
Trajectory Generation by Sparse Demonstration 

Learning and Minimum Snap-based Optimization 

Taoying Xu1, Haoping She1, *, Weiyong Si2, Chuanjun Li1 

Abstract—In this paper, dynamic time warping function is 

used to establish an optimal control system for four-rotor 

unmanned aerial vehicle (UAV) to learn how to optimize 

trajectory planning from sparse demonstration. By continuous 

Pontryagin Differentiable Programming, UAV learns the 

objective function based on sparse waypoints demonstration. 

However, due to the small sample data of sparse demonstration 

learning, there is a problem of low precision, and Pontryagin’s 

Minimum Principle itself has the limitation of easily falling into 

the local optimal solution. So, this paper adopts the Minimum 

Snap trajectory algorithm that meets the dynamic constraints 

of the agent to generate a planned trajectory, to weighted 

combination with learning trajectory solved based on 

continuous Pontryagin Differentiable Programming, and the 

resulting optimized trajectory has the advantages of small 

demonstration learning difference loss, reasonable time 

allocation and reasonable planning, so that UAV can have 

certain generalization capability and optimize a reasonable 

trajectory with less energy loss. Finally, the feasibility of the 

proposed method is verified by the simulation experiment of 

the four-rotor UAV. 
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I. INTRODUCTION 

In the field of agent control, it is very significant and 

difficult to make the agent have the ability of autonomous 

and stable decision when facing unknown conditions, but 

demonstration learning is one of the solutions. Through 

demonstration learning, the agent can fully explore the 

unknown state space and obtain some generalization ability. 

At present, learning from demonstration has been widely 

applied to the trajectory planning of unmanned aerial vehicle 

(UAV) [1], [2], vehicle automatic driving [3], [4], grasp 

control of robot arm [5], [6] and other fields related to the 

motion trajectory planning of agents. Besides, reference [7] 

investigates the research of immersive teleoperation-based 

learning from demonstration. Based on the demonstration 

learning, reference [8] realizes the multi-contact tasks of 

artificial remote correction agents. In [9], through learning a 

flexible neural energy function, it improves the accuracy of 

demonstration learning. These novel demonstration methods 

of human in the loop, in the future, it can also be further 

realized in the motion control of  UAVs. 

A. Pontryagin Differentiable Programming

In the process of demonstration learning, the objective
function is usually learned by using inverse reinforcement 
learning or inverse optimal control. While Pontryagin’s 
Minimum Principle (PMP) can be used to solve the 
functional extremum problem where the control vector set is 
a bounded closed set. Reference [10] proposed Pontryagin 

Differentiable Programming (PDP) end-to-end framework 
for the first time based on Pontryagin’s Minimum Principle 
(PMP). It can be used to study dynamics, optimal polices and 
control objective functions. Continuous Pontryagin 
Differentiable Programming (CPDP) is proposed in [11] to 
apply PDP to real-world scenarios where agents learn from 
demonstration. Based on sparse waypoints demonstration, 
the agent can learn the objective function to minimize the 
difference loss and get the optimal control trajectory 
parameters. However, due to the limitations of CPDP 
algorithm itself, there is still much room for improvement in 
the optimization effect of generated trajectory. 

B. Dynamic Time Warping

The dynamic time warping (DTW) function can use the
mapping feature of “one-to-many” or “many-to-one” to 
better describe the mapping relationship between two time 
series, and greatly reduce the search and comparison time. 
Demonstration learning involves the presentation timeline 
and the actual execution timeline, and since there is usually a 
time deviation between the two, it is necessary to introduce 

the DTW function. For example，reference [12] uses the 

hidden Markov model to encode the demonstration 
trajectory, and multi-dimensional DTW is used to map the 
key points of the trajectory in time to generate the 
generalized trajectory. In [11], DTW function is also 
introduced to establish an optimal control system based on 
sparse demonstration learning to improve the control 
efficiency. 

C. Minimum Snap

Generally, path planning algorithms such as A* and
RRT* do not consider dynamic constraints, so the trajectory 
is prone to multiple non-smooth break points. However, the 
Minimum Snap algorithm can effectively overcome the 
above problems and limit the shape of the trajectory through 
equality and inequality constraints, which is usually used for 
obstacle avoidance. Reference [13] proposes an improved 
Minimum Snap algorithm to apply UAV to trajectory 
optimization in plant protection scenarios. Applying 
Minimum snap algorithm to obstacle avoidance, a collision-
free trajectory planning using minimum pinch algorithm is 
proposed in [14]. In addition, Minimum snap is also widely 
used in trajectory tracking of quadrotor aircraft [15]. 

In this paper, by minimizing the difference between 
sparse demonstration and execution, CPDP can learn the 
tunable parameters of the objective function and the DTW 
function. Then, based on the tunable parameters, solving the 
optimal control system of UAV sparse demonstration 
learning trajectory planning with DTW function. Aiming at 
the low accuracy of sparse demonstration learning and the 
limitations of PMP algorithm itself while comprehensively 
considering the dual indexes of generalization ability and 
energy loss of UAV trajectory planning, the trajectory 
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optimization is achieved by combining the planning 
trajectory generated by Minimum Snap trajectory planning 
method with the learning trajectory weighting. 

Main contributions of this paper: 

• By learning the adjustable parameters of DTW
function based on CPDP, it can reasonably allocate
the time to reach the starting point, the end point and
each waypoint. In this paper, this time allocation is
also applied to the generation of planning trajectory
based on Minimum Snap algorithm.

• In view of the low accuracy of sparse demonstration
learning and the defects that Pontryagin’s Minimum
Principle is easy to fall into the local optimal solution,
the Minimum Snap algorithm is used to generate
planning trajectory with less energy loss and optimize
the final trajectory by weighted combination with the
learning trajectory based on sparse demonstration.

II. ESTABLISHMENT OF MATHEMATICAL MODEL OF OPTIMAL 

CONTROL SYSTEM 

Taking a 6-DOF four-rotor UAV with continuous 
dynamics as the research object, a mathematical model of 
optimal control system based on sparse waypoints 
demonstration learning will be established as follows. 

State variable  �  and control variable �  are defined
according to the motion equation of the four-rotor UAV in 
SE (3) space: � �  ��, �, 	, 
�� 
1��� � ���, ��, ��, ���� 
1��
where � ∈ ℝ�  is the spatial position, � ∈ ℝ� is the speed,	 ∈ ℝ�  is the quaternion attitude of UAV, 
 ∈ ℝ�  is the
angular velocity; ��, ��, ��, �� are the thrust forces acting on
the four propellers of the four-rotor UAV. 

To maximize the demonstration learning effect, the form �  of the objective function based on the minimization of
difference loss is set as follows: 
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where � is the terminal cost indicator, ( is the process cost
indicator, and � is the coefficient vector for calculating the
cost function. 

By setting the average speed of the UAV, the expected 
time stamp τ and the expected time range � can be calculated
under the condition that the starting point, the end point, and 
the position information of the demonstration’s waypoints 
are known. Polynomial DTW function is introduced to 
explain the mapping relationship between the expected 
timestamp + and the actual execution time �.
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where 2 is the highest order of the DTW function, 0.
3 �1, … , 5� is the polynomial coefficient corresponding to each

order, and it should be noted that 67
+� � 8%89 : 0.

So, the optimal control system equation based on DTW is 
as follows: 
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where  ?  is a tunable parameter vector that integrates the
coefficient vector of the cost function and the polynomial 
DTW function. ? � ��, 0�@  
5�

Therefore, if ? is known, the optimal control system
equation (4) established based on DTW can be further solved 
to obtain the optimal state trajectory �B and optimal
control �B of the UAV at any time based on demonstration
learning. 

The following will establish a framework for solving the 
model, which is equivalent to the solving process of ?, and
explain the further optimization process of the trajectory 
learned from the demonstration. 

III. MODEL SOLVING AND TRAJECTORY OPTIMIZATION

A. Learning trajectory based on continuous Pontryagin

differentiable programming

The derivation process of solving the learning trajectory
based on CPDP algorithm is referred to [11]. Firstly, the 
optimal solution  CDEB  and the mapping function F  are
defined as follows: CDEB
+� � G�B
+�, �B
+�H 
6��CDEB � GCDEB
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If the user has demonstrated a total of 5 waypoints, then
the i-th keyframe can be defined as  F∗
+.�  based on the
principle of demonstration keyframe optimality, and the 
expression of the keyframe set O is as follows:O � GF∗
+.� ∣ 0 K + K �, 3 � 1,2, ⋯ , 5H 
8�

Firstly, ?'  needs to be randomly initialized before the
first iteration, and ?R  is updated by the projection gradient
descent method in the S " 1 iteration.

?RT� � ProjY Z?R [ \R )])?^B_` 
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where \R represents the learning rate (step size) and ] is the
cumulative loss. 

Then, the optimal control system equation (4) should be 
solved by the optimal control solver to obtain the optimal 
solution CDEB . Next, using CDEB  and the loss E corresponding
to each waypoint, the cumulative sum ] of all waypoints can
be calculated.  

]
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According to the chain rule (11), it is necessary to find 
the gradient of the single keyframe loss E for each timestamp+.  relative to the optimal solution CDE
+.� , and CDEB
+.�
relative to the gradient of the parameter ? , and then sum
repeatedly. 
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To minimize the difference loss, the key and the 

difficulty lies in the use of CPDP solving  nghij
9k�nB oB_. 

Using PMP to solve the optimal control system (4), we 
need to define the Hamiltonian function: p
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The equation of state, equation of costate, governing 
equation and transversal condition of the system can be 
obtained as follows: 
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To solve the 
vghi
9k�vB oB_ , it is necessary to take the 

derivative of the tunable parameter vector ? on both sides of

the above (13), and obtain the expression of the Pontriagin 

Maximum Principle in differential form. 
vwjvB , 

vxjvB  and 
vyjvB  are 

regarded as new state variables, control variables and costate 

variables respectively, then the Pontryagin maximum 

principle of differential form can be transformed into the new 

system of linear quadratic regulator. Reference [9] has 

proved by deriving the equivalent Raccati model equation, 

can further calculation to solve the 
vghij
9k�vB oB_. 

Therefore, the process of solving the learning trajectory 
based on CPDP algorithm is essentially a two-layer 
optimization problem. The outer layer iteratively updates ?
by minimizing the difference loss ] through CPDP, and the
inner layer optimizes  ? solved by the outer layer, solves the
optimal control system based on DTW function, and 
generates the optimal solution based on demonstration 
learning CDEB . Then the optimal learning trajectory can be
obtained. 

B. Planning trajectory based on Minimum Snap algorithm

The idea of Minimum Snap algorithm is to use multi-
segment polynomials to fit the motion trajectory in 
multidimensional space, and dimensions are decoupled from 
each other, so it is easy to calculate. Besides, according to 
the differential flat characteristics of the four-rotor UAV 
[16], its snap index corresponds to angular acceleration, 
which is related to the motor speed, so Minimizing Snap 
algorithm can achieve the effect of energy saving. 

1) Allocate time

When the user demonstrates 
z [ 1� waypoints, adding
the start and end point will generate the z segment trajectory.

By learning the adjustable parameters of DTW function 
based on CPDP, it can reasonably allocate the time to reach 
each segment, so the overall trajectory �
�� can be expressed
as follows: 
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where  �. � ��.~ , �.� … �.�!�
 represents the i-th segment

trajectory’s coefficient parameter and 2 is the highest order
of the polynomial, which is set to be the same of each 
segment in this paper. 

2) Determine the highest order

Snap in the Minimum Snap algorithm means the fourth
derivative of the position, whose form is as follows: 
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This algorithm needs to restrict the position, velocity, 

acceleration, and jerk of the start point and end point, and 
restrict the position of the middle waypoints, while the 
remaining information is solved through optimization. So, 
the relationship between the degree of freedom �  and the
number of constraints =  corresponding to the n-order
trajectory in m segment is as follows: � � 
2 " 1� ∙ z 
17��= � 4 " 
z [ 1� " 4 
17��� � = 
17s�

It can obtain 2 � �|, then to deal with the extreme case of z � 1, take 2 � 7 in this paper.

3) Construct the objective function

To ensure smooth connection between adjacent sub-
trajectory and limit the trajectory range, it is also necessary 
to set corresponding equality constraints and inequality 
constraints. Therefore, the problem is transformed into an 
optimal solution of multi-segment trajectory parameters 
satisfying constraints by constructing corresponding 
objective functions, as follows: z32 �
�� �. �. ��� ∙ � � ��� , �.�� ∙ � K �.�� 
18�
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where �
�� is the objective function, ���  and ���  represent

equality constraint matrices and vectors respectively, �.��
and �.��  represent inequality constraint matrices and vectors

respectively. And the matrix 	.  is calculated as follows:

	. � # ��
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So, the problem expressed as (18) can be further 
transformed into a quadratic programming problem, as: 

z32
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According to the convex optimization definition, when 

Hessian matrix 	  is a positive semi-definite matrix, the
problem is a convex quadratic programming problem. 

4) Set equation constraints

It is usually necessary to set two kinds of equality
constraints, namely derivative constraints, and continuity 
constraints. Among them, derivative constraints at least 
realize the position, speed, acceleration and jerk constraints 
on the starting point and end point of the trajectory, and the 
position constraints on waypoints points. Continuity 
constraints realize smooth connections between adjacent 
sub-trajectory, that is, the derivatives of each order at the 
connection points are the same. 

IV. SIMULATION EXPERIMENTS

In this experiment, the UAV demonstration learning 
based on sparse waypoints is realized. Besides, the learning 
trajectory is weighted with the planned trajectory generated 
by the Minimum Snap algorithm to further obtain the 
optimized trajectory. 

A. Setting of initial experimental conditions

Firstly, several sparse waypoints need to be artificially
selected as demonstration data according to the starting 
point, end point and the position of obstacles in the visual 
view. In this experiment, two waypoints are selected in total, 
and the effects of the generated demonstration data are 
shown in Fig. 1. 

(a) waypoints in XOY plane (b) waypoints in XOZ plane

(c) waypoints in 3D space 

Fig. 1. Waypoints are selected artificially from the XOY plane and 
XOZ plane in turn to obtain the position information of the waypoints in 
3D space as the demonstration data, and the demonstration trajectory is 
generated by linear interpolation. 

The initial conditions of this experiment are set as 
follows in TABLE I. , and all dimensional variables are 
based on the International System of Units (so does the 
TABLE II. ): 

TABLE I. INITIAL EXPERIMENTAL CONDITION 

Symbol Physical Meaning Value 

z Quality of UAV 1.0 

E Distance of each motor from the 

center of mass 
1.0 

s Rotor parameter 0.02 � Rotational inertia �1.0,1.0,1.0� 
6̅ Average flying speed �1.0,1.0,1.0� 
�' Initial state variable 

��[2.4, [0.7,0.8�, �0,0,0�, �1,0,0,0�, �0,0,0�� 
�� Terminal state variable 

��2.1, [1.2,0.8� �0,0,0�, �1,0,0,0�, �0,0,0�� 
����D32�� Waypoints position information 

�[0.964, 0.025, 1.438�, �0.107, [0.564, 0.657� 
E� Learning rate 0.08 

����z�� Maximum number of iterations 80 ���� The actual number of iterations 42 

B. Simulation experiment and results

After setting the initial conditions and obtaining the
demonstration data, the next step is to learn how to make 
reasonable trajectory planning from the sparse demonstration 
based on the CPDP algorithm and generate a learning 
trajectory. 

As explained in III.A section, the essence of this sparse 
demonstration learning process is a two-layer optimization 
problem. The outer layer iteratively learns the tunable 
parameter pair ��, 0�@  based on CPDP algorithm, and the
inner layer uses ��, 0�@ to solve the optimal control system
based on TWD function, updates the optimal UAV state 
variable and control variable, and combines to obtain a 
learning trajectory as shown in Fig. 2. 

(a)learning trajectory in XOY plane (b)learning trajectory in XOZ plane

Fig. 2. Based on continuous Pontryagin Differentiable Programming, 
UAV learns the cost function and dynamic time warping function from the 
sparse demonstration, and generates a learning trajectory by obtaining the 
learned optimal state and optimal control finally.

The experimental data output results related to Fig. 2 are 
recorded in the TABLE II. and the iteration loss is shown in 
Fig. 3.  



TABLE II. OUTPUT RESULT 

Symbol Physical Meaning Value 

�3z�_E3�� Time allocation table �0.0, 1.73, 3.18, 5.28� 
ED���z��, z32� Iterative loss interval 

 �5.313733907871411, 0.6368476895959516� 

� Coefficient vector of 

the cost function 

�3.966453919463763,  1.9248463346416484, [0.043705433571873044,  1.7266226614915658, 0.6576000376522613,  0.8386555889432388, [0.7892306661123814� 
0 Coefficient of the 

DTW function 
3.966453919463763 

Fig. 3. Updating the tunable parameter pair ��, 0�@  is achieved by 
minimizing the difference loss between the sparse demonstration and the 
actual execution during iterating. The difference iteration loss in the 
iterative process of learning trajectory as shown in Fig.2 is recorded. 

Although it can be seen from the iterative loss in Fig. 3 
that after about 30 iterations, the difference loss tends to a 
lower stable value and almost only changes around 0.1, the 
learning trajectory is still quite different from the sparse 
demonstration data. The Fig. 2 shows that the learning 
trajectory has poor learning effect at the first waypoint, and 
is very close to the red obstacle area, which has the risk of 
collision. However, the possible reason is that the limitation 
of CPDP algorithm itself or the lack of demonstration data 
will affect the learning effect. 

Therefore, to further improve the effect of demonstration 
learning and avoid collision with obstacles as much as 
possible, the Minimum Snap algorithm is used to generate a 
planning trajectory. As mentioned in III.B section, Minimum 
Snap algorithm can obtain the position, velocity, acceleration 
and jerk information of the intermediate point at any moment 
by optimization process with less energy loss (as shown in 
Fig. 4).  

From Fig. 4, it shows the result of simulated UAV flight 
trajectory in three-dimensional space, where (a), (b) and (c) 
are respectively the X, Y and Z optimized position, speed, 
acceleration, and jerk curve effect of Minimum Snap 
algorithm in one-dimensional space, and Fig. 5 shows the 
optimized planning trajectory generated in XOY plane and 
XOZ plane respectively. By comparing  Fig. 2 with Fig. 5, it 
can be concluded that the planning trajectory generated by 
the Minimum Snap algorithm has a higher security 
performance than the learning trajectory generated by spare 
demonstration. 

(a) X-axis trajectory 

(b) Y-axis trajectory 

(c) Z-axis trajectory 

Fig. 4. With the starting and ending states of the UAV and the 
position information of the waypoints as constraints, the position, 
velocity, acceleration and jerk of the UAV to each intermediate 
point can be optimized by the Minimum Snap algorithm, and all 
dimensions of the three-dimensional space are decoupled. 

(a)planning trajectory in XOY plane (b)planning trajectory in XOZ plane

Fig. 5. The planning trajectory (in XOY plane and XOZ plane) generated 
by the Minimum Snap algorithm can fit waypoints well, and can effectively 
avoid collision with known obstacles.

However, sparse demonstration learning can enable the 
UAV to have certain generalization ability when facing the 
unknown state space, and the Minimum Snap algorithm can 
improve the accuracy of UAV trajectory planning with less 
capability loss. Therefore, the learning trajectory and 
planning trajectory are combined by weighting, and the 
weight coefficient adopted in this experiment is  �0.5,0.5�.
The resulting optimization trajectory is shown in Fig. 6, and 



the effect of the final optimization trajectory is superior to 
that of a single learning trajectory. 

(a) final optimization trajectory in

XOY plane 

(b) final optimization trajectory in 

XOZ plane 

Fig. 6. When the weight coefficient matrix is selected as  �0.5,0.5� and
under the same and reasonable time allocation, the learning trajectory and 
the planning trajectory are combined by weighting to generate a final 
optimization trajectory. 

(a)learning trajectory 
in 3D space

(b)planning trajectory in
3D space 

(b)final trajectory in
3D space

Fig. 7. The effects of learning trajectories, planning trajectories and 
final optimization trajectories generated in this experiment are compared in 
3D space. 

In short, the trajectory safety after optimization is 
improved, but the function of realizing a safe flight area and 
avoiding known obstacles by adding inequality constraints 
can be considered further. 

V. CONCLUSION

In this paper, CPDP is adopted to realize the double-layer 
optimal control problem of UAV learning trajectory planning 
from sparse demonstration. The outer layer iteratively learns 
the adjustable parameters of objective function and DTW 
function by gradient descent method, while the inner layer 
obtains the optimal state and optimal control of UAV at any 
time by solving the optimal control system. However, 
through experiments, it is found that the effect of sparse 
demonstration learning will be affected by the limitations of 
demonstration data and PDP algorithm itself which will lead 
to the low learning effect.  

Therefore, the time allocation based on DTW function is 
used in the Minimum Snap algorithm to generate a planned 
trajectory with small energy loss and passing through each 
waypoint, and it is weighted with the learning trajectory. 
Finally, based on experiments, it is verified that the final 
optimized trajectory can optimize the effect of the learning 
trajectory and the generalization ability, learning effect and 
capability loss indexes of UAV in trajectory planning are 
considered comprehensively meanwhile.  
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