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APPROXIMATE SAMPLING AND COUNTING OF GRAPHS1

WITH NEAR-REGULAR DEGREE INTERVALS∗2

GEORGIOS AMANATIDIS† AND PIETER KLEER‡3

Abstract. The approximate uniform sampling of graphs with a given degree sequence is a well-4
known, extensively studied problem in theoretical computer science and has significant applications, e.g.,5
in the analysis of social networks. In this work we study a generalization of the problem, where degree6
intervals are specified instead of a single degree sequence. We are interested in sampling and counting7
graphs whose degree sequences satisfy the corresponding degree interval constraints. A natural scenario8
where this problem arises is in hypothesis testing on networks that are only partially observed. We9
provide the first fully polynomial almost uniform sampler (FPAUS) as well as the first fully polynomial10
randomized approximation scheme (FPRAS) for sampling and counting, respectively, graphs with near-11
regular degree intervals, i.e., graphs in which every node has a degree from an interval not too far away12
from a given r ∈ N. In order to design our FPAUS, we rely on various state-of-the-art tools from13
Markov chain theory and combinatorics. In particular, by carefully using Markov chain decomposition14
and comparison arguments, we reduce part of our problem to the recent breakthrough of Anari, Liu, Oveis15
Gharan, and Vinzant (2019) on sampling a base of a matroid under a strongly log-concave probability16
distribution, and we provide the first non-trivial algorithmic application of a breakthrough asymptotic17
enumeration formula of Liebenau and Wormald (2017). As a more direct approach, we also study a18
natural Markov chain recently introduced by Rechner, Strowick and Müller-Hannemann (2018), based19
on three local operations—switches, hinge flips, and additions/deletions of an edge. We obtain the first20
theoretical results for this Markov chain, showing it is rapidly mixing for the case of near-regular degree21
intervals of size at most one.22
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1. Introduction. The (approximate) uniform sampling and counting of graphs with25

given degrees has received a lot of attention during the last few decades, see, e.g., [1,26

4, 5, 7, 9, 13–17, 20, 22, 24–28, 30, 37, 41, 42, 44, 47–49, 56]. Given a degree sequence d =27

(d1, . . . , dn), the goal of approximate uniform sampling is to design a randomized algorithm28

that outputs a labelled simple undirected graph G with degree sequence d, according to29

a distribution that is close to the uniform distribution over the set of all graphs with30

this degree sequence. Such an algorithm is called an approximate (uniform) sampler.31

Approximate samplers find applications in fields such as complex network analysis, where32

they serve as null models for hypothesis testing. Consider, e.g., a social network with33

edges representing friendships or relationships. One might see a very high number of34

edges between a certain group of nodes and, based on this, conjecture that these nodes35

form a community of friends or colleagues. In order to test this hypothesis, one would like36

to be able to generate graphs with similar characteristics as the observed network and,37

based on these generated samples, decide how likely it is that there is a high number of38

edges between that particular group of nodes by chance alone. Here the characteristic of39

interest is the degree sequence of the observed network [52]. For determining how many40

samples are sufficient in order to test the hypothesis, we also need to be able to count the41
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Fig. 1. Left to right: switch on v, w, x, y; hinge flip on v, w, x; edge addition/deletion on v, w.

number of graphs with the given degree sequence.42

In practice, it is not always possible to have exact knowledge of the degree sequence of43

an observed network, due to erroneous measurements. In order to overcome this, there is44

a need for more robust null models. One such model was proposed by Rechner, Strowick45

and Müller-Hannemann [54]. Instead of a given degree sequence d, the null models now46

consist of all graphs with given degree interval constraints [ℓi, ui], for i ∈ [n] = {1, . . . , n}.47

In this case we say that a graph G has degrees in the interval [ℓ,u] with ℓ = (ℓ1, . . . , ℓn)48

and u = (u1, . . . , un). The algorithmic task at hand then becomes to develop algorithms49

for sampling and counting graphs from the set G(ℓ,u) of all graphs satisfying the interval50

constraints. An intuitive two-step approach for solving this problem is to first sample51

according to the correct proportional distribution a degree sequence d = (d1, . . . , dn) from52

the set of all degree sequences satisfying the interval constraints ℓi ≤ di ≤ ui, for i ∈ [n],53

and then sample uniformly at random a graphical realization from the set G(d) of all54

graphs with degree sequence d. A crucial difficulty that arises here is that the probability55

with which each degree sequence d needs to be sampled in the first step is not obvious.56

This probability should be proportional to the number |G(d)| which is not known in57

general.58

To make the problem more concrete, we give a brief example in the context of the59

social network application that we started out with. Suppose we have a partially observed60

network. For a given node i, we let ℓi be the number of observed edges adjacent to i,61

δi the number of missing observations and, thus, ui = n − 1 − (ℓi + δi) the number of62

observed non-edges (i.e., pairs {i, j} for which we know there is no edge between nodes i63

and j). There are now two extreme cases: either all missing observations are non-edges,64

meaning that node i has degree ℓi, or all missing observations are indeed edges, meaning65

that node i has degree ui. Hence, we are interested in sampling (and counting) graphs66

for which each node i has a degree in the interval [ℓi, ui], for every i ∈ [n]. In this and67

other similar settings, these problems seem to be natural and elegant generalizations of68

the classic graph sampling and counting problems.69

Towards sampling graphs with given degree intervals, Rechner et al. [54] introduced a70

Markov chain based on three simple operations: switches, hinge flips and additions/dele-71

tions. The chain in each step selects one of these operations uniformly at random and72

performs it, if possible. We call this chain the degree interval Markov chain. The oper-73

ations are shown in Figure 1 and a formal definition is given in Section 2. These three74

operations are the ones described by Coolen et al. [14] as the most commonly used oper-75

ations in Markov Chain Monte Carlo algorithms for the generation of simple undirected76

graphs in practice. This serves as additional motivation for rigorously studying Markov77

chains based on these operations. We will also be interested in the switch-hinge flip78

Markov chain that only uses the switch and hinge flip operations. The hinge flip and79

switch operations are of particular interest both in theory and in practice as they preserve80

the number of edges and the degree sequence of a graph, respectively.81

1.1. Our contributions. In this work, we give the first efficient approximate sam-82

pler and approximate counter for graphs with so-called near-regular degree intervals.83
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SAMPLING OF GRAPHS WITH NEAR-REGULAR DEGREE INTERVALS 3

Near-regularity here refers to the fact that all graphs have degrees which are close to a84

common value up to a sublinear margin. To be more precise, we show that there is a fully85

polynomial almost uniform sampler (FPAUS) and a fully polynomial randomized approxi-86

mation scheme (FPRAS) (for formal definitions see Section 2), in case the degree intervals87

are close to a common value r = r(n) ∈ N, i.e., if [ℓi, ui] ⊆ [r − min{r, n − r − 1}α, r +88

min{r, n− r − 1}α] for some 0 < α ≤ 1
2 .

1 We also need a minor technical assumption on89

the value of r in order to avoid some (arguably not very interesting) boundary cases. The90

main result of this work is Theorem 1.1 below.91

For vectors a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn, we write a ≤ b if ai ≤ bi for92

all i ∈ [n]. Given ℓ,u ∈ Nn, by G(ℓ,u) we denote the set of all graphs G whose degree93

sequence d(G) satisfies ℓ ≤ d(G) ≤ u.94

Theorem 1.1. Let 0 < α ≤ 1/2 and 0 < σ < 1 be fixed. Let r = r(n) with 2 ≤ r ≤95

(1 − σ)n. If for every node i ∈ [n] it holds that [ℓi, ui] ⊆ [r − min{r, n − r − 1}α, r +96

min{r, n − r − 1}α], then there is an FPAUS for the approximate uniform sampling of97

graphs from G(ℓ,u) and an FPRAS for approximating |G(ℓ,u)|.98

For given degree intervals [ℓ,u] and m ∈ N, we write Gm(ℓ,u) for the set of graphs G99

whose degree sequence d(G) satisfies ℓ ≤ d(G) ≤ u and
∑

i di = 2m. By using reductions100

between approximate sampling and approximate counting (see Appendix B) we get that101

to prove Theorem 1.1 it suffices to show the existence of an FPAUS for sampling from102

Gm(ℓ,u). To this end, we show that the switch-hinge flip Markov chain is rapidly mixing103

under the conditions of Theorem 1.1. This result is summarized in Theorem 1.2.104

Theorem 1.2. Let α, σ, and r be as in Theorem 1.1. If [ℓi, ui] ⊆ [r−min{r, n− r−105

1}α, r+min{r, n−r−1}α], for all i ∈ [n], and 2m ∈
[∑

i ℓi,
∑

i ui

]
, then the switch-hinge106

flip Markov chain is rapidly mixing on Gm(ℓ,u).107

A more direct approach for sampling from G(ℓ,u) than the one behind Theorem108

1.1 would be to use the degree interval Markov chain. An interesting open question is109

whether this chain is rapidly mixing under the assumptions in Theorem 1.1 (or under110

weaker assumptions). As a first step into this direction, we show rapid mixing when all111

the degree intervals have size at most one, i.e., when ui − 1 ≤ ℓi ≤ ui.112

Theorem 1.3. Let α, σ, and r be as in Theorem 1.1. If [ℓi, ui] ⊆ [r−min{r, n− r−113

1}α, r +min{r, n− r − 1}α] and ui − 1 ≤ ℓi ≤ ui, for all i ∈ [n], then the degree interval114

Markov chain is rapidly mixing on G(ℓ,u).115

The technical novelty of our work lies in the highly nontrivial combination of state-116

of-the-art tools from Markov chain theory and combinatorics. An overview of our proof117

approach is given in Section 3. It relies on Markov chain decomposition and comparison118

techniques of Martin and Randall [46], rapid mixing results for the switch Markov chain119

by Amanatidis and Kleer [1], the breakthrough work of Anari et al. [2] on strongly log-120

concave probability distributions, and the work of Liebenau and Wormald [44] regarding121

asymptotic enumeration formulas for the number of near-regular graphs.122

Remark 1.4. Our theorems—and all the building blocks used in their proofs—are123

shown to be true for all n ≥ n0, where n0 ∈ N is a constant that depends on the other124

constant parameters involved. It is straightforward that for n < n0 our results are always125

1The parameter α models the maximum length of the degree intervals that we allow; this length should
be relatively small compared to r. Note that an assumption of this kind is to be expected. Otherwise,
we would be also solving the problem of (approximately) uniformly sampling a graph with any given
degree sequence, which is a long-standing open problem. Furthermore, one could work in an additional
polylogarithmic factor, based on the nϵ factor in Theorem 2.6, but we leave this to the interested reader.
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true.126

1.2. Related work. There is an extensive literature on the problem of sampling127

graphs with a given degree sequence, particularly on Markov Chain Monte Carlo (MCMC)128

methods. Jerrum and Sinclair [37] provide an approximate uniform sampler and an ap-129

proximate counter for P -stable degree sequences, for which the number of graphical re-130

alizations of a given degree sequence does not vary too much under small perturbations131

of the sequence. A first step beyond P -stability was recently made by Erdős et al. [21].132

Jerrum, Sinclair and Vigoda [39] provide an approximate sampler (and counter) for arbi-133

trary bipartite degree sequences by reducing the problem to sampling perfect matchings134

in an appropriate graph representation of the given instance. The work of Bézakova,135

Bhatnagar and Vigoda [6] provides a more direct approach. There are also various non-136

MCMC methods available in the literature, see, e.g., [4, 27, 28, 42, 48, 56]. One MCMC137

approach that has received considerable attention is the switch Markov chain, based on138

the switch operation in Figure 1. This is a simpler, more direct approach than reducing139

the problem to sampling a perfect matching from a large auxiliary graph. The chain was140

first analyzed by Kannan, Tetali and Vempala [41], and has been extensively studied, see,141

e.g., [1,15,22,49]. The state of the art on its mixing time is the work of Erdős et al. [22],142

who show that the chain is rapidly mixing for all P -stable degree sequences.143

Rechner et al. [54] introduce the degree interval Markov chain for the bipartite version144

of the problem of sampling graphs with given degree intervals and show its irreducibility145

for arbitrary degree intervals. Very recently, Erdős, Mezei and Miklós [23] generalized146

our Theorem 1.3 to intervals of length 1 centered around P -stable degree sequences. We147

consider the fact that their meticulous direct approach does not go beyond length 1 as148

another indication of the difficulty of directly arguing about the degree interval Markov149

chain.150

The decomposition theorem of Martin and Randall [46] we use (Theorem 2.4), based151

on the decomposition method of Madras and Randall [45], also appeared in an unpub-152

lished manuscript by Caracciolo, Pelissetto and Sokal [12]. Erdős et al. [25] use a related153

decomposition approach for sampling balanced joint degree matrix realizations.154

The result of Liebenau and Wormald [44] builds on a long line of work on asymptotic155

expressions for the number of graphs with given degrees. Indicatively, Bender and Canfield156

[5] gave a formula for bounded degree sequences and Bollobás [9] for r-regular sequences157

with r = O(
√

log(n)). McKay and Wormald gave expressions both for sparse sequences158

with maximum degree o(n1/2) [48] and for a certain dense regime [47].159

Anari et al. [2], in a breakthrough recent work, gave the first polynomial time algo-160

rithm for approximate sampling a base of a matroid under a strongly log-concave proba-161

bility distribution. The theory of strongly log-concave (or Lorentzian) polynomials dates162

back to the work of Gurvits [32], and was further developed by Anari, Oveis Gharan and163

Vinzant [3] and Brändén and Huh [11]. In another recent work, Kleer [43] made a con-164

nection between asymptotic enumeration formulas and strongly log-concave polynomials165

for a case of sparse bipartite graphs where only the degrees on one side of the bipartition166

can vary.167

1.3. Outline. In Section 2 we provide all the necessary preliminaries. We then con-168

tinue with a proof overview for Theorems 1.2 and 1.3 in Section 3. For readers with some169

familiarity regarding Markov chains and some intuition about degree sequence problems,170

it should be possible to go through (most of) Section 3 without delving into (the admit-171

tedly long) Section 2 first. As one of the main building blocks of the proof of Theorem172

1.2, we show in Section 4 that the asymptotic formula of Liebenau and Wormald [44],173

when restricted to the degree interval regime of Theorem 1.1, approximately gives rise174
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to a so-called strongly log-concave polynomial, a result which might be of independent175

interest. Section 5 contains all of the remaining arguments about the Markov chains used176

in our proofs.177

2. Preliminaries. We need a variety of preliminaries for this work, that are collected178

in this section (except for the details on the modified log-Sobolev constant, which are179

deferred to Appendix A.)180

2.1. M-convexity and strongly log-concave polynomials. We start with the181

notion of M -convexity for functions [50, 51]. Let ν : Zn
≥0 → R ∪ {∞} be a function. The182

effective domain of ν is given by dom(ν) = {α ∈ Zn
≥0 : v(α) < ∞}. The function ν is183

called M ♯-convex if it satisfies the (symmetric) exchange property : For any α,β ∈ dom(ν)184

and any i ∈ [n] satisfying αi > βi, there exists a j ∈ [n] such that αj < βj and185

ν(α) + ν(β) ≥ ν(α− ei + ej) + ν(β + ei − ej) ,(2.1)186

where ek is defined as ek(ℓ) = 1 if k = ℓ and ek(ℓ) = 0 otherwise. The function ν is called187

M -convex if it is M ♯-convex and there is an d ∈ N such that dom(ν) ⊆ {α :
∑

i αi = d}.188

A subset C ⊆ Zn
≥0 is called M -convex if the indicator function νC : Zn

≥0 → R ∪ {∞},189

given by νC(α) = 1 if α ∈ C and νC(α) = 0 otherwise, is M -convex.190

We write R[x1, . . . , xn] to denote the set of all polynomials in x1, . . . , xn with real191

coefficients. We consider polynomials p ∈ R[x1, . . . , xn] with non-negative coefficients. For192

a vector β = (β1, . . . , βn) ∈ Zn
≥0, we write ∂

β =
∏n

i=1 ∂
βi
xi

to denote the partial differential193

operator that differentiates a function βi times with respect to xi for i = 1, . . . , n. For194

α ∈ Zn
≥0, we write xα to denote

∏n
i=1 x

αi
i . Furthermore, we write α! =

∏
i αi!, and for195

α,κ ∈ Zn
≥0 with αi ≤ κi for all i, we write

(
κ
α

)
=

∏n
i=1

(
κi

αi

)
. For a constant c ∈ N with196

c ≥ maxi αi, we write
(
c
α

)
=

∏n
i=1

(
c
αi

)
. Let κ ∈ Zn

≥0 and the Cartesian product K =197

×i{0, . . . , κi}. Let w : K → R≥0 be a weight function. The generating polynomial of w is198

gκ(x) =
∑

α∈K w(α)xα. The support of gκ is the set supp(gκ) = {α ∈ K : w(α) > 0}.199

The polynomial gκ is called d-homogeneous if |α| =
∑

i αi = d for all α ∈ supp(gκ).200

Definition 2.1 (Strong log-concavity [32]). A polynomial p ∈ R[x1, . . . , xn] with non-201

negative coefficients is called log-concave on a subset S ⊆ Rn
≥0 if its Hessian ∇2 log(p) is202

negative semidefinite on S. A polynomial p is called strongly log-concave (SLC) on S if203

for any β ∈ Nn, we have that ∂βp is log-concave.204

For convenience, the zero polynomial is defined to be SLC always. Finally, if the generating205

polynomial gκ is SLC, then the probability distribution π(α) ∝ w(α) is called SLC as206

well. We next state some properties of SLC polynomials that will be used in this work.207

Proposition 2.2 ( [11]). If p ∈ R[x1, . . . , xn] is SLC and γ ∈ R≥0, then γp is SLC.208

Proposition 2.3 (Following from [11]).2 Let ν : Zn
≥0 → R ∪ {∞} with dom(ν) ⊆209

{0, 1, . . . , n− 1}n and let210

(2.2) fκ(x) =
∑

α∈dom(ν)

1

α!
e−ν(α)xα and gκ(x) =

∑
α∈dom(ν)

(
γ

α

)
e−ν(α)xα ,211

be 2m-homogeneous polynomials, where γ = (n− 1, . . . , n− 1). If ν is M -convex, then fκ212

and gκ are SLC.213

2 Our gκ is a slight variant the corresponding function of Theorem 3.14 of [11] with q = 1/e. The
statement for this gκ follows from a simple transformation of fκ that preserves strong log-concavity,
namely the operator that maps xα to α!

(γ
α

)
xα [10].
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6 G. AMANATIDIS, P. KLEER

2.2. Markov chains and mixing times. Let M = (Ω, P ) be an ergodic, time-214

reversible Markov chain with state space Ω, transition matrix P , and stationary distri-215

bution π. We write P t(x, ·) for the distribution over Ω at time step t with initial state216

x ∈ Ω. The total variation distance of this distribution from stationarity at time t with217

initial state x is218

∆x(t) =
1

2

∑
y∈Ω

∣∣P t(x, y)− π(y)
∣∣ ,219

and the mixing time of M is220

τ(ϵ) = max
x∈Ω

τx(ϵ), where τx(ϵ) = min{t : ∆x(t
′) ≤ ϵ for all t′ ≥ t} for ϵ > 0 .221

The chain M is said to be rapidly mixing if its mixing time can be upper bounded by a222

polynomial in ln(|Ω|/ϵ).223

It is well-known that the matrix P only has real eigenvalues 1 = λ0 > λ1 ≥ · · · ≥224

λ|Ω|−1 > −1. We may replace P by (P +I)/2 to make the chain lazy, and hence guarantee225

that all its eigenvalues are non-negative. In that case, by Gap(P ) = 1− λ1 we denote the226

spectral gap of P . In this work all Markov chains involved are lazy. It is well known that227

one can use the spectral gap to give an upper bound on the mixing time of Markov chain.228

That is, it holds that229

τx(ϵ) ≤
1

2(1− λ1(P ))

(
log π(x)−1 + 2 log

( 1

2ϵ

))
,230

as it follows directly from Proposition 1 in [55]. Furthermore, if one has two Markov231

chains M = (Ω, P ) and M′ = (Ω, P ′) both with stationary distribution π and there are232

constants c1, c2 such that c1P (x, y) ≤ P ′(x, y) ≤ c2P (x, y) for all x, y ∈ Ω with x ̸= y.233

Then (see, e.g., [46]) it follows that234

c1 Gap(P ) ≤ Gap(P ′) ≤ c2 Gap(P ).(2.3)235

The state space graph of the chain M is the directed graph G = G(M) with node set236

Ω that contains the edges (x, y) ∈ Ω× Ω for which P (x, y) > 0 and x ̸= y. that contains237

an edge (x, y) ∈ Ω × Ω if and only if P (x, y) > 0 and x ̸= y (denoted by x ∼ y). Let238

P =
⋃

x̸=y Pxy, where Pxy is the set of simple paths between x and y in the state space239

graph G. A flow f in Ω is a function P → [0,∞) satisfying
∑

p∈Pxy
f(p) = π(x)π(y)240

for all x, y ∈ Ω, x ̸= y. The flow f can be extended to the oriented edges e = (z, z′)241

of G by setting f(e) =
∑

p∈P:e∈p f(p), so that f(e) is the total flow routed through242

e ∈ E(G). Let length(f) = maxp∈P:f(p)>0 |p| be the length of a longest flow-carrying243

path, and let load(e) = f(e)/Q(e) be the load of the edge e, where Q(e) = π(x)P (x, y)244

for e = (x, y). If load(f) = maxe∈E(G) load(e) is the maximum load of the flow, it holds245

that Gap(P )−1 ≤ load(f) length(f) (see, e.g, [55]).246

We will sometimes also work (implicitly) with the so-called modified log-Sobolev con-247

stant ρ = ρ(P ). This constant can also be used to upper bound the mixing time of a248

Markov chain. In particular, it holds that249

τx(ϵ) ≤
1

ρ(P )

(
log log π(x)−1 + log

(
1

2ϵ2

))
,250

see, e.g., [8]. Details on ρ(P ) are given in Appendix A.251
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2.2.1. Markov chain decomposition. We describe a Markov chain decomposition252

of Martin and Randall [46] that follows the decomposition framework of Madras and253

Randall [45]. Let M = (Ω, P ) be a Markov chain and
⋃q

i=1 Ωi be a partition of Ω for some254

q ∈ N. We define the restriction Markov chains Mi = (Ωi, PΩi) as follows. For x ∈ Ωi we255

let PΩi(x, y) = P (x, y) if x, y ∈ Ωi with x ̸= y, and PΩi(x, x) = 1−
∑

y∈Ωi,y ̸=x PΩi(x, y).256

Furthermore, let ∂i(Ωj) = {y ∈ Ωj : ∃x ∈ Ωi with P (x, y) > 0} be the set of elements in257

Ωj that can be reached with positive probability in one transition of the chain M from258

some element in Ωi.259

Let MMH = ([q], PMH) be (the Metropolis-Hastings variant of) the projection Markov260

chain on [q] = {1, . . . , q}. That is, PMH(i, j) > 0 if and only if ∂i(Ωj) ̸= ∅ and, in that261

case, for i ̸= j,262

(2.4) PMH(i, j) =
1

2∆
min

{
1,

π(Ωj)

π(Ωi)

}
,263

where ∆ is the maximum out-degree in the state space graph of MMH, while264

PMH(i, i) = 1−
∑

j∈[q] {i}

PMH(i, j) .265

Note that MMH has stationary distribution πMH(i) = π(Ωi) for i ∈ {1, . . . , q} and a266

holding probability of at least 1/2. We will use the following decomposition theorem267

from [46].268

Theorem 2.4 ( [46], Corollary 3.3). Suppose there exist β > 0 and γ > 0 such that269

P (x, y) ≥ β for all x, y that are adjacent in G(M), and π(∂i(Ωj)) ≥ γπ(Ωj) for all i, j270

that are adjacent in G(MMH). Then Gap(P ) ≥ βγ ·Gap(PMH) ·mini=1,...,q Gap(PΩi).271

2.2.2. Load-exchange Markov chain. In this work, we will need a weighted ver-272

sion of the base-exchange Markov chain studied by Anari et al. [2]. Let π be a strongly273

log-concave probability distribution with π(α) ∝ w(α) whose support forms an M -convex274

set C. We define the (unit) load-exchange Markov chain on C ⊆ Zn
≥0:275

Assuming α ∈ C is the current state of the (unit) load-exchange Markov chain:

• Select an element i ∈ [n] uniformly at random.

• Pick an α′ ∈ C with α′ ≥ α− ei with probability ∝ w(α′) among all such α′.

Similarly to the base-exchange Markov chain [2], the above procedure defines an ergodic,276

time-reversible Markov chain with stationary distribution π over C given by π(α) ∝ w(α).277

Using the notion of polarization for SLC polynomials [11], in combination with a simple278

Markov chain comparison argument (as in Appendix A.1), Corollary 2.5 can be shown.279

The proof (which is implicitly given in [43]), roughly speaking, uses a reduction to the280

case of matroids, after which a result of Cryan et al. [18] gives the desired result.281

Corollary 2.5. Let κ = (n, . . . , n) and suppose that the d-homogeneous polynomial282

gκ(x) =
∑

α∈K w(α)xα ∈ R[x1, . . . , xn] is SLC. Then the transition matrix P of the load-283

exchange Markov chain on supp(gκ) satisfies ρ(P ) ≥ 1/(n2d), where ρ(P ) is the modified284

log-Sobolev constant of P .285

2.2.3. Degree intervals and the switch-hinge flip Markov chain. A sequence286

of non-negative integers d = (d1, . . . , dn) is called a graphical degree sequence if there287

exists a simple, undirected, labeled graph G = (V,E) on nodes V = [n], where node i288
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has degree di, for i ∈ V . Such a graph is called a (graphical) realization of d. By G(d)289

we denote the set of all graphical realizations of d, while by d(G) we denote the degree290

sequence of a graph G. For given vectors ℓ = (ℓ1, . . . , ℓn) and u = (u1, . . . , un) of non-291

negative integers, we define G(ℓ,u) =
⋃

ℓ≤d≤u G(d) as the set of all graphical realizations292

G satisfying ℓ ≤ d(G) ≤ u, meaning ℓi ≤ di(G) ≤ ui for all i ∈ V . For m ∈ N,293

we define Gm(ℓ,u) as the set of all graphical realizations G ∈ G(ℓ,u) with precisely294

m edges, i.e., with
∑

i di(G) = 2m. Finally, we define the set of all degree sequences295

satisfying the degree interval constraints, and whose total sum of the degrees equals 2m,296

as Dm = {d : ℓ ≤ d ≤ u and
∑

i di = 2m} .297

A fully polynomial almost uniform sampler (FPAUS) for sampling graphs with given298

degree intervals [ℓ,u] is an algorithm that, for any ϵ > 0, outputs a graph G ∈ G(ℓ,u)299

according to a distribution π̃ such that dTV(π, π̃) ≤ ϵ, where π is the uniform distribution300

over G(ℓ,u), and runs in time polynomial in n and log(1/ϵ). A fully polynomial randomized301

approximation scheme (FPRAS) for the problem is an algorithm that, for every ϵ, δ > 0,302

outputs |G(ℓ,u)| up to a multiplicative factor (1 + ϵ) with probability at least 1 − δ, in303

time polynomial in n, 1/ϵ and log(1/δ). Analogous definitions hold for the set Gm(ℓ,u)304

for a given m.305

First we define the switch-hinge flip Markov chain to uniformly sample elements from306

Gm(ℓ,u) based on two of the local operations of Figure 1.307

Assuming G ∈ Gm(ℓ,u) is the current state of the switch-hinge flip Markov chain:

• With probability 2/3, do nothing.

• With probability 1/6, try to perform a switch operation: Choose an ordered
tuple of distinct nodes (v, w, x, y) uniformly at random. If {w, v}, {x, y} ∈
E(G), and {y, v}, {x,w} /∈ E(G), then delete {w, v}, {x, y} from E(G), and add
{y, v}, {x,w} to E(G).

• With probability 1/6, try to perform a hinge flip operation: Choose an ordered
tuple of distinct nodes (v, w, x) uniformly at random. If {w, v} ∈ E(G) and
{w, x} /∈ E(G), then delete {w, v} from and add {w, x} to E(G) if the resulting
graph is in Gm(ℓ,u).

Similarly, we define the degree interval Markov chain of Theorem 1.3, that can also308

perform addition/deletion operations.309

Assuming G ∈ G(ℓ,u) is the current state of the degree interval Markov chain:

• With probability 1/2, do nothing.

• Otherwise:

– With probability 1/6, try to perform a switch operation.

– With probability 1/6, try to perform a hinge flip operation.

– With probability 1/6, try to perform an addition/deletion operation: select
an ordered tuple of distinct nodes (v, w) uniformly at random. If {v, w} ∈
E(G), then delete it from E(G) if the resulting graph is in G(ℓ,u). Similarly,
if {v, w} /∈ E(G), then add it to E(G) if the resulting graph is in G(ℓ,u).

Due to the symmetry of the transition probabilities, it is not hard to see that both310

chains are time-reversible with respect to the uniform distribution. Also because of the311

holding probability of at least 1/2, the chains are aperiodic. Finally, by a simple counting312
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argument, there exists polynomials t(n), t′(n) such that PG(ℓ,u)(G,H) ≥ 1/t(n) for all313

G,H ∈ G(ℓ,u) with PG(ℓ,u)(G,H) > 0 and PGm(ℓ,u)(G,H) ≥ 1/t′(n) for all G,H ∈314

Gm(ℓ,u) with PGm(ℓ,u)(G,H) > 0 respectively. The irreducibility of the chain (i.e., the315

fact that its state space is strongly connected) for the intervals of interest will follow316

implicitly from our analysis, in particular Lemmata 5.1 and 5.3.317

2.3. Near-regular degree sequences. Let r ≥ 1 be a given integer. A degree318

sequence d is said to be r-regular if di = r for i ∈ [n]. For a fixed 0 ≤ α < 1 we say that a319

degree sequence d is (α, r)-near-regular if maxi |di − r| ≤ rα. When we do not refer to a320

specific (α, r) pair, we just write about near-regular degree sequences. Note that r above321

can be a function of the length of a degree sequence. It will be convenient to refer to the322

class F(α,r)[n] of (α, r)-near-regular degree sequences of length at least n.323

We state some properties of near-regular degree sequences that we will use later. The324

most important result is Theorem 2.6 below. We use a slightly different formulation than325

that of [44].3 For any degree sequence d = (d1, . . . , dn), define326

ξ =
∑
i

di/n, µ = ξ/(n− 1), and χ =
∑
i

(di − ξ)2/(n− 1)2 .327

Roughly speaking, the theorem states that if the distance between the degree sequence d328

and the ξ-regular sequence of the same size is not too large, then the expression in (2.5)329

is a good approximation for |G(d)|. The absolute constant α in Theorem 1.1 is mostly330

restricted by the ϵ in Theorem 2.6.331

Theorem 2.6 (Liebenau and Wormald [44]). There exists an absolute constant ϵ > 0332

such that for every sequence of degree sequences
(
d(n)

)
n∈N with ξn even, maxi∈[n] |d

(n)
i −333

ξ| = o
(
nϵ min{ξ, n− ξ − 1}1/2

)
, and n2 min{µ, 1− µ} → ∞, it holds that334

(2.5) |G(d)| ∼ w̄(d) :=
√
2 exp

(
1

4
− χ2

4µ2(1− µ)2

)(
µµ(1− µ)(1−µ)

)n(n−1)
2

∏
i

(
n− 1

d
(n)
i

)
.335

To be precise, there exists a non-negative function δ(n) with δ(n) → 0 as n → ∞, so336

that the relative error in “∼” is bounded above in absolute value by δ(n) for every such337 (
d(n)

)
n∈N.338

The growth condition o
(
nϵ min{ξ, n− ξ − 1}1/2

)
in Theorem 2.6 gives rise to our339

restrictions on [ℓi, ui] in Theorem 1.1. In particular, observe that under the condition340

that 0 ≤ α ≤ 1/2, it holds that min{r, n − r − 1}α = o
(
nϵ min{ξ, n− ξ − 1}1/2

)
with ϵ341

and ξ as in the statement of Theorem 2.6.342

Note that the existence of the asymptotic formula (2.5) suggests a straightforward343

approach for approximating the number of graphs in G(ℓ,u): one could sum the formulae344

for all sequences d that satisfy ℓ ≤ d ≤ u and that have an even sum. Nevertheless,345

this observation does not imply the existence of a FPRAS for the task of approximate346

counting. This is because we would need to sum superpolynomially many terms, even if347

we considered the (weighted) sum over sorted sequences, as long as max(ui − ℓi) = ω(1).348

In what follows, we also rely on the notion of strong stability introduced in [1] (and349

implicitly already used in [35]). A combinatorial definition of this notion is given below.350

It essentially states that any graph with a slightly perturbed degree sequence can easily351

be transformed into a graph with the desired degree sequence by flipping the edges on a352

short alternating path. An alternating (u, v)-path in a graph G is a (possibly non-simple)353

3 Our formulation is in line with the note after Conjecture 1.2 in [44].
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edge-disjoint (u, v)-path (in the corresponding complete graph) alternating between edges354

and non-edges of G, starting with an edge adjacent to u, and ending with a non-edge355

adjacent to v; recall that a non-edge is an edge contained in the complement of E(G).356

If u = v we obtain an alternating cycle. To facilitate the definition of strong stability,357

let G′(d) =
⋃

d′ G(d′) with d′ ranging over all sequences d′ satisfying
∑

i d
′
i =

∑
i di and358 ∑

i |d′i − di| = 2, i.e., there exist κ, λ such that d′κ = dκ + 1, d′λ = dλ − 1, and d′i = di359

otherwise.360

Definition 2.7 (Strong stability). A class D of degree sequences is k-strongly stable361

if for all d ∈ D and all G ∈ G′(d), there is an alternating (u, v)-path in G of length at362

most k, where u and v are the unique nodes with degG(u) = du+1 and degG(v) = dv − 1.363

We call D strongly stable if there exists a constant k ∈ N for which D is k-strongly stable.364

Proposition 2.8. Let 0 < α ≤ 1/2 be a constant and assume that 2 ≤ r(n) ≤ (1−σ)n365

for some constant 0 < σ < 1 and n ∈ N. Then there exists some n1 ∈ N so that the class366

F(α,r)[n1] is 10-strongly stable.367

Proof. Let n ≥ n1 =
⌈
10/σ2

⌉
. It is then a matter of simple calculations to verify that368

the condition (dmax − dmin + 1)2 ≤ 4dmin(n− dmax − 1) is satisfied for all d ∈ F(α,r)[n1],369

where dmin and dmax are the minimum and maximum value of d, respectively. Sequences370

satisfying this condition are 10-strongly stable [1, 35].371

The following two results hold for the class F(α,r)[n1] of Proposition 2.8. Lemma 2.9372

essentially states that if an edge is present in some graphical realization, then there exists373

a short alternating cycle to obtain a graphical realization with the same degree sequence374

not containing that edge. As a result, the subset of realizations in G(d) containing a given375

edge and the set of realizations not containing it are polynomially related in size.376

Lemma 2.9. Let d ∈ F(α,r)[n1]. Suppose that G ∈ G(d) and let {u, v} ∈ E(G) (resp.377

{u, v} /∈ E(G)). Then there exists a graph G′ ∈ G(d) with {u, v} /∈ E(G′) (resp. {u, v} ∈378

E(G)) and E(G)△E(G′) is an alternating cycle of length at most 12. Similarly, suppose379

that {u,w}, {u, v} ∈ E(G). Then there exists a graph G′ ∈ G(d) with {u,w} ∈ E(G′) and380

{u, v} /∈ E(G′), and E(G)△E(G′) is an alternating cycle of length at most 12.381

Proof. Assume n ≥ n1 =
⌈
10/σ2

⌉
as in the proof of Proposition 2.8. Note that, in382

all cases below, the degree sequence d itself plays the role of being a perturbed degree383

sequence in the argument. By inspecting the proof of Proposition 2.8, this is allowed since384

n here is sufficiently large.385

For the first case of the first part (i.e., when {u, v} ∈ E(G)), let y be such that386

{y, u} /∈ E(G). Such a non-edge is guaranteed to exist, as n ≥ n1 > 2/σ and the387

maximum degree of any node will then be bounded away from n − 2. Also note that y388

has degree at least 2. By Proposition 2.8, we know that there exists some alternating389

(y, v)-path of length at most 10. Combining this path with the non-edge {y, u} and the390

edge {u, v}, results in an alternating cycle of length at most 12. Hence, if we flip all the391

edges on this alternating cycle, we obtain a G′ ∈ G(d) with the desired property.392

For the second case of the first part (i.e., when {u, v} /∈ E(G)), we pick a y such that393

{y, u} ∈ E(G). By Proposition 2.8, we consider some alternating (v, y)-path (of length at394

most 10). Combining this path with the edge {y, u} and the non-edge {u, v}, we again395

obtain an alternating cycle of length at most 12. By flipping this cycle, we get a G′ ∈ G(d)396

with the desired property.397

For the second part of the lemma, we make a similar, albeit more complicated, ar-398

gument. We distinguish two cases and then consider subcases depending on the relative399

position of the edge {u,w} with respect to some alternating path.400
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Case 1: there exists y such that {y, u}, {y, v} /∈ E(G). Consider such a node y. By Propo-401

sition 2.8, there exists an alternating (y, v)-path of length at most 10. A key observation402

here is that this alternating (y, v)-path might contain the edge {u,w}. Of course, if this is403

not true, we proceed like in the first case of the first part above. So assume that the alter-404

nating (y, v)-path does contain {u,w}. If {u,w} goes from w to u as we traverse the path405

from y to v, then by taking the remaining (u, v)-subpath of the alternating path together406

with the edge {u, v} we get an alternating cycle (of length at most 8), that contains the407

edge {u, v} but not the edge {u,w}. If {u,w} goes from u to w as we traverse the path408

from y to v, then by taking the (y, u)-subpath preceding {u,w} on the alternating path409

together with the edge {u, v} and the non-edge {y, v} we again get an alternating cycle410

(of length at most 10), that contains {u, v} but not {u,w}.411

In any case, by flipping the edges on the corresponding alternating cycle, we obtain412

a G′ ∈ G(d) with the desired property.413

Case 2: for every y such that {y, u} /∈ E(G) we have {y, v} ∈ E(G). Consider a node414

x such that {x, v} /∈ E(G). Given the assumption of the current case, it must be that415

{x, u} ∈ E(G). By Proposition 2.8, there exists an alternating (x, u)-path of length at416

most 10. If the edge {u,w} is not contained in this alternating path, then the whole path417

together with the non-edge {x, v} and the edge {u, v} is an alternating cycle (of length418

at most 12) that contains {u, v} but not {u,w}. Now, assume that the alternating (x, u)-419

path contains {u,w}. If {u,w} goes from u to w as we traverse the path from x to u, then420

by taking the (x, u)-subpath preceding {u,w} on the alternating path together with the421

edge {u, v} and the non-edge {x, v} we get an alternating cycle (of length at most 8), that422

contains {u, v} but not {u,w}. Finally, if {u,w} goes from w to u as we traverse the path423

from x to u, then by taking the remaining (u, u)-subpath of the alternating path together424

with the edges {u, v}, {x, u} and the non-edge {x, v}, we again get an alternating cycle425

(of length at most 10), that contains the edge {u, v} but not the edge {u,w}.426

In all subcases, by flipping the edges on the corresponding alternating cycle, we obtain427

a G′ ∈ G(d) with the desired property.428

Furthermore, the switch Markov chain is rapidly mixing for the class F(α,r)[n1]. This429

follows directly from [1] where it is shown that the switch Markov chain is rapidly mixing430

for all strongly stable classes of degree sequences. In particular, we will use the following431

result.432

Corollary 2.10 (Follows from [1]). Let q(n) ≥ 2 be a given polynomial and consider433

the lazy switch Markov chain M = (G(d), PG(d)) for some d ∈ F(α,r)[n1] that proceeds as434

follows: For a given G ∈ G(d)435

• with probability 1− 1/q(n) do nothing, and436

• with probability 1/q(n), try to perform a switch operation.437

Then there exists a polynomial p(n), such that for any d ∈ F(α,r)[n1] we have Gap(PG(d))438

≥ 1/p(n).4439

3. Proof approach overview. In this section we give a high-level overview of the440

proofs of Theorems 1.2 and 1.3. The idea is to decompose the degree interval Markov441

chain twice, using the addition/deletion and switch graph operations in Figure 1. Note442

that the second decomposition step suffices for proving Theorem 1.2, but both of them443

are needed in order to prove Theorem 1.3.444

We first decompose G(ℓ,u) based on the addition/deletion operation. Every part445

4 Note that PG(d) depends on r(n).
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of the decomposition corresponds to a set Gm(ℓ,u) containing all graphs respecting the446

degree intervals [ℓ,u] and having exactly m edges, for some m. That is, there is a one-to-447

one correspondence between the possible values of m, and the parts of the decomposition.448

The Markov chain decomposition result of Theorem 2.4 tells us that if the switch hinge-449

flip chain is rapidly mixing for every m, and if it relatively “easy” to move between the450

different parts Gm(ℓ,u) by means of additions/deletions, then the degree interval chain451

is rapidly mixing on G(ℓ,u). In the second step we carry out a similar decomposition,452

but now based on the hinge flip operation. That is, for a given m we decompose Gm(ℓ,u)453

in the sets G(d) for all sequences d which satisfy the interval constraints, and whose454

degrees sum up to 2m. If the switch chain is rapidly mixing on every G(d), and we can455

move “easily” between the sets G(d) using hinge flip operations, then the switch hinge-flip456

Markov chain on Gm(ℓ,u) is also rapidly mixing. We continue with a formalization of457

these statements.458

Let T = {m1, . . . ,m2}, where m1 and m2 are the minimum and maximum number459

of edges, respectively, that any G ∈ G(ℓ,u) could have; e.g., m1 = ⌈ 1
2

∑
i ℓi⌉ and m2 =460

⌊ 1
2

∑
i ui⌋. It is not hard to see that these two edge-counts are indeed achievable for461

the intervals we consider in Theorem 1.1; this follows for example from the fact that the462

asymptotic formula in Theorem 2.6 is nonzero in those cases.463

First we partition G(ℓ,u) into disjoint sets Gm(ℓ,u) form ∈ T . Recall that Gm(ℓ,u) =464 {
G ∈ G(ℓ,u) :

∑
i di(G) = 2m

}
. The restriction Markov chains MGm(ℓ,u) are essentially465

given by restricting the original chain to only perform switch and hinge flip operations466

that respect the degree intervals on graphs with precisely m edges. Applying Theorem467

2.4—with β and γ to be determined later—we get468

(3.1) Gap(P ) ≥ βγ ·Gap(PT ) · min
m∈T

Gap(PGm(ℓ,u)) ,469

where PT is the transition matrix of the Metropolis-Hastings projection chain on T , and470

P the transition matrix of the degree interval Markov chain. The goal will be to show that471

β and γ, as well as all the spectral gaps, can be lower bounded by an inverse polynomial472

function of the form 1/p(n) for some polynomial p(n). This means that Gap(P ) is lower473

bounded by an inverse polynomial as well, which is equivalent to showing that the degree474

interval Markov chain is rapidly mixing (see Section 2.2).475

Next we partition each Gm(ℓ,u) further into sets G(d) for sequences d in Dm(ℓ,u) =476 {
d :

∑
i di = 2m and ℓ ≤ d ≤ u

}
. For simplicity, we drop the arguments and write Dm477

instead of Dm(ℓ,u). For this part of the decomposition we get a Metropolis-Hastings478

projection chain on the set Dm. The restriction chains on MG(d) are the chains in which479

we essentially only apply switch operations on all graphs with degree sequence d. This is480

precisely the switch Markov chain with some polynomially bounded holding probability481

(as defined in Corollary 2.10). Using one more time Theorem 2.4 for each m—again, with482

βm and γm to be determined later—we have483

(3.2) Gap(PGm(ℓ,u)) ≥ βmγm ·Gap(PDm) · min
d∈Dm

Gap(PG(d)) ,484

where PDm is the transition matrix of the Metropolis-Hastings chain on Dm. This time,485

in order to show that the switch-hinge flip Markov chain is rapidly mixing, we need to486

bound γm, βm, and all the spectral gaps by an inverse polynomial function.487

Combining (3.1) and (3.2) we now get488

(3.3) Gap(P ) ≥ βγ ·Gap(PT ) · min
m∈T

{
βmγm ·Gap(PDm

) · min
d∈Dm

Gap(PG(d))
}
,489
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and in order to show that the degree interval Markov chain is rapidly mixing, we need to490

show that β, γ, all βm and γm, and all spectral gaps can be lower bounded by 1/q(n) for491

some polynomial q(n).492

While this is what we are going to do for Theorem 1.3, recall that for Theorem 1.2493

(directly) and Theorem 1.1 (through Theorem 1.2 and the reductions in Appendix B),494

we only show that the switch-hinge flip Markov chain is rapidly mixing. In that case, it495

suffices to show that βm, γm, and the spectral gaps involved in (3.2) are polynomially496

bounded for any given m (and the polynomial bound is independent of m), i.e., we only497

need to globally consider the second decomposition step. A polynomial lower bound on β498

and each one of the βm follows by the very definition of the degree interval Markov chain499

(see also the discussion after its definition). In order to bound γ and γm, for all m, we use500

Lemma 2.9. Roughly speaking, we need to show that we can move rather easily between501

realizations of two degree sequences d and d′, with
∑

i |di − d′i| = 2. The high-level idea502

for γm is to show that it is either directly possible to perform a hinge flip in order to503

transition from a graph G with degree sequence d to some G′ with degree sequence d′,504

or that G is not too far away from some other graph H with the same degree sequence d505

from which it is possible to directly move to some G′ with degree sequence d′ via a hinge506

flip. We take an analogous approach for bounding γ but in terms of addition/deletion507

operations rather than hinge flips.508

The gaps of the chains MG(d) are globally bounded because of known rapid mixing509

results for the switch Markov chain [1] (Corollary 2.10). Therefore, in order to show510

Theorem 1.2, it remains to bound Gap(PDm), which we do in Section 5.1; an outline is511

given in Section 3.1 below. For Theorem 1.3, we additionally need to bound Gap(PT ),512

which we do in Section 5.2; a brief outline is given in Section 3.2.513

3.1. Proving Theorem 1.2. The main technical challenge of Theorem 1.2 lies in514

proving that the resulting Metropolis-Hastings projection chain on Dm is rapidly mixing,515

i.e., that Gap(PDm
) can be polynomially bounded. We sometimes refer to this chain as516

the hinge flip projection chain. Note that for d,d′ ∈ Dm, with ||d − d′||1 = 2, it follows517

from (2.4) that518

PMH(d,d
′) ≥ 1

2n2
min

{
1,

|G(d′)|
|G(d)|

}
,519

by taking the obvious upper bound ∆ ≤ n2 in (2.4). So, intuitively, whether or not the520

hinge flip projection chain is rapidly mixing depends on the quantities |G(d)| for d ∈ Dm.521

To this end, we first argue, using a comparison argument, that if suffices to show that522

the load-exchange Markov chain on Dm, i.e., the Markov chain that allows us to move523

between degree sequences by adjusting the degree of two nodes by 1 (while keeping the524

degree sums fixed), is rapidly mixing for the weights w(d) = |G(d)|. (It is not hard to525

see that Dm is in fact an M -convex set, as it can be seen as the collection of bases of a526

discrete polymatroid [33]. The so-called basis-exchange property for discrete polymatroids527

corresponds with (2.1) for indicator functions.) A Markov chain comparison argument,528

very informally speaking, proceeds by showing that if one Markov chain is rapidly mixing,529

and a second chain is very close to it (in terms of similar stationary distribution and530

transition probabilities), then the second chain is also rapidly mixing. In our setting, the531

comparison is based on the fact that both chains have the same stationary distribution π532

with π(d) ∝ w(d), and the fact that their transition probabilities are polynomially related533

for the degree sequences that we are interested in (using Corollary A.2).534

In order to show that the load-exchange Markov chain on Dm is rapidly mixing,535

we would like to use Corollary 2.5, which states that the load-exchange Markov chain536

is rapidly mixing if a polynomial identified with its stationary distribution satisfies the537

This manuscript is for review purposes only.



14 G. AMANATIDIS, P. KLEER

property of strong log-concavity (SLC). To be precise, we could apply Corollary 2.5 if, for538

given ℓ,u and m, the polynomial539

h(x) =
∑

d∈Dm

w(d) · xd =
∑

d∈Dm

|G(d)| · xd
540

was SLC. This seems hard to prove (and might not be true in general). However, it541

turns out that when replacing the weights w(d) by simplified versions, say z̄(d), of the542

approximations w̄(d) from the asymptotic formula (2.5) of Liebenau and Wormald [44],543

the resulting polynomial544

f̄(x) =
∑

d∈Dm

z̄(d) · xd(3.4)545

is in fact SLC, when considering the degree interval instances of Theorem 1.1.5 We show546

this fact in Theorem 4.2 in Section 4 by observing that the polynomial in (3.4) is of the547

form (2.2) in Proposition 2.3, which is a general sufficient condition for a polynomial to548

be SLC [11].549

The above implies that if we run the load-exchange Markov chain with the approxima-550

tions z̄(d), it is in fact rapidly mixing with stationary distribution π̄ given by π̄(d) ∝ z̄(d).551

Now, the z̄(d) have the property that for some n0 sufficiently large, it holds that for all552

n ≥ n0 and d ∈ Dm, where d is of length n,553

1

2
|G(d)| ≤ z̄(d) ≤ 2e(19/σ)

2

|G(d)| .554

This also implies that555

1

2
e−(19/σ)2π(d) ≤ π̄(d) ≤ 2e(19/σ)

2

π(d) .556

One can then again use a Markov chain comparison argument to argue that the load-557

exchange Markov chain based on the original weights w(d) is also rapidly mixing (by558

applying Corollary A.2). This in turn implies that the hinge flip projection chain is also559

rapidly mixing, which is what we wanted to show.560

General framework. The approach described above for showing rapid mixing of the561

switch-hinge flip Markov chain might be applicable to other classes of degree interval562

instances. Informally speaking, the essential things that are needed are the following two563

things:564

1. The degree sequences satisfying the interval constraints are strongly stable (see565

Def. 2.7).566

2. The weights |G(d)| “approximately” give rise to an SLC polynomial.567

The requirement of strong stability in the first point is needed for various reasons.568

First of all, it is a sufficient condition for the switch Markov chain (i.e., the restrictions569

chains in our decomposition) to be rapidly mixing [1]. Secondly, we rely on it when570

bounding the parameter γ in the Martin-Randall decomposition theorem (Theorem 2.4).571

Thirdly, strong stability is sufficient to argue that the transition probabilities of the load-572

exchange Markov chain, and the Metropolis-Hastings projection chain, are polynomially573

5 We remark at this point, that, although this is true for the regime considered in Theorem 1.1, this
does not seem to be true for the general range in Theorem 2.6.
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related (so that we can use a Markov chain comparison argument to compare their mixing574

times).575

For the second point, even if the weights |G(d)| do not give rise to an SLC polynomial,576

one may still make things work. It suffices to find values z(d) and polynomials q1 and q2577

such that578
1

q1(n)
|G(d)| ≤ z(d) ≤ q2(n)|G(d)| ,579

and for which580

f̄(x) =
∑

d∈Dm

z(d) · xd
581

is SLC.582

3.2. Proving Theorem 1.3. In order to prove Theorem 1.3, we additionally need583

to show that the projection chain on T is also rapidly mixing, i.e., that Gap(T ) is584

polynomially bounded. In other words, we consider the Metropolis-Hastings projection585

Markov chain with state space {a, . . . , b}, where a = ⌈ 1
2

∑
i ℓi⌉ and b = ⌊ 1

2

∑
i ui⌋, and586

π(m) ∝ |Gm(ℓ,u)| for m ∈ {a, . . . , b}. This chain will sometimes be referred to as the587

addition/deletion projection chain. A sufficient condition for this Markov chain to be588

rapidly mixing is that the sequence (wm)m=a,...,b given by wm = |Gm(ℓ,u)| is log-concave,589

meaning that for every m wm+1wm−1 ≤ w2
m. We show that this sequence is log-concave590

when the intervals have size at most one (corresponding to the statement of Theorem 1.3)591

by using a variation on an argument of Jerrum and Sinclair [36].592

Remark 3.1. One might wonder if the theory of strongly log-concave polynomials can593

also be used to prove rapid mixing for degree intervals beyond size one. For example, one594

might consider a polynomial of the form595

g(x1, . . . , xn, y) =

m2∑
m=m1

∑
d∈Dm

(
n− 1

2m2 − 2m

)
z̄(d) · y2m2−2mxd ,596

where m1 and m2 are the minimum and maximum number of edges that any graph in597

D(ℓ, u) can have, respectively. This is then a 2m2-homogeneous polynomial. The problem598

that now occurs though, is that the domain of this polynomial, indexed by the tuples599

(d1, . . . , dn, 2m2 − 2m), can be shown not to be an M -convex set and, thus, g cannot be600

SLC.601

4. SLC property in a restricted range of the Liebenau-Wormald result.602

Throughout this section, we consider m and n as fixed. Recall that for a given degree603

sequence d = (d1, . . . , dn) we defined ξ = ξ(n,m) =
∑

i di/n = 2m/n, µ = µ(n,m) =604

ξ/(n − 1) = 2m/(n(n − 1)) and χ(d) =
∑

i(di − ξ)2/(n − 1)2. Furthermore, in (2.5) we605

defined606

(4.1) w̄(d) =
√
2 exp

(
1

4
− s(d)2

)(
µµ(1− µ)(1−µ)

)n(n−1)/2 ∏
i

(
n− 1

di

)
,607

which is approximately the number of graphs with degree sequence d in case it is near-608

regular. Here we have609

s(d) =
χ(d)

2µ(1− µ)
.610

Ideally, we would like show that the weights w̄(d) give rise to an SLC polynomial,611

h̄(x) =
∑

d∈Dm

w̄(d) · xd .612
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By inspecting the weights and the conditions of Proposition 2.3, it is not hard to see that613

it would be sufficient to argue that the function 1/4−s(d)2 is M -convex. (The conditions614

of Proposition 2.3 are satisfied, note that always 0 ≤ di ≤ n − 1 and that for a degree615

sequence d ∈ Dm, it holds that
∑

i di = 2m, meaning the polynomial is 2m-homogeneous.)616

Unfortunately, it turns out that this is not the case. Instead, we simply show that in the617

regime of Theorem 1.1, it holds that s(d) = O(1), and so, essentially, we can ignore the618

contribution exp(−s(d)2) in (4.1) at the expense of a slightly worse bound on the mixing619

time. The resulting approximation formula is easily seen to be SLC, which intuitively620

follows from a discrete form of log-concavity of the binomial coefficients; see Theorem 4.2.621

Lemma 4.1. Under the conditions on [ℓ,u] as in Theorem 1.1, with 0 < σ < 1 and622

2 ≤ r = r(n) ≤ (1− σ)n, if n is large enough, then for any ℓ ≤ d ≤ u it holds that623

(4.2) 0 ≤ s(d) ≤ 18n

σr1−2α(n− 1)
≤ 19

σ
.624

625

Proof. By the definition of χ(d), s(d) ≥ 0 always holds. To see the upper bound, let626

n2 = max
{⌈

10/σ2
⌉
, ⌈18/σ⌉

}
and note that the quantity s(d) can be rewritten as627

(4.3) s(d) =
χ(d)

2µ(1− µ)
=

n2(n− 1)2

(n− 1)2

∑
i(di − ξ)2

2 · 2m(n(n− 1)− 2m)
,628

where 2m =
∑

i di. Note that
∑

i(di − ξ)2 ≤ n(2min{r, n− r− 1}α)2 = 4nmin{r, n− r−629

1}2α. Moreover, we can bound m using the simple facts that r−min{r, n− r− 1}α ≥ r/4630

and nα ≤ σn/2 for n ≥ n2. The latter implies that631

r +min{r, n− r − 1}α ≤ (1− σ)n+ (1− σ)nα ≤ (1− σ)n+ σn/2 = (1− σ/2)n .632

So, we have633

n
r

4
≤ 2m ≤ n

(
1− σ

2

)
n ,634

and therefore,635

(4.4) 2m(n(n− 1)− 2m) ≥ n
r

4

(
1−

(
1− σ

2

) n

n− 1

)
n(n− 1) ≥ rσn2(n− 1)

9
,636

where the last inequality holds because nσ/2−1
n−1 ≥ 4σ

9 for n ≥ n2. By combining (4.3) and637

(4.4), we then get638

s(d) ≤ n2 · 4nmin{r, n− r − 1}2α · 9
2rσn2(n− 1)

≤ 18n

σr1−2α(n− 1)
,639

which completes the second inequality. The final inequality holds because r ≥ 2 and640

n/(n− 1) ≤ 19
18 for n ≥ n2.641

We next summarize the main result of this section, and give the remaining small tech-642

nical steps of its proof. In a nutshell, it states that a simplified version of the Liebenau-643

Wormald formula which is within a constant factor from the original in (2.5) is approxi-644

mately SLC in the regime of Theorem 1.1. Recall that w(d) = |G(d)|.645

Theorem 4.2. For given n,m ∈ N, ℓ, u ∈ Nn with ℓ ≤ u, and degree sequence d with646 ∑
i di = 2m and ℓ ≤ d ≤ u, let647

(4.5) z̄(d) =
√
2e

1
4

(
µµ(1− µ)(1−µ)

)n(n−1)/2 ∏
i

(
n− 1

di

)
.648
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The resulting 2m-homogeneous polynomial649

f̄(x) =
∑

d∈Dm

z̄(d) · xd
650

is SLC.651

Furthermore, there exists an n0 ∈ N such that for all n ≥ n0 and m ≥ n, if the degree652

interval [ℓ,u] satisfies the conditions of Theorem 1.1, then653

(4.6)
1

2
w(d) ≤ w̄(d) ≤ z̄(d) ≤ e(19/σ)

2

w̄(d) ≤ 2e(19/σ)
2

w(d) ,654

for every ℓ ≤ d ≤ u.655

Proof. We first note that the factors
√
2 and

(
µµ(1− µ)(1−µ)

)n(n−1)/2
can all be seen656

as non-negative scalars as n and m are given. This means, by Proposition 2.2, that it657

suffices to show that the polynomial with coefficients658

e
1
4

∏
i

(
n− 1

di

)
659

is SLC.660

Comparing this to the second polynomial in Proposition 2.3, it follows that we can661

simply choose ν to be the constant function ν(d) = − 1
4 on its effective domain Dm. (As662

mentioned earlier, intuitively it is SLC because the binomial coefficients satisfy a discrete663

form of log-concavity.) The inequalities664

w̄(d) ≤ z̄(d) ≤ e(19/σ)
2

w̄(d)665

in (4.6) follow directly from Theorem 2.6 and Lemma 4.1. The outer two inequalities hold666

because for n sufficiently large w̄(d) approximates w̄(d) up to a multiplicative factor that667

converges to 1 (and, thus, will be at most 2 for all n beyond some n0 ∈ N).668

5. Decomposition of the degree interval Markov chain. In this section we669

give the missing details regarding the decomposition steps as outlined in Section 3.670

5.1. Bounding βm, γm and Gap(PDm) of inequality (3.2). Throughout this sec-671

tion we assume that some m ∈ {m1, . . . ,m2} is fixed. Moreover, recall that we consider672

degree intervals of the form [di, di + 1], or [di, di], for i ∈ [n]. It is not hard to see673

that βm ≥ (6n4)−1. This rough polynomial bound follows directly from the transition674

probabilities of the degree interval Markov chain (see Section 2.2.3).675

We first lower bound the γm in Lemma 5.1 below. By the definition of the hinge676

flip operation we have that for any d,d′ ∈ Dm, there is a strictly positive transition677

probability between d and d′ if and only if
∑

i |di − d′i| = 2.678

The proof of Lemma 5.1 follows from Lemma 2.9, where it is shown that for a graph679

with a given degree sequence, we can always find a graph with a slightly perturbed degree680

sequence that is close to the former in terms of symmetric difference (when the original681

sequences satisfies strong stability).682

Lemma 5.1. There exists a polynomial q1(n) such that, for any feasible m and for all683

d,d′ ∈ Dm with
∑

i |di − d′i| = 2, we have πDm
(∂d (G (d′))) ≥ 1

q1(n)
πDm

(G (d′)) .684

Proof. Again assume that n ≥ n1 =
⌈
10/σ2

⌉
. Let a and b be the unique nodes such685

that d′a = da+1 and d′b = db−1; note that the uniqueness of a, b follows from the condition686 ∑
i |di − d′i| = 2. Let687

H = {G ∈ G(d) : ∃c ∈ [n] such that {b, c} ∈ E(G), {a, c} /∈ E(G)} ,688
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and note that it has the property689

(5.1) |∂d(G(d′))| ≥ 1

n
|H| .690

To see this, note that for a given G ∈ H, we can perform the hinge flip that removes the691

edge {b, c} and adds the edge {a, c} to obtain an element in G(d′). Moreover, there can692

be at most n graphs G ∈ H that map onto a given G′ ∈ ∂d(G(d′)), as there are at most693

n choices for c.694

Moreover, using the second part of Lemma 2.9, we show that695

(5.2) |H| ≥ 1

n12
|G(d)| .696

To see this, note that for any G ∈ G(d), we have db = d′b +1 ≥ 0 which implies that b has697

at least one neighbor c in G. Now, if {a, c} /∈ E(G) we obtain an element in H; otherwise,698

by Lemma 2.9, we can find a graph G′ close to G (in the sense that |E(G)△E(G′)| ≤ 12)699

for which {a, c} /∈ E(G) while still {b, c} ∈ E(G). As there are at most n12 graphs700

G ∈ G(d) that map to the same G′ ∈ H, the inequality (5.2) follows. Moreover, we also701

have n10|G(d)| ≥ |G(d′)| which follows directly from Definition 2.7 and Proposition 2.8.702

Combining the last observation with (5.1) and (5.2) then yields703

|∂d(G(d′))| ≥ 1

q1(n)
|G(d′)| ,704

for q1(n) = n23. Dividing both sides by
∑

d∈Dm
|G(d)|, then gives the desired result.705

It remains to bound Gap(PDm
). As explained in Section 3.1, the first step is to carry706

out a comparison argument with the load-exchange Markov chain with weights w(d) =707

|G(d)| (so that it will be sufficient to study the mixing time of the latter). Remember that708

both the hinge flip projection chain, as well as the load-exchange chain have stationary709

distribution π(d) ∝ w(d).710

In what follows we write MDm
= (Dm, P ) for the (Metropolis-Hastings) hinge flip711

projection chain, and M′
Dm

= (Dm, P ′) for the load-exchange chain on Dm.712

Lemma 5.2. There exists a polynomial p(n) such that713

p(n)Gap(PDm
) ≥ Gap(P ′

Dm
) .714

for any m ∈ {m1, . . . ,m2}.715

Proof. It suffices to show that there exists polynomials p1 and p2 such that, whenever716

d,f ∈ Dm satisfy ||d− f ||1 = 2, then717

(5.3)
1

p1(n)
≤ P (d,f), P ′(d,f) ≤ 1

p2(n)
.718

This then implies that the transition probabilities P (d,f) and P ′(d,f) are themselves719

polynomially related, i.e.,720

p2(n)

p1(n)
≤ P (d,f)

P ′(d,f)
≤ p1(n)

p2(n)
.721

In turn, this implies the existence of the desired polynomial p(n) as both chains have the722

same stationary distribution and therefore their spectral gaps are polynomially related;723

see (2.3).724
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The existence of the polynomials in (5.3) follows from the fact that all near-regular725

degree sequences are strongly stable, which we will illustrate next: First of all, because of726

strong stability, we can always find polynomials q1(n) and q2(n) such that727

1

q1(n)
≤ |G(d′)|

|G(d)|
≤ 1

q2(n)
(5.4)728

meaning that we find the desired bounds for P (d,f), i.e, for the transition probabilities729

of the Metropolis-Hastings hinge flip projection chain. Furthermore, in the load-exchange730

Markov chain we pick (in the second step) a new degree sequence d′ proportional to w(d′)731

over all possible choices of d′ with ||d−d′||1 = 2 that respect the degree interval bounds.732

For a given d, let N(d) be the set of all such sequences d′. Then the probability of733

transitioning to d′ is (up to an additional polynomial factor because of the first step of734

the load-exchange Markov chain) equal to735

|G(d′)|∑
f∈N(d)

|G(f)|
,736

which can again be upper and lower bounded by a polynomial because of strong stability,737

as in (5.4), in combination with the fact that |N(d)| ≤ n2.738

Lemma 5.2 implies that we may focus on bounding Gap(P ′
Dm

). Now, by the arguments739

given in Section 3.1 in combination with another simple comparison argument using (A.2)740

and Theorem 4.2, it suffices to bound Gap(P ′′
Dm

) where P ′′ is the transition matrix of the741

hinge flip Markov chain in which we replace the weights w(d) by the approximations z̄(d)742

as in (4.5).743

In Section 4, we showed that the polynomial in (4.6) is in fact SLC, so then Corollary744

2.5 implies that the modified log-Sobolev constant of this chain can be lower bounded by745

a polynomial, which implies the same for the spectral gap by (A.1). This completes this746

section, and shows in particular that the switch-hinge flip Markov chain is rapidly mixing,747

which in turn completes the proof of Theorem 1.2.748

5.2. Bounding β, γ and Gap(PT ). Recall that MT is the Metropolis-Hastings749

chain on the index set T = {m1, . . . ,m2}. For simplicity, we use wm = |Gm(ℓ,u)| to denote750

the number of feasible graphical realizations with m edges. Note that for any m ∈ T we751

have πT (m) = wm/
∑

i∈T wi, and that PT (m,m′) > 0 if and only if |m−m′| ≤ 1. From752

the definition of the degree interval Markov chain, it immediately follows that β ≥ 1/q(n)753

for some polynomial q(n). We lower bound γ in the following lemma following the same754

approach as for Lemma 5.1.755

Lemma 5.3. There exists a polynomial q2(n) such that, for all m,m′ ∈ T with |m−756

m′| = 1, we have πT (∂m (Gm′)) ≥ 1
q2(n)

πT (Gm′).757

Proof. Assume that m′ = m+ 1 (the case m′ = m− 1 is analogous). Let G ∈ Gd for758

some d ∈ Dm. Note that m′ ≥ m1 + 1 > m1, which implies that there are nodes i and j759

whose degrees in G are not equal to the upper bound of their degree interval. Note that760

the set761

H = {G ∈ Gm : ∃i, j ∈ [n] with di(G) < ui, dj(G) < uj and {i, j} /∈ E(G)}762

has the property that763

(5.5) |∂m(Gm′)| ≥ 1

m+ 1
|H| .764
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In order to see this, note that for any G ∈ H we can add the edge {i, j} (recall that these765

nodes depend on the choice of G) to obtain an element in Gm′ . On the other hand,there766

can be at most m+1 graphs G that map onto a given graph H ∈ Gm′ using this procedure.767

This gives the inequality (5.5).768

Moreover, using the first part of Lemma 2.9 and following the same argument as in769

the proof of Lemma 5.1 it can be shown that770

(5.6) |H| ≥ 1

n12
|Gm| .771

To see this, note that for any graph G ∈ Gm, nodes i and j with di(G) < ui and dj(G) < uj772

always exist, as m < m2. Moreover, if {i, j} ∈ E(G) we know from Lemma 2.9 that there773

is a graph G′ with the same degree sequence not containing edge {i, j} close to G.774

We next show that |Gm| ≥ |Gm′ |/p(n) for some polynomial p(n). To see this, note775

that for any G′ ∈ |Gm′ | there exist nodes x and y such that dx(G
′) > ℓx and dy(G

′) > ℓy776

as m′ = m + 1 > m1. If {x, y} ∈ E(G′) we can remove it to obtain an element of |Gm|.777

Otherwise, again using Lemma 2.9 we can first find an element G′′ ∈ Gm′ close to G′ that778

contains {x, y} and the remove it. Combining this with (5.6) yields the existence of a779

polynomial q2(n) such that780

|H| ≥ 1

q2(n)
|Gm′ | .781

Finally, combining the latter inequality with (5.5) and dividing both sides by
∑

m∈T wm,782

then gives the desired result.783

In order to show that MT is rapidly mixing or, in particular, that the gap Gap(T )784

can be polynomially bounded, it is sufficient to show that the sequence (wm)m∈T is log-785

concave. Log-concavity means that for any m ∈ T {m1,m2}, wm−1wm+1 ≤ w2
m.786

Theorem 5.4. The sequence (wm)m∈T is log-concave for all interval sequences [ℓ,u]787

for which ui ∈ {ℓi, ℓi + 1} for all i ∈ [n].788

Proof. We follow the notation, terminology and general outline of the proof of Theo-789

rem 5.1 in [36]. Define A = Gm+1×Gm−1 and B = Gm×Gm. We will show that |A| ≤ |B|,790

from which the claim follows.791

Note that the symmetric difference of any two subgraphs of Kn can be decomposed792

into a collection of alternating cycles and simple paths. We will do this in a canonical793

way.6 Fix some total order ⪯e on the edges of Kn. For two subgraphs G and G′ we will794

call edges in E(G) E(G′) blue, and edges in E(G′) E(G) red. Around every node, we will795

pair up blue edges with red edges as much as possible. We do this by repeatedly selecting796

a node and pairing up the lowest ordered red and blue edge that have not yet been paired797

up. This yields a decomposition of the symmetric difference into i) alternating red-blue798

cycles, ii) alternating simple red-blue paths of even length (with same number of red799

and blue edges), iii) simple paths ending and starting with a red edge, iv) simple paths800

ending and starting with a blue edge. We call this the canonical symmetric difference801

decomposition of E(G)△E(G′) with respect to ⪯e, or simply the canonical decomposition802

of E(G)△E(G′). We call a simple path a G-path if it contains one more edge of G than803

of G′ (i.e., red edges are one more than blue edges), and a G′-path if it contains one more804

edge of G′. We emphasize that any path of odd length in the symmetric difference is of805

one of these two types.806

6 This decomposition is the main extra step we need compared to the proof of Theorem 5.1 in [36].
The symmetric difference of two matchings is by construction already a disjoint union of cycles and paths.
This is also where the analysis breaks down in case the degree intervals have length at least two.

This manuscript is for review purposes only.



SAMPLING OF GRAPHS WITH NEAR-REGULAR DEGREE INTERVALS 21

Now, for every pair (G,G′) ∈ A it holds that the number of G-paths exceeds the807

number of G′-paths by precisely two (as G has two edges more than G′). For this reason,808

we partition A into disjoint classes {Ar : r = 1, . . . ,m} where809

Ar = {(G,G′) ∈ A : the canonical decomposition of E(G)△E(G′)
contains r + 1 G-paths and r − 1 G′-paths} .810

In order to prove |A| ≤ |B| it suffices to show |Ar| ≤ |Br| for all r. We call a pair811

(L,L′) ∈ B reachable from (G,G′) ∈ A if and only if E(G)△E(G) = E(L)△E(L′) and L812

is obtained from G by taking some G-path in the canonical decomposition and flipping813

the parity of the edges with respect to G and G′. It is important to see that the canonical814

symmetric difference decomposition of the pairs (G,G′) and (L,L′) is the same because815

all degree intervals have length one. Note that the number of pairs in Br reachable from816

a given (G,G′) ∈ Ar is precisely the number of G-paths in the canonical decomposition of817

G and G′, which is r + 1. Conversely, any given (L,L′) ∈ Br is reachable from precisely818

r pairs in Ar. Therefore, if |Ar| > 0, we have819

|Br|
|Ar|

=
r + 1

r
> 1 .820

This proves the claim.821

We are ready to bound the spectral gap of PT . Note that Ω in the statement of822

Theorem 5.5 is actually T . Recall that |T | = m2 −m1 + 1 ≤ n/2 + 1 ≤ n. Moreover, the823

ratios wi/wj are also polynomially bounded for any i, j ∈ T with |i − j| = 1. This can824

be shown exactly as in the proofs of the Lemmata 5.1 and 5.3; see also Appendix B. As a825

result, it is sufficient to prove the statement in Theorem 5.5 below in order to bound the826

gap of PT .827

Theorem 5.5. Let (wm)m∈Ω be a log-concave sequence of non-negative numbers and828

let M = (Ω, P ) be a Markov chain with transition probabilities829

P (i, j) =


1
4 min {1, wj/wi} if |i− j| = 1 ,
0 if |i− j| > 1 ,
1− P (i, i− 1)− P (i, i+ 1) if i = j .

830

Then 1/Gap(P ) ≤ 4 |Ω|3 maxi,j:|i−j|=1 wi/wj.
7831

Proof. First note that the stationary distribution π of M is proportional to the832

weights (wi)i∈Ω, i.e., π(i) = wi/
∑

p∈Ω wp, as desired. Consider the straightforward multi-833

commodity flow f in which we route π(i)π(j) units of flow over the path i → (i + 1) →834

· · · → j if i < j, or i → (i − 1) → · · · → j if i > j. Recall from Section 2.2 that835

Gap(P )−1 ≤ load(f) length(f), where length(f) is the length of a longest flow-carrying836

path and load(f) is the maximum load on eny edge of the state space graph of the chain.837

By the definition of the flow f , we have length(f) ≤ |Ω|. Next we bound load(f).838

We consider a fixed transition e = (z, z + 1). Note that the proof for transitions of839

the form (z, z− 1) is symmetric, since a sequence (wi)i∈Ω is log-concave if and only if the840

7 We suspect a similar result is true without the dependence on the wi but this is not needed for our
purpose.
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sequence (w|Ω|−i+1)i∈Ω is log-concave. We have841

load(e) =
∑

1≤i≤z

∑
z<j≤|Ω|

π(i)π(j)

π(z)P (z, z + 1)
≤ 4 max

i,j:|i−j|=1

wi

wj

∑
1≤i≤z

∑
z<j≤|Ω|

π(i)π(j)

π(z)
842

= 4 max
i,j:|i−j|=1

wi

wj

(∑
p∈Ω

wp

)−1∑
1≤i≤z

∑
z<j≤|Ω|

wiwj

wz
.(5.7)843

Log-concavity of the sequence (wq)q∈Ω implies that for any fixed i < j, and any a ∈ N844

such that i+ a ≤ j − a, we have845

(5.8) wiwj ≤ wi+awj−a .846

This follows from repeatedly applying the log-concavity condition. Indeed, log-concavity847

gives us wi

wi+1
≤ wi+1

wi+2
≤ . . . ≤ wj−2

wj−1
≤ wj−1

wj
and thus wiwj ≤ wi+1wj−1. By repeating this848

with i + 1 and j − 1 (i.e., by removing the outer terms) we get wi+1

wi+2
≤ . . . ≤ wj−2

wj−1
and849

thus wi+1wj−1 ≤ wi+2wj−2. After a steps we get (5.8).850

Now, for a fixed i and j in the double summation in (5.7), let aij be such that wi+aij851

or wj−aij (or both) equals wz. Then (5.8) gives us that wiwj ≤ wz wp for some p ∈ Ω.852

Note that for any choice of z, the double summation in (5.7) has at most |Ω|2 terms (as853

there are at most |Ω| choices for i and j). This implies that854 ∑
1≤i≤z

∑
z<j≤|Ω|

wiwj/wz ≤ |Ω|2
∑
p∈Ω

wzwp/wz = |Ω|2
∑
p∈Ω

wp .855

Combining this inequality with (5.7), we obtain856

load(e) ≤ 4|Ω|2 max
i,j:|i−j|=1

wi/wj ,857

and, thus, 1/Gap(P ) ≤ load(f) length(f) ≤ 4 |Ω|3 maxi,j:|i−j|=1 wi/wj , as required.858

This then completes the proof of Theorem 1.3.859

6. Discussion and future directions. We did not attempt to optimize the upper860

bounds on the mixing times of the Markov chains involved. Already for the switch Markov861

chain no low-degree polynomial upper bounds are known on its mixing time. For instance,862

the best known upper bound for r-regular graphs is r23n8(rn log(rn) + log(1/ϵ)) [15, 16].863

This is a central issue for many MCMC approaches for sampling graphs with given degrees864

(or degree intervals in our case). Various non-MCMC approaches to the problem, see,865

e.g., [4,27,28,42,48,56], often have better running times, but only work for smaller classes866

of degree sequences or have weaker guarantees on the uniformity of the output than we867

require in our setting.868

An interesting first direction for future work is determining whether the degree interval869

chain is rapidly mixing for more general instances. The most intriguing question from our870

point of view, however, is whether there is a black-box reduction implying that if the871

switch Markov chain is rapidly mixing for all degree sequences d satisfying ℓ ≤ d ≤ u,872

then the degree interval Markov chain is also rapidly mixing. Even more generally, can the873

problem of sampling graphs with given degree intervals always be reduced to the problem874

of sampling graphs with given degrees?875

Further, one could explore other, non-MCMC, approaches for approximate sampling,876

especially when the degree ranges are relatively large. Can one come up with an algorithm877
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in which resampling certain “bad events” (e.g., resampling edges adjacent to a node not878

satisfying its degree interval constraints) yields an exactly uniform sample, following the879

“partial rejection sampling” framework of Guo, Jerrum and Liu [31]? While this seems880

unlikely when sampling graphs with given degrees, we suspect it is possible for the problem881

of sampling graphs with (sufficiently large) given degree intervals.882
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[23] P. L. Erdős, T. R. Mezei, and I. Miklós, Approximate sampling of graphs with near-p-stable934
degree intervals, Annals of Combinatorics, 28 (2024), pp. 223–256.935

This manuscript is for review purposes only.

https://arxiv.org/abs/1203.6111


24 G. AMANATIDIS, P. KLEER
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Appendix A. Modified log-Sobolev constant. Let M = (Ω, P ) be a time-1007

reversible Markov chain with stationary distribution π, and f, g : Ω → R≥0. Let Eπ(f) =1008 ∑
x∈Ω π(x)f(x). Furthermore, define the entropy-like quantity1009

Entπ(f) = Eπ [f log(f)− f log(Eπ(f))] ,1010

and the Dirichlet form1011

EP (f, g) =
1

2

∑
x∈Ω

∑
y∈Ω

π(x)P (x, y)[f(x)− f(y)][g(x)− g(y)] .1012

The modified log-Sobolev constant of the Markov chain M is defined by1013

ρ(P ) = inf

{
EP (f, log(f))

Entπ(f)

∣∣∣ f : Ω → R≥0, Entπ(f) ̸= 0

}
.1014

As stated in Section 2, it holds that (see, e.g., [8])1015

τx(ϵ) ≤
1

ρ(P )

(
log log π(x)−1 + log

(
1

2ϵ2

))
.1016

Furthermore, for any Markov chain it holds that1017

(A.1) 2(1− λ1(P )) ≥ ρ(P ) ,1018

where λ1(P ) is the second-largest eigenvalue of P (assuming the Markov chain is lazy).1019

A.1. Markov chain comparison. A useful property of proving mixing time bounds1020

through the modified log-Sobolev constant, is that it is easy to see that small perturbations1021

in the transition probabilities and the stationary distribution only result in mild variations1022

in the modified log-Sovolev constant of the resulting Markov chain (by means of a Markov1023

chain comparison argument). Goel [29] states the following for the modified log-Sobolev1024

constant, based on similar results for the other constants by Diaconis and Saloff-Coste [19].1025

The notation W (Ω, π) is used to denote the set of all (test) functions f : Ω → R≥0.1026

Theorem A.1 (Lemma 4.1 [29]). Let M = (Ω, P ) and M′ = (Ω′, P ′) be two finite,1027

reversible Markov chains with stationary distributions π and π′, respectively, and modified1028

log-Sobolev constant ρ and ρ′, respectively. Assume there is a mapping ϕ : W (Ω, π) →1029

W ′(Ω′, π′) mapping f → f ′ for f : Ω → R≥0, and constants C, c > 0 and B ≥ 0 such that1030

for all f ∈ W (Ω, π), we have1031

EP ′(f ′, log f ′) ≤ C · EP (f, log f) and c · Entπ(f) ≤ Entπ′(f ′) +B · EP (f, log f) .1032

Then1033
cρ′

C +Bρ′
≤ ρ .1034

Corollary A.2. With M and M′ as in Theorem A.1, if Ω = Ω′ and there exists1035

a 0 < δ < 1 such that (1 − δ)P (x, y) ≤ P ′(x, y) ≤ (1 + δ)P (x, y) for all x, y ∈ Ω, and1036

(1− δ)π(x) ≤ π′(x) ≤ (1 + δ)π(x) for x ∈ Ω, it directly follows that1037

(A.2)
1

ρ
≤ 1 + δ

1− δ
· 1

ρ′
.1038

1039
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Appendix B. Reductions for approximate sampling and counting. We first1040

explain how Theorem 1.1 follows from Theorem 1.2. The induced approximate sampler1041

from Theorem 1.2 can be turned into an approximate counter for |Gm(ℓ,u)| by standard1042

techniques (Section B.1). Furthermore, this approximate counter can then be turned1043

into an approximate counter for |G(ℓ,u)| by means of a simple reduction (Section B.2).1044

In turn, the approximate counter for |G(ℓ,u)| can be transformed into an approximate1045

sampler from G(ℓ,u), again by a standard technique (Section B.3).1046

A subtle point is that it is not known whether the problem of sampling and counting1047

from G(ℓ,u), or Gm(ℓ,u), is self-reducible [40]. This follows roughly from the fact that1048

it is not known whether the problem of sampling/counting from G(d) is self-reducible1049

in general. However, if one restricts to degree intervals [ℓ,u] for which both an FPRAS1050

and FPAUS for G(d) is known for every ℓ ≤ d ≤ u, like the set of P-stable degree1051

sequences [37], then standard reduction techniques for self-reducible problems can still be1052

applied.1053

To give a more concrete intuition, in the reduction of Section B.1 the problem is1054

that one needs to be able to compute the final factor in the telescoping product (B.1)1055

efficiently, which we do not know how to do for an arbitrary degree sequence u (although1056

we do know it for P -stable degree sequences by the results of Jerrum and Sinclair [37]).1057

B.1. From approximate sampling from Gm(ℓ,u) to approximating |Gm(ℓ,u)|.1058

Using a standard reduction technique, see, e.g., Chapter 12 in [38], we can turn our FPAUS1059

into an FPRAS for counting the number of graphs with given degree intervals.1060

We first show how to express |Gm(ℓ,u)| as a telescoping product. We write1061

(B.1) |Gm(ℓ,u)| = |Gm(ℓ,u)|
|Gm(a1,u)|

|Gm(a1,u)|
|Gm(a2,u)|

· · · |Gm(ap−1,u)|
|Gm(u)|

|Gm(u)|1062

for a sequence of vectors ℓ = a0,a1,a2, . . . ,ap = u, that are recursively defined as follows.1063

We define ai+1 by choosing the lowest indexed nodes8 v and w for which aiv < ui
v and1064

aiw < ui
w, and then setting1065

ai+1
j =

{
aij + 1 if j ∈ {v, w} ,
aij otherwise .

1066

It is clear that there is some p ≤ 2
∑

i ui such that this procedure gives ap = u. Also,1067

if c = maxi(ui − ℓi), all intermediate degree intervals [ai,u] also have length at most c1068

component-wise, as uj − aij ≤ uj − ℓj ≤ c. Finally, note that we have1069

(B.2) a0 < a1 < · · · < ap−1 < ap,1070

where for two sequences a and b, we write a < b if a ≤ b and ai < bi for at least one1071

i ∈ {1, . . . , n}.1072

In order to approximate the size of Gm(ℓ,u), it will be sufficient to approximate1073

the ratios in the telescoping product, as well as the last factor |Gm(u)|. The latter can1074

be approximated by employing, e.g., the approximate counting scheme of Jerrum and1075

Sinclair [37] for P -stable degree sequences. For approximating the ratios, we need the1076

following two (sufficient) components: (1) the existence of a FPAUS and (2) the fact that1077

the ratios can be polynomially bounded. This implies that polynomially many samples1078

are enough in order to estimate the ratio up to the desired accuracy.1079

8 A number i ∈ [n] is lower indexed than j ∈ [n] if i < j.
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We sketch how to formalize this argument. Using strong stability, i.e., Proposition1080

2.8, and very similar reasoning as in the proofs of Lemmas 5.3 and 5.1, it is easy to show1081

that all ratios in (B.1) are upper bounded by some polynomial p2(n) (independent of ℓ1082

and u). By setting1083

νi =
|Gm(ai,u)|

|Gm(ai+1,u)|
,1084

this just means 1 ≤ νi ≤ p2(n). Moreover, using (B.2), it follows that, for i = 0, . . . , p−1,1085

we have Gm(ai+1,u) ⊆ Gm(ai,u). If we define Xi to be the indicator variable of the1086

event that a random sample from Gm(ai,u) is indeed contained in Gm(ai+1,u), then1087

νi = 1/E(Xi). The high-level idea is now to show that polynomially many samples from1088

the sampler (the switch hinge-flip Markov chain) not only suffice for an accurate estimate1089

for νi but, crucially, they suffice for an accurate estimate of the product1090

p−1∏
i=0

νi =
|Gm(ℓ,u)|
|Gm(u)|

1091

up to a factor (1 ± ϵ/3). This can be done by standard arguments, e.g., see Chapter 121092

of [38] or Chapter 3.2 of [34]. Finally, as mentioned above, we may use the approximate1093

counter from [37] for approximating |Gm(u)| up to a factor (1 ± ϵ/3). This then implies1094

that we can also approximate |Gm(ℓ,u)| up to a factor (1± ϵ).1095

B.2. From approximating |Gm(ℓ,u)| to approximating |G(ℓ,u)|. In order to1096

provide an FPRAS for approximating |G(ℓ,u)|, it suffices to give an FPRAS for approx-1097

imating |Gm(ℓ,u)| for every 1
2

∑
i ℓi ≤ m ≤ 1

2

∑
i ui. Recall that Gm(ℓ,u) is the set of1098

graphs with degree intervals [ℓ,u] and for which the total number of edges is equal to m.1099

Lemma B.1. Suppose there is an FPRAS for approximating |Gm(ℓ,u)| for every m ∈1100

N such that 1
2

∑
i ℓi ≤ m ≤ 1

2

∑
i ui. Then there is an FPRAS for approximating |G(ℓ,u)|.1101

Proof. We write a = 1
2

∑
i ℓi and b = 1

2

∑
i ui. Note that there are at most b−a ≤ n21102

possible choices for m, and that1103

|G(ℓ,u)| =
b∑

m=a

|Gm(ℓ,u)| .1104

Now, for every m use the given FPRAS for approximating |Gm(ℓ,u)| with δ′ = δ/n2. It1105

outputs a number cm satisfying (1−ϵ)|Gm(ℓ,u)| ≤ cm ≤ (1+ϵ)|Gm(ℓ,u)| with probability1106

at least 1 − δ/n2. Then c =
∑

m cm satisfies (1 − ϵ)|G(ℓ,u)| ≤ c ≤ (1 + ϵ)|G(ℓ,u)| with1107

probability at least1108

(1− δ/n2)b−a ≥ (1− δ/n2)n
2

≥ 1− δ .1109

This completes the proof.1110

B.3. From approximating |G(ℓ,u)| to approximate sampling from G(ℓ,u).1111

Again, using a reduction inspired by a similar one for self-reducible problems, see, e.g.,1112

[40], we can turn our FPRAS for computing |G(ℓ,u)| into an FPAUS for sampling from1113

G(ℓ,u). Note that if ℓ = u, we can simply use the approximate sampler from Jerrum and1114

Sinclair [37] when ℓ is near-regular.1115

As long as ℓ ̸= u there is some i such that ℓi < ui. We can partition the set G(ℓ,u)1116

based on whether or not the degree of a graphical realization G with ℓ ≤ d(G) ≤ u1117

satisfies di = ℓi or di ≥ ℓi + 1. For a given vector z = (z1, . . . , zn) ∈ Rn and z′i ∈ R we1118

write (z′i, z−i) = (z1, . . . , zi−1, z
′
i, zi+1, . . . , zn). We then have G(ℓ,u) as the disjoint union1119

G(ℓ,u) = G(ℓ, (ℓi,u−i)) ∪ G((ℓi + 1, ℓ−i),u) .1120
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Roughly speaking the idea is to use the approximation scheme, and approximate the1121

marginal probabilities1122

|G(ℓ, (ℓi,u−i))|
|G(ℓ,u)|

and
|G((ℓi + 1, ℓ−i),u)|

|G(ℓ,u)|
1123

up to a sufficient accuracy. Then we sample one of the sets G(ℓ, (ℓi,u−i)) or G((ℓi +1124

1, ℓ−i),u) according to these—sufficiently accurate—marginals, and keep applying this1125

procedure recursively. However, this procedure only gives a poly(1/ϵ) dependence and1126

not the desired log(1/ϵ) dependence. This can be achieved by using a slightly different1127

version of the above in combination with rejection sampling. See, e.g., [53] for this idea1128

in the context of (approximately) sampling and counting matchings from a given graph.1129

We then repeat this step until the lower and upper bound defining the intervals are1130

equal. Note that this step is only carried out a polynomial number of times. After this1131

we have, roughly speaking, sampled a degree sequence d with ℓ ≤ d ≤ u according to1132

the (approximately) correct marginal probability. After this we can use the approximate1133

sampler from [37] to sample from G(d) (or, e.g., simply the switch Markov chain).1134
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