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Abstract

Fair allocation of indivisible goods has attracted extensive attention over the last two decades, yield-
ing numerous elegant algorithmic results and producing challenging open questions. The problem
becomes much harder in the presence of strategic agents. Ideally, one would want to design truthful
mechanisms that produce allocations with fairness guarantees. However, in the standard setting with-
out monetary transfers, it is generally impossible to have truthful mechanisms that provide non-trivial
fairness guarantees. Recently, Amanatidis et al. [5] suggested the study of mechanisms that produce
fair allocations in their equilibria. Specifically, when the agents have additive valuation functions,
the simple Round-Robin algorithm always has pure Nash equilibria and the corresponding allocations
are envy-free up to one good (EF1) with respect to the agents’ true valuation functions. Following this
agenda, we show that this outstanding property of the Round-Robin mechanism extends much beyond
the above default assumption of additivity. In particular, we prove that for agents with cancelable valu-
ation functions (a natural class that contains, e.g., additive and budget-additive functions), this simple
mechanism always has equilibria and even its approximate equilibria correspond to approximately EF1
allocations with respect to the agents’ true valuation functions. Further, we show that the approxi-
mate EF1 fairness of approximate equilibria surprisingly holds for the important class of submodular
valuation functions as well, even though exact equilibria fail to exist!

∗ This work was supported by the ERC Advanced Grant 788893 AMDROMA “Algorithmic and Mechanism Design Research
in Online Markets”, the MIUR PRIN project ALGADIMAR “Algorithms, Games, and Digital Markets”, and the NWO Veni project
No. VI.Veni.192.153.
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1 Introduction

Fair division refers to the problem of dividing a set of resources among a group of agents in a way that
every agent feels they have received a “fair” share. The mathematical study of (a continuous version
of) the problem dates back to the work of Banach, Knaster, and Steinhaus [35], who, in a first attempt
to formalize fairness, introduced the notion of proportionality, i.e., each of the 𝑛 agents receives at least
1/𝑛-th of the total value from fer perspective. Since then, different variants of the problem have been
studied in mathematics, economics, political science, and computer science, and various fairness notions
have been defined. The most prominent fairness notion is envy-freeness [21, 20, 36], where each agent
values her set of resources at least as much as the set of any other agent. When the available resources are
indivisible items, i.e., items that cannot be split among agents, notions introduced for infinitely divisible
resources, like proportionality and envy-freeness are impossible to satisfy, even approximately. In the
last two decades fair allocation of indivisible items has attracted extensive attention, especially within the
theoretical computer science community, yielding numerous elegant algorithmic results for various new
fairness notions tailored to this discrete version of the problem, such as envy-freeness up to one good (EF1)
[27, 15], envy-freeness up to any good (EFX) [17], and maximin share fairness (MMS) [15]. We refer the
interested reader to the surveys of Procaccia [33], Bouveret et al. [14? ].

In this work, we study the problem of fairly allocating indivisible goods, i.e., items of non-negative
value, to strategic agents, i.e., agents who might misreport their private information if they have an incen-
tive to do so. Incentivising strategic agents to truthfully report their valuations is a central goal—and often
a notorious challenge—in mechanism design, in general. Specifically in fair division, this seems particu-
larly necessary, since any fairness guarantee on the outcome of a mechanism typically holds with respect
to its input, namely the reported preferences of the agents rather than their true, private preferences
which they may have chosen not to reveal. Without truthfulness, fairness guarantees seem to become
meaningless. Unfortunately, when monetary transfers are not allowed, as is the standard assumption in
fair division, such truthful mechanisms fail to exist for any meaningful notion of fairness, even for simple
settings with two agents who have additive valuation functions [2].

As an alternative, Amanatidis et al. [5] initiated the study of equilibrium fairness: when a mechanism
always exhibits stable (i.e., pure Nash equilibrium) states, each of which corresponds to a fair allocation
with respect to the true valuation functions, the need for extracting agents’ true preferences is mitigated.
Surprisingly, they show that for the standard case of additive valuation functions, the simple Round-Robin
routine is such a mechanism with respect to EF1 fairness. Round-Robin takes as input an ordering of the
goods for each agent, and then cycles through the agents and allocates the goods one by one, giving to
each agent their most preferred available good. For agents with additive valuation functions, Round-Robin
is known to produce EF1 allocations (see, e.g., [29]). Note that, without monetary transfers, what distin-
guishes a mechanism from an algorithm is that its input is the, possibly misreported, agents’ preferences.

To further explore the interplay between incentives and fairness, we take a step back and focus solely
on this very simple, yet fundamental, allocation protocol. It should be noted that the Round-Robin al-
gorithm is one of the very few fundamental procedures one can encounter throughout the discrete fair
division literature. Its central role is illustrated by various prominent results, besides producing EF1 alloca-
tions: it can be modified to produce approximate MMS allocations [3], as well as EF1 allocations formixed
goods and chores (i.e., items with negative value) [8]. It produces envy-free allocations with high proba-
bility when the values are drawn from distributions [28], it is used to produce a “nice” initial allocation
as a subroutine in the state-of-the-art approximation algorithms for pairwise maximin share fair (PMMS)
allocations [24] and EFX allocations [4], it has the lowest communication complexity of any known fair
division algorithm, and, most relevant to this work, it is the only algorithm for producing fair allocations
for more than two agents that, when viewed as a mechanism, is known to even have equilibria [7].
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We investigate the existence and the EF1 guarantees of approximate pure Nash equilibria of the Round-
Robin mechanism beyond additive valuation functions, i.e., when the goods already assigned to an agent
potentially change how they value the remaining goods. In particular, we are interested in whether any-
thing can be said about classes that largely generalize additive functions, like cancelable functions, i.e.,
functions where the marginal values with respect to any subset maintain the relative ordering of the
goods, and submodular functions, i.e., functions capturing the notion of diminishing returns. Although
the stability and equilibrium fairness properties of Round-Robin have been visited before [7, 5], to the best
of our knowledge, we are the first to study the problem for non-additive valuation functions and go be-
yond exact pure Nash equilibria. Cancelable functions also generalize budget-additive, unit-demand, and
multiplicative valuation functions [11], and recently have been of interest in the fair division literature as
several results can be extended to this class [11, 1, 18]. For similar reasons, cancelable functions seem to
be a good pairing with Round-Robin as well, at least in the algorithmic setting (see, e.g., Proposition 2.5).

Nevertheless, non-additive functions seem to be massively harder to analyze in our setting and come
with various obstacles. First, it is immediately clear that, even without strategic agents, the input of an
ordinal mechanism implemented as a simultaneous-move one-shot game, like the Round-Robin mecha-
nism we study here, can no longer capture the complexity of a submodular function (see also the relevant
discussion in Our Contributions). As a result, translating this sequential assignment to an estimate on the
value of each agent’s bundle of goods, is not obvious. Lastly, and this applies to cancelable functions as
well, assuming equilibria do exist and enough can be shown about the value of the assigned bundles to
establish fairness, there is no reason to expect that any fairness guarantee will hold with respect to the
true valuation functions, as the agents may misreport their preferences in an arbitrary fashion.

1.1 Contribution and Technical Considerations

We study thewell-knownRound-Robinmechanism (Mechanism 1) for the problem of fairly allocating a set
of indivisible goods to a set of strategic agents. We explore the existence of approximate equilibria, along
with the fairness guarantees that the corresponding allocations provide with respect to the agents’ true
valuation functions. Qualitatively, we generalize the surprising connection between the stable states of
this simple mechanism and its fairness properties to all approximate equilibria equilibria and for valuation
functions as general as subadditive cancelable and submodular. In more detail, our main contributions can
be summarized as follows:

• We show that the natural generalization of the bluff profile of Aziz et al. [7] is an exact PNE that
always corresponds to an EF1 allocation, when agents have cancelable valuation functions (Theorem
3.2 along with Proposition 2.5). Our proof is simple and intuitive and generalizes the results of Aziz
et al. [7] and Amanatidis et al. [5].

• For agents with submodular valuation functions, we show that there are instances where no (3/4 +
𝜀)-approximate PNE exists (Proposition 3.4), thus creating a separation between the cancelable and
the submodular cases. Nevertheless, we prove that an appropriate generalization of the bluff profile
is a 1/2-approximate PNE (Theorem 3.7) that also produces an 1/2-EF1 allocation with respect to
the true valuation functions (Theorem 3.8).

• We provide a unified proof that connects the factor of an approximate PNE with the fairness ap-
proximation factor of the respective allocation. In particular, any 𝛼-approximate PNE results in a
𝛼/2-EF1 allocation for subadditive cancelable agents (Theorem 4.5), and in a 𝛼/3-EF1 allocation for
submodular agents (Theorem 4.4). We complete the picture by providing lower bounds in both cases
(Theorem 4.3 and Proposition 4.8), which demonstrate that our results are almost tight.
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While this is not the first time Round-Robin is considered for non-additive agents, see, e.g., [12], to the
best of our knowledge, we are the first to study its fairness guarantees for cancelable and submodular
valuation functions, independently of incentives. As a minor byproduct of our work, Theorem 3.8 and
the definition of the bluff profile imply that, given value oracles for the submodular functions, we can use
Round-Robin as a subroutine to produce 1/2-EF1 allocations.

This also raises the question of whether one should allow a more expressive bid, e.g., a value oracle.
While, of course, this is a viable direction, we avoid it here as it comes with a number of issues. Allowing
the input to be exponential in the number of goods is already problematic, especially when simplicity and
low communication complexity are two appealing traits of the original mechanism. Moreover, extracting
orderings from value oracles would essentially result in a mechanism equivalent to ours (if the ordering
of an agent depended only on her function) or to a sequential game (if the orderings depended on all
the functions) which is not what we want to explore here. Note that less information is not necessarily
an advantage towards our goal. While this results in a richer space of equilibria, fairness guarantees are
increasingly harder to achieve.

As a final remark, all the algorithmic procedures we consider run in polynomial time, occasionally
assuming access to value oracles, e.g., Algorithms 2, 3, 4. Although we do not consider computational
complexity questions here, like how do agents compute best responses or how do they reach approximate
equilibria, we do consider such questions interesting directions for future work.

1.2 Further Related Work

The problem of fairly allocating indivisible goods to additive agents in the non-strategic setting has been
extensively studied; for a recent survey, see ? ]. Although the additivity of the valuation functions is
considered a standard assumption, there are many works that explore richer classes of valuation func-
tions. Some prominent examples include the computation of EF1 allocations for agents with general non-
decreasing valuation functions [27], EFX allocations (or relaxations of EFX) under agents with cancelable
valuation functions [11, 1, 18] and subaditive valuation functions [32, 19], respectively, and approximate
MMS allocations for submodular, XOS, and subadditive agents [10, 22].

Moving to the strategic setting, Caragiannis et al. [16] and Markakis and Psomas [30] were the first
to consider the question of whether it is possible to have mechanisms that are truthful and fair at the
same time, again assuming additive agents. Amanatidis et al. [2] resolved this question for two agents,
showing there is no truthful mechanism with fairness guarantees under any meaningful fairness notion.
As a result, subsequent papers considered truthful mechanism design under restricted valuation function
classes [23, 9].

The stability of Round-Robin was first studied by Aziz et al. [7], who proved that it always has PNE by
using a special case of retracted result of Bouveret and Lang [12] (this did not affect the former though;
see [6]). Finally, besides the work of Amanatidis et al. [5] mentioned earlier, the fairness properties of
Round-Robin under strategic agents have recently been studied by Psomas and Verma [34]. Therein it
is shown that Round-Robin, despite being non-truthful, satisfies a relaxation of truthfulness, as it is not
obviously manipulable.

2 Preliminaries

For 𝑎 ∈ N, let [𝑎] denote the set {1, 2, . . . , 𝑎}. We will use 𝑁 = [𝑛] to denote the set of agents and
𝑀 = {𝑔1, . . . , 𝑔𝑚} to denote the set of goods. Each agent 𝑖 ∈ 𝑁 has a valuation function 𝑣𝑖 : 2𝑀 → R≥0
over the subsets of goods. We assume that all 𝑣𝑖 are normalized, i.e., 𝑣𝑖 (∅) = 0. We also adopt the shortcut
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𝑣𝑖 (𝑇 | 𝑆) for themarginal value of a set𝑇 with respect to a set 𝑆 , i.e., 𝑣𝑖 (𝑇 | 𝑆) = 𝑣𝑖 (𝑇 ∪𝑆) −𝑣 (𝑆). If𝑇 = {𝑔},
we write 𝑣𝑖 (𝑔 | 𝑆) instead of 𝑣 ({𝑔} | 𝑆). For each agent 𝑖 ∈ 𝑁 , we say that 𝑣𝑖 is

• non-decreasing (often referred to as monotone), if 𝑣𝑖 (𝑆) ≤ 𝑣𝑖 (𝑇 ) for any 𝑆 ⊆ 𝑇 ⊆ 𝑀 .

• submodular, if 𝑣𝑖 (𝑔 | 𝑆) ≥ 𝑣𝑖 (𝑔 |𝑇 ) for any 𝑆 ⊆ 𝑇 ⊆ 𝑀 and 𝑔 ∉ 𝑇 .

• cancelable, if 𝑣𝑖 (𝑆 ∪ {𝑔}) > 𝑣𝑖 (𝑇 ∪ {𝑔}) ⇒ 𝑣𝑖 (𝑆) > 𝑣𝑖 (𝑇 ) for any 𝑆,𝑇 ⊆ 𝑀 and 𝑔 ∈ 𝑀 \ (𝑆 ∪𝑇 ).

• additive, if 𝑣𝑖 (𝑆 ∪𝑇 ) = 𝑣𝑖 (𝑆) + 𝑣𝑖 (𝑇 ) for every 𝑆,𝑇 ⊆ 𝑀 with 𝑆 ∩𝑇 = ∅.

• subadditive, if 𝑣𝑖 (𝑆 ∪𝑇 ) ≤ 𝑣𝑖 (𝑆) + 𝑣𝑖 (𝑇 ) for every 𝑆,𝑇 ⊆ 𝑀 .

Throughout this work, we only consider non-decreasing valuation functions, e.g., when we refer to sub-
modular functions, we mean non-decreasing submodular functions. Note that although both submodular
and (subadditive) cancelable functions are strict superclasses of additive functions, neither one is a super-
class of the other.

We will occasionally need an alternative characterization of submodular functions due to Nemhauser
et al. [31].

Theorem 2.1 (Nemhauser et al. [31]). A function 𝑣 : 2𝑀 → R≥0 is (non-decreasing) submodular if and only
if we have 𝑣 (𝑇 ) ≤ 𝑣 (𝑆) +∑

𝑖∈𝑇 \𝑆 𝑣 (𝑖 | 𝑆), for all 𝑆,𝑇 ⊆ 𝑀 .

Also, the following lemma summarizes some easy observations about cancelable functions.

Lemma 2.2. If 𝑣 : 2𝑀 → R≥0 is cancelable, then 𝑣𝑖 (𝑆 ∪ 𝑅) > 𝑣𝑖 (𝑇 ∪ 𝑅) ⇒ 𝑣𝑖 (𝑆) > 𝑣𝑖 (𝑇 ), implying that
𝑣𝑖 (𝑆) ≥ 𝑣𝑖 (𝑇 ) ⇒ 𝑣𝑖 (𝑆 ∪ 𝑅) ≥ 𝑣𝑖 (𝑇 ∪ 𝑅), for any 𝑆,𝑇 , 𝑅 ⊆ 𝑀 , such that 𝑅 ⊆ 𝑀 \ 𝑆 ∪ 𝑇 . In particular,
𝑣𝑖 (𝑆) = 𝑣𝑖 (𝑇 ) ⇒ 𝑣𝑖 (𝑆 ∪ 𝑅) = 𝑣𝑖 (𝑇 ∪ 𝑅).

Note that, for 𝑆,𝑇 ⊆ 𝑀 , Lemma 2.2 directly implies that arg max𝑔∈𝑇 𝑣 (𝑔) ⊆ arg max𝑔∈𝑇 𝑣 (𝑔 | 𝑆).
Despite the fact that the agents have valuation functions, the mechanism we study (Mechanism 1) is

ordinal, i.e., it only takes as input a preference ranking from each agent. Formally, the preference ranking
≻𝑖 , which agent 𝑖 reports, defines a total order on 𝑀 , i.e., 𝑔 ≻𝑖 𝑔

′ implies that good 𝑔 precedes good 𝑔′ in
agent 𝑖’ declared preference ranking.1 We call the vector of the agents’ declared preference rankings, ≻ =

(≻1, . . . , ≻𝑛), the reported profile for the instance. So, while an instance to our problem is an ordered triple
(𝑁,𝑀, v), where v = (𝑣1, . . . , 𝑣𝑛) is a vector of the agents’ valuation functions, the input to Mechanism 1
is (𝑁,𝑀,≻) instead.

Note that ≻𝑖 may not reflect the actual underlying values, i.e., 𝑔 ≻𝑖 𝑔
′ does not necessarily mean that

𝑣𝑖 (𝑔) > 𝑣𝑖 (𝑔′) or, more generally, 𝑣𝑖 (𝑔 | 𝑆) > 𝑣𝑖 (𝑔′ | 𝑆) for a given 𝑆 ⊆ 𝑀 . This might be due to agent 𝑖
misreporting her preference ranking, or due to the fact that any single preference ranking is not expressive
enough to fully capture all the partial orders induced by a submodular function. Nevertheless, a valuation
function 𝑣𝑖 does induce a true preference ranking ≽∗

𝑖 |𝑆 for each set 𝑆 ⊆ 𝑀 , which is a partial order, i.e.,
𝑔 ≽∗

𝑖 |𝑆 𝑔′ ⇔ 𝑣𝑖 (𝑔 | 𝑆) ≥ 𝑣𝑖 (𝑔′ | 𝑆) for all 𝑔,𝑔′ ∈ 𝑀 . We use ≻∗
𝑖 |𝑆 if the corresponding preference ranking is

strict, i.e., when 𝑔 ≽∗
𝑖 |𝑆 𝑔

′ ∧ 𝑔′ ≽∗
𝑖 |𝑆 𝑔 ⇒ 𝑔 = 𝑔′, for all 𝑔,𝑔′ ∈ 𝑀 \ 𝑆 . For additive (and more generally, for

cancelable) valuations, we drop 𝑆 for the notation and simply write ≽∗𝑖 or ≻∗
𝑖 . Finally, for a total order ≻

on𝑀 and a set 𝑇 ⊆ 𝑀 , we use top(≻,𝑇 ) to denote the “largest” element of 𝑇 with respect to ≻.
1See the discussion after the statement of Mechanism 1 about why assuming that the reported preference rankings are total

(rather than partial) orders is without loss of generality.
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2.1 Fairness Notions

A fair division mechanism produces an allocation (𝐴1, . . . , 𝐴𝑛), where 𝐴𝑖 is the bundle of agent 𝑖 , which
is a partition of 𝑀 . The latter corresponds to assuming no free disposal, namely all the goods must be
allocated.

There are several different notions which attempt to capture which allocations are “fair”. The most
prominent such notion in the fair division literature has been envy-freeness (EF) [21, 20, 36], which has
been the starting point for other relaxed notions, more appropriate for the indivisible goods setting we
study here, as envy-freeness up to one good (EF1) [27, 15] and envy-freeness up to any good (EFX) [17]. Here
we focus on EF1.

Definition 2.3. An allocation (𝐴1, . . . , 𝐴𝑛) is

• 𝛼-envy-free (𝛼-EF), if for every 𝑖, 𝑗 ∈ 𝑁 , 𝑣𝑖 (𝐴𝑖) ≥ 𝛼 · 𝑣𝑖 (𝐴 𝑗 ).

• 𝛼-envy-free up to one good (𝛼-EF1), if for every pair of agents 𝑖, 𝑗 ∈ 𝑁 , with 𝐴 𝑗 ≠ ∅, there exists a
good 𝑔 ∈ 𝐴 𝑗 , such that 𝑣𝑖 (𝐴𝑖) ≥ 𝛼 · 𝑣𝑖 (𝐴 𝑗 \ {𝑔}).

When for every agent 𝑗 ∈ 𝑁 with 𝐴 𝑗 ≠ ∅, we have 𝑣𝑖 (𝐴𝑖) ≥ 𝛼 · 𝑣𝑖 (𝐴 𝑗 \ {𝑔}) for some good 𝑔 ∈ 𝐴 𝑗 , we
say that (𝐴1, . . . , 𝐴𝑛) is 𝛼-EF1 from agent 𝑖’s perspective, even when the allocation is not 𝛼-EF1!

2.2 Mechanisms and Equilibria

We are interested in mechanisms that produce allocations with EF1 guarantees. When no payments are
allowed, like in our setting, an allocation mechanismM is just an allocation algorithm that takes as input
the agents’ reported preferences. In particular, Round-Robin, the mechanism of interest here, takes as
input the reported profile ≻ and produces an allocation of all the goods. This distinction in terminology
is necessary as the reported input may not be consistent with the actual valuation functions due to the
agents’ incentives. When the allocation returned byM(≻) has some fairness guarantee, e.g., it is 0.5-EF1,
we will attribute the same guarantee to the reported profile itself, i.e., we will say that ≻ is 0.5-EF1.

We study the fairness guarantees of the (approximate) pure Nash equilibria of Round-Robin. Given a
preference profile ≻ = (≻1, . . . , ≻𝑛), we write ≻−𝑖 to denote (≻1, . . . , ≻𝑖−1, ≻𝑖+1, . . . , ≻𝑛) and given a pref-
erence ranking ≻′

𝑖 we use (≻′
𝑖 ,≻−𝑖) to denote the profile (≻1, . . . , ≻𝑖−1, ≻′

𝑖 , ≻𝑖+1, . . . , ≻𝑛). For the next def-
inition we abuse the notation slightly: given an allocation (𝐴1, . . . , 𝐴𝑛) produced by M(≻), we write
𝑣𝑖 (M(≻)) to denote 𝑣𝑖 (𝐴𝑖); similarly forM(≻′

𝑖 ,≻−𝑖).

Definition 2.4. LetM be an allocationmechanism and consider a preference profile≻ = (≻1, . . . , ≻𝑛). We
say that the total order ≻𝑖 is an 𝛼-approximate best response to ≻−𝑖 if for every total order, i.e., permutation
≻′
𝑖 of𝑀 , we have 𝛼 ·𝑣𝑖 (M(≻′

𝑖 ,≻−𝑖)) ≤ 𝑣𝑖 (M(≻)). The profile ≻ is an 𝛼-approximate pure Nash equilibrium
(PNE) if, for each 𝑖 ∈ 𝑁 , ≻𝑖 is an 𝛼-approximate best response to ≻−𝑖 .

When 𝛼 = 1, we simply refer to best responses and exact PNE.

2.3 The Round-Robin Mechanism

We state Round-Robin as a mechanism (Mechanism 1) that takes as input a reported profile (≻1, . . . , ≻𝑛).
For the sake of presentation, we assume that the agents in each round (lines 3–6) are always considered
according to their “name”, i.e., agent 1 is considered first, agent 2 second, and so on, instead of having
a permutation determining the priority of the agents as an extra argument of the input. This is without
loss of generality, as it only requires renaming the agents accordingly. We often refer to the process of
allocating a good to an agent (lines 4–6) as a step of the mechanism.
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Mechanism 1 Round-Robin(≻1, . . . , ≻𝑛) // For 𝑖 ∈ 𝑁 , ≻𝑖 is the reported preference ranking of agent 𝑖 .
1: 𝑆 = 𝑀 ; (𝐴1, . . . , 𝐴𝑛) = (∅, . . . , ∅); 𝑘 = ⌈𝑚/𝑛⌉
2: for 𝑟 = 1, . . . , 𝑘 do // Each value of 𝑟 determines the corresponding round.
3: for 𝑖 = 1, . . . , 𝑛 do // The combination of 𝑟 and 𝑖 determines the corresponding step.
4: 𝑔 = top(≻𝑖 , 𝑆)
5: 𝐴𝑖 = 𝐴𝑖 ∪ {𝑔} // The current agent receives (what appears to be) her favorite available good.
6: 𝑆 = 𝑆 \ {𝑔} // The good is no longer available.
7: return (𝐴1, . . . , 𝐴𝑛)

Note that there is no need for a tie-breaking rule here, as the reported preference rankings are assumed
to be total orders. Equivalently, one could allow for partial orders (either directly or via cardinal bids as
it is done in [5]) paired with a deterministic tie-breaking rule, e.g., lexicographic tie-breaking, a priori
known to the agents.

In the rest of the paper, we will assume that𝑚 = 𝑘𝑛 for some 𝑘 ∈ N, for simplicity. Note that this is
without loss of generality, as we may introduce at most 𝑛 − 1 dummy goods that have marginal value of
0 with respect to any set for everyone and append them at the end of the reported preference rankings to
be allocated during the last steps of the mechanism.

We have already mentioned that Round-Robin as an algorithm produces EF1 allocations for additive
agents, where the input is assumed to be any strict variant≻∗ = (≻∗

1 | ∅, ≻
∗
2 | ∅, . . . , ≻

∗
𝑛 | ∅) of the truthful profile

(≽∗1 | ∅, ≽
∗
2 | ∅, . . . , ≽

∗
𝑛 | ∅), i.e., the profile where each agent ranks the goods according to their singleton value.

This property fully extends to cancelable valuation functions as well. The proof of Proposition 2.5 is
rather simple, but not as straightforward as the additive case; note that it requires Lemma 3.3 from the
next section.

Proposition 2.5. Let be ≻∗ be as described above. When all agents have cancelable valuation functions, the
allocation returned by Round-Robin(≻∗) is EF1.

Proof. Let (𝐴1, . . . , 𝐴𝑛) be the allocation returned by Round-Robin(≻∗). Fix two agents, 𝑖 and 𝑗 , and let
𝐴𝑖 = {𝑥1, 𝑥2, . . . , 𝑥𝑘 } and 𝐴 𝑗 = {𝑦1, 𝑦2, . . . , 𝑦𝑘 }, where the goods in both sets are indexed according to the
round in which they were allocated to 𝑖 and 𝑗 , respectively. By the way Mechanism 1 is defined, we have
𝑥𝑟 ≻∗

𝑖 | ∅ 𝑦𝑟+1, for all 𝑟 ∈ [𝑘−1]. Therefore, 𝑥𝑟 ≽∗𝑖 | ∅ 𝑦𝑟+1, or equivalently, 𝑣𝑖 (𝑥𝑟 ) ≥ 𝑣𝑖 (𝑦𝑟+1), for all 𝑟 ∈ [𝑘−1].
Thus, by Lemma 3.3, we get 𝑣𝑖 (𝐴𝑖 \ {𝑥𝑘 }) ≥ 𝑣𝑖 (𝐴 𝑗 \ {𝑦1}), and using the fact that 𝑣𝑖 is non-decreasing,
𝑣𝑖 (𝐴𝑖) ≥ 𝑣𝑖 (𝐴 𝑗 \ {𝑦1}). □

3 Existence of approximate PNE

At first glance, it is not clear why Mechanism 1 has any pure Nash equilibria, even approximate ones
for a constant approximation factor. For additive valuation functions, however, it is known that for any
instance we can construct a simple preference profile, called the bluff profile, which is an exact PNE. While
the proof of this fact, in its full generality, is fragmented over three papers [7, 13, 5], we give here a simple
proof that generalizes the existence of exact PNE to cancelable valuation functions. As we shall see later,
extending this result to submodular functions is not possible and even defining a generalization of the
bluff profile which is a 0.5-approximate PNE is not straightforward.

3.1 Cancelable valuations

Defining the bluff profile for cancelable agents, we will start from a strict variant of the truthful profile
(≽∗1 | ∅, ≽

∗
2 | ∅, . . . , ≽

∗
𝑛 | ∅), i.e., the profile where each agent ranks the goods according to their value (as single-

7



tons) in descending order, as we did for Proposition 2.5. Assume that any ties are broken deterministically
to get the strict version ≻∗ = (≻∗

1 | ∅, ≻
∗
2 | ∅, . . . , ≻

∗
𝑛 | ∅). Now, consider Round-Robin(≻

∗) and let ℎ1, ℎ2, . . . , ℎ𝑚

be a renaming of the goods according to the order in which they were allocated and ≻b be the correspond-
ing total order (i.e., ℎ1 ≻b ℎ2 ≻b . . . ≻b ℎ𝑚). The bluff profile is the preference profile ≻b = (≻b, ≻b, . . . , ≻b),
where everyone ranks the goods in the order they were allocated in Round-Robin(≻∗). The following fact
follows directly from the definition of the bluff profile and the description of Round-Robin.

Fact 3.1. If (≻∗) is a strict version of the truthful preference profile and (≻b) is the corresponding bluff profile,
then Round-Robin(≻b) and Round-Robin(≻∗) both return the same allocation.

An interesting observation about this fact is that, combined with Proposition 2.5 and Theorem 3.2, it
implies that there is at least one PNE of Mechanism 1 which is EF1! Of course, it is now known that all
exact PNE of Round-Robin are EF1 for agents with additive valuation functions and, as we will see later
on, even approximate PNE have (approximate) EF1 guarantees for muchmore general instances, including
the case of subadditive cancelable valuation functions.

Theorem 3.2. When all agents have cancelable valuation functions, the bluff profile is an exact PNE of
Mechanism 1.

We first need to prove the following lemma that generalizes a straightforward property of additive
functions for cancelable functions.

Lemma 3.3. Suppose that 𝑣 (·) is a cancelable valuation function. Consider sets 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑘 } and
𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑘 }. If for every 𝑗 ∈ [𝑘], we have that 𝑣 (𝑥 𝑗 ) ≥ 𝑣 (𝑦 𝑗 ), then 𝑣 (𝑋 ) ≥ 𝑣 (𝑌 ).

Proof. We begin by arguing that it is without loss of generality to first assume that the elements of 𝑋 are
ordered by non-increasing value with respect to 𝑣 and then also assume that 𝑦 𝑗 ∉ {𝑥1, 𝑥2, . . . , 𝑥 𝑗−1}, for
any 𝑗 ∈ [𝑘]. The former is indeed a matter of reindexing, if necessary, the elements of 𝑋 and consistently
reindexing the corresponding elements of 𝑌 . For the latter, suppose that there exist 𝑗 such that 𝑦 𝑗 = 𝑥𝑡
for 𝑡 ≤ 𝑗 − 1 and consider the smallest 𝑡 for which this happens. We have 𝑣 (𝑥𝑡 ) ≥ 𝑣 (𝑥𝑡+1) ≥ . . . ≥ 𝑣 (𝑥 𝑗 )
by the assumption on the ordering of the elements of 𝑋 , 𝑣 (𝑥 𝑗 ) ≥ 𝑣 (𝑦 𝑗 ) by hypothesis, and 𝑣 (𝑦 𝑗 ) = 𝑣 (𝑥𝑡 ).
Thus, 𝑣 (𝑥𝑡 ) = 𝑣 (𝑥𝑡+1) = . . . = 𝑣 (𝑥 𝑗 ). Now we may rename the elements of 𝑌 to {𝑦 ′

1, . . . , 𝑦
′
𝑘
} by inserting

𝑦 𝑗 to the 𝑡-th position, i.e., 𝑦 ′
𝑡 = 𝑦 𝑗 , 𝑦 ′

𝑠 = 𝑦𝑠−1, for 𝑡 + 1 ≤ 𝑠 ≤ 𝑗 , and 𝑦 ′
𝑠 = 𝑦𝑠 , for 𝑠 < 𝑡 or 𝑠 > 𝑗 . Since only

𝑦𝑡 , 𝑦𝑡+1, . . . , 𝑦 𝑗 changed indices but 𝑣 (𝑥𝑡 ) = 𝑣 (𝑥𝑡+1) = . . . = 𝑣 (𝑥 𝑗 ), we again have that 𝑣 (𝑥 𝑗 ) ≥ 𝑣 (𝑦 ′
𝑗 ) for

every 𝑗 ∈ [𝑘]. Moreover, now the smallest ℓ for which there exist 𝑗 > ℓ such that 𝑦 𝑗 = 𝑥ℓ is strictly larger
than 𝑡 . By repeating this renaming of the elements of 𝑌 we end up with a renaming {𝑦∗1, . . . , 𝑦∗𝑘 } such that
for every 𝑗 ∈ [𝑘], 𝑣 (𝑥 𝑗 ) ≥ 𝑣 (𝑦∗𝑗 ) and 𝑦∗𝑗 ∉ {𝑥1, 𝑥2, . . . , 𝑥 𝑗−1}.

So, assuming that the elements of 𝑋 are ordered in non-increasing value with respect to 𝑣 and that
𝑦 𝑗 ∉ {𝑥1, 𝑥2, . . . , 𝑥 𝑗−1}, for any 𝑗 ∈ [𝑘], suppose towards a contradiction that 𝑣 (𝑋 ) < 𝑣 (𝑌 ). That is,
𝑣 ({𝑥1, 𝑥2, . . . , 𝑥𝑘 }) < 𝑣 ({𝑦1, 𝑦2, . . . , 𝑦𝑘 }). Observe that if 𝑣 ({𝑥1, 𝑥2, . . . , 𝑥𝑘−1}) ≥ 𝑣 ({𝑦1, 𝑦2, . . . , 𝑦𝑘−1}), this
would imply that 𝑣 ({𝑥1, . . . , 𝑥𝑘−1, 𝑦𝑘 }) ≥ 𝑣 ({𝑦1, . . . , 𝑦𝑘−1, 𝑦𝑘 }), by the definition of cancelable valuations
and the fact that 𝑦𝑘 ∉ {𝑥1, . . . , 𝑥𝑘−1} ∪ {𝑦1, . . . , 𝑦𝑘−1}. This leads to

𝑣 ({𝑥1, . . . , 𝑥𝑘−1, 𝑥𝑘 }) ≥ 𝑣 ({𝑥1, . . . , 𝑥𝑘−1, 𝑦𝑘 }) ≥ 𝑣 ({𝑦1, . . . , 𝑦𝑘−1, 𝑦𝑘 }) ,

where the first inequality follows from 𝑣 (𝑥𝑘 ) ≥ 𝑣 (𝑦𝑘 ) and Fact 2.2, contradicting our initial assumption.
Therefore, 𝑣 ({𝑥1, . . . , 𝑥𝑘−1}) < 𝑣 ({𝑦1, . . . , 𝑦𝑘−1}). By repeating the same argument 𝑘 − 2 more times, we
end up with 𝑣 (𝑥1) < 𝑣 (𝑦1), a contradiction. □

Proof of Theorem 3.2. Now we show that the bluff profile for cancelable valuations is an exact PNE. Con-
sider the goods named ℎ1, . . . , ℎ𝑚 as in the bluff profile, i.e., by the order in which they are picked when
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each agent reports their preference order to be the one induced by all singleton good values. Consider
agent 𝑖 . Her assigned set of goods under the bluff profile is 𝐴b

𝑖 = {ℎ𝑖 , ℎ𝑛+𝑖 , . . . , ℎ (𝑘−1)𝑛+𝑖}, where 𝑘 = 𝑚/𝑛.
Assume now that she deviates from ≻b to ≻𝑖 , resulting in some allocated set 𝐴𝑖 = {𝑦1, 𝑦2, . . . , 𝑦𝑘 }, where
we assume 𝑦𝑟 to be allocated in round 𝑟 . We need to show 𝑣𝑖 (𝐴b

𝑖 ) ≥ 𝑣𝑖 (𝐴𝑖).
To this end, we compare the goods allocated to agent 𝑖 in both reports, one by one. If 𝑣𝑖 (𝑦𝑟 ) ≤

𝑣𝑖 (ℎ (𝑟−1)𝑛+𝑖) for every 𝑟 ∈ [𝑘], then we are done by applying Lemma 3.3 with 𝐴b
𝑖 and 𝐴𝑖 . If some of

these inequalities fail, let 𝑟 denote the latest round such that 𝑣𝑖 (𝑦𝑟 ) > 𝑣𝑖 (ℎ (𝑟−1)𝑛+𝑖 . Therefore, in the exe-
cution of Mechanism 1 with the bluff profile as input, 𝑦𝑟 was no longer available in round 𝑟 . However, 𝑦𝑟
becomes available in round 𝑟 once agent 𝑖 deviates. This can only stem from the fact that at some point
before round 𝑟 , a good ℎ𝑡 with 𝑡 > (𝑟 − 1)𝑛 + 𝑖 was picked (since the overall number of goods picked per
round always stays the same). Clearly, the only agent who could have done so (since she is the only one
deviating from the common bluff order) is agent 𝑖 . Therefore, it holds that ℎ𝑡 = 𝑦 𝑗 for some 𝑗 < 𝑟 . Now,
we replace the ordered set 𝑌 = (𝑦1, 𝑦2, . . . , 𝑦𝑘 ) by 𝑌 ′ = (𝑦1, . . . , 𝑦 𝑗−1, 𝑦𝑟 , 𝑦 𝑗+1, . . . , 𝑦𝑟−1, 𝑦 𝑗 , 𝑦𝑟+1, . . . , 𝑦𝑘 ), i.e.,
we simply exchange 𝑦𝑟 and 𝑦 𝑗 . It will be convenient to rename 𝑦1, . . . , 𝑦𝑘 so that 𝑌 ′ = (𝑦 ′

1, 𝑦
′
2, . . . , 𝑦

′
𝑘
)

We claim that it if agent 𝑖 reports a preference ranking ≻′
𝑖 that starts with all goods in 𝑌 ′, in that

specific order, followed by everything else, in any order, she still gets𝐴𝑖 but the goods are allocated in the
order suggested by 𝑌 ′. Indeed, first notice that the first 𝑗 − 1 rounds of Round-Robin will be the same as
in the run with the original deviation ≻𝑖 . Further, 𝑦 ′

𝑗 = 𝑦𝑟 is allocated earlier under ≻′
𝑖 than under ≻𝑖 , and

thus it surely is available at the time. After that, rounds 𝑗 − 1 to 𝑟 − 1 will be the same as in the run with
the deviation ≻𝑖 . Now 𝑦 ′

𝑟 = 𝑦 𝑗 is allocated later than before, namely in round 𝑟 , but it is not among the
first (𝑟 −1)𝑛+ 𝑖 goods in the bluff order, as noted above, which means it is not allocated to any other agent
in any round before the 𝑟 -th under ≻′

𝑖 . Finally, rounds 𝑟 + 1 to 𝑘 will be the same as in the run with ≻𝑖 .
Although agent 𝑖 still is assigned the same set 𝐴𝑖 by deviating to ≻′

𝑖 , we now have 𝑣𝑖 (𝑦 ′
𝑟 ) = 𝑣𝑖 (𝑦 𝑗 ) ≤

𝑣𝑖 (ℎ (𝑟−1)𝑛+𝑖 , where the inequality holds because both goods are available in round 𝑟 of the bluff run, and
agent one prefers ℎ (𝑟−1)𝑛+𝑖 . Also, all later goods in 𝑌 ′ remain unchanged, i.e., 𝑦 ′

𝑠 = 𝑦𝑠 for 𝑠 > 𝑟 . Therefore,
the latest occurrence of some 𝑦 ′

ℓ > ℎ (ℓ−1)𝑛+𝑖 now happens at an earlier point in the sequence, if at all.
Repeating this process until no such occurrence is left yields an ordering 𝑌 ∗ = (𝑦∗1, 𝑦∗2, . . . , 𝑦∗𝑘 ) of 𝐴𝑖 such
that for all 𝑟 ∈ [𝑘], 𝑣𝑖 (𝑦∗𝑟 ) ≤ 𝑣𝑖 (ℎ (𝑟−1)𝑛+𝑖). Now using Lemma 3.3 completes the proof. □

3.2 Submodular valuations

We move on to the much more general class of submodular valuations. In order to define the bluff profile
in this case, we again would like to start from the truthful profile. However, recall that Round-Robin
restricts each agent’s report to specifying an ordering on the good set 𝑀 and these preference rankings
are not expressive enough to fully capture submodular valuation functions. In fact, it is not obvious what
‘truthful’ means here without further assumptions on what information is known by the agents. Still, we
define a truthfully greedy allocation and use this as our starting point.

Imagine that, instead of having a full preference profile from the beginning, we only ask the active
agent 𝑖 (i.e., the agent to which we are about to allocate a new good) for the good with the largest marginal
value with respect to her current set of goods 𝐴𝑖 and give this to her. Let ℎ1, ℎ2, . . . , ℎ𝑚 be a renaming of
the goods according to the order in which they would be allocated in this hypothetical truthfully greedy
scenario and ≻b be the corresponding total order. Like in the cancelable case, the bluff profile is the
preference profile ≻b = (≻b, ≻b, . . . , ≻b).

Formally, the renaming of the goods is performed as described in Algorithm 2 below. It should be
noted that this definition of the bluff profile is consistent with the definition for cancelable functions,
assuming that all ties are resolved lexicographically.

Also notice that the allocation Round-Robin(≻b) produced under the bluff profile is exactly (𝑋1, 𝑋2,

. . . , 𝑋𝑛), as described in Algorithm 2, i.e., 𝑋𝑖 = 𝐴b
𝑖 = {ℎ𝑖 , ℎ𝑛+𝑖 , . . . , ℎ (𝑘−1)𝑛+𝑖}, where recall that 𝑘 =𝑚/𝑛.

9



Algorithm 2 Greedy renaming of goods for defining the bluff profile
Input: 𝑁 ,𝑀 , value oracles for 𝑣1(·), . . . , 𝑣𝑛 (·)
1: 𝑋𝑖 = ∅ for 𝑖 ∈ [𝑛]
2: for 𝑗 = 1, . . . ,𝑚 do
3: 𝑖 = ( 𝑗 − 1) (mod 𝑛) + 1
4: ℎ 𝑗 = arg max

𝑔∈𝑀\⋃ℓ 𝑋ℓ

𝑣𝑖 (𝑔 |𝑋𝑖) // Ties are broken lexicographically.

5: 𝑋𝑖 = 𝑋𝑖 ∪ {ℎ 𝑗 }
6: return (ℎ1, ℎ2, . . . , ℎ𝑚)

The main result of this section is Theorem 3.7 stating that the bluff profile is a 1
2 -approximate PNE

when agents have submodular valuation functions. While this sounds weaker than Theorem 3.2, it should
be noted that for submodular agents Mechanism 1 does not have PNE in general, even for relatively simple
instances, as stated in Proposition 3.4. In fact, even the existence of approximate equilibria can be seen as
rather surprising, given the generality of the underlying valuation functions.

Proposition 3.4. There exists an instance where all agents have submodular valuation functions such that
Mechanism 1 has no ( 3

4 + 𝜀)-approximate PNE.

Proof. Consider an instance with 2 agents and 4 goods 𝑀 = {𝑔1, 𝑔2, 𝑔3, 𝑔4}, with the following valuation
for all possible 2-sets:

𝑣1({𝑔1, 𝑔2}) = 3

𝑣1({𝑔1, 𝑔3}) = 3

𝑣1({𝑔1, 𝑔4}) = 4

𝑣1({𝑔2, 𝑔3}) = 4

𝑣1({𝑔2, 𝑔4}) = 3

𝑣1({𝑔3, 𝑔4}) = 3

𝑣2({𝑔1, 𝑔2}) = 4

𝑣2({𝑔1, 𝑔3}) = 4

𝑣2({𝑔1, 𝑔4}) = 3

𝑣2({𝑔2, 𝑔3}) = 3

𝑣2({𝑔2, 𝑔4}) = 4

𝑣2({𝑔3, 𝑔4}) = 4

In addition, all individual goods have the same value: 𝑣1(𝑥) = 𝑣2(𝑥) = 2 for 𝑥 ∈ 𝑀 , while all 3-sets and
4-sets have value 4, for both agents.

We begin by establishing that this valuation function is indeed submodular for both agents. Observe
for any set 𝑆 ⊆ 𝑀 and 𝑖 ∈ [2], 𝑗 ∈ [4] we have:

|𝑆 | = 0 ⇒ 𝑣𝑖 (𝑔 𝑗 | 𝑆) ∈ {2}
|𝑆 | = 1 ⇒ 𝑣𝑖 (𝑔 𝑗 | 𝑆) ∈ {1, 2}
|𝑆 | = 2 ⇒ 𝑣𝑖 (𝑔 𝑗 | 𝑆) ∈ {0, 1}
|𝑆 | = 3 ⇒ 𝑣𝑖 (𝑔 𝑗 | 𝑆) = 0 ,

which immediately implies that both valuation functions are indeed submodular.
Notice that for any reported preferences ≻1, ≻2, one of the two agents will receive goods leading to a

value of 3. If this is the agent 1, she can easily deviate and get 4 instead. In particular, if agent 2 has good
𝑔2 or 𝑔3 first in their preferences then agent 1 can get {𝑔1, 𝑔4}, and if agent 2 has good 𝑔1 or 𝑔4 as first then
agent 1 can get {𝑔2, 𝑔3} instead. On the other hand, if agent 2 received a value of 3 they can also always
deviate to 4. Notice that for any 𝑔𝑎 , agent 2 always has two sets different sets {𝑔𝑎, 𝑔𝑏}, {𝑔𝑎, 𝑔𝑐 } with value
4 and one {𝑔𝑎, 𝑔𝑑 } with value 3. Thus, for any preference of agent 1 with 𝑔𝑎 ≻1 𝑔𝑏 ≻1 𝑔𝑐 ≻1 𝑔𝑑 , agent 2 can
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deviate and get either {𝑔
𝑏
, 𝑔

𝑑
} or {𝑔𝑐 , 𝑔𝑑 }, one of which must have value 4. Therefore, in every outcome

there exists an agent that can deviate to improve their value from 3 to 4. □

Moving towards the proof of Theorem 3.7 for the submodular case, we note that although it is very
different from that of Theorem 3.2, we will still need an analog of the main property therein, i.e., the
existence of a good-wise comparison between the goods an agent gets under the bluff profile and the ones
she gets by deviating. As expected, the corresponding property here (see Lemma 3.5) is more nuanced and
does not immediately imply Theorem 3.7 as we are now missing the analog of Lemma 3.3.

Throughout this section, we are going to argue about an arbitrary agent 𝑖 . To simplify the notation,
let us rename 𝑋𝑖 = 𝐴b

𝑖 = {ℎ𝑖 , ℎ𝑛+𝑖 , . . . , ℎ (𝑘−1)𝑛+𝑖} to simply 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑘 }, where we have kept the
order of indices the same, i.e., 𝑥 𝑗 = ℎ ( 𝑗−1)𝑛+𝑖 . This way, the goods in 𝑋 are ordered according to how they
were allocated to agent 𝑖 in the run of Mechanism 1 with the bluff profile as input.

We also need to define the ordering of the goods agent 𝑖 gets when she deviates from the bluff bid ≻b

to another preference ranking ≻𝑖 . Let 𝐴𝑖 = 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑘 } be this set of goods. Instead of renaming
the elements of 𝑌 in a generic fashion like in the proof of Theorem 3.2, doing so becomes significantly
more complicated, and we need to do it in a more systematic way, see Algorithm 3.

Algorithm 3 Greedy renaming of goods for the deviating agent 𝑖
Input: 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑘 }, 𝑌 , and a value oracle for 𝑣𝑖 (·)
1: 𝑍 = 𝑌

2: for 𝑗 = |𝑌 |, . . . , 1 do
3: 𝑦 ′

𝑗 = arg min
𝑔∈𝑍

𝑣𝑖 (𝑔 | {𝑥1, . . . , 𝑥 𝑗−1}) // Ties are broken lexicographically.

4: 𝑍 = 𝑍 \ {𝑦 ′
𝑗 }

5: return (𝑦 ′
1, 𝑦

′
2, . . . , 𝑦

′
|𝑌 |)

In what follows, we assume that the indexing 𝑦1, 𝑦2, . . . , 𝑦𝑘 is already the result of Algorithm 3. This
renaming is crucial and it will be used repeatedly. In particular, we need this particular ordering in order to
prove that 𝑣𝑖 (𝑥 𝑗 | {𝑥1, . . . , 𝑥 𝑗−1}) ≥ 𝑣𝑖 (𝑦 𝑗 | {𝑥1, . . . , 𝑥 𝑗−1}), for all 𝑗 ∈ [𝑘], in Lemma 3.5 below. Towards that,
we need to fix some notation for the sake of readability. For 𝑗 ∈ [𝑘], we use 𝑋 𝑗

− and 𝑋 𝑗
+ to denote the sets

{𝑥1, 𝑥2, . . . , 𝑥 𝑗 } and {𝑥 𝑗 , 𝑥 𝑗+1, . . . , 𝑥𝑘 }, respectively. The sets𝑌 𝑗
− and𝑌 𝑗

+ , for 𝑗 ∈ [𝑘], are defined analogously.
We also use 𝑋 0

− = 𝑌 0
− = ∅. The main high-level idea of the proof is that if 𝑣𝑖 (𝑦ℓ |𝑋 ℓ−1

− ) > 𝑣𝑖 (𝑥ℓ |𝑋 ℓ−1
− )

for some ℓ , then it must be the case that during the execution of Round-Robin(≻b) every good in 𝑌 ℓ
− =

{𝑦1, . . . , 𝑦ℓ } is allocated before the turn of agent 𝑖 in round ℓ . Then, using a simple counting argument, we
show that agent 𝑖 cannot receive all the goods in 𝑌 ℓ

− when deviating, leading to a contradiction.

Lemma 3.5. Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑘 } be agent 𝑖’s bundle in Round-Robin(≻b), where goods are indexed in
the order they were allocated, and 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑘 } be 𝑖’s bundle in Round-Robin(≻𝑖 ,≻

b
−𝑖), where goods

are indexed by Algorithm 3. Then, for every 𝑗 ∈ [𝑘], we have 𝑣𝑖 (𝑥 𝑗 |𝑋 𝑗−1
− ) ≥ 𝑣𝑖 (𝑦 𝑗 |𝑋 𝑗−1

− ).

Proof. The way goods in 𝑋 are indexed, we have that 𝑥 𝑗 is the good allocated to agent 𝑖 in round 𝑗 of
Round-Robin(≻b). Suppose, towards a contradiction, that there is some ℓ ∈ [𝑘], for which we have
𝑣𝑖 (𝑦ℓ |𝑋 ℓ−1

− ) > 𝑣𝑖 (𝑥ℓ |𝑋 ℓ−1
− ). First notice that ℓ ≠ 1, as 𝑥1 is, by the definition of the bluff profile, a singleton

of maximum value for agent 𝑖 excluding the goods allocated to agents 1 through 𝑖−1 in round 1, regardless
of agent 𝑖’s bid. Thus, ℓ ≥ 2.

Let 𝐵 ⊆ 𝑀 and 𝐷 ⊆ 𝑀 be the sets of goods allocated (to any agent) up to right before a good is
allocated to agent 𝑖 in round ℓ in Round-Robin(≻b) and Round-Robin(≻𝑖 ,≻

b
−𝑖), respectively. Clearly, |𝐵 | =

|𝐷 | = (ℓ − 1)𝑛 + 𝑖 − 1. In fact, we claim that in this case the two sets are equal.

11



Claim 3.6. It holds that 𝐵 = 𝐷 . Moreover, {𝑦1, . . . , 𝑦ℓ } ⊆ 𝐵.

Proof of the claim. We first observe that 𝑣𝑖 (𝑦 𝑗 |𝑋 ℓ−1
− ) ≥ 𝑣𝑖 (𝑦ℓ |𝑋 ℓ−1

− ) > 𝑣𝑖 (𝑥ℓ |𝑋 ℓ−1
− ), for every 𝑗 ∈ [ℓ − 1],

where the first inequality follows from way Algorithm 3 ordered the elements of 𝑌 . Now consider the
execution of Round-Robin(≻b). Since 𝑥ℓ was the good allocated to agent 𝑖 in round ℓ , 𝑥ℓ had maximum
marginal value for agent 𝑖 with respect to 𝑋 ℓ−1

− among the available goods. Thus, none of the goods
𝑦1, . . . , 𝑦ℓ were available at the time. That is, 𝑦1, . . . , 𝑦ℓ were all already allocated to some of the agents
(possibly including agent 𝑖 herself). We conclude that {𝑦1, . . . , 𝑦𝑙 } ⊆ 𝐵.

Now suppose for a contradiction that 𝐷 ≠ 𝐵 and consider the execution of Round-Robin(≻𝑖 ,≻
b
−𝑖).

Recall that the goods in 𝐵 are still the (ℓ − 1)𝑛 + 𝑖 − 1 most preferable goods for every agent in 𝑁 \ {𝑖}
according to the profile (≻𝑖 ,≻

b
−𝑖). Therefore, all agents in 𝑁 \ {𝑖} will get goods from 𝐵 allocated to them

up to the point when a good is allocated to agent 𝑖 in round ℓ , regardless of what ≻𝑖 is. If agent 𝑖 also
got only goods from 𝐵 allocated to her in the first ℓ − 1 rounds of Round-Robin(≻𝑖 ,≻

b
−𝑖), then 𝐷 would

be equal to 𝐵. Thus, at least one good which is not in 𝐵 (and thus, not in {𝑦1, . . . , 𝑦ℓ }) must have been
allocated to agent 𝑖 in the first ℓ − 1 rounds. As a result, at the end of round ℓ − 1, there are at least two
goods in {𝑦1, . . . , 𝑦ℓ } that have not yet been allocated to 𝑖 .

However, we claim that up to right before a good is allocated to agent 𝑖 in round ℓ + 1, all goods
in 𝐵 (and thus in {𝑦1, . . . , 𝑦ℓ } as well) will have been allocated, leaving 𝑖 with at most ℓ − 1 goods from
{𝑦1, . . . , 𝑦ℓ } in her final bundle and leading to a contradiction. Indeed, this follows from a simple counting
argument. Right before a good is allocated to agent 𝑖 in round ℓ +1, the goods allocated to agents in 𝑁 \ {𝑖}
are exactly ℓ (𝑛 − 1) + 𝑖 − 1 ≥ (ℓ − 1)𝑛 + 𝑖 − 1 = |𝐵 |. As noted above, agents in 𝑁 \ {𝑖} will get goods from 𝐵

allocated to them as long as they are available. Thus, no goods from 𝐵, or from {𝑦1, . . . , 𝑦ℓ } in particular,
remain unallocated right before a good is allocated to agent 𝑖 in round ℓ + 1. Therefore, agent 𝑖 may get at
most ℓ − 1 goods from {𝑦1, . . . , 𝑦ℓ } (at most ℓ − 2 in the first ℓ − 1 rounds and one in round ℓ), contradicting
the definition of the set 𝑌 . We conclude that 𝐷 = 𝐵. ⊡

Given the claim, it is now easy to complete the proof. Clearly, in the first ℓ − 1 rounds of Round-
Robin(≻𝑖 ,≻

b
−𝑖) at most ℓ − 1 goods from {𝑦1, . . . , 𝑦ℓ } have been allocated to agent 𝑖 . However, when it

is 𝑖’s turn in round ℓ , only goods in 𝑀 \ 𝐷 are available, by the definition of 𝐷 . By Claim 3.6, we have
{𝑦1, . . . , 𝑦𝑙 } ⊆ 𝐷 , and thus there is at least one good {𝑦1, . . . , 𝑦ℓ } that is allocated to another agent, which
contradicts the definition of 𝑌 . □

We are now ready to state and prove the main result of this section.

Theorem 3.7. When all agents have submodular valuation functions, the bluff profile is a 1
2 -approximate

PNE of Mechanism 1. Moreover, this is tight, i.e., for any 𝜀 > 0, there are instances where the bluff profile is
not a

( 1
2 + 𝜀

)
-approximate PNE.

Proof. We are going to use the notation used so far in the section and consider the possible deviation of
an arbitrary agent 𝑖 . Like in the statement of Lemma 3.5, 𝑋 = {𝑥1, . . . , 𝑥𝑘 } is agent 𝑖’s bundle in Round-
Robin(≻b), with goods indexed in the order they were allocated, and 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑘 } is 𝑖’s bundle
in Round-Robin(≻𝑖 ,≻

b
−𝑖), with goods indexed by Algorithm 3. Also, recall that 𝑋 𝑗

− = {𝑥1, . . . , 𝑥 𝑗 } and
𝑋

𝑗
+ = {𝑥 𝑗 , . . . , 𝑥𝑘 } (and similarly for𝑌 𝑗

− and𝑌 𝑗
+ ). We also use the convention that𝑌𝑘+1

+ = ∅. For any 𝑗 ∈ [𝑘],
we have

𝑣𝑖 (𝑋 𝑗
−) − 𝑣𝑖 (𝑋 𝑗−1

− ) = 𝑣𝑖 (𝑥 𝑗 |𝑋 𝑗−1
− )

≥ 𝑣𝑖 (𝑦 𝑗 |𝑋 𝑗−1
− )

≥ 𝑣𝑖 (𝑦 𝑗 |𝑋 𝑗−1
− ∪ 𝑌

𝑗+1
+ )
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= 𝑣𝑖 (𝑋 𝑗−1
− ∪ 𝑌

𝑗+1
+ ∪ {𝑦 𝑗 }) − 𝑣𝑖 (𝑋 𝑗−1

− ∪ 𝑌
𝑗+1
+ )

= 𝑣𝑖 (𝑋 𝑗−1
− ∪ 𝑌

𝑗
+ ) − 𝑣𝑖 (𝑋 𝑗−1

− ∪ 𝑌
𝑗+1
+ )

≥ 𝑣𝑖 (𝑋 𝑗−1
− ∪ 𝑌

𝑗
+ ) − 𝑣𝑖 (𝑋 𝑗

− ∪ 𝑌
𝑗+1
+ ) .

The first inequality holds because Lemma 3.5 applies on 𝑋 and 𝑌 , whereas the second inequality holds
because of submodularity. Finally, the last inequality holds since 𝑋 𝑗−1

− ⊆ 𝑋 𝑗
− and 𝑣𝑖 (·) is non-decreasing,

for every 𝑖 ∈ 𝑁 . Using these inequalities along with a standard expression of the value of a set as a sum
of marginals, we have

𝑣𝑖 (𝑋 ) = 𝑣𝑖 (𝑋𝑘
−) − 𝑣𝑖 (𝑋 0

−)

=

𝑘∑︁
𝑗=1

(
𝑣𝑖 (𝑋 𝑗

−) − 𝑣𝑖 (𝑋 𝑗−1
− )

)
≥

𝑘∑︁
𝑗=1

(
𝑣𝑖 (𝑋 𝑗−1

− ∪ 𝑌
𝑗
+ ) − 𝑣𝑖 (𝑋 𝑗

− ∪ 𝑌
𝑗+1
+ )

)
= 𝑣𝑖 (𝑋 0

− ∪ 𝑌 1
+ ) − 𝑣𝑖 (𝑋𝑘

− ∪ 𝑌𝑘+1
+ )

= 𝑣𝑖 (𝑌 ) − 𝑣𝑖 (𝑋 ) .

Thus, we have 𝑣𝑖 (𝑋 ) ≥ 1
2 · 𝑣𝑖 (𝑌 ), and we conclude that ≻b is a 1

2 -approximate PNE of Mechanism 1.

To show that the result is tight, consider an example with two agents and five goods. The valuation
function of agent 1 is additive and defined as follows on the singletons:

𝑣1(𝑔1) = 2 𝑣1(𝑔2) = 1 𝑣1(𝑔3) = 1 − 𝜀1 𝑣1(𝑔2) = 1 − 𝜀2 𝑣1(𝑔5) = 1 − 𝜀3 ,

where 1 ≫ 𝜀3 > 𝜀2 > 𝜀1 > 0.
The valuation function of agent 2 is OXS2 and defined by the maximum matchings in the bipartite

graph below, e.g., 𝑣2({𝑔1, 𝑔2}) = 2 + 1 = 3 and 𝑣2({𝑔1, 𝑔4, 𝑔5}) = 2 + 1 − 𝜀2 = 3 − 𝜀2.

𝑔1

𝑔2

𝑔3

𝑔4

𝑔5

2

1

1 − 𝜀1

1 − 𝜀2

1 − 𝜀3

It is not hard to see that the bluff profile for this instance consists of the following declared ordering
by both agents: 𝑔1 > 𝑔2 > 𝑔3 > 𝑔4 > 𝑔5. The allocation produced by Mechanism 1 for the bluff profile
is then 𝐴 = (𝐴1, 𝐴2), where 𝐴1 = {𝑔1, 𝑔3, 𝑔5}, and 𝐴2 = {𝑔2, 𝑔4}. Observe that 𝑣1(𝐴1) = 4 − 𝜀1 − 𝜀3 and
𝑣2(𝐴2) = 1. It is easy to see that there is no profitable deviation for agent 1, while the maximum value that

2Roughly speaking, OXS functions generalize unit-demand functions. The set of OXS functions is a strict superset of additive
functions and a strict subset of submodular functions. See, [25, 26].
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agent 2 can attain by deviating is 2 − 𝜀1 − 𝜀2. Agent 2 achieves this by reporting the preference ranking:
𝑔3 > 𝑔4 > 𝑔1 > 𝑔2 > 𝑔5 and getting goods {𝑔3, 𝑔4}. This implies that for any 𝜀 > 0 one can chose
appropriately small 𝜀1, 𝜀2, 𝜀3 so that the bluff profile is not a

( 1
2 + 𝜀

)
-approximate PNE. □

In Section 4, we show that every approximate PNE of Mechanism 1 results in an approximately EF1
allocation. Here, as a warm-up, we start this endeavor with an easy result which holds specifically for
the bluff profile (and can be extended to approximate PNE where all agents submit the same preference
ranking) but shows a better fairness guarantee than our general Theorem 4.4.

Theorem 3.8. When all agents have submodular valuation functions 𝑣1, . . . , 𝑣𝑛 , the allocation returned by
Round-Robin(≻b) is 1

2 -EF1 with respect to 𝑣1, . . . , 𝑣𝑛 . Moreover, this is tight, i.e., for any 𝜀 > 0, there are
instances where this allocation is not

( 1
2 + 𝜀

)
-EF1.

Proof. In order to obtain a contradiction, suppose that the allocation (𝐴b
1, 𝐴

b
2, . . . , 𝐴

b
𝑛) returned by Round-

Robin(≻b) is not 1
2 -EF1. That is, there exist agents 𝑖 and 𝑗 such that 𝑣𝑖 (𝐴b

𝑖 ) < 0.5·𝑣𝑖 (𝐴b
𝑗 \{𝑔}), for all𝑔 ∈ 𝐴b

𝑗 .
We are going to show that this allows us to construct a deviation for agent 𝑖 where she gets valuemore than
2𝑣𝑖 (𝐴b

𝑖 ), contradicting the fact that ≻b is a 1
2 -approximate PNE. Recall that using the renaming ℎ1, ℎ2, . . .

produced by Algorithm 2, we have 𝐴b
𝑖 = {ℎ𝑖 , ℎ𝑛+𝑖 , . . . , ℎ (𝑘−1)𝑛+𝑖} and 𝐴b

𝑗 = {ℎ 𝑗 , ℎ𝑛+𝑗 , . . . , ℎ (𝑘−1)𝑛+𝑗 }.
Let 𝛿 be the indicator variable of the event 𝑗 < 𝑖 , i.e., 𝛿 is 1 if 𝑗 < 𝑖 and 0 otherwise. We will show

that it is possible for agent 𝑖 to get the set {ℎ𝛿𝑛+𝑗 , ℎ (1+𝛿)𝑛+𝑗 , ℎ (2+𝛿)𝑛+𝑗 , . . . , ℎ (𝑘−1)𝑛+𝑗 }, which is either the
entire 𝐴b

𝑗 (when 𝑖 < 𝑗 ) or 𝐴b
𝑗 \ {ℎ 𝑗 } (when 𝑗 < 𝑖). In particular, let ≻𝑖 be a preference ranking that starts

with all goods in 𝐴b
𝑗 in the same order as they were allocated to agent 𝑗 in Round-Robin(≻b), followed by

everything else, in any order.
Consider the execution of Round-Robin(≻𝑖 ,≻

b
−𝑖). The crucial, yet simple, observation (that makes

an inductive argument work) is that the first 𝑖 − 1 goods ℎ1, . . . , ℎ𝑖−1 are allocated as before, then good
ℎ𝛿𝑛+𝑗 (rather than ℎ𝑖 ) is allocated to agent 𝑖 , and after that the 𝑛 − 1 top goods for all agents in 𝑁 \ {𝑖}
according to ≻b

−𝑖 are ℎ𝑖 , ℎ𝑖+1, . . . , ℎ𝛿𝑛+𝑗−1, ℎ𝛿𝑛+𝑗+1, . . . , ℎ𝑛+𝑖−1, and these are allocated in the next 𝑛 − 1 steps
of the algorithm. As a result, right before a second good is allocated to agent 𝑖 , the available goods are
ℎ𝑛+𝑖 , ℎ𝑛+𝑖+1, . . . , ℎ𝑚 exactly as in the execution of Round-Robin(≻b).

More generally, right before an 𝑟 -th good is allocated to 𝑖 , her bundle is {ℎ𝛿𝑛+𝑗 , ℎ (1+𝛿)𝑛+𝑗 , ℎ (2+𝛿)𝑛+𝑗 ,
. . . , ℎ (𝑟−2+𝛿)𝑛+𝑗 }, and the available goods are ℎ (𝑟−1)𝑛+𝑖 , ℎ (𝑟−1)𝑛+𝑖+1, . . . , ℎ𝑚 (as they were in the execution of
Round-Robin(≻b)). Then good ℎ (𝑟−1+𝛿)𝑛+𝑗 (rather than ℎ (𝑟−1)𝑛+𝑖 ) is allocated to agent 𝑖 , and after that the
𝑛 − 1 top goods for all agents according to ≻b

−𝑖 are

ℎ (𝑟−1)𝑛+𝑖 , ℎ (𝑟−1)𝑛+𝑖+1, . . . , ℎ (𝑟−1+𝛿)𝑛+𝑗−1, ℎ (𝑟−1+𝛿)𝑛+𝑗+1, . . . , ℎ𝑟𝑛+𝑖−1 ,

and they are allocated in the next 𝑛 − 1 steps of the algorithm. At the end, agent 𝑖 gets the entire 𝐴b
𝑗 or

𝐴b
𝑗 \ {ℎ 𝑗 } plus some arbitrary good, depending on whether 𝑖 < 𝑗 or 𝑗 < 𝑖 . In either case, by monotonicity,

agent 𝑖’s value for her bundle is at least 𝑣𝑖 (𝐴b
𝑗 \ {ℎ 𝑗 }) > 2𝑣𝑖 (𝐴b

𝑖 ), where the last inequality follows from
our assumption that (𝐴b

1, 𝐴
b
2, . . . , 𝐴

b
𝑛) is not 1

2 -EF1. Therefore, by deviating from ≻b to ≻𝑖 , agent 𝑖 increases
her value by a factor strictly grater than 2, contradicting Theorem 3.7.

To show that this factor is tight, we again turn to the example given within the proof of Theorem 3.7.
Recall the allocation produced by Mechanism 1 for the bluff profile is 𝐴 = (𝐴1, 𝐴2), with 𝐴1 = {𝑔1, 𝑔3, 𝑔5}
and𝐴2 = {𝑔2, 𝑔4}. Observe that agent 1 is envy-free towards agent 2 as 𝑣1(𝐴1) = 4−𝜀1−𝜀3 > 2−𝜀2 = 𝑣1(𝐴2).
On the other hand, 𝑣2(𝐴2) = 1, whereas 𝑣2(𝐴1) = 4 − 𝜀1 − 𝜀3 and 𝑣2(𝐴1 \ {𝑔1}) = 2 − 𝜀1 − 𝜀3. The latter
implies that for any 𝜀 > 0 one can chose appropriately small 𝜀1, 𝜀2, 𝜀3 so that the bluff profile does not
result in a

( 1
2 + 𝜀

)
-EF1 allocation with respect to the true valuation functions of the agents. □
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4 Fairness properties of PNE

In Section 2.3, Proposition 2.5, we state the fairness guarantees of Round-Robin—viewed as an algorithm—
when all agents have cancelable valuation functions. So far, we have not discussed this matter for the
submodular case. It is not hard to see, however, that Theorem 3.8 and the definition of the bluff profile
via Algorithm 2 imply that when we have (value oracles for) the valuation functions, then we can use
Round-Robin to algorithmically produce 1

2 -EF1 allocations. Using similar arguments, we show next that
for any preference profile ≻ = (≻1, . . . , ≻𝑛) and any 𝑖 ∈ 𝑁 , there is always a response ≻′

𝑖 of agent 𝑖 to ≻−𝑖 ,
such that the allocation returned by Round-Robin(≻′

𝑖 ,≻−𝑖) is 1
2 -EF1 from agent 𝑖’s perspective.

Towards this, we first need a variant of Algorithm 2 that considers everyone in 𝑁 \ {𝑖} fixed to their
report in ≻−𝑖 and greedily determines a “good” response for agent 𝑖 . An intuitive interpretation of what
Algorithm 4 below is doing, can be given if one sees Mechanism 1 as a sequential game. Then, given that
everyone else stays consistent with ≻−𝑖 , agent 𝑖 picks a good of maximum marginal value every time her
turn is up.

Algorithm 4 Greedy response of agent 𝑖 to ≻−𝑖
Input: 𝑁 ,𝑀 , ≻−𝑖 , value oracle for 𝑣𝑖
1: 𝑆 = 𝑀 ; 𝑋 = ∅
2: for 𝑗 = 1, . . . ,𝑚 do
3: ℓ = ( 𝑗 − 1) (mod 𝑛) + 1
4: if ℓ = 𝑖 then
5: 𝑥 ⌈𝑗/𝑛⌉ = arg max

𝑔∈𝑆
𝑣𝑖 (𝑔 |𝑋 ) // Ties are broken lexicographically.

6: 𝑋 = 𝑋 ∪ {𝑥 ⌈𝑗/𝑛⌉}
7: 𝑆 = 𝑆 \ {𝑥 ⌈𝑗/𝑛⌉}
8: else
9: 𝑔 = top(≻ℓ , 𝑆)
10: 𝑆 = 𝑆 \ {𝑔}
11: return 𝑥1 ≻′

𝑖 𝑥2 ≻′
𝑖 . . . ≻′

𝑖 𝑥𝑘 ≻′
𝑖 . . . // Arbitrarily complete ≻′

𝑖 with goods in𝑀 \ 𝑋 .

Proving the next lemma closely follows the proof of Theorem 3.7 but without the need of an analog
of Lemma 3.5, as we get this for free from the way the greedy preference profile ≻′

𝑖 is constructed.

Lemma 4.1. Assume that agent 𝑖 has a submodular valuation function 𝑣𝑖 . If ≻′
𝑖 is the ranking returned by

Algorithm 4 when given 𝑁 ,𝑀 , ≻−𝑖 , 𝑣𝑖 , then the allocation (𝐴′
1, 𝐴

′
2, . . . , 𝐴

′
𝑛) returned by Round-Robin(≻′

𝑖 ,≻−𝑖)
is such that for every 𝑗 ∈ 𝑁 , with 𝐴′

𝑗 ≠ ∅, there exists a good 𝑔 ∈ 𝐴′
𝑗 , so that 𝑣𝑖 (𝐴′

𝑖 ) ≥ 1
2 · 𝑣𝑖 (𝐴′

𝑗 \ {𝑔}).

Proof. First, it is straightforward to see that 𝐴′
𝑖 = 𝑋 , as computed in Algorithm 4. Indeed, Algorithm

4 simulates Mechanism 1 for all 𝑗 ∈ 𝑁 \ {𝑖} and iteratively builds ≻′
𝑖 , so that in every turn of Round-

Robin(≻′
𝑖 ,≻−𝑖) the good allocated to agent 𝑖 is one of maximum marginal value. As a result, the goods in

𝐴′
𝑖 = 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑘 } are already indexed in the order they are allocated.
Now consider an arbitrary 𝑗 ∈ 𝑁 \ {𝑖} and let 𝐴′

𝑗 = 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑘 }, where goods are again
indexed in the order they are allocated in Round-Robin(≻′

𝑖 ,≻−𝑖). Notice that when good 𝑥𝑟 is allocated
to agent 𝑖 in round 𝑟 , goods 𝑦𝑟+1, 𝑦𝑟+2, . . . are still available and, by construction of 𝑋 , their marginal
value with respect to the set {𝑥1, 𝑥2, . . . , 𝑥𝑟−1} is no better than the marginal value of 𝑥𝑟 . In particular,
𝑣𝑖 (𝑥𝑟 | {𝑥1, . . . , 𝑥𝑟−1}) ≥ 𝑣𝑖 (𝑦𝑟+1 | {𝑥1, . . . , 𝑥𝑟−1}).

Also, recall the use of 𝑋 𝑟
−, 𝑋 𝑟

+, 𝑌 𝑟
− , 𝑌 𝑟

+ notation from the proof of Theorem 3.7. We will use a similar
calculation here as well, but we will omit the first element of 𝑌 . For any 𝑟 ∈ [𝑘], we have
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𝑣𝑖 (𝑋 𝑟
−) − 𝑣𝑖 (𝑋 𝑟−1

− ) = 𝑣𝑖 (𝑥𝑟 |𝑋 𝑟−1
− )

≥ 𝑣𝑖 (𝑦𝑟+1 |𝑋 𝑟−1
− )

≥ 𝑣𝑖 (𝑦𝑟+1 |𝑋 𝑟−1
− ∪ 𝑌 𝑟+2

+ )
= 𝑣𝑖 (𝑋 𝑟−1

− ∪ 𝑌 𝑟+2
+ ∪ {𝑦𝑟+1}) − 𝑣𝑖 (𝑋 𝑟−1

− ∪ 𝑌 𝑟+2
+ )

= 𝑣𝑖 (𝑋 𝑟−1
− ∪ 𝑌 𝑟+1

+ ) − 𝑣𝑖 (𝑋 𝑟−1
− ∪ 𝑌 𝑟+2

+ )
≥ 𝑣𝑖 (𝑋 𝑟−1

− ∪ 𝑌 𝑟+1
+ ) − 𝑣𝑖 (𝑋 𝑟

− ∪ 𝑌 𝑟+2
+ ) ,

where we used the convention that 𝑌𝑘+1
+ = 𝑌𝑘+2

+ = ∅. The first inequality holds by the construction of𝑋 as
discussed above, the second inequality follows from submodularity, and the last inequality holds because
𝑣𝑖 (·) is non-decreasing. Using these inequalities and a standard expression of the value of a set as a sum
of marginals, we have

𝑣𝑖 (𝑋 ) = 𝑣𝑖 (𝑋𝑘
−) − 𝑣𝑖 (𝑋 0

−)

=

𝑘∑︁
𝑟=1

(
𝑣𝑖 (𝑋 𝑟

−) − 𝑣𝑖 (𝑋 𝑟−1
− )

)
≥

𝑘∑︁
𝑟=1

(
𝑣𝑖 (𝑋 𝑟−1

− ∪ 𝑌 𝑟+1
+ ) − 𝑣𝑖 (𝑋 𝑟

− ∪ 𝑌 𝑟+2
+ )

)
= 𝑣𝑖 (𝑋 0

− ∪ 𝑌 2
+ ) − 𝑣𝑖 (𝑋𝑘

− ∪ 𝑌𝑘+2
+ )

= 𝑣𝑖 (𝑌 \ {𝑦1}) − 𝑣𝑖 (𝑋 ) .

Thus, we have 𝑣𝑖 (𝐴′
𝑖 ) = 𝑣𝑖 (𝑋 ) ≥ 1

2 · 𝑣𝑖 (𝑌 \ {𝑦1}) = 1
2 · 𝑣𝑖 (𝐴′

𝑗 \ {𝑦1}). □

4.1 The Case of Two Agents

As a warm-up, we begin with the easier case of 𝑛 = 2. Not only the proofs of our main results for
submodular and additive functions are much simpler here, but the fairness guarantees are stronger as
well.

Theorem 4.2. Let 𝛼 ∈ (0, 1]. Assume we have a fair division instance with two agents, whose valuation
functions 𝑣1, 𝑣2 are submodular. Then any allocation that corresponds to a 𝛼-approximate PNE of the Round-
Robin mechanism is 𝛼

2 -EF1 with respect to 𝑣1, 𝑣2.

Proof. Let ≻ = (≻1, ≻2) be a 𝛼-approximate PNE of Mechanism 1 for a given instance, and let (𝐴1, 𝐴2) be
the allocation returned by Round-Robin(≻). Consider one of the two agents; we call this agent 𝑖 ∈ [2]
and the other agent 𝑗 . We are going to show that 𝑣𝑖 (𝐴𝑖) ≥ 𝛼

2 · 𝑣𝑖 (𝐴 𝑗 \ {𝑔}) for some good 𝑔 ∈ 𝐴 𝑗 .
Suppose that agent 𝑖 deviates to ≻′

𝑖 produced by Algorithm 4 when given ≻−𝑖 = (≻𝑗 ) and 𝑣𝑖 , and let
(𝐴′

1, 𝐴
′
2) be the allocation returned by Round-Robin(≻′

𝑖 ,≻−𝑖). Let 𝐴′
𝑖 = {𝑥1, 𝑥2, . . . , 𝑥𝑘 } and 𝐴 𝑗 \ 𝐴′

𝑖 =

{𝑦𝑡1, 𝑦𝑡2, . . . , 𝑦𝑡ℓ }, where in both sets goods are indexed by the round in which they were allocated in the
run of Round-Robin(≻′

𝑖 ,≻−𝑖). Note that all indices in 𝐴 𝑗 \𝐴′
𝑖 are distinct exactly because 𝑛 = 2 and, thus,

all these goods are allocated to agent 𝑗 . This indexing guarantees that when 𝑥𝑡𝜆−1 gets allocated, 𝑦𝑡𝜆 is still
available for 2 ≤ 𝜆 ≤ ℓ and, thus,

𝑣 (𝑥𝑡𝜆−1 | {𝑥1, 𝑥2, . . . , 𝑥𝑡𝜆−2}) ≥ 𝑣 (𝑦𝑡𝜆 | {𝑥1, 𝑥2, . . . , 𝑥𝑡𝜆−2}) , (1)
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by the way ≻′
𝑖 is constructed (see also the proof of Lemma 4.1). Using Theorem 2.1, we have

𝑣𝑖 (𝐴 𝑗 \ {𝑦𝑡1}) ≤ 𝑣𝑖 (𝐴′
𝑖 ) +

∑︁
𝑔∈(𝐴 𝑗 \{𝑦𝑡1 })\𝐴′

𝑖

𝑣 (𝑔 |𝐴′
𝑖 )

= 𝑣𝑖 (𝐴′
𝑖 ) +

ℓ∑︁
𝜆=2

𝑣 (𝑦𝑡𝜆 |𝐴′
𝑖 )

≤ 𝑣𝑖 (𝐴′
𝑖 ) +

ℓ∑︁
𝜆=2

𝑣 (𝑦𝑡𝜆 | {𝑥1, 𝑥2, . . . , 𝑥𝑡𝜆−2})

≤ 𝑣𝑖 (𝐴′
𝑖 ) +

ℓ∑︁
𝜆=2

𝑣 (𝑥𝑡𝜆−1 | {𝑥1, 𝑥2, . . . , 𝑥𝑡𝜆−2})

≤ 𝑣𝑖 (𝐴′
𝑖 ) +

𝑘∑︁
𝜆=1

𝑣 (𝑥𝜆 | {𝑥1, 𝑥2, . . . , 𝑥𝜆−1})

= 𝑣𝑖 (𝐴′
𝑖 ) + 𝑣𝑖 (𝐴′

𝑖 )

≤ 2
𝛼
· 𝑣𝑖 (𝐴𝑖) ,

where the first inequality follows directly from Theorem 2.1, the second one follows from submodularity,
the third inequality holds because of (1), the fourth one follows from the monotonicity of 𝑣𝑖 , and the last
inequality follows from the fact that ≻ is a 𝛼-approximate PNE and thus 𝑣𝑖 (𝐴𝑖) ≥ 𝛼 · 𝑣𝑖 (𝐴′

𝑖 ). We conclude
that (𝐴1, 𝐴2) is 𝛼

2 -EF1 with respect to the underlying valuation functions. □

For additive valuation functions we can get a slightly stronger fairness guarantee, which we show that
is also tight for any 𝛼 , with an even easier proof. Note that this reproduces the result of Amanatidis et al.
[5] for exact PNE in the case of two agents.

Theorem 4.3. Let 𝛼 ∈ (0, 1]. Assume we have a fair division instance with two agents, whose valuation
functions 𝑣1, 𝑣2 are additive. Then any allocation that corresponds to a 𝛼-approximate PNE of the Round-
Robin mechanism is 𝛼

2−𝛼 -EF1 with respect to 𝑣1, 𝑣2. This is tight, i.e., for any 𝜀 > 0, there are instances where
a 𝛼-approximate PNE does not correspond to a ( 𝛼

2−𝛼 + 𝜀)-EF1 allocation.

Proof. Let ≻ = (≻1, ≻2), 𝐴1, 𝐴2 be as in the proof of Theorem 4.2, but now consider the deviation of agent
𝑖 to ≻′

𝑖 which is a strict version of her true preference ranking ≽∗𝑖 . Again, let (𝐴′
1, 𝐴

′
2) be the allocation

returned by Round-Robin(≻′
𝑖 ,≻−𝑖).

Let 𝑔 be good of maximum value in 𝐴′
𝑗 according to 𝑣𝑖 . Since ≻′

𝑖 is a true preference ranking of
agent 𝑖 , according to Proposition 2.5 (𝐴′

1, 𝐴
′
2) is EF1 from the point of view of agent 𝑖 . That is, we have

𝑣𝑖 (𝐴′
𝑖 ) ≥ 𝑣𝑖 (𝐴′

𝑗 \ {𝑔}) and, thus, 𝑣𝑖 (𝐴′
𝑖 ) ≥ 1

2 · 𝑣𝑖 (𝑀 \ {𝑔}). Therefore,

𝑣𝑖 (𝐴 𝑗 \ {𝑔}) = 𝑣𝑖 (𝑀 \ {𝑔}) − 𝑣𝑖 (𝐴𝑖)
≤ 2 · 𝑣𝑖 (𝐴′

𝑖 ) − 𝑣𝑖 (𝐴𝑖)

≤ 2
𝛼
· 𝑣𝑖 (𝐴𝑖) − 𝑣𝑖 (𝐴𝑖)

=
2 − 𝛼

𝛼
· 𝑣𝑖 (𝐴𝑖) ,

where the second inequality follows from the fact that ≻ is a 𝛼-approximate PNE and thus 𝑣𝑖 (𝐴𝑖) ≥
𝛼 · 𝑣𝑖 (𝐴′

𝑖 ). We conclude that (𝐴1, 𝐴2) is 𝛼
2−𝛼 -EF1 with respect to 𝑣1, 𝑣2.
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To see that this guarantee is tight, consider an instance with two agents, and a set of five goods
{𝑔1, 𝑔2, . . . , 𝑔5}. In addition, let the valuation functions of the agents to be additive and defined by:

𝑣1(𝑔 𝑗 ) =



6, if 𝑗 = 1
3 + 𝛿, if 𝑗 = 2
3, if 𝑗 = 3
0.5 + 𝛿, if 𝑗 = 4
0.5, if 𝑗 = 5

𝑣2(𝑔 𝑗 ) =



6𝛽, if 𝑗 = 1
3𝛽 + 𝛿, if 𝑗 = 2
3𝛽, if 𝑗 = 3
0.5 + 𝛿, if 𝑗 = 4
0.5, if 𝑗 = 5

where 0.5 ≫ 𝛿 , and 𝛽 > 1
6 +𝛿 . Now suppose that the agents bid as follows: Agent 1 bids truthfully (i.e., an

ordering ≻1 that is consistent with her true valuation function), while agent 2 bids 𝑔5 ≻2 𝑔4 ≻2 𝑔1 ≻2 𝑔2 ≻2
𝑔3. It is easy to confirm that the produced allocation is 𝐴 = (𝐴1, 𝐴2) = ({𝑔1, 𝑔2, 𝑔3}, {𝑔4, 𝑔5}). Regarding
agent 1, she takes her three most desirable goods in this allocation so there is no profitable deviation for
her. For the same reason, she is envy-free towards agent 2.

Moving to agent 2, by observing her valuation function, we immediately derive that she is 1+𝛿
6𝛽+𝛿 -EF1

towards agent 1. The only thing that remains, is to check how much agent 2 can improve her utility
through deviating. Initially notice that agent 2 cannot get good 𝑔1 regardless of her bid as this good is
taken by agent 1 in round 1. At the same time, it is easy to verify that she cannot get both goods 𝑔2 and
𝑔3 due to the declared ordering of agent 1. Thus, the best bundle of goods that she can acquire is {𝑔2, 𝑔4}
by deviating to the bid: 𝑔2 ≻′

2 𝑔4 ≻′
2 𝑔1 ≻′

2 𝑔3 ≻′
2 𝑔5 and attain a value of 3𝛽 + 0.5 + 2𝛿 .

By setting 𝛼 = 1+𝛿
3𝛽+0.5+2𝛿 we trivially have that (≻1, ≻2) is a 𝛼-approximate PNE. On the other hand, for

a given 𝜀 > 0, we have 𝛼
2−𝛼 + 𝜀 = 1+𝛿

6𝛽+3𝛿 + 𝜀 which is strictly larger than 1+𝛿
6𝛽+𝛿 for sufficiently small 𝛿 . That

is, there is a choice of 𝛿 so that the 𝛼-approximate PNE (≻1, ≻2) is not 𝛼
2−𝛼 + 𝜀-EF1. □

4.2 The Case of 𝑛 Agents

Looking back at the proofs of Theorems 4.2 and 4.3, the obvious fact that everything not in 𝐴𝑖 or 𝐴′
𝑖

was allocated to agent 𝑗 played a key role in proving our sharp bounds. Moving to the general case of 𝑛
agents, there is no reason to expect that we have some control on how the goods are redistributed between
agents in 𝑁 \ {𝑖} when agent 𝑖 deviates from an (approximate) equilibrium. Surprisingly, we show that
this redistribution does not favor any agent too much from 𝑖’s perspective when the valuation functions
are submodular or subadditive cancelable (Lemmata 4.6 and 4.7). Consequently, the main results of this
section have similar flavor not only with respect to their statements, but with respect to their proofs as
well.

Theorem4.4. Let𝛼 ∈ (0, 1]. For instances with submodular valuation functions {𝑣𝑖}𝑖∈𝑁 , any𝛼-approximate
PNE of the Round-Robin mechanism is 𝛼

3 -EF1 with respect to {𝑣𝑖}𝑖∈𝑁 .

Theorem 4.5. Let 𝛼 ∈ (0, 1]. For instances with subadditive cancelable valuation functions {𝑣𝑖}𝑖∈𝑁 , any
𝛼-approximate PNE of the Round-Robin mechanism is 𝛼

2 -EF1 with respect to {𝑣𝑖}𝑖∈𝑁 .

As the proofs of both theorems have the same general structure and share Lemmata 4.6 and 4.7, we
begin with some common wording and notation, consistent with our proofs for two agents. Given any
instance, we use ≻ = (≻1, . . . , ≻𝑛) for an arbitrary 𝛼-approximate PNE of Mechanism 1. We then consider
the deviation of some agent 𝑖 to a preference ranking ≻′

𝑖 ; in the submodular case ≻′
𝑖 is the output of Algo-

rithm 4 when given ≻−𝑖 and 𝑣𝑖 , whereas in the cancelable case ≻′
𝑖 is a strict version of 𝑖’s true preference

ranking ≽∗𝑖 . We use (𝐴1, . . . , 𝐴𝑛) and (𝐴′
1, . . . , 𝐴

′
𝑛) to denote the allocations returned by Round-Robin(≻)

and Round-Robin(≻′
𝑖 ,≻−𝑖), respectively.
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In order to show that (𝐴1, . . . , 𝐴𝑛) as 𝛼
𝜅
-EF1 from agent 𝑖’s perspective (where𝜅 is 3 for submodular and

2 for cancelable functions), we use the stronger EF1 guarantees that (𝐴′
1, . . . , 𝐴

′
𝑛) has from her perspective.

To this end, we use ℎℓ𝑟 to denote the good that was allocated to an agent ℓ ∈ 𝑁 in round 𝑟 of Round-
Robin(≻′

𝑖 ,≻−𝑖). In particular, 𝐴′
𝑖 = {ℎ𝑖1, ℎ𝑖2, . . . , ℎ𝑖𝑘 }; recall that 𝑘 = 𝑚/𝑛. Further, given that we have

fixed agent 𝑖 , we use 𝑆𝑟 and 𝑆 ′𝑟 , for 0 ≤ 𝑟 ≤ 𝑘 − 1, to denote the set of goods that had been allocated up
to right before a good was allocated to 𝑖 in round 𝑟 + 1 of Round-Robin(≻) and Round-Robin(≻′

𝑖 ,≻−𝑖),
respectively. That is, for 0 ≤ 𝑟 ≤ 𝑘 − 1, 𝑆𝑟 and 𝑆 ′𝑟 contain the goods allocated in steps 1 through 𝑟𝑛 + 𝑖 − 1
of Round-Robin(≻) and Round-Robin(≻′

𝑖 ,≻−𝑖), respectively.
For the next technical lemma we assume that the valuation functions are either submodular or cance-

lable and, in each case, we use the corresponding ≻′
𝑖 as described above.

Lemma 4.6. For any 𝑟 ∈ [𝑘], right before an 𝑟 -th good is allocated to agent 𝑖 in Round-Robin(≻), there are
at most 𝑟 − 1 goods from 𝑆 ′𝑟−1 that are still unallocated, i.e.,

��𝑆 ′𝑟−1 \ 𝑆𝑟−1
�� ≤ 𝑟 − 1.

Proof. We will prove the statement using induction on 𝑟 . For 𝑟 = 1, it is straightforward that 𝑆0 = 𝑆 ′0, as
the preference rankings of agents 1 through 𝑖−1 are the same in the two runs of the mechanism and, thus,
the first goods allocated to them are exactly the same.

Now suppose that the statement is true for every round up to round 𝑟 ; we will show that it is true for
round 𝑟 +1 as well. Initially, observe that if the number of unallocated goods from 𝑆 ′𝑟−1 is 𝑟 −1 right before
a good is allocated to agent 𝑖 in round 𝑟 , it will trivially be at most 𝑟 − 1 right before a good is allocated to
agent 𝑖 in round 𝑟 + 1 (as the number of unallocated goods from any set cannot increase as the allocation
progresses). That is,

��𝑆 ′𝑟−1 \ 𝑆𝑟
�� ≤ 𝑟 − 1.

Notice that the goods that might cause 𝑆 ′𝑟 \ 𝑆𝑟 to increase are the elements of

𝑆 ′𝑟 \ 𝑆 ′𝑟−1 = {ℎ𝑖𝑟 , ℎ𝑖+1
𝑟 , . . . , ℎ𝑛𝑟 , ℎ

1
𝑟+1, ℎ

2
𝑟+1, . . . , ℎ

𝑖−1
𝑟+1} ,

and suppose that there are 𝜆 goods therein which are still unallocated right before a good is allocated to
agent 𝑖 in round 𝑟 + 1 of Round-Robin(≻). Clearly, if 𝜆 ≤ 1, we are done. So, assume that 𝜆 ≥ 2. This
means that there are 𝜆 − 1 ≥ 1 unallocated goods in (𝑆 ′𝑟 \ 𝑆 ′𝑟−1) \ {ℎ𝑖𝑟 }. Let 𝑔 be one of these goods and let
𝑗 be the agent to whom 𝑔 was given, i.e., 𝑔 = ℎ

𝑗
𝑟 , where 𝑟 = 𝑟 , if 𝑗 > 𝑖 , and 𝑟 = 𝑟 + 1, if 𝑗 < 𝑖 . In either case,

notice that according to ≻𝑗 the good 𝑔 is better than any good in 𝑀 \ 𝑆 ′𝑟 or else it would not have been
allocated to 𝑗 at round 𝑟 of Round-Robin(≻′

𝑖 ,≻−𝑖) when everything in 𝑀 \ 𝑆 ′𝑟 is still available. We claim
that 𝑔 does not increase the number of elements in 𝑆 ′𝑟 \ 𝑆𝑟 . Indeed, given that 𝑔 was available during step
(𝑟 − 1)𝑛 + 𝑗 of Round-Robin(≻) and that 𝑗 ’s declared preference ranking is still ≻𝑗 , the only possibility
is that during that step one of the unallocated goods from 𝑆 ′𝑟−1 ∪ {ℎ𝑖𝑟 , ℎ𝑖+1

𝑟 , . . . , ℎ
𝑗−1
𝑟 } was allocated to 𝑗

instead.
Therefore, the only good out of the 𝜆 candidate goods of 𝑆 ′𝑟 \ 𝑆 ′𝑟−1 which might count towards the

number of elements in 𝑆 ′𝑟 \ 𝑆𝑟 is ℎ𝑖𝑟 . We conclude that 𝑆 ′𝑟 \ 𝑆𝑟 ≤ (𝑟 − 1) + 1 = 𝑟 . □

Lemma 4.6 is global, illustrating that the sets 𝑆𝑟 and 𝑆 ′𝑟 cannot differ in more than a 1/𝑛-th of their
elements. The next lemma shows that no agent can accumulate too many goods from 𝑆 ′𝑟 , for any 0 ≤ 𝑟 ≤
𝑘−1. Again, we assume that the valuation functions are either submodular or cancelable and, in each case,
the appropriate ≻′

𝑖 is used as discussed after the statements of Theorems 4.2 and 4.3. Note that 𝑆 ′0 in the
lemma’s statement contains exactly these goods which we will exclude when showing the EF1 guarantee
for our two theorems.

Lemma 4.7. For any 𝑟 ∈ [𝑘] and any 𝑗 ∈ 𝑁 , agent 𝑗 gets at most 2(𝑟 − 1) goods from 𝑆 ′𝑟−1 \ 𝑆 ′0 in the
allocation (𝐴1, . . . , 𝐴𝑛) returned by Round-Robin(≻), i.e., |𝐴 𝑗 ∩ (𝑆 ′𝑟−1 \ 𝑆 ′0) | ≤ 2(𝑟 − 1).
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Proof. Fix an 𝑟 ∈ [𝑘] and a 𝑗 ∈ 𝑁 . Consider the end of step (𝑟 − 1)𝑛 + 𝑖 − 1 of Round-Robin(≻), i.e., right
before an 𝑟 -th good is allocated to agent 𝑖 . Ignoring all the goods allocated before 𝑖 got her first good,
agent 𝑗 has received exactly 𝑟 − 1 goods up to this point. As a result, the number of goods allocated to 𝑗

from 𝑆 ′𝑟−1 \ 𝑆 ′0 at this point is at most 𝑟 − 1.
At the same time, the number of goods from 𝑆 ′𝑟−1 \ 𝑆 ′0 that might end up in 𝐴 𝑗 in any future steps of

Round-Robin(≻) are at most as many as the goods from 𝑆 ′𝑟−1 that are still unallocated at the end of step
(𝑟 − 1)𝑛 + 𝑖 − 1. The latter, by Lemma 4.6, are also at most 𝑟 − 1.

From these two observations, we have that the final bundle𝐴 𝑗 of agent 𝑗 may contain at most 2(𝑟 − 1)
goods from 𝑆 ′𝑟−1 \ 𝑆 ′0. □

With Lemma 4.7 at hand, we are now ready to prove Theorems 4.4 and 4.5;

Proof of Theorem 4.4. We, of course, adopt the notation that has been used throughout this section, focus-
ing on an arbitrary agent 𝑖 ∈ 𝑁 and assuming that her deviation ≻′

𝑖 has been the output of Algorithm 4
with input ≻−𝑖 and 𝑣𝑖 . In particular, (𝐴1, . . . , 𝐴𝑛) and (𝐴′

1, . . . , 𝐴
′
𝑛) are the allocations returned by Round-

Robin(≻) and Round-Robin(≻′
𝑖 ,≻−𝑖), respectively.

Consider another agent 𝑗 ∈ 𝑁 \ {𝑖}. Let 𝐴′
𝑖 = {𝑥1, 𝑥2, . . . , 𝑥𝑘 } and 𝐴 𝑗 = {𝑦1, 𝑦2, . . . , 𝑦𝑘 }, where in both

sets goods are indexed in the order in which they were allocated in the run of Round-Robin(≻′
𝑖 ,≻−𝑖). For

𝐴′
𝑖 , this means that 𝑥𝑟 was allocated in round 𝑟 for all 𝑟 ∈ [𝑘]. For 𝐴 𝑗 , this indexing guarantees that for

every 0 ≤ ℓ < 𝑟 ≤ 𝑘−1, the goods in𝐴 𝑗∩(𝑆 ′ℓ \𝑆 ′ℓ−1) all have smaller indices than the goods in𝐴 𝑗∩(𝑆 ′𝑟 \𝑆 ′𝑟−1)
(where we use the convention that 𝑆 ′−1 = ∅). We further partition 𝐴 𝑗 \ {𝑦1} to 𝑌1 = {𝑦1

1, . . . , 𝑦
1
𝜏1} and

𝑌2 = {𝑦2
1, . . . , 𝑦

2
𝜏2} which contain the goods of 𝐴 𝑗 \ {𝑦1} with odd and even indices, respectively, and

are both renamed according to Algorithm 3 with inputs 𝐴′
𝑖 , 𝑌1, 𝑣𝑖 , and 𝐴′

𝑖 , 𝑌2, 𝑣𝑖 , respectively. Clearly,
𝜏1 = ⌊𝑘−1

2 ⌋ and 𝜏2 = ⌈𝑘−1
2 ⌉.

By Lemma 4.7, we have that 𝐴 𝑗 contains at most 2(𝑟 − 1) goods from 𝑆 ′𝑟−1 \ 𝑆 ′0, for any 𝑟 ∈ [𝑘]. The
original ordering 𝑦1, 𝑦2, . . . of the goods in 𝐴 𝑗 and the way 𝐴 𝑗 \ {𝑦1} was partitioned into 𝑌1 and 𝑌2 imply
that

��|𝑌1 ∩ (𝑆 ′𝑟−1 \ 𝑆 ′0) | − |𝑌2 ∩ (𝑆 ′𝑟−1 \ 𝑆 ′0) |
�� ≤ 1 and, thus, each of 𝑌1 and 𝑌2 contains at most 𝑟 − 1 goods

from 𝑆 ′𝑟−1 \ 𝑆 ′0.
We also claim that, for ℓ ∈ {1, 2} and 𝑟 ∈ [𝜏ℓ ], we have

𝑣𝑖 (𝑥𝑟 | {𝑥1, . . . , 𝑥𝑟−1}) ≥ 𝑣𝑖 (𝑦ℓ𝑟 | {𝑥1, . . . , 𝑥𝑟−1}) . (2)

Suppose not. That is, there are ℓ ∈ {1, 2} and 𝑟 ∈ [𝜏ℓ ] so that (2) is violated. Note that, by the way
Algorithm 3 ordered the elements of 𝑌1 and 𝑌2, this implies

𝑣𝑖 (𝑥𝑟 | {𝑥1, . . . , 𝑥𝑟−1}) < 𝑣𝑖 (𝑦ℓ𝑟 | {𝑥1, . . . , 𝑥𝑟−1}) ≤ 𝑣𝑖 (𝑦ℓ𝑡 | {𝑥1, . . . , 𝑥𝑟−1}) ,

for all 𝑡 ∈ [𝑟 ]. Since 𝑥𝑟 was the good allocated to agent 𝑖 at step (𝑟 − 1)𝑛 + 𝑖 of Round-Robin(≻′
𝑖 ,≻−𝑖), 𝑥𝑟

had maximum marginal value for 𝑖 with respect to {𝑥1, . . . , 𝑥𝑟−1} among the available goods. Thus, none
of the goods 𝑦ℓ1, . . . , 𝑦

ℓ
𝑟 were available at the time, i.e., 𝑦ℓ1, . . . , 𝑦

ℓ
𝑟 ∈ 𝑆 ′𝑟−1. Given that the only good of 𝐴 𝑗

that could possibly be in 𝑆 ′0 = 𝑆0 was 𝑦1 which is not in 𝑌1 ∪ 𝑌2. Therefore, 𝑦ℓ1, . . . , 𝑦
ℓ
𝑟 ∈ 𝑆 ′𝑟−1 \ 𝑆 ′0, which

contradicts the fact that |𝑌ℓ ∩ (𝑆 ′𝑟−1 \ 𝑆 ′0) | ≤ 𝑟 − 1. We conclude that (2) holds for all ℓ ∈ {1, 2} and 𝑟 ∈ [𝜏ℓ ].
We are now ready to apply Theorem 2.1 to bound the value of 𝐴 𝑗 \ {𝑦1}. We have

𝑣𝑖 (𝐴 𝑗 \ {𝑦1}) ≤ 𝑣𝑖 (𝐴′
𝑖 ) +

∑︁
𝑔∈(𝐴𝑗 \{𝑦1 })\𝐴′

𝑖

𝑣 (𝑔 |𝐴′
𝑖 )

= 𝑣𝑖 (𝐴′
𝑖 ) +

∑︁
𝑔∈𝑌1\𝐴′

𝑖

𝑣 (𝑔 |𝐴′
𝑖 ) +

∑︁
𝑔∈𝑌2\𝐴′

𝑖

𝑣 (𝑔 |𝐴′
𝑖 )

20



= 𝑣𝑖 (𝐴′
𝑖 ) +

𝜏1∑︁
ℓ=1

𝑣 (𝑦1
ℓ |𝐴′

𝑖 ) +
𝜏2∑︁
ℓ=1

𝑣 (𝑦2
ℓ |𝐴′

𝑖 )

≤ 𝑣𝑖 (𝐴′
𝑖 ) +

𝜏1∑︁
ℓ=1

𝑣 (𝑦1
ℓ | {𝑥1, . . . , 𝑥ℓ−1}) +

𝜏2∑︁
ℓ=1

𝑣 (𝑦2
ℓ | {𝑥1, . . . , 𝑥ℓ−1})

≤ 𝑣𝑖 (𝐴′
𝑖 ) +

𝜏1∑︁
ℓ=1

𝑣 (𝑥ℓ | {𝑥1, . . . , 𝑥ℓ−1}) +
𝜏2∑︁
ℓ=1

𝑣 (𝑥ℓ | {𝑥1, . . . , 𝑥ℓ−1})

≤ 𝑣𝑖 (𝐴′
𝑖 ) + 2 ·

𝑘∑︁
ℓ=1

𝑣 (𝑥ℓ | {𝑥1, 𝑥2, . . . , 𝑥ℓ−1})

= 𝑣𝑖 (𝐴′
𝑖 ) + 2 · 𝑣𝑖 (𝐴′

𝑖 )

≤ 3
𝛼
· 𝑣𝑖 (𝐴𝑖) ,

where the first inequality follows directly from Theorem 2.1, the second one follows from submodularity,
the third inequality holds because of (2), the fourth one follows from the monotonicity of 𝑣𝑖 , and the last
inequality follows from the fact that ≻ is a 𝛼-approximate PNE and thus 𝑣𝑖 (𝐴𝑖) ≥ 𝛼 · 𝑣𝑖 (𝐴′

𝑖 ). We conclude
that (𝐴1, 𝐴2, . . . , 𝐴𝑛) is 𝛼

3 -EF1 with respect to the underlying valuation functions. □

Proof of Theorem 4.5. Note that in the proof of Theorem 4.2, the submodularity of 𝑣𝑖 is not used until the
final bounding of 𝐴 𝑗 \ {𝑦1}. Up to that point, the proof here is essentially identical (the only difference
being that now ≻′

𝑖 is a strict version of 𝑖’s true preference ranking ≽∗𝑖 but this does not change any of
the arguments). In particular, for 𝐴′

𝑖 = {𝑥1, 𝑥2, . . . , 𝑥𝑘 }, 𝐴 𝑗 = {𝑦1, 𝑦2, . . . , 𝑦𝑘 }, 𝑌1 = {𝑦1
1, . . . , 𝑦

1
𝜏1}, and

𝑌2 = {𝑦2
1, . . . , 𝑦

2
𝜏2}, like in the proof of Theorem 4.2, we still have (2), for any ℓ ∈ {1, 2} and 𝑟 ∈ [𝜏ℓ ], i.e.,

𝑣𝑖 (𝑥𝑟 | {𝑥1, . . . , 𝑥𝑟−1}) ≥ 𝑣𝑖 (𝑦ℓ𝑟 | {𝑥1, . . . , 𝑥𝑟−1}).
Notice that (2) can be rewritten as 𝑣𝑖 ({𝑥1, . . . , 𝑥𝑟−1, 𝑥𝑟 }) ≥ 𝑣𝑖 ({𝑥1, . . . , 𝑥𝑟−1, 𝑦

ℓ
𝑟 }). Since 𝑣1 is cancelable,

the latter implies that 𝑣𝑖 (𝑥𝑟 ) ≥ 𝑣𝑖 (𝑦ℓ𝑟 ), for ℓ ∈ {1, 2} and 𝑟 ∈ [𝜏ℓ ]. Now we apply Lemma 3.3 to get
𝑣𝑖 ({𝑥1, 𝑥2, . . . , 𝑥𝜏ℓ }) ≥ 𝑣𝑖 (𝑌ℓ ), for ℓ ∈ {1, 2}. At this point, we can easily bound the value of 𝐴 𝑗 \ {𝑦1}. We
have

𝑣𝑖 (𝐴 𝑗 \ {𝑦1}) = 𝑣𝑖 (𝑌1 ∪ 𝑌2)
≤ 𝑣𝑖 (𝑌1) + 𝑣𝑖 (𝑌2)
≤ 𝑣𝑖 ({𝑥1, 𝑥2, . . . , 𝑥𝜏1}) + 𝑣𝑖 ({𝑥1, 𝑥2, . . . , 𝑥𝜏2})
≤ 𝑣𝑖 (𝐴′

𝑖 ) + 𝑣𝑖 (𝐴′
𝑖 )

≤ 2
𝛼
· 𝑣𝑖 (𝐴𝑖) ,

where the first inequality follows from subadditivity, the third one follows from the monotonicity of 𝑣𝑖 ,
and the last inequality follows from the fact that ≻ is a 𝛼-approximate PNE. We conclude that (𝐴1, . . . , 𝐴𝑛)
is 𝛼

2 -EF1 with respect to the underlying valuation functions. □

The 𝛼/(2 − 𝛼) upper bound of Theorem 4.3 for the additive case applies to both submodular and
subadditive cancelable valuation functions, leaving a very small gap for the latter. For the submodular
case, we improve this upper bound to 𝛼/2.

Proposition 4.8. Let𝛼, 𝜀 ∈ (0, 1]. For instances with submodular valuation functions {𝑣𝑖}𝑖∈𝑁 , a𝛼-approximate
PNE of the Round-Robin mechanism may not be ( 𝛼2 + 𝜀)-EF1 with respect to {𝑣𝑖}𝑖∈𝑁 .
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Proof. We construct an instance with four agents and nine goods, i.e., 𝑁 = [4] and 𝑀 = {𝑔1, 𝑔2, . . . , 𝑔9}.
Let 1 ≫ 𝜀1 > 𝜀2 > 𝜀3 > 𝜀4 > 𝜀5 > 𝜀6 and 𝛽 > (1 + 𝜀4)/2. The first three agents have additive valuation
functions, defined as follows:

𝑣1(𝑔 𝑗 ) =



5, if 𝑗 = 1
𝜀5, if 𝑗 = 2
𝜀6, if 𝑗 = 3
1, if 𝑗 = 4
2, if 𝑗 = 5
𝜀1, if 𝑗 = 6
𝜀2, if 𝑗 = 7
𝜀3, if 𝑗 = 8
𝜀4, if 𝑗 = 9

𝑣2(𝑔 𝑗 ) =



𝜀5, if 𝑗 = 1
5, if 𝑗 = 2
𝜀6, if 𝑗 = 3
1, if 𝑗 = 4
𝜀1, if 𝑗 = 5
𝜀2, if 𝑗 = 6
2, if 𝑗 = 7
𝜀3, if 𝑗 = 8
𝜀4, if 𝑗 = 9

𝑣3(𝑔 𝑗 ) =



𝜀5, if 𝑗 = 1
𝜀6, if 𝑗 = 2
5, if 𝑗 = 3
𝜀1, if 𝑗 = 4
𝜀2, if 𝑗 = 5
2, if 𝑗 = 6
𝜀3, if 𝑗 = 7
𝜀4, if 𝑗 = 8
1, if 𝑗 = 9.

Agent 4 has an OXS (and, thus, submodular) valuation function that is defined by themaximumweight
matchings in the bipartite graph below.

𝑔1

𝑔2

𝑔3

𝑔4

𝑔5

𝑔6

𝑔7

𝑔8

𝑔9

5 · 𝛽

4 · 𝛽

3 · 𝛽

2 · 𝛽

2 · 𝛽 − 𝜀4

1

1 − 𝜀3

𝜀1

𝜀2

Now consider a bidding profile where the first three agents bid truthfully (i.e., they bid the strict pref-
erence rankings ≻∗

1, ≻∗
2, ≻∗

3 which are consistent with 𝑣,𝑣2, 𝑣3), while the fourth agent bids the preference
ranking ≻4: 𝑔3 ≻4 𝑔6 ≻4 𝑔8 ≻4 𝑔1 ≻4 𝑔2 ≻4 𝑔4 ≻4 𝑔5 ≻4 𝑔7 ≻4 𝑔9. It is easy to confirm that the produced
allocation is (𝐴1, 𝐴2, 𝐴3, 𝐴4) = {{𝑔1, 𝑔4, 𝑔5}, {𝑔2, 𝑔7}, {𝑔3, 𝑔9}, {𝑔6, 𝑔8}}.

We first examine the first three agents. Agents 1 and 2 get their most valuable goods in this allocation
something that implies that there is no profitable deviation for them. For the same reason they are also
envy-free towards the other agents. Regarding agent 3, the only bundle that improves her utility is {𝑔3, 𝑔6}.
However, there is no bid that she can report and get these two goods. The reason for this is that if she does
not get good 𝑔3 in round 1 of Mechanism 1 (by not declaring it as her best good among the available ones),
then 𝑔3 is lost to agent 4. If, on the other hand, she gets good 𝑔3 in round 1 (by declaring it as her best
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good among the available ones), then good 𝑔6 is lost to agent 4. Therefore, there is no profitable deviation
for her. Finally, it is easy to see that she is also envy-free towards the other agents.

Moving to agent 4, we have that

𝑣4(𝐴𝑖) =


𝑣4(𝑔1) + 4𝛽 − 𝜀4, if 𝑖 = 1
𝑣4(𝑔2) + 1 − 𝜀3, if 𝑖 = 2
𝑣4(𝑔3) + 𝜀2, if 𝑗 = 3
1 + 𝜀1, if 𝑗 = 4,

where 𝑔1, 𝑔2, 𝑔3 are the most valuable goods from sets𝐴1, 𝐴2, 𝐴3, respectively, according to agent 4. There-
fore, 𝑣4(𝐴1 \ {𝑔1}) > 𝑣4(𝐴2 \ {𝑔2}) > 𝑣4(𝐴3 \ {𝑔3}), and by comparing 𝑣4(𝐴4) with 𝑣4(𝐴1 \ {𝑔1}) we get that
agent 4 is 1+𝜀1

4𝛽−𝜀4
-EF1 towards agent 1. The only thing that remains is to explore the possible deviations of

agent 4. Initially, notice that regardless of what agent 4 declares, she cannot get goods 𝑔1, 𝑔2, 𝑔3 as these
are taken in round 1 by the agents that precede her. With that in mind, we will examine what is the best
attainable value through deviating, based on what she gets in round 1. Take note that she can get any
goods from {𝑔4, 𝑔5, . . . , 𝑔9} in round 1 as they are available when her turn comes:

• Agent 4 gets good 𝑔4 in round 1. Based on the reported preferences ≻∗
1, ≻∗

2, ≻∗
3 of the other agents,

in round 2 we have the following: Good 𝑔5 is lost to agent 1, good 𝑔7 is lost to agent 2, and good 𝑔6
to agent 3. Therefore, only goods 𝑔8 and 𝑔9 remain available for agent 4, and she can get only one
of them. Thus, the maximum attainable value for her is 2𝛽 + 𝜀1.

• Agent 4 gets good 𝑔5 in round 1. In that case, based on the declaration of the rest of the agents,
in round 2 we have the following: Good 𝑔4 is lost to agent 1, good 𝑔7 is lost to agent 2, and good 𝑔6
to agent 3. Therefore, only goods 𝑔8 and 𝑔9 remain available for agent 4, and once more she can get
only one of them. Thus, the maximum attainable value for her is 2𝛽 − 𝜀4 + 𝜀1.

• Agent 4 gets good 𝑔6 in round 1. Based on the reported preferences ≻∗
1, ≻∗

2, ≻∗
3 of the other agents,

in round 2 we have the following: Good 𝑔5 is lost to agent 1, good 𝑔7 is lost to agent 2, and good
𝑔9 to agent 3. Therefore, only goods 𝑔4 and 𝑔9 remain available for agent 4. Now observe that
𝑣4(𝑔4, 𝑔6) = 2𝛽 (as this is the value of the maximum matching), while 𝑣4(𝑔9, 𝑔6) = 1 + 𝜀2. Thus, the
maximum attainable value for her is 2𝛽 .

• Agent 4 gets good 𝑔7 in round 1. Based on the reported preferences ≻∗
1, ≻∗

2, ≻∗
3 of the other agents,

in round 2 we have the following: Good 𝑔5 is lost to agent 1, good 𝑔4 is lost to agent 2, and good 𝑔6
to agent 3. Therefore, only goods 𝑔8 and 𝑔9 remain available for agent 4, and once more she can get
only one of them. Thus, the maximum attainable value for her is 1 − 𝜀3 + 𝜀1.

• Agent 4 gets good 𝑔8 in round 1. Based on the reported preferences ≻∗
1, ≻∗

2, ≻∗
3 of the other agents,

in round 2 we have the following: Good 𝑔5 is lost to agent 1, good 𝑔7 is lost to agent 2, and good 𝑔6
to agent 3. Therefore, only goods 𝑔4 and 𝑔9 remain available for agent 4, and once more she can get
only one of them. Thus, the maximum attainable value for her is 2𝛽 + 𝜀1.

• Agent 4 gets good 𝑔9 in round 1. In that case, based on the declaration of the rest of the agents,
in round 2 we have the following: Good 𝑔5 is lost to agent 1, good 𝑔7 is lost to agent 2, and good 𝑔6
to agent 3. Therefore, only goods 𝑔4 and 𝑔8 remain available for agent 4, and once more she can get
only one of them. Thus, the maximum attainable value for her is 2𝛽 + 𝜀2.

From the above discussion we get that the maximum value that agent 4 can attain through a deviation
is 2 · 𝛽 + 𝜀1. At the same time 𝑣4(𝐴4) = 1 + 𝜀1. By setting 𝛼 =

1+𝜀1
2·𝛽+𝜀1

we trivially have that (≻1, ≻2)
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is a 𝛼-approximate PNE. On the other hand, for a given 𝜀 > 0, we have that 1+𝜀1
2·𝛽+𝜀1

+ 𝜀 is strictly larger
than 1+𝜀1

4𝛽−𝜀4
for sufficiently small 𝜀1. That is, there is a choice of 𝜀1, . . . , 𝜀6 so that the 𝛼-approximate PNE

(≻∗
1, ≻∗

2, ≻∗
3, ≻4) is not 𝛼

2 + 𝜀-EF1. □

5 Discussion and Future Directions

In this work we studied the existence and fairness guarantees of the approximate pure Nash equilibria
of the Round-Robin mechanism for agents with cancelable and submodular valuation functions. In both
cases, we generalized the surprising connection between the stable states of themechanism and its fairness
properties, a connection that was only known for exact equilibria and additive valuation functions. For
the function classes considered, we provide tight or almost tight bounds, thus giving a complete picture
of the strengths and the limitations of the Round-Robin mechanism for these scenarios. There are several
interesting related directions, some of which we discuss below.

An obvious first direction is to explore function classes beyond the ones studied here, with XOS or
subadditive functions being prominent candidates. Since our results heavily rely on the properties of
cancelable and submodular functions, it is likely that different approaches are needed for this endeavour.
As we mention in the introduction, a second interesting direction, related to this one, is the study of
the stability and fairness properties of variants of the Round-Robin mechanism that allow the agents to
be more expressive. Analyzing mechanisms that take as an input value oracles seems to be highly non-
trivial, and although some of our results might transfer in this setting, we suspect that, in general, strong
impossibility results hold regarding the fairness guarantees of approximate PNE.

Finally, although here we focused on Round-Robin and EF1, most fair division algorithms have not
been considered in the strategic setting. One promising such algorithm, which is both fundamental in a
number of variants of the problem and simple enough, is the Envy-Cycle-Elimination algorithm of Lipton
et al. [27] which is known to compute EF1 allocations for general non-decreasing valuation functions. An
appealing alternative here is studying the existence of equilibria of approximation algorithms for MMS
allocations. An impoertant advantage in this case is that once the existence of an approximate PNE is
shown, the corresponding MMS guarantee comes for free (see also the related discussion in Remark 2.9
of Amanatidis et al. [5]).
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