
Abstract— Existing imitation learning methods for human 

directional corrections may lead to learning incorrect behaviors 

due to erroneous artificial teaching, resulting in a significant 

increase in the required number of iterations and even non-

convergence situations, which can affect the system's 

performance. Additionally, the high computational complexity 

makes it unsuitable for embedded real-time application 

scenarios. To address these two issues, this study proposes a 

lightweight imitation learning algorithm that pre-corrects 

human-directed corrections. This method utilizes a deep 

learning network trained on a small dataset to correct human 

directional corrections and designs a lower-dimensional cost 

function for imitation learning. The proposed approach is 

applied to the example of a drone passing through doorways. 

Through the construction of a simulation platform and 

conducting simulation verification, the results show that the 

algorithm incorporating the correction error detection 

mechanism achieves an accuracy of over 98% in discerning 

human corrections, reduces training time by 27.87% per 

iteration, and decreases the average number of rounds by 

approximately 40%. The results indicate that the algorithm, 

which combines correction detection based on deep learning and 

a low-dimensional cost function, improves the accuracy of 

algorithm iterations, reduces computational complexity, and 

enhances computational speed. 

Index Terms— Learning from demonstrations (LfD), cost 

function design, lightweight network, error recovery for human 

correction, small-dataset neural network  

I. INTRODUCTION

In today's rapidly modernizing world, intelligent robots are 
increasingly used in different industries. These robots need to 
learn how to perform tasks efficiently. Since tasks vary in 
different situations, traditional reinforcement learning 
algorithms usually require a lot of trial-and-error learning, with 
insufficient learning efficiency and robustness. 

To address these challenges, imitation learning [1] has 

been developed. Imitation learning, also known as Learning by 

Demonstration [2,3] (LfD), refers to the fact that robots learn 

better strategies faster by obtaining effective guidance and 

feedback from human experts to quickly respond to different 

environments and demands [4,5]. This enables closer human-

robot collaboration for more efficient cooperation and 

interaction. Inverse Reinforcement Learning [6,7] (IRL) is a 

common method in imitation learning, where robots introduce 

knowledge and feedback from human experts into 

reinforcement learning algorithms based on observed 
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behaviours, in order to accelerate the learning process and 

improve the learning efficiency and performance of intelligent 

systems. 

To make IRL more accessible and adaptable for non-
experts, a method of learning from human directional 
corrections is suggested [8]. This learning approach only 
requires user direction corrections and has strict convergence. 
Direction correction is a correction involving only directional 
information and does not necessarily need to be specific to a 
magnitude [9]. This enables non-expert users to provide 
effective demonstrations of the robot [10]. 

However, assuming non-expert user corrections are always 

accurate can lead to problems if incorrect corrections are not 

considered [11]. These errors can impact system performance, 

leading to inefficiencies and affecting user trust and 

satisfaction. Moreover, most imitation learning algorithms use 

high-dimensional cost functions [12], which can be 

computationally complex and prone to overfitting. 

To address these challenges, this paper proposes a 

lightweight imitation learning algorithm that recover human 

directional corrections using deep learning [13]. Based on user 

input corrections and data such as the interval time between 

different corrections, a deep neural network adapted for small 

datasets [14] is used to determine the accuracy of human 

directional corrections and eliminate error corrections in 

advance. Deep neural networks based on small datasets reduce 

overfitting risks and improves generalization. Additionally, 

due to the simplicity and fewer parameters of the network, it is 

easier to interpret and understand, and is more resource-

efficient, making it suitable for deployment on devices with 

limited space. Also, it uses low-dimensional cost functions to 

compute device trajectories, making optimization easier and 

more efficient. This cost function is simpler, reducing the risk 

of overfitting and helping the model converge to better 

solutions. By incorporating filtered human corrections, the 

robot can plan optimal trajectories while filtering out 

erroneous inputs and reducing the learning network's 

complexity. 

A. Related Work

This paper considers the scenario of quadrotor UAVs 
performing flights in indoor environments, with a focus on the 
UAV's flight trajectory. The UAV needs to learn to navigate 
around fixed obstacles and complete transportation tasks. 
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The aim of this study is to transfer flight strategies to multi-
rotor UAVs based on optimized processing of human 
corrections, enabling the UAVs to autonomously plan flight 
trajectories. Initially, when the algorithm receives user-input 
corrections, it preprocesses the human corrections using a 
trained deep neural network to obtain corrections that 
approximate the user's true expectations. Subsequently, during 
the imitation learning phase, after the UAV receives the 
desired human corrections, it iterates parameters in the cost 
function and solves for the optimal trajectory based on the 
current cost function to ultimately achieve convergence 
towards the desired flight trajectory. The overall algorithm 
overview diagram is shown in Figure 1. 

Figure 1 Algorithm flow 

B. Contributions

The main contributions of this paper are as follows:

1) Based on user input teaching data, for inputs that are
very close in time and seem like possible errors, a deep neural 
network based on a small dataset is used to filter them, 
ensuring that the input corrections are as close as possible to 
the user's expected corrections, while also reducing incorrect 
iterations. 

2) By using a low-dimensional cost function, on the basis
of stable convergence in simple scenarios like the example in 
Part Ⅳ, a significant reduction in computational complexity is 
achieved, resulting in increased iteration speed, lightweight 
network implementation, and suitability for deployment on 
small devices or devices with limited storage space, such as 
drones.  

II. FORMULATION

The proposed framework aims to iterate UAV cost 
functions by human corrections to plan trajectories. Therefore, 
it is necessary to discuss the modeling issues of UAV 
dynamics, cost function settings, and the expectation handling 
of input corrections. 

A. UAV Dynamics

Considering the dynamics equation of a quadrotor UAV as
follows: 
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Here, the subscripts I  and B   represent the parameters of 

the quadrotor UAV in the body and Earth frames, respectively. 

m  is the UAV mass, r  and v  are the UAV's position and 

velocity, J  is the moment of inertia, q  is the quaternion, 

( )BωΩ  is the matrix form of quaternion multiplication, τ  is

the UAV's torque, and f  is the total force applied at the 

UAV's center of mass. 

The total force f and the torque τ applied at the UAV's 

center of mass are generated by the thrust provided by the four 

rotors  1 2 3 4[ ]T T T T T Τ=  . 
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Defining the state vector of the quadrotor UAV as: 
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The control input is: 
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Thus, the state matrix of the quadrotor UAV can be 
represented as: 
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where 1, 2...t =  denotes the time step, and time interval 

0.1s∆ = . 

B. Human Directional Corrections

In the algorithm, we use direction corrections as input
corrections. A notable feature of methods based on such 
corrections[8] is the assumption that each correction  satisfies: 
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θ θ−∆   represents the gradient descent around 
*( )J θ  of 

0:Tu in the current UAV trajectory. Here, no specific

magnitude is required for 
k

a , but the direction should roughly 

align with the gradient descent around 
*( )J θ . Algorithms 

based on this assumption can ensure strict convergence. 

However, in practice, imperfect corrections are inevitable. 

Therefore, we process the direction corrections 
k

a  provided 

by users into expected corrections ( )k
E a  , transforming 

k
a

into ( )
k

k a k
a E a=  . 

ka  is the expected correction obtained 

after the human correction is processed by a trained deep 

neural network which will be introduced in the following 

chapter.  



III. MAIN ALGORITHM 

To enable the unmanned aerial vehicle (UAV) to plan its 
flight trajectory according to specific requirements in different 
scenarios, utilizing the concept of Inverse Reinforcement 
Learning (IRL) is a feasible and effective approach. However, 
the imperfection of human corrections and the complexity of 
the cost function limit the application of this method. The 
following will focus on using deep learning networks to 
preprocess human corrections and designing low-dimensional 
cost function. 

A. Neural Network for Error Recovery of Human Direction-

al Corrections

In this study, a deep neural network is employed to learn
the accuracy of human corrections, filtering out erroneous 
input corrections in advance. 

Like other commonly used deep neural networks, a deep 
neural network with input layer, multiple hidden layers, and 
output layer is used to learn the quality of human corrections, 
retaining correct inputs and filtering out human errors. Each 
layer of the neural network is fully connected to its adjacent 
layers. 

When training the deep neural network, a dataset of human 
correction containing 288 data points is used. Every data 
includes its input state (up, down, left, right, forward, 
backward), the next input state, and the time interval between 
two inputs. Each one has a label indicating whether it is 
correct.  

Principal Components analysis [15] (PCA) is utilized to 

preprocess the original input dataset, and normalization [16] is 

applied to the input and target variables before being fed into 

the network. The dataset is then randomly divided into 

training, validation, and testing sets in a 70%:15%:15% ratio 
to evaluate the performance of the neural network.  

Due to the limited amount of correction of user input 

corrections in the demonstration learning scenario presented in 

this paper, it is a difficult challenge to collect and assemble 

large data sets. Therefore, a DNN network based on small data 

set [14] are chosen as the preprocessing neural network. The 
neural network structure is a 13-(5-4-3)-1 DNN with 3 hidden 

layers, trained with random initialization, SAE pre-training, 

and fine-tuning, like Figure 2. The maximum training epochs 

are set to 200. All computations are performed in Python. The 

DNN prediction accuracy is calculated as the indicator of 
network performance. 

B. Low Dimensional Cost Function

Similar to other common cost function forms [17,18], the
cost function of the quadrotor UAV is defined as follows: 
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where n m rR R Rϕ × →：  is the basis function,  rRθ ∈  is the 

iterative weight vector, and ( ( 1)h x T +  is the terminal index. 

By seeking the minimum value of the cost function, the 

UAV plans the current optimal control sequence 0:Tu to obtain

the optimal flight trajectory 
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The error between the target attitude and the current 
attitude of the quadrotor UAV is defined as: 
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The final cost is set as: 
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The task of a quadcopter is to ultimately land at a target 
position. Here, denotes the position of the quadcopter in the 
world coordinate system. Considering that the algorithm needs 
to be deployed on UAVs with limited computational space, 
this study opts for a lower-dimensional cost function to reduce 
the number of iterative parameters. Thus, the weight-feature 
cost term is set as: 

[ ]

22 2 2 4

4

1 2 3 4

x y zr r r u R

R

φ

θ θ θ θ θ

Τ
 = ∈
 

= ∈
(12) 

here, the cost function composed of the feature vector φ  and 

general polynomial features θ  will determine the specific 

trajectory of the quadcopter to the target. , ,I x y zr r r r
Τ

 =  
represents the position of the quadcopter in the world 

coordinate system, and u  represents the control input of the 

drone. The quadcopter's task is to ultimately land at the target 

position, so we choose the squared term 2r  representing the 

spatial position of the drone and the squared term 2|| ||u

representing the attitude control information of the drone as 

the feature vectors of the cost function. This cost function will 

determine the specific trajectory of the quadcopter drone to the 

target. 

For the initialization of parameters in the cost function, 

different entries of θ  are allowed to have their own lower and 

upper bounds, which can be derived from prior knowledge or 

simply initialized as: 

{ }0

r
R Rθ θ

∞
Ω = ∈ ≤ (13) 

where 

{ }max , , 1,...,iiR c c i r= = (14) 

Figure 2 DNN model architecture 



By default [19], the initial weight search space is 

[ ] [ ]{ }0 1 2 3 4, , 8,8 , 0,0.5θ θ θ θΩ = ∈ − ∈ (15) 

IV. SIMULATION

In this section, a six-degree-of-freedom quadrotor 
maneuver simulation platform, as depicted in Figure 4, was 
established in a Python environment. A pre-trained deep 
neural network in Python was utilized to preprocess the input 
corrections. The simulation objective is to enable the 
unmanned aerial vehicle (UAV) to learn a cost functional by 
receiving preprocessed directional corrections from the deep 
neural network. The UAV needs to learn how to navigate from 
its initial position through two differently sized and positioned 
square frames and finally land successfully at the target 
location. Additionally, the UAV has no prior information 
about the flight scenario (square frames) and, therefore, cannot 
accomplish the task successfully without receiving manual 
corrections. 

User directional corrections are input via the keyboard 
using the keys "up," "down," "W," "S," "A," and "D," 
representing ascent/descent, forward/backward, and left/right 
movement for the UAV. Multiple correction inputs are 
allowed during the iteration process. 

In the constructed virtual environment, the initial position 

of the quadrotor UAV is located at ��
���
� ��16 0 4
� (the

lower left corner), and the target position is at ��
∗ �

�16 0 16
� (the upper right corner), passing through pink

and blue boxes along the way. The initial attitude of the UAV 

is ��/�
���

� �1 0 0 0
� , while its target attitude is ��/�
∗ �

�1 0 0 0
�  . The time horizon for this simulation is

50T =  , i.e., 50T s∆ =  . 

Figure 4 A six-degree-of-freedom quadrotor maneuver simulation platform 

Here are the basic parameters for the quadcopter UAV and 
the constructed scenario. 

Table 1 UAV parameters 

UAV Parameters 

Inertia(x/y/z) ( kg*m^2) Mass (kg) Length (m) Rotor Para 

1 1 1 1 

Table 2 Scenario parameters 

Scenario Parameters 

Region Obstacle 

X Y Z Thick Height Width Reference Point 

(-16,16) (-16,16) (0,20) 1 6.5 6.5 
P: 

(-5,-2.5,3.5) 

B: 

(10,-5,7.5) 

A. Neural Network for Error Recovery of Human Direction-

al Corrections

In this section, the neural network described in the third
section was constructed using Python and trained. 

Figure 3 shows the iterative performance of the deep neural 
network. It can be observed from the figure that the network 
has approached convergence after 200 iterations. 

Table 3 presents the training results, indicating that the 
neural network performed well in this scenario. 

Table 3 Neural network training results 

Neural Network Training Results 

Amount MSE R 

Training 202 0.0080 0.9981 

Test 86 0.0113 0.9885 

Table 4 Training process demonstration with Error Recovery Neural 

Network 

Table 4 illustrates the complete process of multiple rounds 
of training for the quadrotor UAV in a virtual environment to 
ultimately accomplish the task.  

Table 5 displays the corrections provided by the user for 
each round and the time of correction. 

Figure 3 Iterative performance 



Table 5 Corresponding correction information. The red correction in the 

third iteration was identified as an error input by the user due to negligence 
and was subsequently removed by the neural network. 

Human Directional Corrections and the Time 

Iteration k Correction ka Correction Time kt

1 “W”, “S” 17,31 

2 “UP” 6 

3 (“W”), “S” (23),26 

To test the effectiveness of error recovery, we conducted a 
comparison between this algorithm and one without a recovery 
neural network in teaching drone flight trajectories in the same 
scenario. Table 6 shows the training process demonstration.  

Table 7 shows the corrections of the algorithm without the 
error recovery neural network. 

Table 6 Training process demonstration without error recovery neural 
network 

Table 7 Corresponding correction information. The red correction in the 
third iteration was an error which had not been deleted. 

Human Directional Corrections and the Time 

Iteration k Correction ka Correction Time kt

1 “W”, “S” 17,31 

2 “UP” 6 

3 “W”, “S” 23,26 

4 “S” 24 

5 “UP”, “S” 11,28 

6 “S” 29 

In a scenario where the initial human directional 
corrections were the same, the second experiment, which 

lacked the error recovery neural network, introduced an 
incorrect correction into the algorithm during the second 
iteration. This led the algorithm to learn incorrect behavior, 
necessitating more rounds of training compared to the 
algorithm with the error recovery neural network to rectify the 
error. The additional rounds of training also increased the risk 
of introducing more error corrections. 

B. Low Dimensional Cost Function

Headings, or heads, are organizational devices that guide
the reader through your paper. There are two types: component 
heads and text heads. 

To better evaluate the iterative performance of the low-
dimensional cost function used in this paper, a model using a 
7-dimensional cost function is introduced for reference. Both
models run in the same environment.

Table 8 shows the average time per training cycle for the 
model using a 4-dimensional cost function and a 7-
dimensional cost function. It is evident that in this training 
environment, the training time corresponding to the low-
dimensional cost function is approximately half of that for the 
high-dimensional cost function. 

Table 8 Average time per iteration of algorithm with four-dimension and 
seven-dimension cost function 

Average Time per Iteration of Algorithm 

Four dimensions(4D) Seven dimensions(7D) Ratio 

0.066 0.122 54.10% 

Furthermore, with the inclusion of the error recovery 
neural network, the proposed model (4D+DNN) still requires 
less computation time compared to the model with the high-
dimensional cost function without preprocessing in Table 9. 
The average time per training round is 0.088 s, approximately 
72.13% of the time required for the high-dimensional cost 
function.  

Table 9 Average time per iteration of algorithm with four-dimension cost 
function and error recovery neural network 

Average Time per Iteration of Algorithm 

4D +DNN Seven dimensions(7D) Ratio 

0.088 0.122 72.13% 

Table 10 Training process demonstration with low dimensional cost 
function 

Table 10 and Table 11 illustrate the iteration results of flight 
trajectories completing the same task in the same scenario 



under two types of cost functions. It is evident that when using 
a low-dimensional cost function, the trajectories are more 
sensitive to human directional corrections, leading to a 
significant reduction in the number of iterations. 

Table 11 Training process demonstration with high dimension cost function 

Figure 5 depicts the relationship between the convergence 

of cost function parameters in two dimensions and the number 

of iterations. The data used in the graph has been standardized 

for comparison. It can be observed that the low-dimensional 

cost function requires fewer rounds to achieve convergence 

relatively. Overall, the model presented in this paper 

demonstrates promising path learning performance. 

V. CONCLUSION

This paper has developed a lightweight imitation learning 
algorithm that utilizes neural networks for error recovery in 
human directional corrections. The algorithm is suitable for 
simple scenarios with high repetition and is designed to be 
deployed on intelligent devices with limited storage space, 
making it convenient for novice users to debug and use. The 
proposed method has been validated through simulation 
experiments with a quadrotor UAV. The results confirm the 
convergence of the proposed method and indicate that it can 
effectively filter error corrections, leading to faster iteration 
speeds and fewer iteration rounds. This study shows promise 
for practical applications in industrial transportation, such as 
logistics, and contributes to an in-depth understanding of 
human decision-making thinking and behavioural patterns, 

providing useful insights for the design and optimization of 
intelligent systems. In the future, We will continue to study 
the deep combination of reinforcement learning and human 
demonstration, consider the introduction of multimodal 
information fusion technology to achieve human-robot 
interaction (HRI) for more complex tasks, and further 
experimentally validate the algorithm effectiveness on actual 
UAV platforms. 
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