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APPROXIMATE SAMPLING AND COUNTING OF GRAPHS
WITH NEAR-REGULAR DEGREE INTERVALS*

GEORGIOS AMANATIDIST AND PIETER KLEERF

Abstract. The approximate uniform sampling of graphs with a given degree sequence is a well-
known, extensively studied problem in theoretical computer science and has significant applications, e.g.,
in the analysis of social networks. In this work we study a generalization of the problem, where degree
intervals are specified instead of a single degree sequence. We are interested in sampling and counting
graphs whose degree sequences satisfy the corresponding degree interval constraints. A natural scenario
where this problem arises is in hypothesis testing on networks that are only partially observed. We
provide the first fully polynomial almost uniform sampler (FPAUS) as well as the first fully polynomial
randomized approximation scheme (FPRAS) for sampling and counting, respectively, graphs with near-
regular degree intervals, i.e., graphs in which every node has a degree from an interval not too far away
from a given r € N. In order to design our FPAUS, we rely on various state-of-the-art tools from
Markov chain theory and combinatorics. In particular, by carefully using Markov chain decomposition
and comparison arguments, we reduce part of our problem to the recent breakthrough of Anari, Liu, Oveis
Gharan, and Vinzant (2019) on sampling a base of a matroid under a strongly log-concave probability
distribution, and we provide the first non-trivial algorithmic application of a breakthrough asymptotic
enumeration formula of Liebenau and Wormald (2017). As a more direct approach, we also study a
natural Markov chain recently introduced by Rechner, Strowick and Miiller-Hannemann (2018), based
on three local operations—switches, hinge flips, and additions/deletions of an edge. We obtain the first
theoretical results for this Markov chain, showing it is rapidly mixing for the case of near-regular degree
intervals of size at most one.
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1. Introduction. The (approximate) uniform sampling and counting of graphs with
given degrees has received a lot of attention during the last few decades, see, e.g., [1,
4,5,7,9,13-17, 20, 22, 24-28, 30, 37, 41, 42, 44, 47-49, 56]. Given a degree sequence d =
(di,...,dn), the goal of approximate uniform sampling is to design a randomized algorithm
that outputs a labelled simple undirected graph G with degree sequence d, according to
a distribution that is close to the uniform distribution over the set of all graphs with
this degree sequence. Such an algorithm is called an approximate (uniform) sampler.
Approximate samplers find applications in fields such as complex network analysis, where
they serve as null models for hypothesis testing. Consider, e.g., a social network with
edges representing friendships or relationships. One might see a very high number of
edges between a certain group of nodes and, based on this, conjecture that these nodes
form a community of friends or colleagues. In order to test this hypothesis, one would like
to be able to generate graphs with similar characteristics as the observed network and,
based on these generated samples, decide how likely it is that there is a high number of
edges between that particular group of nodes by chance alone. Here the characteristic of
interest is the degree sequence of the observed network [52]. For determining how many
samples are sufficient in order to test the hypothesis, we also need to be able to count the
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Fi1G. 1. Left to right: switch on v,w,z,y; hinge flip on v,w,z; edge addition/deletion on v,w.

number of graphs with the given degree sequence.

In practice, it is not always possible to have exact knowledge of the degree sequence of
an observed network, due to erroneous measurements. In order to overcome this, there is
a need for more robust null models. One such model was proposed by Rechner, Strowick
and Miiller-Hannemann [54]. Instead of a given degree sequence d, the null models now

consist of all graphs with given degree interval constraints [¢;,w;], for i € [n] = {1,...,n}.
In this case we say that a graph G has degrees in the interval [€,u] with £ = (¢1,...,¢,)
and © = (uq,...,u,). The algorithmic task at hand then becomes to develop algorithms

for sampling and counting graphs from the set G(€, u) of all graphs satisfying the interval
constraints. An intuitive two-step approach for solving this problem is to first sample
according to the correct proportional distribution a degree sequence d = (dy,...,d,) from
the set of all degree sequences satisfying the interval constraints ¢; < d; < w;, for i € [n],
and then sample uniformly at random a graphical realization from the set G(d) of all
graphs with degree sequence d. A crucial difficulty that arises here is that the probability
with which each degree sequence d needs to be sampled in the first step is not obvious.
This probability should be proportional to the number |G(d)| which is not known in
general.

To make the problem more concrete, we give a brief example in the context of the
social network application that we started out with. Suppose we have a partially observed
network. For a given node i, we let £; be the number of observed edges adjacent to 1,
d; the number of missing observations and, thus, u; = n — 1 — (¢; + §;) the number of
observed non-edges (i.e., pairs {7, j} for which we know there is no edge between nodes i
and 7). There are now two extreme cases: either all missing observations are non-edges,
meaning that node ¢ has degree ¢;, or all missing observations are indeed edges, meaning
that node ¢ has degree u;. Hence, we are interested in sampling (and counting) graphs
for which each node i has a degree in the interval [¢;, u;], for every ¢ € [n]. In this and
other similar settings, these problems seem to be natural and elegant generalizations of
the classic graph sampling and counting problems.

Towards sampling graphs with given degree intervals, Rechner et al. [54] introduced a
Markov chain based on three simple operations: switches, hinge flips and additions/dele-
tions. The chain in each step selects one of these operations uniformly at random and
performs it, if possible. We call this chain the degree interval Markov chain. The oper-
ations are shown in Figure 1 and a formal definition is given in Section 2. These three
operations are the ones described by Coolen et al. [14] as the most commonly used oper-
ations in Markov Chain Monte Carlo algorithms for the generation of simple undirected
graphs in practice. This serves as additional motivation for rigorously studying Markov
chains based on these operations. We will also be interested in the switch-hinge flip
Markov chain that only uses the switch and hinge flip operations. The hinge flip and
switch operations are of particular interest both in theory and in practice as they preserve
the number of edges and the degree sequence of a graph, respectively.

1.1. Our contributions. In this work, we give the first efficient approximate sam-
pler and approximate counter for graphs with so-called mnear-reqular degree intervals.

This manuscript is for review purposes only.
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Near-regularity here refers to the fact that all graphs have degrees which are close to a
common value up to a sublinear margin. To be more precise, we show that there is a fully
polynomial almost uniform sampler (FPAUS) and a fully polynomial randomized approxi-
mation scheme (FPRAS) (for formal definitions see Section 2), in case the degree intervals
are close to a common value r = r(n) € N, ie., if [¢;,u;] C [r — min{r,n —r — 1}*r +
min{r,n —r — 1}*] for some 0 < o < .! We also need a minor technical assumption on
the value of r in order to avoid some (arguably not very interesting) boundary cases. The
main result of this work is Theorem 1.1 below.

For vectors @ = (ay,...,a,),b = (b1,...,b,) € R™, we write a < b if a; < b; for
all i € [n]. Given £,u € N", by G(£,u) we denote the set of all graphs G whose degree
sequence d(Q) satisfies £ < d(G) < u.

THEOREM 1.1. Let 0 < @« < 1/2 and 0 < o < 1 be fized. Let r = r(n) with 2 <r <
(1 —o)n. If for every node i € [n] it holds that [{;,u;] C [r — min{r,n —r — 1}%,r +
min{r,n — r — 1}¢], then there is an FPAUS for the approzimate uniform sampling of
graphs from G(€,u) and an FPRAS for approximating |G(€,u)|.

For given degree intervals [£,u] and m € N, we write G,, (£, u) for the set of graphs G
whose degree sequence d(G) satisfies £ < d(G) < w and ), d; = 2m. By using reductions
between approximate sampling and approximate counting (see Appendix B) we get that
to prove Theorem 1.1 it suffices to show the existence of an FPAUS for sampling from
Gm (€, u). To this end, we show that the switch-hinge flip Markov chain is rapidly mixing
under the conditions of Theorem 1.1. This result is summarized in Theorem 1.2.

THEOREM 1.2. Let o, o, and r be as in Theorem 1.1. If [(;,u;] C [r — min{r,n —r —
1} r4+min{r,n—r—1}], for alli € [n], and 2m € [ 3, €;, >, w;], then the switch-hinge
flip Markov chain is rapidly mizing on G, (€, u).

A more direct approach for sampling from G(£,u) than the one behind Theorem
1.1 would be to use the degree interval Markov chain. An interesting open question is
whether this chain is rapidly mixing under the assumptions in Theorem 1.1 (or under
weaker assumptions). As a first step into this direction, we show rapid mixing when all
the degree intervals have size at most one, i.e., when u; — 1 < ¢; < u;.

THEOREM 1.3. Let o, o, and r be as in Theorem 1.1. If [(;,u;] C [r — min{r,n —r —
1}, r 4+ min{r,n —r — 1}%] and u; — 1 < ¢; < wu;, for all i € [n], then the degree interval
Markov chain is rapidly mizing on G(€,u).

The technical novelty of our work lies in the highly nontrivial combination of state-
of-the-art tools from Markov chain theory and combinatorics. An overview of our proof
approach is given in Section 3. It relies on Markov chain decomposition and comparison
techniques of Martin and Randall [46], rapid mixing results for the switch Markov chain
by Amanatidis and Kleer [1], the breakthrough work of Anari et al. [2] on strongly log-
concave probability distributions, and the work of Liebenau and Wormald [44] regarding
asymptotic enumeration formulas for the number of near-regular graphs.

Remark 1.4. Our theorems—and all the building blocks used in their proofs—are
shown to be true for all n > ng, where ng € N is a constant that depends on the other
constant parameters involved. It is straightforward that for n < ng our results are always

IThe parameter o models the maximum length of the degree intervals that we allow; this length should
be relatively small compared to r. Note that an assumption of this kind is to be expected. Otherwise,
we would be also solving the problem of (approximately) uniformly sampling a graph with any given
degree sequence, which is a long-standing open problem. Furthermore, one could work in an additional
polylogarithmic factor, based on the n¢ factor in Theorem 2.6, but we leave this to the interested reader.

This manuscript is for review purposes only.
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4 G. AMANATIDIS, P. KLEER

true.

1.2. Related work. There is an extensive literature on the problem of sampling
graphs with a given degree sequence, particularly on Markov Chain Monte Carlo (MCMC)
methods. Jerrum and Sinclair [37] provide an approximate uniform sampler and an ap-
proximate counter for P-stable degree sequences, for which the number of graphical re-
alizations of a given degree sequence does not vary too much under small perturbations
of the sequence. A first step beyond P-stability was recently made by Erdds et al. [21].
Jerrum, Sinclair and Vigoda [39] provide an approximate sampler (and counter) for arbi-
trary bipartite degree sequences by reducing the problem to sampling perfect matchings
in an appropriate graph representation of the given instance. The work of Bézakova,
Bhatnagar and Vigoda [6] provides a more direct approach. There are also various non-
MCMC methods available in the literature, see, e.g., [4,27,28,42,48,56]. One MCMC
approach that has received considerable attention is the switch Markov chain, based on
the switch operation in Figure 1. This is a simpler, more direct approach than reducing
the problem to sampling a perfect matching from a large auxiliary graph. The chain was
first analyzed by Kannan, Tetali and Vempala [41], and has been extensively studied, see,
e.g., [1,15,22,49]. The state of the art on its mixing time is the work of Erdés et al. [22],
who show that the chain is rapidly mixing for all P-stable degree sequences.

Rechner et al. [54] introduce the degree interval Markov chain for the bipartite version
of the problem of sampling graphs with given degree intervals and show its irreducibility
for arbitrary degree intervals. Very recently, Erdés, Mezei and Miklds [23] generalized
our Theorem 1.3 to intervals of length 1 centered around P-stable degree sequences. We
consider the fact that their meticulous direct approach does not go beyond length 1 as
another indication of the difficulty of directly arguing about the degree interval Markov
chain.

The decomposition theorem of Martin and Randall [46] we use (Theorem 2.4), based
on the decomposition method of Madras and Randall [45], also appeared in an unpub-
lished manuscript by Caracciolo, Pelissetto and Sokal [12]. Erdés et al. [25] use a related
decomposition approach for sampling balanced joint degree matriz realizations.

The result of Liebenau and Wormald [44] builds on a long line of work on asymptotic
expressions for the number of graphs with given degrees. Indicatively, Bender and Canfield
[5] gave a formula for bounded degree sequences and Bollobés [9] for r-regular sequences
with r = O(y/log(n)). McKay and Wormald gave expressions both for sparse sequences
with maximum degree o(n'/?) [48] and for a certain dense regime [47].

Anari et al. [2], in a breakthrough recent work, gave the first polynomial time algo-
rithm for approximate sampling a base of a matroid under a strongly log-concave proba-
bility distribution. The theory of strongly log-concave (or Lorentzian) polynomials dates
back to the work of Gurvits [32], and was further developed by Anari, Oveis Gharan and
Vinzant [3] and Bréndén and Huh [11]. In another recent work, Kleer [43] made a con-
nection between asymptotic enumeration formulas and strongly log-concave polynomials
for a case of sparse bipartite graphs where only the degrees on one side of the bipartition
can vary.

1.3. Outline. In Section 2 we provide all the necessary preliminaries. We then con-
tinue with a proof overview for Theorems 1.2 and 1.3 in Section 3. For readers with some
familiarity regarding Markov chains and some intuition about degree sequence problems,
it should be possible to go through (most of) Section 3 without delving into (the admit-
tedly long) Section 2 first. As one of the main building blocks of the proof of Theorem
1.2, we show in Section 4 that the asymptotic formula of Liebenau and Wormald [44],
when restricted to the degree interval regime of Theorem 1.1, approximately gives rise

This manuscript is for review purposes only.
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to a so-called strongly log-concave polynomial, a result which might be of independent
interest. Section 5 contains all of the remaining arguments about the Markov chains used
in our proofs.

2. Preliminaries. We need a variety of preliminaries for this work, that are collected
in this section (except for the details on the modified log-Sobolev constant, which are
deferred to Appendix A.)

2.1. M-convexity and strongly log-concave polynomials. We start with the
notion of M-convexity for functions [50,51]. Let v : ZZ; — R U {oo} be a function. The
effective domain of v is given by dom(v) = {a € Z2, : v(a) < oco}. The function v is
called M*-convex if it satisfies the (symmetric) exchange property: For any o, 8 € dom(v)
and any ¢ € [n] satisfying «; > 3;, there exists a j € [n] such that o; < 8 and

(2.1) I/(a)—l—y(,@) > y(a—ei+ej)+v(,8+ei—ej),

where ey, is defined as e (¢) = 1 if k = ¢ and ey (¢) = 0 otherwise. The function v is called
M -conver if it is M*-convex and there is an d € N such that dom(v) C {a: Y, a; = d}.
A subset C C ZZ, is called M-convex if the indicator function ve : Z%, — R U {oo},
given by vo(a) = 1if a € C and vo(a) = 0 otherwise, is M-convex.

We write R[z1,...,z,] to denote the set of all polynomials in z1,...,z, with real
coefficients. We consider polynomials p € Ry, ..., x,] with non-negative coefficients. For
avector B = (B1,...,58u) € Z%,, we write 9P = T, 85; to denote the partial differential
operator that differentiates a function 8; times with respect to x; for i = 1,...,n. For
o € 7%, we write z* to denote []}" ; 2. Furthermore, we write a! = [], a;!, and for
o,k € 2%, with a; < k; for all 4, we write (&) =[]\, (ZL) For a constant ¢ € N with

¢ > max; o, we write (5) = [T, (O‘;) Let k € Z2%, and the Cartesian product K =
xi{0,...,K;}. Let w: K — R be a weight function. The generating polynomial of w is
Ix(2) = X qer w(a)z™. The support of g, is the set supp(ge) = {a € K : w(a) > 0}.

The polynomial g, is called d-homogeneous if || =", a; = d for all a € supp(gx).

DEFINITION 2.1 (Strong log-concavity [32]). A polynomial p € R[zx1,. .., x| with non-
negative coefficients is called log-concave on a subset S C RY if its Hessian V2 log(p) is
negative semidefinite on S. A polynomial p is called strongly log-concave (SLC) on S if
for any B € N", we have that OPp is log-concave.

For convenience, the zero polynomial is defined to be SLC always. Finally, if the generating

polynomial g, is SLC, then the probability distribution 7(c)  w(a) is called SLC as

well. We next state some properties of SLC polynomials that will be used in this work.
PRrROPOSITION 2.2 ([11]). Ifp € R[z1,...,x,] is SLC and v € Rxq, then vp is SLC.

PROPOSITION 2.3 (Following from [11]).? Let v : Z%, — R U {oo} with dom(v) C
{0,1,...,n—1}" and let B

1

= o v(e) e — T\, —v(a),.a

(2.2) fu(x) = Z ol x* and ge(x) = Z <a>e e,
acdom(v) aedom(v)

be 2m-homogeneous polynomials, where y = (n—1,...,n—1). If v is M-convez, then fy

and g, are SLC.

2 Our g is a slight variant the corresponding function of Theorem 3.14 of [11] with ¢ = 1/e. The
statement for this g, follows from a simple transformation of f, that preserves strong log-concavity,
namely the operator that maps z* to a!(])z® [10].

This manuscript is for review purposes only.
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6 G. AMANATIDIS, P. KLEER

2.2. Markov chains and mixing times. Let M = (2, P) be an ergodic, time-
reversible Markov chain with state space €2, transition matrix P, and stationary distri-
bution 7. We write P!(x,-) for the distribution over Q at time step ¢ with initial state
x € Q. The total variation distance of this distribution from stationarity at time ¢ with
initial state x is

A1) = 5 S|P () — ()],

yeQ

and the mizing time of M is

7(e) = max 7:(€), where 7,(e) = min{t : A,(t') < e for all t’ >t} for e > 0.

The chain M is said to be rapidly mizing if its mixing time can be upper bounded by a
polynomial in In(|Q|/e).

It is well-known that the matrix P only has real eigenvalues 1 = \g > Ay > -+ >
Ajgj—1 > —1. We may replace P by (P+1)/2 to make the chain lazy, and hence guarantee
that all its eigenvalues are non-negative. In that case, by Gap(P) =1 — A; we denote the
spectral gap of P. In this work all Markov chains involved are lazy. It is well known that
one can use the spectral gap to give an upper bound on the mixing time of Markov chain.
That is, it holds that

as it follows directly from Proposition 1 in [55]. Furthermore, if one has two Markov
chains M = (Q, P) and M’ = (Q, P’) both with stationary distribution 7 and there are
constants ¢1,cs such that ¢; P(x,y) < P'(x,y) < coP(x,y) for all x,y € Q with xz # y.
Then (see, e.g., [46]) it follows that

(2.3) c1 Gap(P) < Gap(P') < cp Gap(P).

The state space graph of the chain M is the directed graph G = G(M) with node set
Q that contains the edges (z,y) € Q x 2 for which P(z,y) > 0 and x # y. that contains
an edge (z,y) € Q x Q if and only if P(x,y) > 0 and = # y (denoted by = ~ y). Let
P = Uméy Puy, where P,y is the set of simple paths between = and y in the state space
graph G. A flow f in Q is a function P — [0,00) satisfying Zpemy flp) = w(x)m(y)
for all z,y € Q, © # y. The flow f can be extended to the oriented edges e = (z,2')
of G by setting f(e) = > cp..c, f(p), so that f(e) is the total flow routed through
e € E(G). Let length(f) = maxpcp.fp)>o [p| be the length of a longest flow-carrying
path, and let load(e) = f(e)/Q(e) be the load of the edge e, where Q(e) = w(x)P(z,y)
for e = (z,y). If load(f) = max.cg(g)load(e) is the maximum load of the flow, it holds
that Gap(P)~! < load(f)length(f) (see, e.g, [55]).

We will sometimes also work (implicitly) with the so-called modified log-Sobolev con-
stant p = p(P). This constant can also be used to upper bound the mixing time of a
Markov chain. In particular, it holds that

) < (mglogw(m)—l + log (21)) ,

see, e.g., [8]. Details on p(P) are given in Appendix A.

This manuscript is for review purposes only.
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SAMPLING OF GRAPHS WITH NEAR-REGULAR DEGREE INTERVALS 7

2.2.1. Markov chain decomposition. We describe a Markov chain decomposition
of Martin and Randall [46] that follows the decomposition framework of Madras and
Randall [45]. Let M = (2, P) be a Markov chain and (J{_, €; be a partition of {2 for some
q € N. We define the restriction Markov chains M; = (;, Pq,) as follows. For z € Q; we
let Po,(2,y) = P(z,y) if 2,y € Q; with @ # y, and Po,(z,2) =1-3 cq. 2, Po,(2,9).
Furthermore, let 0;(Q;) = {y € Q; : 3z € Q; with P(x,y) > 0} be the set of elements in
2, that can be reached with positive probability in one transition of the chain M from
some element in €2;.

Let My = ([g], Pum) be (the Metropolis-Hastings variant of) the projection Markov
chain on [¢] = {1,...,q}. That is, Puu(,j) > 0 if and only if 9;(;) # 0 and, in that
case, for i # j,

(2.4) Py (i, j) = — min {1, Z((?;; } ,

where A is the maximum out-degree in the state space graph of Myy, while

Pynu(i,i)=1— > Punu(i,j).
FENG}

Note that My has stationary distribution myp (i) = 7(€;) for i € {1,...,q} and a
holding probability of at least 1/2. We will use the following decomposition theorem
from [46].

THEOREM 2.4 ([46], Corollary 3.3). Suppose there exist > 0 and v > 0 such that
P(z,y) > B for all x,y that are adjacent in G(M), and 7(0;(2;)) > ym(€;) for all i,j
that are adjacent in G(Mymu). Then Gap(P) > [~ - Gap(Pyu) - min—1,. 4 Gap(Po,).

2.2.2. Load-exchange Markov chain. In this work, we will need a weighted ver-
sion of the base-exchange Markov chain studied by Anari et al. [2]. Let 7 be a strongly
log-concave probability distribution with 7(a) o w(a) whose support forms an M-convex
set C. We define the (unit) load-exchange Markov chain on C C ZZ:

Assuming a € C' is the current state of the (unit) load-exchange Markov chain:
e Select an element ¢ € [n] uniformly at random.

e Pick an o’ € C with &' > a — e; with probability o< w(a’) among all such o'.

Similarly to the base-exchange Markov chain [2], the above procedure defines an ergodic,
time-reversible Markov chain with stationary distribution 7 over C given by 7(a) x w(e).
Using the notion of polarization for SLC polynomials [11], in combination with a simple
Markov chain comparison argument (as in Appendix A.1), Corollary 2.5 can be shown.
The proof (which is implicitly given in [43]), roughly speaking, uses a reduction to the
case of matroids, after which a result of Cryan et al. [18] gives the desired result.

COROLLARY 2.5. Let k = (n,...,n) and suppose that the d-homogeneous polynomial
9x(x) = Y qex w(@)z® € Rlxy, ..., 2,] is SLC. Then the transition matriz P of the load-
exchange Markov chain on supp(g,) satisfies p(P) > 1/(n%d), where p(P) is the modified
log-Sobolev constant of P.

2.2.3. Degree intervals and the switch-hinge flip Markov chain. A sequence
of non-negative integers d = (di,...,d,) is called a graphical degree sequence if there
exists a simple, undirected, labeled graph G = (V, E) on nodes V = [n], where node i

This manuscript is for review purposes only.
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has degree d;, for i € V. Such a graph is called a (graphical) realization of d. By G(d)
we denote the set of all graphical realizations of d, while by d(G) we denote the degree
sequence of a graph G. For given vectors £ = (¢1,...,¢,) and w = (u1,...,uy) of non-
negative integers, we define G(£,u) = (Jyc 4<,, G(d) as the set of all graphical realizations
G satisfying £ < d(G) < w, meaning ¢; < d;(G) < u; for all i € V. For m € N,
we define G,,(€,u) as the set of all graphical realizations G € G(€,u) with precisely
m edges, i.e., with ) . d;(G) = 2m. Finally, we define the set of all degree sequences
satisfying the degree interval constraints, and whose total sum of the degrees equals 2m,
as Dy, ={d:€£<d<wand )  d =2m}.

A fully polynomial almost uniform sampler (FPAUS) for sampling graphs with given
degree intervals [£,u] is an algorithm that, for any € > 0, outputs a graph G € G(£,u)
according to a distribution 7 such that dpy (m, ) < €, where 7 is the uniform distribution
over G(€,u), and runs in time polynomial in n and log(1/¢). A fully polynomial randomized
approximation scheme (FPRAS) for the problem is an algorithm that, for every ¢, § > 0,
outputs |G(£,u)| up to a multiplicative factor (1 4 €) with probability at least 1 — 4§, in
time polynomial in n, 1/e and log(1/d). Analogous definitions hold for the set G, (£, u)
for a given m.

First we define the switch-hinge flip Markov chain to uniformly sample elements from
Gm (€, u) based on two of the local operations of Figure 1.

Assuming G € G,,(£,u) is the current state of the switch-hinge flip Markov chain:
e With probability 2/3, do nothing.

e With probability 1/6, try to perform a switch operation: Choose an ordered
tuple of distinct nodes (v,w,x,y) uniformly at random. If {w,v},{z,y} €
E(G), and {y,v}, {z,w} ¢ E(G), then delete {w, v}, {z,y} from E(G), and add
{y, v}, {z, w} to E(G).

e With probability 1/6, try to perform a hinge flip operation: Choose an ordered
tuple of distinct nodes (v, w,z) uniformly at random. If {w,v} € E(G) and
{w,z} ¢ E(G), then delete {w, v} from and add {w, z} to E(G) if the resulting
graph is in G, (€, u).

Similarly, we define the degree interval Markov chain of Theorem 1.3, that can also
perform addition/deletion operations.

Assuming G € G(£,u) is the current state of the degree interval Markov chain:
e With probability 1/2, do nothing.
e Otherwise:
— With probability 1/6, try to perform a switch operation.
— With probability 1/6, try to perform a hinge flip operation.

— With probability 1/6, try to perform an addition/deletion operation: select
an ordered tuple of distinct nodes (v, w) uniformly at random. If {v,w} €
E(G), then delete it from E(G) if the resulting graph is in G(£, w). Similarly,
if {v,w} ¢ E(G), then add it to E(G) if the resulting graph is in G(£, u).

Due to the symmetry of the transition probabilities, it is not hard to see that both
chains are time-reversible with respect to the uniform distribution. Also because of the
holding probability of at least 1/2, the chains are aperiodic. Finally, by a simple counting
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argument, there exists polynomials ¢(n),#'(n) such that Pg.)(G,H) > 1/t(n) for all
G,H € G(£,u) with Pgp.)(G,H) > 0 and Py, (¢ (G, H) > 1/t'(n) for all G,H €
Gm(£,u) with Pg  (g)(G, H) > 0 respectively. The irreducibility of the chain (i.e., the
fact that its state space is strongly connected) for the intervals of interest will follow
implicitly from our analysis, in particular Lemmata 5.1 and 5.3.

2.3. Near-regular degree sequences. Let r > 1 be a given integer. A degree
sequence d is said to be r-regular if d; = r for ¢ € [n]. For a fixed 0 < o < 1 we say that a
degree sequence d is (a,7)-near-reqular if max; |d; — r| < r®. When we do not refer to a
specific («, r) pair, we just write about near-regular degree sequences. Note that r above
can be a function of the length of a degree sequence. It will be convenient to refer to the
class Fq,r)[n] of (a,r)-near-regular degree sequences of length at least n.

We state some properties of near-regular degree sequences that we will use later. The
most important result is Theorem 2.6 below. We use a slightly different formulation than
that of [44].% For any degree sequence d = (di, ..., d,), define

5=Zdi/n, p=¢&/(n—1), and X:Z(di_f)Q/(n_1)2'

Roughly speaking, the theorem states that if the distance between the degree sequence d
and the {-regular sequence of the same size is not too large, then the expression in (2.5)
is a good approximation for |G(d)|. The absolute constant « in Theorem 1.1 is mostly
restricted by the € in Theorem 2.6.

THEOREM 2.6 (Liebenau and Wormald [44]). There exists an absolute constant e > 0
such that for every sequence of degree sequences (d(”))neN with §n even, max;c |y |d§n) —
él=o (nE min{&,n — & — 1}1/2), and n? min{u, 1 — u} — oo, it holds that

2

29 6ta)] ~ afa) = V3w (§ = o2 ) (e —t) T ().

%

To be precise, there exists a non-negative function d(n) with 6(n) — 0 as n — 00, so

that the relative error in “~7 is bounded above in absolute value by 6(n) for every such
(d™)

The growth condition o (n6 min{&,n — & — 1}1/2) in Theorem 2.6 gives rise to our
restrictions on [¢;,u;] in Theorem 1.1. In particular, observe that under the condition
that 0 < a < 1/2, it holds that min{r,n — r — 1}* = o (nmin{¢,n — & — 1}/2) with €
and ¢ as in the statement of Theorem 2.6.

Note that the existence of the asymptotic formula (2.5) suggests a straightforward
approach for approximating the number of graphs in G(£, u): one could sum the formulae
for all sequences d that satisfy £ < d < u and that have an even sum. Nevertheless,
this observation does not imply the existence of a FPRAS for the task of approximate
counting. This is because we would need to sum superpolynomially many terms, even if
we considered the (weighted) sum over sorted sequences, as long as max(u; — ¢;) = w(1).

In what follows, we also rely on the notion of strong stability introduced in [1] (and
implicitly already used in [35]). A combinatorial definition of this notion is given below.
It essentially states that any graph with a slightly perturbed degree sequence can easily
be transformed into a graph with the desired degree sequence by flipping the edges on a
short alternating path. An alternating (u,v)-path in a graph G is a (possibly non-simple)

neN’

3 Our formulation is in line with the note after Conjecture 1.2 in [44].
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edge-disjoint (u, v)-path (in the corresponding complete graph) alternating between edges
and non-edges of G, starting with an edge adjacent to u, and ending with a non-edge
adjacent to v; recall that a non-edge is an edge contained in the complement of E(G).
If w = v we obtain an alternating cycle. To facilitate the definition of strong stability,
let G'(d) = U, G(d’) with d' ranging over all sequences d’ satisfying ) . d; = >_, d; and
Yo ld; — di| = 2, ie., there exist s, A such that d, = d,, + 1, d\ = d\ — 1, and d} = d;
otherwise.

DEFINITION 2.7 (Strong stability). A class D of degree sequences is k-strongly stable
if for all d € D and all G € G'(d), there is an alternating (u,v)-path in G of length at
most k, where u and v are the unique nodes with degq(u) = dy, +1 and dege(v) = d, — 1.
We call D strongly stable if there exists a constant k € N for which D is k-strongly stable.

PROPOSITION 2.8. Let0 < o < 1/2 be a constant and assume that 2 < r(n) < (1—o)n
for some constant 0 < o < 1 and n € N. Then there exists some ny € N so that the class
Fla,ry[n1] is 10-strongly stable.

Proof. Let n > nq = [10/02—|. It is then a matter of simple calculations to verify that
the condition (dmax — dmin + 1)? < 4dmin(n — dmax — 1) is satisfied for all d € Flamnal,
where dpyin and dyax are the minimum and maximum value of d, respectively. Sequences
satisfying this condition are 10-strongly stable [1,35]. d

The following two results hold for the class F4,,)[n1] of Proposition 2.8. Lemma 2.9
essentially states that if an edge is present in some graphical realization, then there exists
a short alternating cycle to obtain a graphical realization with the same degree sequence
not containing that edge. As a result, the subset of realizations in G(d) containing a given
edge and the set of realizations not containing it are polynomially related in size.

LEMMA 2.9. Let d € F(q [n1]. Suppose that G € G(d) and let {u,v} € E(G) (resp.
{u,v} ¢ E(G)). Then there exists a graph G' € G(d) with {u,v} ¢ E(G') (resp. {u,v} €
E(G)) and E(G)AE(G’) is an alternating cycle of length at most 12. Similarly, suppose
that {u,w},{u,v} € E(G). Then there ezists a graph G’ € G(d) with {uv,w} € E(G’) and
{u,v} ¢ E(G"), and E(G)AE(G") is an alternating cycle of length at most 12.

Proof. Assume n > n; = [10/021 as in the proof of Proposition 2.8. Note that, in
all cases below, the degree sequence d itself plays the role of being a perturbed degree
sequence in the argument. By inspecting the proof of Proposition 2.8, this is allowed since
n here is sufficiently large.

For the first case of the first part (i.e., when {u,v} € E(G)), let y be such that
{y,u} ¢ E(G). Such a non-edge is guaranteed to exist, as n > n; > 2/0 and the
maximum degree of any node will then be bounded away from n — 2. Also note that y
has degree at least 2. By Proposition 2.8, we know that there exists some alternating
(y,v)-path of length at most 10. Combining this path with the non-edge {y,u} and the
edge {u, v}, results in an alternating cycle of length at most 12. Hence, if we flip all the
edges on this alternating cycle, we obtain a G’ € G(d) with the desired property.

For the second case of the first part (i.e., when {u,v} ¢ E(G)), we pick a y such that
{y,u} € E(G). By Proposition 2.8, we consider some alternating (v, y)-path (of length at
most 10). Combining this path with the edge {y,u} and the non-edge {u,v}, we again
obtain an alternating cycle of length at most 12. By flipping this cycle, we get a G’ € G(d)
with the desired property.

For the second part of the lemma, we make a similar, albeit more complicated, ar-
gument. We distinguish two cases and then consider subcases depending on the relative
position of the edge {u,w} with respect to some alternating path.
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Case 1: there exists y such that {y,u},{y,v} ¢ E(G). Consider such a node y. By Propo-
sition 2.8, there exists an alternating (y, v)-path of length at most 10. A key observation
here is that this alternating (y, v)-path might contain the edge {u,w}. Of course, if this is
not true, we proceed like in the first case of the first part above. So assume that the alter-
nating (y, v)-path does contain {u,w}. If {u,w} goes from w to u as we traverse the path
from y to v, then by taking the remaining (u,v)-subpath of the alternating path together
with the edge {u,v} we get an alternating cycle (of length at most 8), that contains the
edge {u,v} but not the edge {u,w}. If {u,w} goes from u to w as we traverse the path
from y to v, then by taking the (y,u)-subpath preceding {u,w} on the alternating path
together with the edge {u,v} and the non-edge {y,v} we again get an alternating cycle
(of length at most 10), that contains {u, v} but not {u,w}.

In any case, by flipping the edges on the corresponding alternating cycle, we obtain
a G' € G(d) with the desired property.

Case 2: for every y such that {y,u} ¢ E(G) we have {y,v} € E(G). Consider a node
z such that {z,v} ¢ E(G). Given the assumption of the current case, it must be that
{z,u} € E(G). By Proposition 2.8, there exists an alternating (z,u)-path of length at
most 10. If the edge {u, w} is not contained in this alternating path, then the whole path
together with the non-edge {z,v} and the edge {u, v} is an alternating cycle (of length
at most 12) that contains {u, v} but not {u,w}. Now, assume that the alternating (z, u)-
path contains {u, w}. If {u, w} goes from u to w as we traverse the path from x to u, then
by taking the (z,u)-subpath preceding {u,w} on the alternating path together with the
edge {u,v} and the non-edge {z,v} we get an alternating cycle (of length at most 8), that
contains {u, v} but not {u, w}. Finally, if {u,w} goes from w to u as we traverse the path
from z to u, then by taking the remaining (u, u)-subpath of the alternating path together
with the edges {u, v}, {z,u} and the non-edge {z,v}, we again get an alternating cycle
(of length at most 10), that contains the edge {u, v} but not the edge {u,w}.

In all subcases, by flipping the edges on the corresponding alternating cycle, we obtain
a G' € G(d) with the desired property. 0

Furthermore, the switch Markov chain is rapidly mixing for the class F(4 ,)[n1]. This
follows directly from [1] where it is shown that the switch Markov chain is rapidly mixing
for all strongly stable classes of degree sequences. In particular, we will use the following
result.

COROLLARY 2.10 (Follows from [1]). Let q(n) > 2 be a given polynomial and consider
the lazy switch Markov chain M = (G(d), Pg(q)) for some d € F(, ,[n1] that proceeds as
follows: For a given G € G(d)

o with probability 1 — 1/q(n) do nothing, and
o with probability 1/q(n), try to perform a switch operation.

Then there exists a polynomial p(n), such that for any d € F(q ry[n1] we have Gap(Pg(qy)
> 1/p(n).*

3. Proof approach overview. In this section we give a high-level overview of the
proofs of Theorems 1.2 and 1.3. The idea is to decompose the degree interval Markov
chain twice, using the addition/deletion and switch graph operations in Figure 1. Note
that the second decomposition step suffices for proving Theorem 1.2, but both of them
are needed in order to prove Theorem 1.3.

We first decompose G(£,u) based on the addition/deletion operation. Every part

4 Note that Pg(q) depends on r(n).
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of the decomposition corresponds to a set G,,(£,u) containing all graphs respecting the
degree intervals [£,u] and having exactly m edges, for some m. That is, there is a one-to-
one correspondence between the possible values of m, and the parts of the decomposition.
The Markov chain decomposition result of Theorem 2.4 tells us that if the switch hinge-
flip chain is rapidly mixing for every m, and if it relatively “easy” to move between the
different parts G,,(€,u) by means of additions/deletions, then the degree interval chain
is rapidly mixing on G(£,u). In the second step we carry out a similar decomposition,
but now based on the hinge flip operation. That is, for a given m we decompose G, (€, u)
in the sets G(d) for all sequences d which satisfy the interval constraints, and whose
degrees sum up to 2m. If the switch chain is rapidly mixing on every G(d), and we can
move “easily” between the sets G(d) using hinge flip operations, then the switch hinge-flip
Markov chain on G, (€, u) is also rapidly mixing. We continue with a formalization of
these statements.

Let T = {mq,...,ma}, where m; and my are the minimum and maximum number
of edges, respectively, that any G € G(£,u) could have; e.g., m; = % Yo li] and my =
|2 >, ui]. It is not hard to see that these two edge-counts are indeed achievable for
the intervals we consider in Theorem 1.1; this follows for example from the fact that the
asymptotic formula in Theorem 2.6 is nonzero in those cases.

First we partition G(£, u) into disjoint sets G,,, (€, w) for m € T. Recall that G,,, (€, u) =
{G e G(t,u):Y,d;i(G) =2m}. The restriction Markov chains Mg, (¢, are essentially
given by restricting the original chain to only perform switch and hinge flip operations
that respect the degree intervals on graphs with precisely m edges. Applying Theorem
2.4—with £ and 7 to be determined later—we get

(3.1) Gap(P) > pv - Gap(Pr) - nrgeir% Gap(Pg,, (eu)) s

where Pr is the transition matrix of the Metropolis-Hastings projection chain on 7, and
P the transition matrix of the degree interval Markov chain. The goal will be to show that
£ and +y, as well as all the spectral gaps, can be lower bounded by an inverse polynomial
function of the form 1/p(n) for some polynomial p(n). This means that Gap(P) is lower
bounded by an inverse polynomial as well, which is equivalent to showing that the degree
interval Markov chain is rapidly mixing (see Section 2.2).

Next we partition each G, (€, u) further into sets G(d) for sequences d in D, (€, u) =
{d > di=2mand £ <d < u} For simplicity, we drop the arguments and write D,
instead of D,,(€,u). For this part of the decomposition we get a Metropolis-Hastings
projection chain on the set Dy,. The restriction chains on Mgy are the chains in which
we essentially only apply switch operations on all graphs with degree sequence d. This is
precisely the switch Markov chain with some polynomially bounded holding probability
(as defined in Corollary 2.10). Using one more time Theorem 2.4 for each m—again, with
Bm and v, to be determined later—we have

(3.2) Gap(Pg,, e,u)) = BmYm - Gap(Pp,,) - drgipn Gap(Pg(a)) ,

where Pp,, is the transition matrix of the Metropolis-Hastings chain on D,,. This time,
in order to show that the switch-hinge flip Markov chain is rapidly mixing, we need to
bound 7., Bm, and all the spectral gaps by an inverse polynomial function.

Combining (3.1) and (3.2) we now get

(3.3) Gap(P) > B - Gap(Pr) melgl_{ﬁm’}/m -Gap(Pp,,) - in Gap(Pgu))},

m
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and in order to show that the degree interval Markov chain is rapidly mixing, we need to
show that 3, v, all 3,, and 7,,, and all spectral gaps can be lower bounded by 1/¢(n) for
some polynomial g(n).

While this is what we are going to do for Theorem 1.3, recall that for Theorem 1.2
(directly) and Theorem 1.1 (through Theorem 1.2 and the reductions in Appendix B),
we only show that the switch-hinge flip Markov chain is rapidly mixing. In that case, it
suffices to show that §,,, 7m, and the spectral gaps involved in (3.2) are polynomially
bounded for any given m (and the polynomial bound is independent of m), i.e., we only
need to globally consider the second decomposition step. A polynomial lower bound on
and each one of the (3, follows by the very definition of the degree interval Markov chain
(see also the discussion after its definition). In order to bound 7 and ~,,, for all m, we use
Lemma 2.9. Roughly speaking, we need to show that we can move rather easily between
realizations of two degree sequences d and d', with )_, |d; — d;| = 2. The high-level idea
for 7,, is to show that it is either directly possible to perform a hinge flip in order to
transition from a graph G with degree sequence d to some G’ with degree sequence d/,
or that G is not too far away from some other graph H with the same degree sequence d
from which it is possible to directly move to some G’ with degree sequence d’ via a hinge
flip. We take an analogous approach for bounding ~ but in terms of addition/deletion
operations rather than hinge flips.

The gaps of the chains Mgg) are globally bounded because of known rapid mixing
results for the switch Markov chain [1] (Corollary 2.10). Therefore, in order to show
Theorem 1.2, it remains to bound Gap(Pp,,), which we do in Section 5.1; an outline is
given in Section 3.1 below. For Theorem 1.3, we additionally need to bound Gap(Py),
which we do in Section 5.2; a brief outline is given in Section 3.2.

3.1. Proving Theorem 1.2. The main technical challenge of Theorem 1.2 lies in
proving that the resulting Metropolis-Hastings projection chain on D,, is rapidly mixing,
i.e., that Gap(Pp,,) can be polynomially bounded. We sometimes refer to this chain as
the hinge flip projection chain. Note that for d,d’ € D,,, with ||d — d'||; = 2, it follows

from (2.4) that
) L G(d')]
Pyu(d,d’) > o2 mln{l, G(d)] } ,

by taking the obvious upper bound A < n? in (2.4). So, intuitively, whether or not the
hinge flip projection chain is rapidly mixing depends on the quantities |G(d)| for d € D,,,.
To this end, we first argue, using a comparison argument, that if suffices to show that
the load-exchange Markov chain on D,,, i.e., the Markov chain that allows us to move
between degree sequences by adjusting the degree of two nodes by 1 (while keeping the
degree sums fixed), is rapidly mixing for the weights w(d) = |G(d)|. (It is not hard to
see that D,, is in fact an M-convex set, as it can be seen as the collection of bases of a
discrete polymatroid [33]. The so-called basis-exchange property for discrete polymatroids
corresponds with (2.1) for indicator functions.) A Markov chain comparison argument,
very informally speaking, proceeds by showing that if one Markov chain is rapidly mixing,
and a second chain is very close to it (in terms of similar stationary distribution and
transition probabilities), then the second chain is also rapidly mixing. In our setting, the
comparison is based on the fact that both chains have the same stationary distribution m
with 7(d) x w(d), and the fact that their transition probabilities are polynomially related
for the degree sequences that we are interested in (using Corollary A.2).

In order to show that the load-exchange Markov chain on D,, is rapidly mixing,
we would like to use Corollary 2.5, which states that the load-exchange Markov chain
is rapidly mixing if a polynomial identified with its stationary distribution satisfies the
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property of strong log-concavity (SLC). To be precise, we could apply Corollary 2.5 if, for
given £, u and m, the polynomial

hw)= 3 w(d)-at= 3 [6(d)] o

deD,, deD,,

was SLC. This seems hard to prove (and might not be true in general). However, it
turns out that when replacing the weights w(d) by simplified versions, say zZ(d), of the
approximations w(d) from the asymptotic formula (2.5) of Liebenau and Wormald [44],
the resulting polynomial

(3.4) flay= Y 2(d)-a

deD,,

is in fact SLC, when considering the degree interval instances of Theorem 1.1.° We show
this fact in Theorem 4.2 in Section 4 by observing that the polynomial in (3.4) is of the
form (2.2) in Proposition 2.3, which is a general sufficient condition for a polynomial to
be SLC [11].

The above implies that if we run the load-exchange Markov chain with the approxima-
tions z(d), it is in fact rapidly mixing with stationary distribution 7 given by 7(d) x z(d).
Now, the z(d) have the property that for some ng sufficiently large, it holds that for all
n > ng and d € D,,, where d is of length n,

1 2
S1G(@)] < =(d) < 200777 (G(d)

This also implies that

%e*<19/0>2w(d) < 7(d) < 2199 n(d) .
One can then again use a Markov chain comparison argument to argue that the load-
exchange Markov chain based on the original weights w(d) is also rapidly mixing (by
applying Corollary A.2). This in turn implies that the hinge flip projection chain is also
rapidly mixing, which is what we wanted to show.

General framework. The approach described above for showing rapid mixing of the
switch-hinge flip Markov chain might be applicable to other classes of degree interval
instances. Informally speaking, the essential things that are needed are the following two
things:
1. The degree sequences satisfying the interval constraints are strongly stable (see
Def. 2.7).
2. The weights |G(d)| “approximately” give rise to an SLC polynomial.

The requirement of strong stability in the first point is needed for various reasons.
First of all, it is a sufficient condition for the switch Markov chain (i.e., the restrictions
chains in our decomposition) to be rapidly mixing [1]. Secondly, we rely on it when
bounding the parameter « in the Martin-Randall decomposition theorem (Theorem 2.4).
Thirdly, strong stability is sufficient to argue that the transition probabilities of the load-
exchange Markov chain, and the Metropolis-Hastings projection chain, are polynomially

5 We remark at this point, that, although this is true for the regime considered in Theorem 1.1, this

does not seem to be true for the general range in Theorem 2.6.
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related (so that we can use a Markov chain comparison argument to compare their mixing
times).

For the second point, even if the weights |G(d)| do not give rise to an SLC polynomial,
one may still make things work. It suffices to find values z(d) and polynomials ¢; and ¢,

such that L

q1(n)

G(d)] < 2(d) < g2(n)|G(d)],

and for which

deD,,
is SLC.

3.2. Proving Theorem 1.3. In order to prove Theorem 1.3, we additionally need
to show that the projection chain on 7 is also rapidly mixing, i.e., that Gap(T) is
polynomially bounded. In other words, we consider the Metropolis-Hastings projection
Markov chain with state space {a,...,b}, where a = [$ 3", 4] and b = |1 >, u;], and
m(m) < |Gm (€, u)| for m € {a,...,b}. This chain will sometimes be referred to as the
addition/deletion projection chain. A sufficient condition for this Markov chain to be
rapidly mixing is that the sequence (W, )m=a,...,» given by wy, = |G (€, u)| is log-concave,
meaning that for every m wy,t1wm—1 < wfn We show that this sequence is log-concave
when the intervals have size at most one (corresponding to the statement of Theorem 1.3)
by using a variation on an argument of Jerrum and Sinclair [36].

Remark 3.1. One might wonder if the theory of strongly log-concave polynomials can
also be used to prove rapid mixing for degree intervals beyond size one. For example, one
might consider a polynomial of the form

ma
n—1 _ o — 2,
g1, ., Tn,y) = Z Z <2m2_2m>z(d).y2 2=2myd

m=m1 deD,,

where m; and me are the minimum and maximum number of edges that any graph in
D(¢,u) can have, respectively. This is then a 2ms-homogeneous polynomial. The problem
that now occurs though, is that the domain of this polynomial, indexed by the tuples
(di,...,dn,2mg — 2m), can be shown not to be an M-convex set and, thus, g cannot be

SLC.

4. SLC property in a restricted range of the Liebenau-Wormald result.
Throughout this section, we consider m and n as fixed. Recall that for a given degree
sequence d = (dy,...,d,) we defined ¢ = &{(n,m) = > ,d;i/n = 2m/n, p = p(n,m) =
¢/(n—1) =2m/(n(n —1)) and x(d) = >_,(d; — £)*/(n — 1)%. Furthermore, in (2.5) we
defined

@) o) = Ve (§ - s(@?) (- wt) I (")

which is approximately the number of graphs with degree sequence d in case it is near-
regular. Here we have
d
s(d) = x(d)

C2u(l—p)
Ideally, we would like show that the weights w(d) give rise to an SLC polynomial,
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By inspecting the weights and the conditions of Proposition 2.3, it is not hard to see that
it would be sufficient to argue that the function 1/4 — s(d)? is M-convex. (The conditions
of Proposition 2.3 are satisfied, note that always 0 < d; < n — 1 and that for a degree
sequence d € D,,, it holds that ), d; = 2m, meaning the polynomial is 2m-homogeneous.)
Unfortunately, it turns out that this is not the case. Instead, we simply show that in the
regime of Theorem 1.1, it holds that s(d) = O(1), and so, essentially, we can ignore the
contribution exp(—s(d)?) in (4.1) at the expense of a slightly worse bound on the mixing
time. The resulting approximation formula is easily seen to be SLC, which intuitively
follows from a discrete form of log-concavity of the binomial coefficients; see Theorem 4.2.

LEMMA 4.1. Under the conditions on [€,u] as in Theorem 1.1, with 0 < ¢ < 1 and
2<r=r(n) <(1l—o)n, if n is large enough, then for any £ < d < w it holds that

18n 19
4.2 0<sd) < ——— < —.
(4.2) <s(d) < orl=2a(n—-1) =~ o

Proof. By the definition of x(d), s(d) > 0 always holds. To see the upper bound, let
Ny = max { [10/02], (18/01} and note that the quantity s(d) can be rewritten as

x(d) n?(n —1)? >i(di — §)°
(43) s(d) = 2u(l—p)  (n—1)2 2 2m(n(n—1)—2m)’

where 2m = ", d;. Note that Y,(d; — €)* < n(2min{r,n —r —1}*)? = dnmin{r,n —r —
1}2¢. Moreover, we can bound m using the simple facts that r —min{r,n —r —1}* > r/4
and n® < on/2 for n > ny. The latter implies that

r+min{r,n—r—-1}*<1-on+(1—-0)n*<1—-o)n+on/2=(1-0/2)n.

So, we have

n%SQmSn(l—%)n,
and therefore,
r o ron?(n — 1)
) 1) - >n-(1- (1= > 22T s)
(44)  2m(n(n—1)—2m) = n (1 (1 2) — 1> n(n—1) > -,

no/2—1 >

where the last inequality holds because =/ =— >

(4.4), we then get

%" for n > ny. By combining (4.3) and

n? - dnmin{r,n —r — 1}2*.9 18n
2ron2(n — 1) ~orl—2e(p —1)’

s(d) <

which completes the second inequality. The final inequality holds because r > 2 and
n/(n—1) <12 for n > no. O

We next summarize the main result of this section, and give the remaining small tech-
nical steps of its proof. In a nutshell, it states that a simplified version of the Liebenau-
Wormald formula which is within a constant factor from the original in (2.5) is approxi-
mately SLC in the regime of Theorem 1.1. Recall that w(d) = |G(d)|.

THEOREM 4.2. For givenn,m € N, £, u € N” with £ < u, and degree sequence d with
Ydi=2m and £ < d < wu, let

(4.5) z(d) = \/iei (M“(l _ M)(l—u))n("_l)/Q H (nd—z 1) '

i
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The resulting 2m-homogeneous polynomial
flay=") #(d)-a®
deDy,
is SLC.

Furthermore, there exists an ng € N such that for all n > ng and m > n, if the degree
interval [£,u] satisfies the conditions of Theorem 1.1, then

4.6 L) < a(d) < 2(d) < " 5(d) < 219 w(d) |
2
for every £ < d < u.

Proof. We first note that the factors v/2 and (,u“(l - ,LL)(l_“))Tl(Thl)/2 can all be seen
as non-negative scalars as n and m are given. This means, by Proposition 2.2, that it
suffices to show that the polynomial with coefficients

o H (ndi 1)

K2

is SLC.
Comparing this to the second polynomial in Proposition 2.3, it follows that we can
simply choose v to be the constant function v(d) = —1 on its effective domain D,. (As

mentioned earlier, intuitively it is SLC because the binomial coefficients satisfy a discrete
form of log-concavity.) The inequalities

w(d) < 2(d) < 19 p(d)

in (4.6) follow directly from Theorem 2.6 and Lemma 4.1. The outer two inequalities hold
because for n sufficiently large w(d) approximates w(d) up to a multiplicative factor that
converges to 1 (and, thus, will be at most 2 for all n beyond some ng € N). O

5. Decomposition of the degree interval Markov chain. In this section we
give the missing details regarding the decomposition steps as outlined in Section 3.

5.1. Bounding f,,, v, and Gap(Pp,,) of inequality (3.2). Throughout this sec-
tion we assume that some m € {mq,...,ma} is fixed. Moreover, recall that we consider
degree intervals of the form [d;,d; + 1], or [d;,d;], for ¢ € [n]. It is not hard to see
that 83,, > (6n*)~!. This rough polynomial bound follows directly from the transition
probabilities of the degree interval Markov chain (see Section 2.2.3).

We first lower bound the 7, in Lemma 5.1 below. By the definition of the hinge
flip operation we have that for any d,d’ € D,,, there is a strictly positive transition
probability between d and d’ if and only if ). |d; — d}| = 2.

The proof of Lemma 5.1 follows from Lemma 2.9, where it is shown that for a graph
with a given degree sequence, we can always find a graph with a slightly perturbed degree
sequence that is close to the former in terms of symmetric difference (when the original
sequences satisfies strong stability).

LEMMA 5.1. There exists a polynomial g1(n) such that, for any feasible m and for all
d,d € D, with ), |d; — d;| =2, we have 7p,, (04 (G (d'))) > ﬁn)m)m (G ().

Proof. Again assume that n > n; = {10/021. Let a and b be the unique nodes such
that d, = d,+1 and dj, = dp —1; note that the uniqueness of a, b follows from the condition

> ldi —dj] =2. Let
H ={G € G(d) : 3c € [n] such that {b,c} € E(G),{a,c} ¢ E(G)},
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and note that it has the property
1
(5.1) 0a(G(d)| = —[H].

To see this, note that for a given G € H, we can perform the hinge flip that removes the
edge {b,c} and adds the edge {a,c} to obtain an element in G(d'). Moreover, there can
be at most n graphs G € H that map onto a given G’ € 94(G(d’)), as there are at most
n choices for c.

Moreover, using the second part of Lemma 2.9, we show that

(5.2) M > 5 10(d)].

To see this, note that for any G € G(d), we have dp = dj + 1 > 0 which implies that b has

at least one neighbor ¢ in G. Now, if {a,c} ¢ E(G) we obtain an element in H; otherwise,

by Lemma 2.9, we can find a graph G’ close to G (in the sense that |[E(G)AE(G")| < 12)

for which {a,c} ¢ E(G) while still {b,c} € E(G). As there are at most n'? graphs

G € G(d) that map to the same G’ € H, the inequality (5.2) follows. Moreover, we also

have n'°|G(d)| > |G(d’)| which follows directly from Definition 2.7 and Proposition 2.8.
Combining the last observation with (5.1) and (5.2) then yields

1
q1(n)

for q1(n) = n?3. Dividing both sides by >_dep,, |9(d)|, then gives the desired result. [

10a(G(d")) > G(d)],

It remains to bound Gap(Pp,,). As explained in Section 3.1, the first step is to carry
out a comparison argument with the load-exchange Markov chain with weights w(d) =
|G(d)| (so that it will be sufficient to study the mixing time of the latter). Remember that
both the hinge flip projection chain, as well as the load-exchange chain have stationary
distribution 7(d) < w(d).

In what follows we write Mp, = (D, P) for the (Metropolis-Hastings) hinge flip
projection chain, and MY, = (D, P’) for the load-exchange chain on D,,.

LEMMA 5.2. There exists a polynomial p(n) such that
p(n) Gap(Pp,,) > Gap(Pp, ) -

for any m € {mq,...,ma}.

Proof. Tt suffices to show that there exists polynomials p; and ps such that, whenever
d, f € D, satisty ||d — f||1 = 2, then

[t
—_

(5.3)

i =PI S G

This then implies that the transition probabilities P(d, f) and P’(d, f) are themselves
polynomially related, i.e.,

p2(n) _ P(d f) _ pi(n)

pi(n) — P'(d,f) ~ p2(n)
In turn, this implies the existence of the desired polynomial p(n) as both chains have the

same stationary distribution and therefore their spectral gaps are polynomially related;
see (2.3).
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The existence of the polynomials in (5.3) follows from the fact that all near-regular
degree sequences are strongly stable, which we will illustrate next: First of all, because of
strong stability, we can always find polynomials ¢;(n) and g2(n) such that

1 o) 1
o) = 16@)]| = am)

meaning that we find the desired bounds for P(d, f), i.e, for the transition probabilities
of the Metropolis-Hastings hinge flip projection chain. Furthermore, in the load-exchange
Markov chain we pick (in the second step) a new degree sequence d’ proportional to w(d’)
over all possible choices of d’ with ||d — d'||; = 2 that respect the degree interval bounds.
For a given d, let N(d) be the set of all such sequences d’. Then the probability of
transitioning to d’ is (up to an additional polynomial factor because of the first step of
the load-exchange Markov chain) equal to

9(d))|

S 6l

FeN(a)

(5.4)

which can again be upper and lower bounded by a polynomial because of strong stability,
as in (5.4), in combination with the fact that |N(d)| < n?. O

Lemma 5.2 implies that we may focus on bounding Gap(P{)m). Now, by the arguments
given in Section 3.1 in combination with another simple comparison argument using (A.2)
and Theorem 4.2, it suffices to bound Gap(Pp, ) where P" is the transition matrix of the
hinge flip Markov chain in which we replace the weights w(d) by the approximations z(d)
as in (4.5).

In Section 4, we showed that the polynomial in (4.6) is in fact SLC, so then Corollary
2.5 implies that the modified log-Sobolev constant of this chain can be lower bounded by
a polynomial, which implies the same for the spectral gap by (A.1). This completes this
section, and shows in particular that the switch-hinge flip Markov chain is rapidly mixing,
which in turn completes the proof of Theorem 1.2.

5.2. Bounding S3,v and Gap(Py). Recall that My is the Metropolis-Hastings
chain on the index set T = {myq, ..., ma}. For simplicity, we use w,, = |G, (£, u)| to denote
the number of feasible graphical realizations with m edges. Note that for any m € T we
have m7(m) = wm/ Y ;e wi, and that Pr(m,m’) > 0 if and only if |m —m’| < 1. From
the definition of the degree interval Markov chain, it immediately follows that 8 > 1/g(n)
for some polynomial g(n). We lower bound + in the following lemma following the same
approach as for Lemma 5.1.

LEMMA 5.3. There exists a polynomz'al g2(n) such that, for all m,m’ € T with |m —
m'| =1, we have 71 (O (Gmr)) > qz(’n)ﬂ-T (Gm)-

Proof. Assume that m’ = m + 1 (the case m’ = m — 1 is analogous). Let G € G4 for
some d € D,,. Note that m’ > mj + 1 > my, which implies that there are nodes i and j
whose degrees in G are not equal to the upper bound of their degree interval. Note that
the set

H={G € G, :3,j € [n] with ;(G) < u;,d;(G) < u; and {i,j} ¢ E(G)}

has the property that

1

(5.5) [ (] T

IH]-
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In order to see this, note that for any G € H we can add the edge {7, j} (recall that these
nodes depend on the choice of G) to obtain an element in G,,,. On the other hand,there
can be at most m+1 graphs G that map onto a given graph H € G,/ using this procedure.
This gives the inequality (5.5).

Moreover, using the first part of Lemma 2.9 and following the same argument as in
the proof of Lemma 5.1 it can be shown that

1
(5.6) = ﬁ|gm|~

To see this, note that for any graph G € G,,,, nodes ¢ and j with d;(G) < u; and d;(G) < u;
always exist, as m < mg. Moreover, if {4, j} € E(G) we know from Lemma 2.9 that there
is a graph G’ with the same degree sequence not containing edge {7, j} close to G.

We next show that |G| > |Gm/|/p(n) for some polynomial p(n). To see this, note
that for any G’ € |G| there exist nodes = and y such that d,(G’) > ¢, and d,(G’) > ¢,
asm' =m+1>my. If {z,y} € E(G') we can remove it to obtain an element of |Gy, |.
Otherwise, again using Lemma 2.9 we can first find an element G € G,,,/ close to G’ that
contains {x,y} and the remove it. Combining this with (5.6) yields the existence of a
polynomial ¢o(n) such that

1
q2(n

Finally, combining the latter inequality with (5.5) and dividing both sides by »° .+ wp,
then gives the desired result. ]

H] > |G-

In order to show that My is rapidly mixing or, in particular, that the gap Gap(T)
can be polynomially bounded, it is sufficient to show that the sequence (W, )mer is log-
concave. Log-concavity means that for any m € 7\ {ml, mg}7 Wyn—1 W41 < wfn.

THEOREM 5.4. The sequence (W, )meT 18 log-concave for all interval sequences [£, u)
for which u; € {£;,¢; + 1} for all i € [n].

Proof. We follow the notation, terminology and general outline of the proof of Theo-
rem 5.1 in [36]. Define A = G411 X Gp—1 and B = G,;, X Gpp,. We will show that [A] < |B|,
from which the claim follows.

Note that the symmetric difference of any two subgraphs of K, can be decomposed
into a collection of alternating cycles and simple paths. We will do this in a canonical
way.® Fix some total order <. on the edges of K,. For two subgraphs G' and G’ we will
call edges in E(G)\E(G’) blue, and edges in E(G')\E(G) red. Around every node, we will
pair up blue edges with red edges as much as possible. We do this by repeatedly selecting
a node and pairing up the lowest ordered red and blue edge that have not yet been paired
up. This yields a decomposition of the symmetric difference into i) alternating red-blue
cycles, ii) alternating simple red-blue paths of even length (with same number of red
and blue edges), iii) simple paths ending and starting with a red edge, iv) simple paths
ending and starting with a blue edge. We call this the canonical symmetric difference
decomposition of E(G)AE(G') with respect to <., or simply the canonical decomposition
of E(G)AE(G"). We call a simple path a G-path if it contains one more edge of G than
of G’ (i.e., red edges are one more than blue edges), and a G’-path if it contains one more
edge of G’. We emphasize that any path of odd length in the symmetric difference is of
one of these two types.

6 This decomposition is the main extra step we need compared to the proof of Theorem 5.1 in [36].
The symmetric difference of two matchings is by construction already a disjoint union of cycles and paths.
This is also where the analysis breaks down in case the degree intervals have length at least two.
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Now, for every pair (G,G’) € A it holds that the number of G-paths exceeds the
number of G’-paths by precisely two (as G has two edges more than G’). For this reason,
we partition A into disjoint classes {4, : 7 =1,...,m} where

A, ={(G,G") € A: the canonical decomposition of E(G)AE(G")
contains r + 1 G-paths and r — 1 G’-paths} .

In order to prove |A| < |B| it suffices to show |A,.| < |B,| for all . We call a pair
(L, L") € B reachable from (G,G’) € A if and only if E(G)AE(G) = E(L)AE(L') and L
is obtained from G by taking some G-path in the canonical decomposition and flipping
the parity of the edges with respect to G and G’. It is important to see that the canonical
symmetric difference decomposition of the pairs (G,G’) and (L, L’) is the same because
all degree intervals have length one. Note that the number of pairs in B, reachable from
a given (G,G") € A, is precisely the number of G-paths in the canonical decomposition of
G and G’, which is » + 1. Conversely, any given (L, L") € B, is reachable from precisely
r pairs in A,. Therefore, if |A,| > 0, we have

| B :r—|—1>1.

This proves the claim. ]

We are ready to bound the spectral gap of Pr. Note that € in the statement of
Theorem 5.5 is actually 7. Recall that | 7| =mgs —m1 +1 <n/2+1 < n. Moreover, the
ratios w;/w; are also polynomially bounded for any ,j € 7 with |¢ — j| = 1. This can
be shown exactly as in the proofs of the Lemmata 5.1 and 5.3; see also Appendix B. As a
result, it is sufficient to prove the statement in Theorem 5.5 below in order to bound the
gap of Py.

ol Ot

THEOREM 5.5. Let (wm)meq be a log-concave sequence of non-negative numbers and
let M = (2, P) be a Markov chain with transition probabilities

1 min {1, w; /w;} ifli—j]l=1,
P(i,j)=1 0 ifli—j]>1,
1—P(i,i—1)—P(i,i+1) ifi=j.

Then 1/ Gap(P) < 4[Q3 max; j.|i—jj=1 w;/w;.”

Proof. First note that the stationary distribution © of M is proportional to the
weights (w;)ieq, i.e., m(i) = w;/ Zpeﬂ wp, as desired. Consider the straightforward multi-
commodity flow f in which we route (i) 7(j) units of flow over the path i — (i + 1) —

= jifi<gj,ori = (1—1) = -+ = jif i > j. Recall from Section 2.2 that
Gap(P)~! < load(f)length(f), where length(f) is the length of a longest flow-carrying
path and load(f) is the maximum load on eny edge of the state space graph of the chain.
By the definition of the flow f, we have length(f) < |Q|. Next we bound load(f).

We consider a fixed transition e = (z,z + 1). Note that the proof for transitions of
the form (z, z — 1) is symmetric, since a sequence (w;);cq is log-concave if and only if the

7 We suspect a similar result is true without the dependence on the w; but this is not needed for our
purpose.
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sequence (wjq|—i+1)ien is log-concave. We have

(1) w(j)
load(e Z Z m<4 Z Z ()

1,7:]1— 1 W;
1<i<z z<j<|9Q| ]‘ ]‘ J1<i<z 2<5<|9)

(5.7) = 4i,j:1|£1_aﬁ:1 % (Z wp) Z Z w; w] .

pEQ 1<i<z 2<5<|Q|

Log-concavity of the sequence (wgq)qeq implies that for any fixed ¢ < j, and any a € N
such that ¢ +a < j — a, we have

(58) wW; W, S Wi4-qWj—q -

This follovvs from repeatedly applying the log-concavity condition. Indeed, log-concavity

gives us i < z:: <...< % < w;} L and thus w;w; < w;yw;_1. By repeating this
with i + 1 and j — 1 (i.e., by removing the outer terms) we get ==t < ... < 222 anpd

2 = — wj-1
thus wir1wj—1 < wiyow;_o. After a steps we get (5.8). o ’
Now, for a fixed i and j in the double summation in (5.7), let a;; be such that w;q,,
Or Wj_qg,;; (or both) equals w.. Then (5.8) gives us that w;w; < w, w, for some p € Q.
Note that for any choice of z, the double summation in (5.7) has at most |Q|? terms (as
there are at most || choices for ¢ and j). This implies that

SO w102 S wowyfw. = 102w,

1<i<z 2<5<|Q| peEQ peEQN
Combining this inequality with (5.7), we obtain

load(e) < 4|0 rlnax| w; /wj ,
i,gili—j|=1

and, thus, 1/ Gap(P) < load(f)length(f) < 4|Q|* max; j.;_jj=1 w;/wj, as required. 0
This then completes the proof of Theorem 1.3.

6. Discussion and future directions. We did not attempt to optimize the upper
bounds on the mixing times of the Markov chains involved. Already for the switch Markov
chain no low-degree polynomial upper bounds are known on its mixing time. For instance,
the best known upper bound for r-regular graphs is 723n8(rnlog(rn) + log(1/¢)) [15,16].
This is a central issue for many MCMC approaches for sampling graphs with given degrees
(or degree intervals in our case). Various non-MCMC approaches to the problem, see,
e.g., [4,27,28,42,48,56], often have better running times, but only work for smaller classes
of degree sequences or have weaker guarantees on the uniformity of the output than we
require in our setting.

An interesting first direction for future work is determining whether the degree interval
chain is rapidly mixing for more general instances. The most intriguing question from our
point of view, however, is whether there is a black-box reduction implying that if the
switch Markov chain is rapidly mixing for all degree sequences d satisfying £ < d < u,
then the degree interval Markov chain is also rapidly mixing. Even more generally, can the
problem of sampling graphs with given degree intervals always be reduced to the problem
of sampling graphs with given degrees?

Further, one could explore other, non-MCMC, approaches for approximate sampling,
especially when the degree ranges are relatively large. Can one come up with an algorithm
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in which resampling certain “bad events” (e.g., resampling edges adjacent to a node not
satisfying its degree interval constraints) yields an exactly uniform sample, following the
“partial rejection sampling” framework of Guo, Jerrum and Liu [31]?7 While this seems
unlikely when sampling graphs with given degrees, we suspect it is possible for the problem
of sampling graphs with (sufficiently large) given degree intervals.
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Appendix A. Modified log-Sobolev constant. Let M = (Q, P) be a time-
reversible Markov chain with stationary distribution 7, and f,g: Q — R>o. Let E;(f) =
> weqm(x) f(x). Furthermore, define the entropy-like quantity

Entr(f) = Ex [f log(f) — flog(Ex(f))] ,

and the Dirichlet form

Er(f.9) =5 3 3w Pl )f() ~ FW)loe) — o).

rzeQ ye

The modified log-Sobolev constant of the Markov chain M is defined by

p(P)_inf{‘W ‘ £ Rsg, Entﬂ(f)yé()}.

As stated in Section 2, it holds that (see, e.g., [8])

Ta(e) < ﬁ <log10g7r(x)1 + log (212» .

Furthermore, for any Markov chain it holds that
(A.1) 2(1 =X (P)) = p(P),
where A1 (P) is the second-largest eigenvalue of P (assuming the Markov chain is lazy).

A.1. Markov chain comparison. A useful property of proving mixing time bounds
through the modified log-Sobolev constant, is that it is easy to see that small perturbations
in the transition probabilities and the stationary distribution only result in mild variations
in the modified log-Sovolev constant of the resulting Markov chain (by means of a Markov
chain comparison argument). Goel [29] states the following for the modified log-Sobolev
constant, based on similar results for the other constants by Diaconis and Saloff-Coste [19].
The notation W (2, 7) is used to denote the set of all (test) functions f :  — Rxq.

THEOREM A.1 (Lemma 4.1 [29]). Let M = (Q, P) and M’ = (', P’) be two finite,
reversible Markov chains with stationary distributions w and 7', respectively, and modified
log-Sobolev constant p and p', respectively. Assume there is a mapping ¢ : W(Q,m) —
W'Y, 7") mapping f — f' for f: Q — R>q, and constants C,c > 0 and B > 0 such that
for all f € W(Q,7), we have

Ep(flog f'Y < C-Ep(f,logf) and c- Ent.(f) < Entw(f')+ B-Ep(f,logf).
Then

cp'
=5 <.
C+ Bp'

COROLLARY A.2. With M and M’ as in Theorem A.1, if Q = Q' and there exists
a0 <6 <1 such that (1 —98)P(x,y) < P'(z,y) < (14 §)P(z,y) for all z,y € Q, and
(1=0)m(x) <7'(x) < (14 0)w(x) for x € Q, it directly follows that

—_
(%)

+

(A2) <

1

SR
—
>
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Appendix B. Reductions for approximate sampling and counting. We first
explain how Theorem 1.1 follows from Theorem 1.2. The induced approximate sampler
from Theorem 1.2 can be turned into an approximate counter for |G,, (£, u)| by standard
techniques (Section B.1). Furthermore, this approximate counter can then be turned
into an approximate counter for |G(£,u)| by means of a simple reduction (Section B.2).
In turn, the approximate counter for |G(€, )| can be transformed into an approximate
sampler from G(£,u), again by a standard technique (Section B.3).

A subtle point is that it is not known whether the problem of sampling and counting
from G(€,u), or G (€, u), is self-reducible [40]. This follows roughly from the fact that
it is not known whether the problem of sampling/counting from G(d) is self-reducible
in general. However, if one restricts to degree intervals [€, u] for which both an FPRAS
and FPAUS for G(d) is known for every £ < d < w, like the set of P-stable degree
sequences [37], then standard reduction techniques for self-reducible problems can still be
applied.

To give a more concrete intuition, in the reduction of Section B.1 the problem is
that one needs to be able to compute the final factor in the telescoping product (B.1)
efficiently, which we do not know how to do for an arbitrary degree sequence u (although
we do know it for P-stable degree sequences by the results of Jerrum and Sinclair [37]).

B.1. From approximate sampling from G,, (¢, u) to approximating |G,, (£, u)|.
Using a standard reduction technique, see, e.g., Chapter 12 in [38], we can turn our FPAUS
into an FPRAS for counting the number of graphs with given degree intervals.

We first show how to express |G, (€, u)| as a telescoping product. We write

_ G w)| |Gm(at,u)|  |Gm(aP ! )

: LG (u
|Gm(al, w)| |G (a?, u)| G ()] |G (w)]

(B.1) |Gm (€, u)|

for a sequence of vectors £ = a®, a',a?,...,a” = u, that are recursively defined as follows.

We define a’™! by choosing the lowest indexed nodes® v and w for which af < v and
a,, < uy,, and then setting

J at otherwise .

oot e,
J

It is clear that there is some p < 2% wu; such that this procedure gives a? = wu. Also,
if ¢ = max;(u; — ¥¢;), all intermediate degree intervals [a*, u] also have length at most ¢
component-wise, as u; — aj < u; — £; < c. Finally, note that we have

(B.2) a’<a'<.-<a’t<a?,

where for two sequences a and b, we write a < b if @ < b and a; < b; for at least one
ie{l,...,n}.

In order to approximate the size of G,,(£,u), it will be sufficient to approximate
the ratios in the telescoping product, as well as the last factor |G,,(u)|. The latter can
be approximated by employing, e.g., the approximate counting scheme of Jerrum and
Sinclair [37] for P-stable degree sequences. For approximating the ratios, we need the
following two (sufficient) components: (1) the existence of a FPAUS and (2) the fact that
the ratios can be polynomially bounded. This implies that polynomially many samples
are enough in order to estimate the ratio up to the desired accuracy.

8 A number i € [n] is lower indexed than j € [n] if i < j.
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We sketch how to formalize this argument. Using strong stability, i.e., Proposition
2.8, and very similar reasoning as in the proofs of Lemmas 5.3 and 5.1, it is easy to show
that all ratios in (B.1) are upper bounded by some polynomial ps(n) (independent of £
and u). By setting

 [Gulat )

" Gm(a )|

this just means 1 < v; < pa(n). Moreover, using (B.2), it follows that, for i = 0,...,p—1,
we have G,,(a**!,u) C G,,(a',u). If we define X; to be the indicator variable of the
event that a random sample from G,,(a’,u) is indeed contained in G,,(a’™!,u), then
v; = 1/E(X;). The high-level idea is now to show that polynomially many samples from
the sampler (the switch hinge-flip Markov chain) not only suffice for an accurate estimate
for v; but, crucially, they suffice for an accurate estimate of the product

Gt )]
11v="g @

up to a factor (1 & €/3). This can be done by standard arguments, e.g., see Chapter 12
of [38] or Chapter 3.2 of [34]. Finally, as mentioned above, we may use the approximate
counter from [37] for approximating |G,,(u)| up to a factor (1 & ¢/3). This then implies
that we can also approximate |G,, (€, u)| up to a factor (1 £ ¢).

=0

B.2. From approximating |G,,(¢,u)| to approximating |G(¢,u)|. In order to
provide an FPRAS for approximating |G (£, u)|, it suffices to give an FPRAS for approx-
imating |G, (€, u)| for every 3. ¢; < m < 13 u;. Recall that G, (£, u) is the set of
graphs with degree intervals [£, u] and for which the total number of edges is equal to m.

LEMMA B.1. Suppose there is an FPRAS for approximating |G, (£,u)| for every m €
N such that 33, 6; <m < 33", u;. Then there is an FPRAS for approzimating |G (£, u)|.

Proof. We write a = % > liand b= %ZZ u;. Note that there are at most b—a < n?
possible choices for m, and that

b
G(&,w)[ =) |G (L u)|.

Now, for every m use the given FPRAS for approximating |G,, (¢, u)| with §' = 6/n?. It
outputs a number ¢, satisfying (1—¢€)|G,, (£, )| < ¢ < (14€)|Gpn (£, w)| with probability
at least 1 — §/n? Then c = Y, ¢, satisfies (1 — €)|G(£,u)| < ¢ < (1 +€)|G(£, u)| with
probability at least

(1-5/n2)P > 1—6/mH)" >1-34.
This completes the proof. 0

B.3. From approximating |G(¢,u)| to approximate sampling from G(€,u).
Again, using a reduction inspired by a similar one for self-reducible problems, see, e.g.,
[40], we can turn our FPRAS for computing |G(€,u)| into an FPAUS for sampling from
G(€,u). Note that if £ = u, we can simply use the approximate sampler from Jerrum and
Sinclair [37] when £ is near-regular.

As long as £ # u there is some i such that ¢; < u;. We can partition the set G(£, u)
based on whether or not the degree of a graphical realization G with £ < d(G) < u
satisfies d; = {; or d; > ¢; + 1. For a given vector z = (z1,...,2,) € R" and z, € R we
write (20, 2_;) = (21, -+, Zi—1, %4y Zi+1, - - - » Zn). We then have G(€, u) as the disjoint union

g(ﬂ,u) - Q(Z, (éwu—l)) U g((gl + Le—i)?u) :
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Roughly speaking the idea is to use the approximation scheme, and approximate the
marginal probabilities

9 w16+ 1,0 ) w)
G(e.w)] G2 w)

up to a sufficient accuracy. Then we sample one of the sets G(€, (¢;,u_;)) or G((¢; +
1,£_;),u) according to these—sufficiently accurate—marginals, and keep applying this
procedure recursively. However, this procedure only gives a poly(1/e) dependence and
not the desired log(1/¢) dependence. This can be achieved by using a slightly different
version of the above in combination with rejection sampling. See, e.g., [53] for this idea
in the context of (approximately) sampling and counting matchings from a given graph.
We then repeat this step until the lower and upper bound defining the intervals are
equal. Note that this step is only carried out a polynomial number of times. After this
we have, roughly speaking, sampled a degree sequence d with £ < d < u according to
the (approximately) correct marginal probability. After this we can use the approximate
sampler from [37] to sample from G(d) (or, e.g., simply the switch Markov chain).
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