
IEEE TRANSACTIONS ON COMPUTERS, VOL. 14, NO. 8, AUGUST 2024 1

On Task Mapping in Multi-chiplet Based
Many-core Systems to Optimize Inter- and

Intra-chiplet Communications
Xiaohang Wang*, Member, IEEE, Yifan Wang, Yingtao Jiang, Amit Kumar Singh, Member, IEEE

and Mei Yang, Member, IEEE

Abstract—Multi-chiplet system design, by integrating multi-
ple chiplets/dielets within a single package, has emerged as a
promising paradigm in the post-Moore era. This paper introduces
a novel task mapping algorithm for multi-chiplet many-core
systems, addressing the unique challenges posed by intra- and
inter-chiplet communications under power and thermal con-
straints. Traditional task mapping algorithms fail to account for
the latency and bandwidth differences between these commu-
nications, leading to sub-optimal performance in multi-chiplet
systems. Our proposed algorithm employs a two-step process:
(1) task assignment to chiplets using binary linear program-
ming, leveraging a totally unimodular constraint matrix, and
(2) intra-chiplet mapping that minimizes communication latency
while considering both thermal and power constraints. This
method strategically positions tasks with extensive inter-chiplet
communication near interface nodes and centralizes those with
predominant intra-chiplet communication. Experimental results
demonstrate that the proposed algorithm outperforms existing
methods (DAR and IOA) with a 37.5% and 24.7% reduction
in execution time, respectively. Communication latency is also
reduced by up to 43.2% and 32.9%, compared to DAR and IOA.
These findings affirm that the proposed task mapping algorithm
aligns well with the characteristics of multi-chiplet based many-
core systems, and thus improves optimal performance.

Index Terms—Many-core systems; Chiplet; Task mapping;
Performance optimization

I. INTRODUCTION

DESIGNING and fabricating larger and high-performance
many-core chips face escalating challenges in scalability,

flexibility, cost, power consumption, and manufacturability
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[6]. Multi-chiplet system integration, as a new and promising
design paradigm, offers a viable solution to address these
challenges. Instead of designing a monolithic chip with a
large number of cores, chiplets with specific and often smaller
functionalities can be designed and manufactured indepen-
dently. They are then integrated and assembled together with
an interposer, RDL (redistribution layer), or substrate-based
inter-chiplet interconnection.

Target multi-chiplet systems can be customized as accel-
erators or software managed systems, like NN-Baton [1],
Simba [2], INDM [3], Gemini [4], NetFlex [5], SPRINT [A6].
These chips are deployed in various domains, including data
centers, cloud computing, high-performance computing, edge
computing, IoT devices, consumer electronics, automotive
electronics, and telecommunications and networking, for tasks
like artificial intelligence or big data processing. The state-
of-the-art multi-chiplet chips consist of a dozen or more
chiplets with a combined transistor count of billions and an
accumulated bandwidth exceeding terabytes per second. To
fully utilize the hardware resources in multi-chiplet designs,
efficient task mapping techniques are essential. Task mapping
involves determining which tasks should be executed on
specific chiplets based on factors such as workload character-
istics, communication requirements, power consumption, and
thermal considerations. The task mapping results significantly
impact system performance and power consumption.

While successful task mapping algorithms have been pro-
posed for monolithic 2D or 3D many-core systems [8], where
only in-chip communication flows are present and treated in-
distinguishably, task mapping in multi-chiplet systems is more
complex. These systems involve two types of communication
flows: inter-chiplet and intra-chiplet communications. Inter-
chiplet communication incurs higher costs due to the need
to go through the package-level communication infrastructure
and additional physical layer processing. It has been reported
that inter-chiplet communication latency between nodes in
adjacent chiplets can be 10-30 times longer than that between
adjacent nodes in the same chiplet [9], [10]. The inter-chiplet
communication bandwidth is also lower due to pin limits and
area constraints. Failing to consider these significant latency
and bandwidth gaps in task mapping can result in sub-optimal
solutions and degraded system performance. The following
example illustrates this issue.

The task mapping results of applying the task mapping
algorithms [8] for 2D or 3D many-core systems are illustrated
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in Fig. 1. The goal of CoNA [8] is to decrease both internal and
external congestion. If a task is mapped to a specific processing
element (PE), the tasks it communicates with are also mapped
to adjacent PEs. This approach reduces congestion in the
network as communicating tasks are physically closer, reduc-
ing the communication distance. Furthermore, CoNA maps
communicating tasks in close neighborhoods. The benefits
of the CoNA algorithm are twofold: it effectively reduces
congestion in the network, and thus reduces network latency.
The task graph in Fig. 1(a) is mapped to a hypothetical 2-
chiplet system (Fig. 1(b)) following the algorithm in [8]. The
communication latency is calculated as the product of the total
inter-task communication volume and the latency between the
corresponding cores. Alternatively, if we allow the tasks to be
assigned to chiplets to minimize inter-chiplet communication
volume and map tasks with significant inter-chiplet commu-
nication requirements to interface nodes (nodes connected to
other chiplets), we obtain a task mapping (Fig. 1(c)) with a
much lower communication latency. It is only 0.79 times the
communication latency of the mapping shown in Fig. 1(b)
The inter-chiplet core latency is calculated based on the
configuration and datasheet details provided in [9], [11], [12].

The example mentioned above highlights the importance of
minimizing inter-chiplet communication when mapping tasks
in multi-chiplet systems. Building on this observation, we pro-
pose a two-step runtime task mapping algorithm specifically
designed for multi-chiplet systems.

In the first step, tasks are allocated to each chiplet to mini-
mize inter-chiplet communication volume. This is formulated
as a binary quadratic programming problem (BQP) and further
transformed into a binary linear programming problem (BLP).
The constraint matrix of the BLP is proven to be totally
unimodular, allowing us to solve the problem optimally using
the prime-dual interior point algorithm [13].

In the second step, the tasks within each chiplet are mapped
to individual cores to minimize communication latency while
considering thermal and power constraints. To achieve this,
tasks with high inter-chiplet communication volumes are
mapped to interface nodes (nodes connected to other chiplets),
while tasks with high intra-chiplet communication volumes are
mapped to the centers of the chiplets.

Experimental results demonstrate that the proposed method
reduces application execution time by up to 33.5% and 21.1%
compared to the two best-known baseline task mapping al-
gorithms, DAR [14] and IOA [15], respectively. Additionally,
communication latency is reduced by up to 39.0% and 25.8%
compared to DAR and IOA, respectively.

The remainder of the paper is structured as follows. Section
III and IV provide a survey of related works and covers
the necessary preliminaries. In Section IV, the runtime task
mapping problem is formally formulated, along with the
overall algorithm structure. The next two sections, Sections
V and VI, detail the two major steps of the proposed runtime
mapping algorithm, which specifically address the assignment
of tasks to chiplets and intra-chiplet mapping. Section VII
presents the evaluation of experimental results. Finally, Section
VIII concludes the paper.

Fig. 1: Task mapping results. (a) Task graph; (b) mapping result from
an existing task mapping algorithm [8]; (c) mapping result of an inter-
chiplet communication minimizing task mapping algorithm.

II. RELATED WORKS

Task mapping algorithms have been proposed to optimize
applications running in 2D, 3D and multi-chiplet-based many-
core systems. These algorithms can be classified into three
categories based on their optimization objectives:

1) Temperature-oriented optimization approaches [17]–[19]:
The algorithms in [17] aim to minimize the temperature of the
system by considering the thermal characteristics of the cores
and their placement. The thermal-aware mapping approach
in [18] reduces performance throttling and utilizes empty
offset areas to expand on-chip cache capacity by spacing
out chiplet hot spots away from each other in the 3D stack.
However, thermal hotspot issues in the thermal-aware mapping
approach configuration may give rise to elevated tempera-
tures and consequent performance degradation. In compute-
intensive workloads, the temperature peaks in the thermal-
aware mapping approach configuration surpass the tempera-
ture limit, resulting in thermal throttling phenomena. This is
achieved by employing techniques such as layout mirroring
and offsetting. Meanwhile, the approaches in [19] focus on
reducing power consumption and response time through a uni-
fied methodology integrating dynamic voltage and frequency
scaling (DVFS) of processor cores and low power mode
(LPM) for memory storage, coordinating a comprehensive
thermal management strategy for the 3D stacked processor-
memory system. However, in certain scenarios, the approaches
in [19] may encounter anomalous power peaks, resulting in
temperatures exceeding the thermal threshold. Additionally,
the approaches in [19] exhibits significant power fluctuations
during its execution process.

2) Communication-oriented optimization approaches [2],
[3], [8]: The algorithms in [8] focus on reducing commu-
nication latency by considering the communication patterns
between tasks and minimizing the distance between com-
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Fig. 2: (a) Tiled inter-chiplet network topology (passive interface);
(b) centralized inter-chiplet network topology (active interface).
municating tasks. The approach in [3] aims to minimize
traffic congestion during the switching of deep neural network
(DNN) layers by emphasizing inter-chiplet communication.
However, The approach was evaluated in experiments using
only a subset of specific DNN models, and its applicability
and performance for other types of models have not been
sufficiently validated. Similarly, [2] addresses inter-chiplet
communication latency by consolidating relevant data within
the same region, effectively reducing the need for remote com-
munication. However, the system’s performance experiences
degradation with a certain quantity of chiplets, as the inter-
processing element (PE) communication latency surpass the
limited parallelism.

3) Approaches balancing multiple objectives, such as per-
formance, power consumption, and reliability, etc. [14], [15],
[20]–[23], [42]: The algorithms in [14], [15] take into account
both temperature and communication aspects, aiming to find a
balance between minimizing temperature and reducing com-
munication latency. C. Wu et al. [20] proposed an approach
for the collaborative optimization of reliability, communication
energy, and performance (CoREP) in network-on-chip (NoC)-
based reconfigurable architectures. This method identifies the
optimal mapping by exhaustively exploring all potential map-
pings through a search tree to minimize CoREP costs. In
addition, [21] considers both energy consumption and relia-
bility, utilizing a branch-and-bound method with a partial cost
ratio to systematically determine the best mapping solution.
Moreover, [22], [23] discuss a run-time resource manager
(RTRM) framework designed to achieve multi-objective op-
timization by employing hierarchical adaptive mechanisms.
P. Veda [42] et al. proposed a method that optimizes reliability
by employing fault-tolerant mapping through spare cores in
the Mesh-of-Tree (MoT) network to address core failures.
It does not directly apply to chiplet systems, where inter-
and intra-chiplet network topologies are substantially different
from MoT.

III. PRELIMINARIES

In this section, a system model is presented that describes
the structure and components of a chiplet system, along with
an application model that formally defines the applications
to run on it. Chiplet systems face challenges due to thermal
issues, which can negatively affect power consumption and
performance. To address these challenges, a thermal power
capacity model is introduced.

A. System Model
The multi-chiplet-based many-core system is modeled as an
undirected graph G = (C,L), where C is the set of nodes
and L is the set of links connecting those nodes. A node

is composed either of a core, L1 cache and L2 cache bank,
a router and a network interface (NI) or a D2D (die-to-
die) interface, as the case of a chiplet dedicated solely to
interconnection, without any processing elements. The set of
chiplets is represented as R = {R1, R2, . . . , Rg}. A chiplet Rj

has multiple cores. Each core cij ∈ C is defined by coordinates
(xij , yij , pj , qj), where xij and yij are the horizontal and
vertical coordinates of cij in the chiplet (intra-chiplet coordi-
nate), and pj and qj are the horizontal and vertical coordinates
of that chiplet in the system (chiplet coordinate). A chiplet
Rj communicates with other chiplets through its cross-chiplet
nodes, collectively referred to as Hj . The weight ωC(cij , cmn)
of each edge l(cij , cmn) ∈ L denotes the latency when
data flows from core cij to core cmn. Two typical types of
inter-chiplet interconnections, termed tiled and centralized, are
illustrated in Fig. 2(a). The communication latency between
two cores ωC(cij , cmn) is obtained by summing the latency
incurred at the routers and all the links along the routing
path from cij to cmn. Similarly, the communication latency
ωR(Ri, Rj) of two chiplets Ri and Rj is obtained by adding
the latencies of chiplets and the interposer/level links along
the routing path from Ri to Rj .

A tiled topology (Fig. 2)(a) refers to a configuration in
which multiple chiplets are organized in a regular mesh-like
structure, forming a tiled arrangement. In this topology, each
chiplet is treated as a node, with interconnections established
through a network to enable communication and data exchange
between them. This structured and scalable framework facili-
tates efficient coordination and optimized system performance,
making it well-suited for multi-chiplet systems.

A centralized topology refers to a configuration in which
multiple chiplets are interconnected through a central node. In
this topology, each chiplet is linked to the central node, which
facilitates communication and data exchange between the
chiplets. The central node plays a crucial role in coordinating
and managing the overall system operation. This topology
allows for centralized control and coordination of chiplets,
enabling efficient data transfer and synchronization among
chiplets. This topology supports efficient communication and
resource sharing, making it a suitable choice for multi-chiplet
systems requiring streamlined communication and coordina-
tion.

In the centralized topology, as depicted in Fig. 2(b), each
chiplet consists of interconnection and computation compo-
nents. Additionally, some routers are dedicated to connecting
with other chiplets through the physical layer (PHY). For
instance, in the centralized topology, there is a central chiplet
that features a 2× 2 intra-chiplet mesh network. This central
chiplet serves as the hub, responsible for connecting all the
other computing chiplets, as illustrated in Fig. 2(b).

The inter- and intra-chiplet network follows a hierarchical
design, composed by network-on-chip (NoC, also referred to
as intra-chiplet network) and network-on-package (NoP) [24],
which is demonstrated in the following figure.

The NoC is connected by buffered routers, with each chiplet
utilizing D2D interfaces [25] to connect to other chiplets. The
NoP is connected via wires in a passive interposer or routers
in an active interposer.
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TABLE I: Nomenclature
Symbol Definition

G = (C,L)
The undirected graph that represents a many-core system,
where C is the set of cores, and L is the set of links
connecting the cores

cij the ith core in the jth chiplet

loc(cij)

The coordinates (xij , yij , pj , qj) of core cij , where xij

and yij denote the coordinates of cij in the chiplet with
its coordinates marked as pj and qj in the entire inter-
chiplet network (chiplet coordinate)

Pth((cij) The power capacity of core cij
Pc((cij) The power consumption of core cij
Rj Chiplet j
Hj A set of the cores connecting to the routers in Rj

R Chiplet set, i. e., R = {R1, R2, . . . , Rg}
|R| The number of chiplets
ti Task i
M(ti) = ckj A mapping function that maps task ti to core ckj
r(ti) The chiplet that runs task ti

A = (T,E)
A directed graph represents an application where T has
all the tasks of application A, and E is the set of all the
communications within application A

|T | The number of all the tasks
|Rm| The maximum number of tasks in the chiplet m
l(cij , cmn) The undirected edge between cores cij and cmn

ωc(cij , cmn) The latency when data flows from cores cij and cmn

ωR(Ri, Rj) The latency between chiplets Ri and Rj

e(ti, tm)
The directed edge indicating that task ti precedes task
tm

v(ti, tm)
The communication latency in bits from task ti to task
tm

det(W) The determinant of matrix W

Φi
The ith thermal correlation region of the chip (i =
1, 2, 3, 4)

Pa(Φi) The power consumption of region Φi

To prevent deadlock in the inter- and intra-chiplet network,
the approach outlined in [26] is adopted.

Table I summarizes the symbols and their definitions used
throughout this paper.

B. Application Model
Each application is modeled as an undirected graph A =
(T,E), where T is the set of tasks in the application and E
is the set of directed edges representing the communications
between tasks. Each task ti ∈ T is mapped to a core ckj ∈ C
when the application arrives at the system and there are enough
free cores. The weight v(ti, tm) of each edge e(ti, tm) ∈ E is
the communication latency from task ti to task tm. A mapping
function M(ti) = ckj indicates that task ti ∈ T is assigned to
run on core ckj ∈ C.

C. The Thermal Power Capacity Model
Task mapping is constrained by the thermal/power capacity of
the chip. In what follows, the thermal power capacity model
(TPC model) in [16] is extended to apply to multi-chiplet-
based many-core systems.

The power capacity (i.e., the maximum allowable power
consumption) of a core cij with coordinates loc(cij) is in-
fluenced by the power consumption of adjacent cores due
to thermal correlation. However, depending on the physical
distances, the neighboring cores of cij have different levels
of thermal correlation with cij , and the combined thermal
correlations of all its neighboring nodes ultimately determine
the power capacity of cij .

As indicated in Fig. 3, the cores are divided into four regions
based on their thermal correlations with respect to core cij .

Fig. 3: Regions with different thermal correlations with respect to
core cij

• The cores in region 1 are represented as Φ1, where Φ1 =
{cij | loc(cij) = (xij ± δ1, yij ± δ2, pj , qj)}, δ1, δ2 ∈
{0, 1, 2} and δ1 + δ2 ≤ 2.

• The cores in region 2 are represented as Φ2, where Φ2 =
{cij | loc(cij) = (xij ± γ1, yij ± γ2, pj , qj)}, γ1, γ2 ≤ 2
and γ1 + γ2 ≤ 2.

• The cores in region 3 are represented as Φ3, where Φ3 =
{cij | (pj ± σ1, qj ± σ2)}, σ1, σ2 = 0 or 1.

• The cores in region 4 are represented as Φ4, where Φ4 =
{cij | (pj ± ϵ1, qj ± ϵ2)}, ϵ1, ϵ2 ≥ 1.

The power capacity of a core cij can be determined by the
power consumption of the neighboring cores in the different
thermal correlation regions of cij :

Pth(cij) = ζPa(Ψ1) + ιPa(Ψ2) + χPa(Ψ3) + κPa(Ψ4) (1)
where ζ, ι, χ and κ are regression coefficients, Pth(cij) is the
power capacity of core cij , and Pa(Ψi) is the total power
consumption of cores in region i.

The power consumption [16] of a core cij is determined as

Pc(cij) =
∑

[g(cij , cmn) · (T (cij)− T (cmn))]

+
∑[

g(cij , c
amb
ij ) · (T (cij)− T (camb

ij ))
]

(2)

where gi,k is the thermal conductance between core cij and its
neighboring core cmn, which may be within the same chiplet
or across different chiplets. T (cij) and T (cmn) are the tem-
peratures of core cij and core cmn, respectively, g(cij , camb

ij ) is
the thermal conductance to the ambient environment, T (camb

ij )
is the ambient temperature.

The training data of this thermal power capacity model
(Eqns. (1-2)) is obtained by running multiple applications
in the multi-chiplet system and randomly varying the power
consumption of the cores in the four regions. For each set
of experiments, the maximum allowable power consumption
of core cij is recorded as the output. Maximum likelihood
regression is then used to obtain the values of the coefficients
in Eqn. (1).

IV. PROBLEM FORMULATION AND PROBLEM
MAPPING/OVERALL ALGORITHM STRUCTURE

A. Problem Definition
Given a chiplet system G, and applications represented as
A, the goal is to map all tasks in A onto G in a way
that minimizes the application execution time while meeting
applicable thermal and power constraints.

min

|A|∑
t=1

E(At) (3)
subject to:

Pc(cij) ≤ Pth(cij), for each cij ∈ C (4)
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Due to the correlation between communication latency
and application execution time [7] in chiplet systems, this
paper utilizes communication latency as the primary objective
function in the problem-solving process.

Here the communication latency is defined as the cumulative
sum of the products of inter-task communication volume and
communication latency, given below:

Ctotal =

|T |∑
i=1

|T |∑
m=1

v(ti, tm) · ωC(M(ti),M(tm)) (5)

where Ctotal is the total communication latency of the sys-
tem, |T | is the number of tasks in the task graph of the
application, v(ti, tm) is the communication volume between
task ti and task tm, M(ti) is the core running task ti, and
ωC(M(ti),M(tm)) is the communication latency between the
two cores running tasks ti and tm.

The problem of task mapping is thus formulated as follows.
minCtotal (6)Subject to:

Pc(cij) ≤ Pth(cij) for each cij ∈ C (7)
where Ctotal is the total communication latency of the system
given in Eqn. (5), and the power consumption of a core,
Pc(cij), as defined in Eqn. (2), must not exceed its power
capacity Pth(cij).

B. Problem Mapping/Overall Algorithm Structure
The above-defined problem is a binary quadratic programming
problem, which is considered to be NP-hard, with an exponen-
tial growth rate in terms of complexity. For example, for an
application with only 16 tasks mapped onto a small system
with 16 cores distributed across 4 chiplets, there are a total
of 1616 possible options. To efficiently solve this problem, a
two-step algorithm is proposed.

In the first step, tasks are assigned to chiplets to minimize
inter-chiplet communication volume, and this sub-problem is
solved optimally by an efficient algorithm [13] with polyno-
mial time complexity.

In the second step, a heuristic approach is applied to map
tasks within each chiplet. The heuristic prioritizes tasks with
high inter-chiplet communication volume by mapping them to
cores that connect to other chiplets, while tasks with high intra-
chiplet communication volume are mapped to central cores
within the chiplet.

V. TASK TO CHIPLET ASSIGNMENT

This step focuses on assigning tasks to chiplets in a way that
minimizes inter-chiplet communication volume, considering
the inherent cluster/community structure of a multi-chiplet sys-
tem. Conventional graph partitioning or community detection
algorithms [27] cannot be directly applied in this scenario
because they assume that all sub-graphs or communities have
the same size, implying that every chiplet in the system has
the same number of cores. However, this assumption is too
restrictive as most chiplet-based systems follow heterogeneous
integration, and the chiplets can vary significantly from one
another.

To address the size differences among multiple chiplets, this
section defines the problem of task-to-chiplet assignment as a
binary quadratic programming (BQP) problem. This problem
is then transformed into a binary linear programming (BLP)
problem to find an optimal assignment solution.

Fig. 4: The decision variable πP.

Fig. 5: The constraint matrices W1.

A. Problem Definition
In the task-to-chiplet assignment problem, given a chiplet
system G, and applications represented as A, all the tasks
in A need to be mapped to run on specific chiplets in G so
that the inter-chiplet communication latency is minimized. In
this case, the inter-chiplet communication latency CChiplet

total is
defined as,

CChiplet
total =

i≤|T |∑
i=1

j≤|T |,i̸=j∑
j=1

m≤|R|∑
m=1

n≤|R|,n̸=m∑
n=1

(πim · πjn

· v(ti, tj) · ωR(Rm, Rn))

(8)

where |T | is the number of tasks, v(ti, tj) is the communi-
cation volume between tasks ti and tj , ωR(Rm, Rn) is the
communication latency between chiplets Rm and Rn to which
ti and tj are respectively mapped, and πim is defined as

πim =

{
1, if ti is assigned to Rm

0, otherwise
(9)

The task to chiplet assignment problem thus is formulated
as a BQP problem.

minCChiplet
total (10)Subject to: 

i≤|T |∑
i=1

πim ≤ |Rm|

m≤|R|∑
m=1

πim ≤ 1

∀Ri, Pc(Ri) ≤ Pth(Ri)

(11)

where |Rm| is the core count of chiplet m, and |Tmnth| is the
maximum number of tasks that can run on the core cmn.

Let ΠP, a matrix with a size of (|T | × |R|)2, represent
the current mapping result, and its elements are defined in
Eqn. (12). πP

imjn = πim × πjn (12)
Let Q, a matrix of size (|T | × |R|)2, represent the commu-

nication latency, and its elements are defined in Eqn. (13),
qimjn = v(ti, tj)× ωR(Rm, Rn) (13)
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Fig. 6: The constraint matrices W2.

Note that ωR(Rm, Rm) = 0. The above BQP problem can
be transformed into a binary linear programming problem
(BLP) as follows:

min(CChiplet
total ) =

|T |∑
i=1

|T |∑
j=1

|R|∑
m=1

|R|∑
n=1

qimjn × πP
imjn (14)

Subject to:

i≤|T |∑
i=1

j≤|T |∑
j=1

πP
imjm ≤ 2|T th

mn|

m≤|R|∑
m=1

n≤|R|∑
m,n=1

πP
imin ≤ 2

πP
imjn ∈ {0, 1}, i, j ≤ |T |, n ≤ |R|
∀Ri, Pc(Ri) ≤ Pth(Ri)

(15)

where qimjn and πP
imjn are defined in Eqns. (12)-(13) of the

original paper, |Rm| is the core count of chiplet Rm, and |T th
mn|

is the maximum number of tasks that can run on the core cmn.
Eqn. (15) ensures that the number of tasks mapped to the

same chiplet Rm does not exceed the core count of the chiplet
Rm, and the task ti is assigned to only one chiplet. Note that
since both πP

imjn and πP
jnim are counted twice in the above

inequalities, which arises from the assignments of ti to Rm
and tj to Rn, respectively, a factor of 2 has to be added into
Eqn. (15). Eqn. (15) can be rewritten in matrix form,

(W1πP ≤ 2 × (|R1|, |R2|, . . . , |R|R||︸ ︷︷ ︸
|R| elements

, 0, 0, . . . , 0︸ ︷︷ ︸
|T| elements

, 0, 0, . . . , 0︸ ︷︷ ︸
(|T|−1)(|R|−1) elements

)T

(W2πP ≤ 2 × (0, 0, . . . , 0︸ ︷︷ ︸
|R| elements

)T, 2, 2, . . . , 2︸ ︷︷ ︸
|T| elements

, 0, 0, . . . , 0︸ ︷︷ ︸
(|T|−1)(|R|−1) elements

)T

(16)
where the constraint matrices W1 and W2 are defined in
Figs. 5 and 6, and the decision variable πP [28] is given by
Fig. 4.

Eqn. (16) now can be rewritten as Eqn. (17),
Wπ

P ≤ 2 × (|R1|, |R2|, . . . , |R|R||︸ ︷︷ ︸
|R| elements

)
T
, (1, 1, . . . , 1︸ ︷︷ ︸

|T | elements

), ( 0, 0, . . . , 0︸ ︷︷ ︸
(|T |−1)(|R|−1) elements

)
T (17)

where the constraint matrix W is the sum of W1 and W2 as
follows.

Definition 1: Let A be an m × n {0, 1} matrix. If ai,j =
ai,k = 1 and k > j + 1, for any j < l < k, ai,l = 1,
A possesses the “consecutive 1’s property”. In other words,
every row of A is of the form (0, . . . , 0, 1, . . . , 1, 0, . . . , 0).

Theorem 1: When matrix A has the “consecutive 1’s
property”, it is a totally unimodular matrix [29].

Please refer to Section I of the supplementary material for
the proof.

As so, the following linear relaxed programming (LRP) is
a relaxed version of the binary linear programming (BLP)
problem.

LPR: minCChiplet
total = qTπP (18)

Fig. 7: The constraint matrices W.

Fig. 8: The vector q.

Subject to: {
W
(
(πP )T) ≤ b

πP
i ∈ {0, 1}, i ≤ |πP | (19)

where b and q are given in Eqn. (20) and Fig. 8, respectively.

b = 2×

|R1|, |R2|, . . . , |R|R||︸ ︷︷ ︸
|R| elements

, 2, 2, . . . , 2︸ ︷︷ ︸
|T | elements

, 0, 0, . . . , 0︸ ︷︷ ︸
(|T |−1)(|R|−1) elements


T

(20)B. Task to Chiplet Assignment Algorithm
To solve the problem, we apply the prime-dual interior point
algorithm in step 1. Step 2 is included to ensure no single
chiplet exceeds the power consumption constraint, which
requires checking the consumption of each chiplet.

The relaxed linear programming problem (LPR) defined
in Eqn. (17) can be solved using the prime-dual interior
point algorithm [13]. However direct application of the primal
problem may involve a large number of iterations. To improve
the convergence rate, the primal problem is transformed to its
dual problem given in Eqns. (21-22).

Dual problem (DP):
max C̄Chiplet

total = bTπD (21)Subject to: {
WTπD ≥ q
πD
i ∈ {0, 1}

(22)

where πD is the solution of the dual problem.
The interior point algorithm [13] finds a path (dubbed

central path) within the feasible region in which the solutions
gradually converge to the optimal solution. During this pro-
cess, the constraints of the feasible region [30] appear as the
penalty term of the objective function. Specifically, the LPR
in Eqn. (17) becomes Eqn. (23-24).

The unconstrained problem (UC) of DP:

maxbTπD + µ

|πD|∑
i=1

ln si (23)

Subject to:
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{
WT(πD)T + s = q
s ≥ 0, πD is unrestricted

(24)

where s is the slack variable to catch the points in the feasible
region closer to the center, si is the element of s, and µ is a
positive hyper-parameter that controls the strength of penalty.
Note that the penalty is given as µ

∑|πD|
i=1 ln si.

The presence of the penalty term influences the value of
the objective function, which corresponds to a specific point
within the feasible region. The value of the penalty term will
increase as s approaches 0. As a result, the interior point
method will push the center point of the feasible domain
towards the origin.

The algorithm finds the optimal solution of (πP, πD, s)
iteratively, and the solution after the kth iteration is denoted
as (πP (k), πD(k), sk). Starting from some initial points in the
feasible region, the iteration will continue its search in the
feasible region [13] with the penalty gradually decreasing.
Consequently, the constraints of the feasible region are grad-
ually satisfied.

The initial point ((πP )0, (πD)0, s0) can be computed as
follows. 

(πP )0 =
1

|π̃|e

(πD)0 =
1

|π̂|e

s0 =
qTW

|s|

(25)

where e is a unit vector, q is the coefficient vector of the
objective function, and W is the constraint matrix. For the kth

(k > 1) iteration, the following steps are performed.
Step 1.1: Calculating the search directions.
The search directions of ((πP)k, (πD)k, sk) are denoted as

d(πP)k , d(πD)k , and dsk , respectively, and they are determined
as: 

d(πP)k = (WD̂2
kW

T)(WD̂2
k(g

k − pk) + τk)

dsk = gk −WTd(πD)k

d(πD)k = D̂2
k(p

k − dsk )

(26)

where D̂k is an intermediate matrix to update the direction of
search, gk is the gradient vector of the objective function in
DP, pk is the penalty term of the objective function, τ is a
step size to control the extent of the dual variable update in
each iteration, and τk is the value of τ in the k-th iteration.

Step 1.2: Updating the intermediate variables.
fk = µke−ΠP

kSke is a vector of dual variables in DP, and
it is treated as the multipliers of each constraint in DP. Note
that e is a unit vector, ΠP

k and Sk are diagonal matrices whose
diagonal entries are π̃k

i and ski , respectively. (πP)ki and ski are
the ith row and the ith column elements of the matrix Π̃k and
Sk, respectively. The penalty term of the objective function is
updated by calculating pk = (ΠP

k)
−1fk. Updating the search

direction is done by the calculation of the intermediate matrix
D̂k = ΠP

kS
−1
k .

To ensure that the subsequent iteration solution satisfies
the constraints and moves closer to the optimal solution, the
step sizes for both the primal and dual problems, denoted
respectively by βP and βD, need to be updated in each iteration
[13]. That is,

βP =
1

max
{
1,−dπP

i

k/α(πP )k
} (27)

and

βD =
1

max

{
1,−dsik

/
αsik

} (28)

where α is set to be 0.99 [13] to maximize the step size and
accelerate the convergence.

Once the directions of search and the step length are
determined, the solution vectors can be updated to the (k+1)th

iteration as follows:
(πP)

k+1 ← (πP)
k
+ βPdπP

k

(πD)
k+1 ← (πD)

k
+ βDdπD

k

sk+1 ← (πP)
k
+ βDds

k

(29)

The search space parameter µk of the central path serves as
an optimality measure for the solution at the current iteration.
It is used to determine if the current solution on the central
path has reached optimality. The value of µk is calculated
as µk = ((πP)

k
)Tsk

|πP| and is compared against a predefined
criterion, often referred to as condition 1, to assess the level
of optimality for the current iteration solution (πk, sk) on the
central path (see condition 1). The central path in the algorithm
refers to a continuous path of the feasible solutions of the LPR
problem as the weight of the penalty term increases from the
optimal solution to the infinite point (i.e., the solution when
the constraint is infeasible).

By adjusting the step size, the algorithm can strike a balance
between the accuracy of the solution (see condition 1) and the
convergence speed, which is determined by the value of d(πD)

k

(see conditions 2 and 3) during the iterative process. τk is
updated in the kth iteration by calculating τk = b−W (πP)

k.
gk represents the rate of change of the dual variable vector
(πD)k with respect to the objective function, and it can be
updated as follows: gk can be updated by having gk = q −
WT(πD)

k−sk. gk could be used to check for optimality (see
condition 1) and unboundedness (see condition 3).

Condition 1: If µk < ϵ1, ∥τk∥
(∥b∥+1) < ϵ2, and ∥gk∥

(∥q∥+1) < ϵ3,
then the algorithm should stop, and the optimal solution is
obtained [13].

Condition 2: If qT(πD)
k

< 0, where qT is defined in
Eqn. (8), LPR in Eqn. (17) is unbounded [13].

Condition 3: If d(πD)
k < 0, DP in Eqn. (23-24) is un-

bounded [13].
If none of these conditions are met, the algorithm continues

to its next iteration (back to step 1) by setting k ← k + 1.
After the mapping, each chiplet will be checked to see if

its power consumption is within the thermal power capacity.
Essentially, if a chiplet Ri exceeds the power constraint,

a task tj ∈ Ri is selected which has the maximum power
consumption in Ri and swapped with another tk ∈ Rp, p ̸=
i and Rp ∈ RC , ensuring minimal E value. This process
involves the following sub-steps.

Step 2.1: Identify chiplets that exceed power constraint:
RP = {Ri|Pc(Ri) > Pth(Ri)}

Step 2.2: Iteratively swap high-power tasks with alter-
natives in other chiplets to adhere to power constraints.

1) Sort tasks in chiplet Ri ∈ RP according to their
respective power consumption in descending order.

2) For each task tj in Ri:
Identify a target chiplet set RC and select a task tk to
swap with tj such that the value of E is minimized.
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Fig. 9: (a) The process of task to chiplet assignment algorithm; (b)
the process of finding optimal solution.


RC = {Rp | argmin

i,p≤|R|
ωR(Ri, Rp)}

tk = argmin
Pc(Ri)≤Pth(Ri)

E = αCChiplet
total + β

∑|R|
i Pc(Ri)

(30)
where α and β are the coefficients to balance the inter-
chiplet communication latency and power consumption,
and E is the objective function value that balances
between the communication latency and power con-
sumption.

3) Swap tj and tk between chiplet sets Ri and RC . Iterate
through these steps until all chiplets in RP conform to
the power constraint Pc(Ri) < Pth(Ri).

Fig. 9 shows the process of the task to chiplet assignment
algorithm and its details.

The complexity of the prime-dual interior point algorithm
is O(∥πP∥3) [13].

Please refer to Section II of the supplementary material for
the example of task to chiplet assignment.

VI. INTRA-CHIPLET TASK MAPPING

In the second step (Section IV-B), the goal is to map tasks
to cores in a way that minimizes the overall communication
latency, taking into account the communication characteristics
of the tasks. There are two types of cores that are given special
consideration in this step.

The first type is the cores located in the geometric center of
the chiplet (referred to as center nodes). These cores have the
maximum number of free neighbor cores, making them suit-
able for tasks that involve a high volume of communication.
By mapping such tasks to the center nodes, expensive inter-
chiplet communications can be avoided as much as possible.

The second type of cores is those close to the interface
nodes, which are responsible for connecting to other chiplets.
These cores are preferred for tasks that incur a high volume of
intra-chiplet communications. By mapping these tasks to the
interface nodes, the communication latency within the chiplet
can be reduced.

Let zi denote the ratio of intra-chiplet to inter-chiplet
communication volumes for task ti.

zi =

i̸=m∑
∀ti∈Rj,tm∈Rj

v(ti,tm)+1

i̸=n∑
∀ti∈Rj,tn∈Rk

v(ti,tn)+1

j = r(ti) = r(tm); k = r(tn)

(31)

where r(ti) is the chiplet mapped to run ti. Note that in
Eqn. (31), both the sigma terms in the numerator and denomi-
nator are added with 1. This mathematical treatment will help
avert the potential division by zero problem resulting from the
fact that a task to be mapped may actually experience zero
inter-chiplet communication.

One can see that a high value of zi indicates high intra-
chiplet communication volume, while a lower zi indicates
that it has high inter-chiplet communication volume. In what
follows, the tasks, ti’s are sorted by their respective zi values
in descending order, and the sorted tasks are kept in the task
queue Zc.

A. Intra-chiplet task mapping
Task mapping is performed iteratively. In each iteration, the
head task in Zc, i.e., the one with the highest zi value, is
mapped to a core close to the geometric center of its chiplet.
Then the tail task in Zc, i.e., the one with the smallest zi value,
is mapped to a core close to the interface node of its chiplet.
Formally, in each iteration, two steps are performed.

Step 1: The head task ti, which has the lowest zi value
among all the tasks in Zc, gets removed from the queue.
Assume ti is assigned to chiplet Rj . There are two cases to
consider.

1) If neither ti nor its communicating tasks are mapped, ti
is mapped to a free core close to the geometric center of Rj .
That is, a free core set is identified that satisfies,{

Ω1 = {cmj | argminωc(cmj , coj)}
cmj ∈ Rj , and cmj is free (32)

where coj is the geometric center of chiplet Rj , i.e., coj .x =
⌊(Rj .X)/2⌋, coj .y = ⌊(Rj .Y )/2⌋, and Rj .X and Rj .Y
are the X and Y dimensions of Rj , respectively. Ω1 can
be found by scanning the free cores in Rj , and those with
minωc(cmj , coj) are added into Ω, after which ti is mapped
to core cmj such that{

M(ti) = argmax {D(cmj)}
cmj ∈ Ω1

(33)

where D(ckj) is the number of free neighbor cores of ckj .
2) Assume there are li tasks, denoted by ts, which commu-

nicate with ti already mapped in Rj , ti is mapped to a free core
to minimize the partial intra-chiplet communication latency
between ti and its already mapped communicating tasks in
M(ti). That is,

M (ti) = argmin
s≤li∑
s=1

m≤|Rj |∑
m=1

v (ti, ts) · ωc (cmj ,M (ts))

Rj = r (ti) = r (ts)

cmj ∈ Rj and cmj is free,M (ts) ∈ Rj , ts ∈ n(ti)
(34)

where n(ti) is the set of communication tasks of ti, and
r(ti) and r(ts) are the chiplets running tasks of ti and ts,
respectively.

Step 2: The tail task tp, which has the lowest zi value among
all the tasks in Zc, gets removed from the queue. Assume tp
is allocated to chiplet Rj . There are two cases to consider.

1) If neither tp nor its intra-chiplet communicating tasks
are mapped, tp is mapped to a free core close to the interface
nodes of Rj . That is, a free core set Ω2 is identified that
satisfies,

Ω2 = {cmj |argminωc(cmj ,M(tr))}
Rj = r(tp); k = r(tr)

Rk ∈ N(tp); tr ∈ n(tp)

cmj ∈ Rj and is free,M(tr) ∈ Rk and is mapped.

(35)
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where n(tp) is tp’s communicating tasks set, N(tp) is the
neighbor chiplets set of Rj . Ω2 can be found by examining
the free cores in Rj , and those with the minimum value are
added into Ω2. After that, tp is mapped to core cmj such that

M(tp) = argmin

r≤lp∑
r=1

m≤|Rj |∑
m=1

v(tp, tr) · ωc(cmj ,M(tr))

Rj = r(tp);Rk = r(tr), j ̸= k;Rk ∈ N(tp); tr ∈ n(tp)

M(tp) = cmj ∈ Ω2,M(nr(tp)) ∈ Rk

(36)
2) Assume there are lp tasks, denoted by tu, which com-

municate with tp and are already mapped in Rj , and l′p tasks,
denoted by tv , which communicate with tp and are already
mapped in Rk. tp is mapped to a free core to minimize the
intra- and inter-chiplet communication latency. That is,

M(tp) = argmin

(
u≤lp∑
u=1

m≤|Rj |∑
m=1

v(tp, tu) · ωc(cmj ,M(tu))

+
v≤l′p∑
v=1

∑m≤|Rj |
m=1 v(tp, tv) · ωc(cmj ,M(tv))

)
Rj = r(tp) = r(tu), Rk = N(tp) = r(tv);
M(tv) ∈ N(tp); tu, tv ∈ n(tp)
cmj = M(tp) ∈ Rj and cmj is free;
M(tu) ∈ Rj ,M(tv) ∈ Rk

(37)
The iteration terminates once all the tasks in Zc are mapped.
After the mapping, each core will be checked to see if

its power consumption is within the thermal power capacity,
which means, ∀cij ∈ C,Pc(cij) ≤ Pth(cij) (38)

If the power constraints are not met, the voltage and/or
frequency level of the core is reduced to satisfy the thermal
power capacity constraint.

The task mapping within a chiplet is mainly divided into
two parts: priority determination and mapping. Assume the
number of tasks to be mapped is |T |, the time complexity of
the priority determination is O(|T | log |T |), and the total time
complexity of the intra-chiplet task mapping is O(|T |2|C||R|).
Putting things together, the overall time complexity of the
entire algorithm is O

(
max(|T |2|C| · |R|, ||πP ||3)

)
.

Please refer to Section III.A of the supplementary material
for the explanation of intra-chiplet task mapping.

VII. EXPERIMENT AND EVALUATION

A. Experimental Setup
The experiments were conducted on an event-driven C++
simulation [31] platform with CoMeT [32] integrated as the
temperature simulator, McPAT [34] as the power simulator,
and CoMeT as the thermal simulation [33] infrastructure
for stacked chiplets. The 22nm CMOS technology node was
employed in the simulation platform [34]. The simulator uses
Sniper, and GPGPU-Sim processes to simulate individual
chiplets, and they are connected by a network manager to
simulate inter-chiplet networks and guarantee the correctness
of the timing and function models by inter-simulator-process
communication and synchronization. The simulation processes
are synchronized for timing correctness [31].

The network topology used in this paper consists of tiled
(Fig. 2(a)) and centralized multi-chiplet (Fig. 2(b)) systems.
The tiled multi-chiplet system has 16 chiplets, where per-
chiplet core counts are set to be 16, 64, 144, 256, 400, and 576.
As shown in Fig. 2(a), the centralized multi-chiplet system has
16 chiplets, where each chiplet has 64, 144, or 256 cores.

Inside each chiplet, we assume a 0.25 mm2 core area and
a 10 mm [35] chiplet pitch. The thermal parameters of the
interposer are shown in Table III. The area of the interposer is
2500 mm2, and its thickness is 0.1 mm (by the 5th generation
CoWoS-S platform [36]). The heat capacity of the interposer
is 1.81 × 106 J/(m3·K), and the thermal conductivity and
the capacitance density are 35 W/(m3·K) and 300 nF/mm2

(cf. the thermal interface material used in CoWoS-S5 [36]),
respectively.

The transmission energy consumption between adjacent
chiplets is 1.17 PJ/bit [1], and the transmission delay between
adjacent chiplets is composed of the following three parts: 1)
the processing overhead of packetization and depacketization
times can be obtained from [11]; 2) the transceivers’ trans-
mission delay is adopted from [9]; and 3) the interposer wire
delay and power models are adopted from [12].

Table IV, and Table V summarize the configurations of
real benchmarks. There are two types of real benchmarks.
The first set of benchmarks are from PARSEC and SPLASH-
2 on an x86 ISA multi-chiplet system simulator [31] to
extract task graphs, with the configurations shown in Table
IV. For PARSEC benchmarks, the inter-thread/task communi-
cation is computed by summing the input and output data
sizes for each thread/task. The metric for inter-thread/task
communication is the communication volume (in Byte). In
the simulation, streaming assembly (SASS) is used for the
GPU multi-chiplet simulator, while x86-64 is used for the CPU
multi-chiplet simulator. The task graph is extended to include
dummy nodes representing shared memory units, and thread-
to-memory traffic is profiled with corresponding volumes as
edge weights in the task graph. This approach enables a more
explicit representation of communication patterns, especially
in the context of shared memory programs like PARSEC and
SPLASH-2.

The second set of benchmarks is neural network application
benchmarks that include Yolov3 [38], ResNet-50 [39], Trans-
former [40], and GCN [41], which are run on a GPU multi-
chiplet system simulator [31]. The real application benchmarks
(Yolov3, ResNet-50, Transformer, and GCN) were parallelized
using methods described in the following references: Bench-
marks [43] for ResNet50, [44] for Yolov3, [45] for Trans-
former, and [37] for GCN.

Table VI presents the configurations of the servers con-
nected by a Wi-Fi router within an intranet.

To evaluate the algorithm proposed in this paper, two
previously proposed task mapping algorithms, DAR [14] and
IOA [15], were selected as the baseline for comparison.

DAR [14] improves the system performance in a many-core
system by dynamic allocation/reallocation of dark cores.

IOA [15] uses a multi-objective particle swarm optimization
algorithm, which considers the power capacity and communi-
cation latency as objectives and finds the optimal solution by
collaboration and information sharing among individuals in
the population.

The multi-chiplet system is modeled as a graph, where inter-
and intra-chiplet links have different edge weights. Tasks are
mapped directly onto this system model using the DAR/IOA
methods.
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TABLE II: Event-driven C++ simulation platform configuration for inter- and intra-chiplet network
Inter- and intra- chiplet network configuration

Flit size 128 bits
Intra-chiplet communication latency Router: 2 cycles; link: 1 cycle
Inter-chiplet communication latency Router: 2 cycles

Routing Algorithm XY routing for intra- and inter-chiplet connection networks
Buffer depth 4 flits per route

Network topology
Tiled Centralized

Intra-chiplet size Mesh, 4×4/8×8/12×12/16×16/20×20/24×24 Mesh, 8×8/12×12/16×16
Inter-chiplet size Mesh, 4×4 Shown in Fig. 2(a)

TABLE III: CoMeT configurations of chiplet interposer
Chiplet

Core area 0.25 mm2

Chiplet pitch 10 mm
Interposer

Area 2500 mm2

Thickness 0.1 mm
Heat capacity 1.81 × 106 J/(m3 · K)
Thermal conductivity 35 W/(m · K)
Capacitance density 300 nF/mm2

Inter-chiplet transmission energy consumption 1.17 PJ/bit

TABLE IV: The x86 ISA multi-chiplet system simulator
configurations

Core architecture x86-64
Main memory size 2GB
Get/Decode/Submit Size 2004/4/4
Baseline frequency 3GHz
ROB size 64
L1 data cache (private) 16 KB, 2-way, 32B line, 2 cycles, 2 ports
L1 instruction cache (private) 32 KB, 2-way, 64B line, 2 cycles, 2 ports
L2 cache (shared) 64KB slices/core, 64 line, 6 cycles, 2 ports

Benchmarks
Barnes, Blackholes, Canneal, Dedup, Ferret, Fluidanimate, Freqmine

B. Validating the Error of the Proposed Thermal Power Ca-
pacity Model

In this set of experiments, the TPC model is validated. Each
core is randomly assigned a power consumption value. The
power consumption of adjacent cores is gradually increased
until the temperature of an adjacent core reaches the tempera-
ture threshold Pth, and the maximum allowed power consump-
tion of this core Pc is thus recorded. The regression error of
the thermal power capacity model is defined as follows:

e =

∣∣∣∣Pc − Pth

Pth

∣∣∣∣× 100% (39)

One can see from Fig. 10 that the average and maximum
errors are 7.4% and 8.5%, respectively. In this case, this
model is considered reasonably accurate for the subsequent
experiments with results reported in the next subsections.

C. Peak Temperature Analysis
In the following experiments, the peak temperatures of the
proposed method, DAR, and IOA are compared for different
intra-chiplet network sizes. One can see from Fig. 10(a) that
the mapped tasks generated by all three approaches are able to
generate the mapping results that meet the thermal constraints
of 80oC.

D. Task Mapping Performance Evaluation on Tiled and Cen-
tralized Multi-chiplet Systems

Multiple chiplets can be organized following a tiled or cen-
tralized topology (Section III). In this subsection, different
benchmarks are mapped to tiled multi-chiplet systems using
the three methods. These three methods are thus compared
in terms of application execution time and communication
latency.

TABLE V: Single instruction multi-threaded processor core (SIMT)
configurations

Number of clusters 15
Processor cores/clusters 32
Warp size 32
Shared memory/processor cores 48KB
Number of registers 32768
L1 data cache 16KB, 4-way set assoc, 64B lines
L1 instruction cache 2KB, 4-way set assoc, 64B lines
Level 2 cache 786 KB

Memory
Bandwidth/Memory Module 8 Bytes / cycle
Number of memory controllers 6
Memory Controller Type FR-FCFS
Intra-chiplet network topology Mesh
Inter-chiplet network topology Mesh

Benchmarks
ResNet50 [43], Yolov3 [44], Transformer [45], and GCN [37]

TABLE VI: The configurations of the 4-server network.
The configuration of server network

CPU Intel(R) Core (TM) i7
Memory 16G
Wi-Fi router ASUS RT-AX58U Dual Band WIFI Router

1) Real Application Benchmarks
In this experiment, the benchmarks are selected to include

real-world applications, including Dedup, Ferret, Fluidani-
mate, Freqmine, Barnes, Blackholes, and Canneal from the
PARSEC benchmark set.

Please refer to Section III.B of the supplementary material
for the experiments of real applications benchmarks with
different numbers of tasks.

The preceding discussion pertains to characteristics of
typical applications that are either computation-intensive or
communication-intensive. In the following, the focus is on
neural network (NN) applications that exhibit greater demands
in terms of both computation and communication.

ResNet50 [43], Yolov3 [44], Transformer [45], and GCN
[37] are neural network applications with distinct character-
istics when mapped to a chiplet system. ResNet50’s depth
increases computational complexity and communication la-
tency, while Yolov3’s object detection pipeline demands high
computation and memory resources. Transformer’s attention
mechanism requires efficient handling of pairwise interactions,
and GCN’s graph-based data processing poses challenges in
communication and computation.

The performance is evaluated by the tasks graph of
ResNet50 [43], Yolov3 [44], Transformer [45], and GCN [37],
which is extracted by the GPU multi-chiplet system simulator
[31]. Fig. 11(a) shows the application execution times of the
three methods by running ResNet50 with different network
sizes. The proposed method reduces the application execution
time by 34.7% and 25.7% over DAR and IOA, respectively.
From Fig. 11(b), it can be seen that the proposed method
reduces the communication latency by 41.7% and 31.2% over
DAR and IOA, respectively.

The IOA method achieves a maximum radius of mapping
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Fig. 10: (a) Regression errors of the proposed thermal power capacity
models with respect to different intra-chiplet network sizes. (b) Peak
temperatures with respect to different intra-chiplet network sizes.

Fig. 11: (a) Application execution times and (b) communication
latencies of the three methods when running ResNet50 with different
intra-chiplet network sizes in the tiled multi-chiplet system. (c)
Application execution times and (d) communication latencies of the
three methods when running ResNet50 with different intra-chiplet
network sizes in the centralized multi-chiplet system.
3 chiplets across different application scales, while the DAR
achieves a maximum radius of mapping 5 chiplets. In contrast,
the algorithm presented in this paper confines the maximum
radius to 2 chiplets during the mapping process. Furthermore,
the average distance between tasks mapped to chiplets in the
IOA approach is measured at 2.41 chiplets, whereas the same
metric in the DAR is 2.85 chiplets. Notably, the proposed
algorithm in this study achieves an average distance of 1.23
chiplets between tasks mapped to chiplets. Once again, our al-
gorithm outperforms the DAR and IOA methods in optimizing
task mapping by reducing inter-chiplet communication latency.

In the context of mapping tasks to centralized multi-chiplet
systems, the task graphs of ResNet50 [43], Yolov3 [44],
Transformer [45], and GCN [37] are also applied to evaluate
the performance of the proposed algorithm in mapping tasks
in centralized multi-chiplet systems, and the application traces
again are extracted from the GPU multi-chiplet system simu-
lator [31]. The experimental results demonstrate that the DAR
and IOA achieved a reduction of the proportion of inter-chiplet
communication of 50.1% and 32.0%, respectively. Fig. 11(c)
shows the application execution times of the three methods
by running ResNet50 with different network sizes. It can be
seen from Fig. 11(c) that the proposed method reduces the
application execution time by 30.8% and 15.3% over DAR
and IOA, respectively. Fig. 11(d) shows the communication
latencies of the three methods by running ResNet50 with
different network sizes, and it can be seen from Fig. 11(d)
that the proposed method reduces the communication latency
by 34.9% and 20.3% over DAR and IOA, respectively.

In the context of mapping tasks to tiled multi-chiplet sys-
tems, in addition to the case of ResNet50, consistent mapping
results for all other NN applications, as depicted in Fig. 12.

Fig. 12: (a) Application execution times and (b) communication
latencies of the three methods when running different applications in
the tiled multi-chiplet system. (c) Application execution times and (d)
communication latencies of the three methods when running different
applications in the centralized multi-chiplet system.

Fig. 13: (a) Application execution times and (b) communication
latencies of the three methods with different numbers of chiplets.
On average, the proposed method reduces the application
execution time by 31.5% and 19.5% over DAR and IOA,
respectively. From Fig. 12(b), it can be seen that the proposed
method reduces the communication latency by 36.9% and
25.5% over DAR and IOA, respectively.

The average distance between tasks mapped to chiplets in
the IOA approach is measured at 2.36 chiplets, whereas the
same metric in the DAR is 2.67 chiplets. Notably, the proposed
algorithm in this study achieves an average distance of 1.17
chiplets between tasks mapped to chiplets.

Fig. 12(c) shows the application execution times of the three
methods by running ResNet50 [43], Yolov3 [44], Transformer
[45], and GCN [37] in a multi-chiplet system with an intra-
chiplet network size of 16 × 16. The experimental results
demonstrate that the DAR and IOA achieved a reduction
of the proportion of inter-chiplet communication of 46.9%
and 30.8%, respectively. The proposed method reduces the
application execution time by 26.6% and 14.8% over DAR
and IOA, respectively. From Fig. 12(d), it can be seen that
the proposed method reduces the communication latency by
33.0% and 21.3% over DAR and IOA, respectively.

Fig. 13 demonstrates that as the number of chiplet increases,
the advantages of our method in terms of execution time
and communication latency become more pronounced when
compared to IOA and DAR. This improvement is attributed to
our algorithm’s recognition of the clustering structure of the
multi-chiplet system, which enables it to outperform the other
two methods. However, it is important to note that for single
small-scale SoC chips, the benefits of our algorithm may not
be evident.

With the escalation in the number of chiplets, the pro-
portion of inter-chiplet communication latency experiences
a concurrent increase. Consequently, the proposed algorithm
demonstrates a reduction in ∆Ctotal (defined in Section III.A)
compared to the DAR and IOA algorithms. Experimental
results show that the correlation coefficient between the reduc-
tion in total communication latency ∆Ctotal and the reduction
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Fig. 14: (a) Application execution times and (b) ∆Ctotal of the three
methods with different numbers of chiplets.

Fig. 15: (a) Application execution times and (b) communication
latencies of the four methods when running different applications
in the tiled multi-chiplet system.
in execution time achieved by the proposed algorithm is over
0.95. From Fig. 14, as our proposed approach can significantly
reduce ∆Ctotal compared to the other two approaches, our
proposed approach can also reduce the application execution
time.

Fig. 15(a) shows the application execution times of the
four methods—DAR, IOA, PSO [42], and the proposed ap-
proach—when running ResNet50 [43], Yolov3 [44], Trans-
former [45], and GCN [37] in a multi-chiplet system. PSO
[42] employs a fault-tolerant mapping algorithm that utilizes
spare cores within a Mesh-of-Tree (MoT) network to enhance
system reliability by addressing core failures. The experi-
mental results demonstrate that the proposed method reduces
application execution time by 31.5%, 19.5%, and 21.8%
compared to DAR, IOA, and PSO [42], respectively. Moreover,
Fig. 15(b) highlights the reduction in communication latency
by 36.9%, 25.5%, and 27.4% over DAR, IOA, and PSO,
respectively. These results provide quantitative evidence of
the effectiveness of the proposed method in improving both
application execution time and communication latency in the
multi-chiplet system.

The IOA integrates the crowding distance mechanism,
which acts as a metric to evaluate communication density.
This mechanism enables IOA to maintain solution diversity
and effectively avoid convergence to local optima, enabling a
more comprehensive exploration of the solution space. This
enhanced search capability enables IOA to outperform PSO
in optimizing communication latency, particularly in multi-
chiplet systems, where PSO’s performance is limited by its
hierarchical communication model.

Fig. 16(a) shows the application execution times of the
three methods by running a mix of 10 applications which is
composed by Transformer, ResNet-50, and GNN with different
arrival rates in the tiled multi-chiplet system. The experimental
results demonstrate that the proposed method reduces the total
application execution time by 61.3 % and 55.2% over DAR
and IOA, respectively. From Fig. 16(b), the proposed method
reduces the communication latency by 65.7% and 61.1% over
DAR and IOA, respectively.

Fig. 16(c) shows the application execution times of the
three methods by running a mix of 10 applications which is
composed by Transformer, ResNet-50, and GNN with different
arrival rates in the tiled multi-chiplet system. The experimental

Fig. 16: (a) Application execution times and (b) communication
latencies of the three methods when running different mixes with
different arrival rates in a in the tiled multi-chiplet system. (c)
Application execution times and (d) communication latencies of the
three methods when running different mixes with different arrival
rates in a in the centralized multi-chiplet system.

Fig. 17: (a) Application execution times and (b) communication
latencies of the three methods when running different mixes in the
tiled multi-chiplet system. (a) Application execution times and (b)
communication latencies of the three methods when running different
mixes in the centralized multi-chiplet system.
results demonstrate that the proposed method reduces the total
application execution time by 66.5% and 59.4% over DAR
and IOA, respectively. From Fig. 16(d), the proposed method
reduces the communication latency by 71.5% and 63.3% over
DAR and IOA, respectively.

Fig. 17(a) shows the total application execution times of
the three methods by running different mixes of application
in centralized multi-chiplet system. Mix 1 consists of a mix
of 10 Transformers. Mix 2 comprises a mix involving three
Transformers, four ResNet50s, and three GNNs. Mix 3 con-
sists of a mix containing five Transformers and five GNNs. The
experimental results demonstrate that the proposed method
reduces the total application execution time by 37.8% and
41.0% over DAR and IOA, respectively. From Fig. 17(b),
the proposed method reduces the communication latency by
43.5% and 44.9% over DAR and IOA, respectively.

Fig. 17(c) shows the total application execution times of the
three methods by running different mixes of application with
the arrival rate being in the centralized multi-chiplet system.
Mix 1 consists of a mix of 10 Transformers. Mix 2 comprises
a mix involving three Transformers, four ResNet50s, and three
GNNs. Mix 3 consists of a mix containing five Transformers
and five GNNs. The experimental results demonstrate that the
proposed method reduces the total application execution time
by 38.3% and 41.0% over DAR and IOA, respectively. From
Fig. 17(d), the proposed method reduces the communication
latency by 42.9% and 46.1% over DAR and IOA, respectively.



IEEE TRANSACTIONS ON COMPUTERS, VOL. 14, NO. 8, AUGUST 2024 13

Fig. 18: (a) Application execution times and (b) communication
latencies of the three methods when running different applications
in the 4-server system.

Fig. 19: (a) Total application execution times and (b) communication
latencies of the three methods when running mix 1 with different
arrival rates in the 4-server system. (c) Total application execution
times and (d) communication latencies of the three methods when
running different application mixes in the 4-server system.

Fig. 18(a) shows the application execution times of the three
methods by running ResNet50 [43], Yolov3 [44], Transformer
[45], and GCN [37] in the 4-server system. The experimental
results demonstrate that the proposed method reduces the
application execution time by 77.9% and 53.3% over DAR
and IOA, respectively. From Fig. 18(b), it can be seen that
the proposed method reduces the communication latency by
87.4% and 76.3% over DAR and IOA, respectively. The
rationale behind this lies in our algorithm’s recognition and
preservation of the clustering structure within the multi-server
system. Due to the significantly higher latency in inter-sever
communication compared to intra-sever communication, our
approach outperforms the other two methods.

Fig. 19(a) shows the application execution times of the three
methods (the proposed method, DAR, and IOA) by running a
mix of 10 applications consisting of Transformer, ResNet-50,
and GNN with different arrival rates on the 4-server system.
The experimental results show that the proposed method re-
duces the total application execution time by 51.2% and 52.8%
compared to DAR and IOA, respectively. In Fig. 19(b), the
proposed method reduces communication latency by 62.0%
and 68.6% over DAR and IOA, respectively.

Fig. 19(c) shows the total application execution times of the
three methods when running different mixes of applications on
the 4-server system. The experimental results demonstrate that
the proposed method reduces the total application execution
time by 54.7% and 52.2% over DAR and IOA, respectively.
As shown in Fig. 19(d), the proposed method reduces com-
munication latency by 66.1% and 64.9% over DAR and IOA,
respectively.

The proposed task mapping algorithm has worked well in
both tiled and centralized chiplet systems. For tasks with high
inter-task communication, the proposed algorithm tends to

favor central core mapping to optimize communication latency.
Conversely, for tasks with limited inter-task communication,
the algorithm distributes tasks more evenly across cores to
maximize resource utilization.

E. Execution time Overhead of the Proposed method
By running the proposed method 100 times in a system with
different parameters, the average application execution time of
the real applications from PARSEC is found to be around 3
billion cycles. The average time of the priority determination
is approximately 1.6% of the mapping time. The average
execution time of the proposed method is about 76 million
cycles, accounting for only 2.53% of the application execution
time. In a simple term, the execution time overhead of the
proposed method is quite small, accounting for only 2.53% of
the application execution time.

VIII. CONCLUSION

In this paper, a task mapping algorithm was proposed for the
multi-chiplet many-core system to minimize communication
latency under the power capacity. Essentially, the algorithm
assigns tasks to chiplets to minimize inter-chiplet commu-
nication, followed by mapping tasks with high inter-chiplet
communication to cores near the interface node and tasks with
high intra-chiplet communication latency to the center of each
chiplet. Experimental results demonstrate the effectiveness
of the proposed method, showing significant reductions in
application execution time compared to two existing methods,
DAR and IOA. The proposed algorithm achieves a remarkable
decrease in application execution time, by as much as 37.5%
and 24.7%, compared to DAR and IOA, respectively, con-
firming the suitability of the proposed mapping algorithm for
future multi-chiplet many-core systems. It’s important to note
that these outcomes remain consistent regardless of topology
and size, underscoring the independence of these factors.
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