 204.55 bits/min with a short time 

window of 0.2 seconds. Under the time length of 0.2s, 0.4s, 0.6s, 

compared with the other five comparison methods, our method 

is significantly better.  

 

B. Performance Evaluations of the Beta dataset 

There are 70 participants in the Beta dataset and the results 

presented are the average over all participants. Each participant 

completed four blocks in which they selected among 40 

stimulus targets. As with the Benchmark dataset, three 

frequency bands and nine channels are used as input to our 

SESCNN network. The average classification results over all 

participants and time windows are shown in Fig.4(C). Fig.5(B) 

shows the stimulus confusion matrix with 9 channels and a 0.4 

second window. The diagonal lines identify the correct number 

of participants for each target. First, within a short time window 

of 0.2s, the accuracy of our method is 46.94%, which is 34.63%, 

24.71%, 10.62%, 7.68%, and 4.05% higher than that of 

CORRCA, m-Extended-CCA, TSCORRCA, ms-eTRCA, and 

DNN methods respectively. Except for the time length of 1s, 

which is not significantly different to DNN, our method is 

significantly better than the other comparison methods at all 

time window lengths. 

In terms of ITR, our proposed method also performs very 

well. The ITR over different time windows is shown in 

Fig.4(D). The average ITR over all 70 participants can reach up 

to 191.32 bits/min. This is 10.47 bits/min higher than the 

highest ITR achieved with DNN. When using window lengths 

of 0.2s and 0.4s, there are extremely significant differences 

between our method and CORRCA, m-Extended-CCA, 

TSCORRCA, ms-eTRCA, and SESCNN, as well as significant 

differences between our method and DNN and SESCNN, at a 

window length of 0.8s. 

 

IV. DISCUSSION 

A. The influence of the number of channels on SEMSCNN 

In BCI systems, multiple electrodes are usually used for data 

acquisition. Different electrode channels may have different  

signal quality and noise levels, therefore, selecting channels 

with high signal quality and low noise can significantly improve 

the accuracy of SSVEP detection. In addition, reducing the 

TABLE Ⅲ 

Ablation studies of SESCNN on Benchmark dataset 

Time windows With SE Without SE Before SE 

0.2s 60.10 ±3.22 58.97±3.02 54.26±3.48 

0.4s 81.65±3.31 79.93±3.53 77.77±3.44 

0.6s 88.64±2.65 88.08±2.98 86.54±3.10 

0.8s 93.60±2.74 93.25±3.23 92.30±2.65 

1.0s 95.64±2.72 95.20±2.70 94.40±2.95 

 

TABLE Ⅳ 

Ablation studies of SESCNN on Beta dataset 

Time windows With SE Without SE Before SE 

0.2s 46.94±3.12 45.19±3.12 36.99±3.09 

0.4s 68.07±3.47 63.08±4.29 59.29±3.72 

0.6s 75.96±4.13 71.93±4.15 68.67±4.47 

0.8s 81.14±4.31 78.23±4.67 75.14±4.34 

1.0s 84.13±4.69 81.37±4.44 78.89±4.66 

 

TABLE Ⅴ 

Computational complexity comparison among the proposed models and baseline models 

 Model Parameters Train time(s) Test time(ms) Energy consumption (KJ) 

Benchmark 

dataset 

DNN 654.284K 5827.32 22.31 406.75 

MSCNN 2.201M 13470.39 55.92 1027.79 

SEMSCNN 2.215M 17228.73 27.59 1323.17 

BETA 

dataset 

DNN 653.080K 8222.98 22.87 279.58 

MSCNN 2.199M 21887.16 54.57 1703.48 

SEMSCNN 2.211M 24570.87 64.44 1904.24 
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number of channels for data processing can reduce the 

computational cost and improve the processing speed, which is 

particularly important for real-time systems. Channel selection 

also improves device portability and user comfort, as using 

fewer electrodes makes the device more portable and easier to 

configure. Finally, since brain structure and 

electrophysiological properties may vary among individuals, 

channel selection can also optimize the electrode configuration 

according to individual differences to provide the best signal 

capture for each user. By carefully selecting channels the 

overall performance and user experience of the SSVEP system 

can be improved. Therefore, we selected data from different 

channels to validate our proposed SESCNN model. Table II 

reports the accuracy with 3 (O1, Oz, O2), 6 (O1, Oz, O2, POz, 

PO3, PO4), and 9 (Pz, PO3, PO5, PO4, PO6, POz, O1, Oz, O2)  

channels as typically used in the literature, and 32 channels (all 

channels from central-parietal regions and C3, C1, Cz, C2, C4, 

FCz). In the table we report the accuracy and standard 

deviations when using the 0.4s time window for both datasets. 

According to Table II, the accuracy is the lowest when using 

data from only three channels. As the number of channels 

increases, the accuracy gets higher and higher. In particular, it 

can be seen that the accuracy is 81.65% when the number of 

channels is 9 and 82.24% when the number of channels is 32. 

The two results are not very different, but the number of 

channels is very different. The greater the number of channels, 

the larger the amount of data, the higher the computational 

complexity needed to train the model, and the longer the 

training time of the model. Therefore, it is a better strategy to 

select 9 channels. Under the condition of ensuring high 

performance, fewer channels are more practical for SSVEP-

based BCIs. 

B. Ablation Studies 

Our proposed SEMSCNN network model chiefly consists of 

three parallel multi-scale convolution and SE modules. In order 

to verify the effectiveness of the introduction of the SE module, 

we conducted ablation experiments on our two datasets. 

Specifically, we conducted studies with and without SE 

modules. On the benchmark dataset, when the window length 

is 0.6s, 0.8s, and 1s, there is no significant improvement as a 

result of including the SE module. However, an improvement 

in the performance of the model is observed when short time 

windows of 0.2s and 0.4s are used (see Table Ⅲ for detailed 

results).  

The classification results for the same ablation study on the 

BETA dataset are shown in Table Ⅳ. When using the 0.6s time 

window, the accuracy is improved by 4% as a result of using 

the SE module. At other window lengths, the accuracy is also 

significantly improved. This demonstrates the effectiveness of 

the SE module. The SE module automatically adjusts the 

channel weights by learning the importance of different feature 

channels, thereby enhancing the attention to useful features and 

suppressing unimportant features. This feature relabeling can 

help the model to extract useful information from EEG signals 

more effectively, thereby improving the accuracy and 

robustness of the model. The addition of the SE module enables 

the network to adaptively learn the importance of features, and 

then improves the decoding performance of multi-target 

SSVEP signal decoding. We also investigated the effect of the 

position of the SE module. When the SE module is placed 

before the multi-scale convolution (referred to as Before SE), it 

merely recalibrates the extracted frequency and spatial 

information without integrating the temporal information of the 

EEG signals. Therefore, the SE module achieves effective 

feature reprocessing only when positioned after the multi-scale 

convolution. 

C. Feature analysis 

To further evaluate the effectiveness of our proposed method, 

feature analysis is performed. In the SEMSCNN network model, 

the posterior probability of an observation is obtained. This 

reflects how confident the model is that this observation 

belongs to a particular class. Specifically, the posterior 

probability is used to determine the final classification of the 

observations. The model will classify the observations into the 

class with the highest posterior probability. The posterior 

probability is used as an index to measure the importance of 

features. The datasets used in this study all contain 40 target 

categories, and the posterior probabilities of the DNN network 

and SEMSCNN network are compared on each target. Specific 

comparison results are shown in Fig.6. Fig. 6(A) presents the 

comparison results for one block of a participant on the 

Benchmark dataset. In Fig.6(B), the comparison results on the 

BETA dataset are shown. For the target frequency from the 

figure, the probability of the proposed model is higher than that 

of the DNN model. This also shows that our proposed method . 

The size of the posterior probability can also indirectly reflect 

the importance of the features proposed by the model. The 

larger the posterior probability is, the more helpful the features 

proposed by the model are for classification, and the better the 

classification accuracy of the model. 

 

D. Complexity analysis 

To evaluate the computational complexity of the model 

presented in this paper, we further compared the model 

parameters, training time, and testing time of all network 

models, as shown in TABLE Ⅴ. Here, we define the training 

time as the time required to train the global model and the 

testing time as the time needed to test the samples. During our 

evaluation, the data length for both datasets is set to 0.8 s. From 

TABLE Ⅴ, we can observe that our proposed MSCNN and 

SEMSCNN models have more parameters than the baseline 

models. In terms of training time, SEMSCNN takes the longest, 

while DNN requires less time than MSCNN and SEMSCNN. 

For the testing time, SEMSCNN is the most time-consuming. 

MSCNN takes the least time for both training and testing. All 

models can perform effectively during the testing phase (under 

60 ms), allowing for quick control of external IoT device
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(A) 

 

(B) 

Fig.6. The feature analysis corresponding to all stimuli obtained by DNN and our proposed method from a representative participant. For the Benchmark dataset 

with 40 stimuli (A), and the Beta dataset with 40 stimuli (B), the data length is set as 0.2. 

Energy consumption is determined by the time required to train 

the entire model and the power consumed by the computer. In 

TABLE Ⅴ, we report the energy consumption during model 

training. SEMSCNN requires the most energy, while DNN 

requires less energy than MSCNN and SEMSCNN. For the 

testing phase, SEMSCNN uses the most energy.  

 NN SEMSCNN

 NN SEMSCNN
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V. CONCLUSION 

In this study, we proposed a novel SEMSCNN model, and 

introduced the use of a SE module to learn the dependencies 

between features and to further improve the quality of feature 

extraction to enhance the recognition performance of SSVEPs 

for multi-stimulus frequency targets. We evaluated our 

proposed SEMSCNN model on two public datasets, 

Benchmark and Beta. Our experimental results show that the 

performance of our proposed method is significantly better than 

CORRCA, m-Extended-CCA, TSCORRCA, ms-eTRCA, and 

DNN. In addition to this, we also investigated the impact of 

different numbers of channels on the performance of our model. 

Our results show that 9 channels are optimal under the 

comprehensive consideration of accuracy and practical 

applications. Meanwhile, our ablation studies also indicated the 

suitability of our SEMSCNN model. By introducing the SE 

module, the extracted features are enhanced and the multi-target 

classification performance of SSVEP is further improved. This 

provides technical support for online SSVEP-based BCI 

applications. Furthermore, the model we proposed in this paper 

relies on specific participants, meaning the performance 

evaluation is conducted within-participants. Given the inherent 

variability among different participants, further evaluation is 

needed to assess cross-participant performance differences. In 

the future, we will attempt to further improve the model to make 

it more suitable for transfer learning ability and cross-actor 

classification scenarios, and then realize the control of IoT 

devices by different users using BCI technology. 
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