
Abstract— Existing imitation learning methods for human

directional corrections may lead to learning incorrect behaviors

due to erroneous artificial teaching, resulting in a significant

increase in the required number of iterations and even non-

convergence situations, which can affect the system's

performance. Additionally, the high computational complexity

makes it unsuitable for embedded real-time application

scenarios. To address these two issues, this study proposes a

lightweight imitation learning algorithm that pre-corrects

human-directed corrections. This method utilizes a deep

learning network trained on a small dataset to correct human

directional corrections and designs a lower-dimensional cost

function for imitation learning. The proposed approach is

applied to the example of a drone passing through doorways.

Through the construction of a simulation platform and

conducting simulation verification, the results show that the

algorithm incorporating the correction error detection

mechanism achieves an accuracy of over 98% in discerning

human corrections, reduces training time by 27.87% per

iteration, and decreases the average number of rounds by

approximately 40%. The results indicate that the algorithm,

which combines correction detection based on deep learning and

a low-dimensional cost function, improves the accuracy of

algorithm iterations, reduces computational complexity, and

enhances computational speed.

Index Terms— Learning from demonstrations (LfD), cost

function design, lightweight network, error recovery for human

correction, small-dataset neural network

I. INTRODUCTION

In today's rapidly modernizing world, intelligent robots are
increasingly used in different industries. These robots need to
learn how to perform tasks efficiently. Since tasks vary in
different situations, traditional reinforcement learning
algorithms usually require a lot of trial-and-error learning, with
insufficient learning efficiency and robustness.

To address these challenges, imitation learning [1] has

been developed. Imitation learning, also known as Learning by

Demonstration [2,3] (LfD), refers to the fact that robots learn

better strategies faster by obtaining effective guidance and

feedback from human experts to quickly respond to different

environments and demands [4,5]. This enables closer human-

robot collaboration for more efficient cooperation and

interaction. Inverse Reinforcement Learning [6,7] (IRL) is a

common method in imitation learning, where robots introduce

knowledge and feedback from human experts into

reinforcement learning algorithms based on observed

1 M. Zhu, H. She and C. Li are with the School of Aerospace Engineering,

Beijing Institute of Technology.

2W. Si is with the School of Computer Science and Electronic
Engineering, University of Essex.

behaviours, in order to accelerate the learning process and

improve the learning efficiency and performance of intelligent

systems.

To make IRL more accessible and adaptable for non-
experts, a method of learning from human directional
corrections is suggested [8]. This learning approach only
requires user direction corrections and has strict convergence.
Direction correction is a correction involving only directional
information and does not necessarily need to be specific to a
magnitude [9]. This enables non-expert users to provide
effective demonstrations of the robot [10].

However, assuming non-expert user corrections are always

accurate can lead to problems if incorrect corrections are not

considered [11]. These errors can impact system performance,

leading to inefficiencies and affecting user trust and

satisfaction. Moreover, most imitation learning algorithms use

high-dimensional cost functions [12], which can be

computationally complex and prone to overfitting.

To address these challenges, this paper proposes a

lightweight imitation learning algorithm that recover human

directional corrections using deep learning [13]. Based on user

input corrections and data such as the interval time between

different corrections, a deep neural network adapted for small

datasets [14] is used to determine the accuracy of human

directional corrections and eliminate error corrections in

advance. Deep neural networks based on small datasets reduce

overfitting risks and improves generalization. Additionally,

due to the simplicity and fewer parameters of the network, it is

easier to interpret and understand, and is more resource-

efficient, making it suitable for deployment on devices with

limited space. Also, it uses low-dimensional cost functions to

compute device trajectories, making optimization easier and

more efficient. This cost function is simpler, reducing the risk

of overfitting and helping the model converge to better

solutions. By incorporating filtered human corrections, the

robot can plan optimal trajectories while filtering out

erroneous inputs and reducing the learning network's

complexity.

A. Related Work

This paper considers the scenario of quadrotor UAVs
performing flights in indoor environments, with a focus on the
UAV's flight trajectory. The UAV needs to learn to navigate
around fixed obstacles and complete transportation tasks.

*Corresponding author is H. She (Email: shehp@bit.edu.cn)

Lightweight Imitation Learning Algorithm with Error Recovery for

Human Direction Correction

Mingchi Zhu1, Haoping She1,*, Weiyong Si2, Chuanjun Li1

The aim of this study is to transfer flight strategies to multi-
rotor UAVs based on optimized processing of human
corrections, enabling the UAVs to autonomously plan flight
trajectories. Initially, when the algorithm receives user-input
corrections, it preprocesses the human corrections using a
trained deep neural network to obtain corrections that
approximate the user's true expectations. Subsequently, during
the imitation learning phase, after the UAV receives the
desired human corrections, it iterates parameters in the cost
function and solves for the optimal trajectory based on the
current cost function to ultimately achieve convergence
towards the desired flight trajectory. The overall algorithm
overview diagram is shown in Figure 1.

Figure 1 Algorithm flow

B. Contributions

The main contributions of this paper are as follows:

1) Based on user input teaching data, for inputs that are
very close in time and seem like possible errors, a deep neural
network based on a small dataset is used to filter them,
ensuring that the input corrections are as close as possible to
the user's expected corrections, while also reducing incorrect
iterations.

2) By using a low-dimensional cost function, on the basis
of stable convergence in simple scenarios like the example in
Part Ⅳ, a significant reduction in computational complexity is
achieved, resulting in increased iteration speed, lightweight
network implementation, and suitability for deployment on
small devices or devices with limited storage space, such as
drones.

II. FORMULATION

The proposed framework aims to iterate UAV cost
functions by human corrections to plan trajectories. Therefore,
it is necessary to discuss the modeling issues of UAV
dynamics, cost function settings, and the expectation handling
of input corrections.

A. UAV Dynamics

Considering the dynamics equation of a quadrotor UAV as
follows:

/ /

1
()

2

I I

I I I

B I B B I

B B B B B B

r v

mv mg f

q q

J J

ω

ω τ ω ω

=

= +

= Ω

= − ×

&

&

&

&

(1)

Here, the subscripts I and B represent the parameters of

the quadrotor UAV in the body and Earth frames, respectively.

m is the UAV mass, r and v are the UAV's position and

velocity, J is the moment of inertia, q is the quaternion,

()BωΩ is the matrix form of quaternion multiplication, τ is

the UAV's torque, and f is the total force applied at the

UAV's center of mass.

The total force f and the torque τ applied at the UAV's

center of mass are generated by the thrust provided by the four

rotors 1 2 3 4[]T T T T T Τ= .

1

2

3

4

1 1 1 1

0 / 2 0 / 2

/ 2 0 / 2 0

x

y

z

f T

Tl l

Tl l

T

τ

τ

κ κ κ κτ

    
    −    =
    −
    

− − −        

(2)

Defining the state vector of the quadrotor UAV as:

[]/I R B I B
x r v q ω

Τ
= (3)

The control input is:

[]1 2 3 4
u T T T T

Τ
= (4)

Thus, the state matrix of the quadrotor UAV can be
represented as:

0

(1) ((), ())

(0)

x t f x t u t

x x

+ =

=
(5)

where 1, 2...t = denotes the time step, and time interval

0.1s∆ = .

B. Human Directional Corrections

In the algorithm, we use direction corrections as input
corrections. A notable feature of methods based on such
corrections[8] is the assumption that each correction satisfies:

0:(,), 0, 1, 2,3,k

T kJ u a k
θ θ ∗−∇ > = K (6)

where,

(1)
[0 0]

k

m T

k ta a R
Τ Τ Τ += ∈ (7)

*

0:
(,)k

T
J u

θ θ−∆ represents the gradient descent around
*()J θ of

0:Tu in the current UAV trajectory. Here, no specific

magnitude is required for
k

a , but the direction should roughly

align with the gradient descent around
*()J θ . Algorithms

based on this assumption can ensure strict convergence.

However, in practice, imperfect corrections are inevitable.

Therefore, we process the direction corrections
k

a provided

by users into expected corrections ()k
E a , transforming

k
a

into ()
k

k a k
a E a= .

ka is the expected correction obtained

after the human correction is processed by a trained deep

neural network which will be introduced in the following

chapter.

III. MAIN ALGORITHM

To enable the unmanned aerial vehicle (UAV) to plan its
flight trajectory according to specific requirements in different
scenarios, utilizing the concept of Inverse Reinforcement
Learning (IRL) is a feasible and effective approach. However,
the imperfection of human corrections and the complexity of
the cost function limit the application of this method. The
following will focus on using deep learning networks to
preprocess human corrections and designing low-dimensional
cost function.

A. Neural Network for Error Recovery of Human Direction-

al Corrections

In this study, a deep neural network is employed to learn
the accuracy of human corrections, filtering out erroneous
input corrections in advance.

Like other commonly used deep neural networks, a deep
neural network with input layer, multiple hidden layers, and
output layer is used to learn the quality of human corrections,
retaining correct inputs and filtering out human errors. Each
layer of the neural network is fully connected to its adjacent
layers.

When training the deep neural network, a dataset of human
correction containing 288 data points is used. Every data
includes its input state (up, down, left, right, forward,
backward), the next input state, and the time interval between
two inputs. Each one has a label indicating whether it is
correct.

Principal Components analysis [15] (PCA) is utilized to

preprocess the original input dataset, and normalization [16] is

applied to the input and target variables before being fed into

the network. The dataset is then randomly divided into

training, validation, and testing sets in a 70%:15%:15% ratio
to evaluate the performance of the neural network.

Due to the limited amount of correction of user input

corrections in the demonstration learning scenario presented in

this paper, it is a difficult challenge to collect and assemble

large data sets. Therefore, a DNN network based on small data

set [14] are chosen as the preprocessing neural network. The
neural network structure is a 13-(5-4-3)-1 DNN with 3 hidden

layers, trained with random initialization, SAE pre-training,

and fine-tuning, like Figure 2. The maximum training epochs

are set to 200. All computations are performed in Python. The

DNN prediction accuracy is calculated as the indicator of
network performance.

B. Low Dimensional Cost Function

Similar to other common cost function forms [17,18], the
cost function of the quadrotor UAV is defined as follows:

0:

0

(,) ((), ()) ((1))
T

T

T

t

J u x t u t h x Tθ θ ϕ
=

= + + (8)

where n m rR R Rϕ × →： is the basis function, rRθ ∈ is the

iterative weight vector, and ((1)h x T + is the terminal index.

By seeking the minimum value of the cost function, the

UAV plans the current optimal control sequence 0:Tu to obtain

the optimal flight trajectory

}{ 0: 1 0:,T Tx u
θ θ

θξ += (9)

The error between the target attitude and the current
attitude of the quadrotor UAV is defined as:

()* * *1
, (() ())

2
e q q trace I R q R qΤ= − (10)

The final cost is set as:

2 2* *

1 / /
() 10 10 10 (,) 10

T I I I B I B I B
h x r r v e q q ω+ = − + + + (11)

The task of a quadcopter is to ultimately land at a target
position. Here, denotes the position of the quadcopter in the
world coordinate system. Considering that the algorithm needs
to be deployed on UAVs with limited computational space,
this study opts for a lower-dimensional cost function to reduce
the number of iterative parameters. Thus, the weight-feature
cost term is set as:

[]

22 2 2 4

4

1 2 3 4

x y zr r r u R

R

φ

θ θ θ θ θ

Τ
 = ∈
 

= ∈
(12)

here, the cost function composed of the feature vector φ and

general polynomial features θ will determine the specific

trajectory of the quadcopter to the target. , ,I x y zr r r r
Τ

 =  
represents the position of the quadcopter in the world

coordinate system, and u represents the control input of the

drone. The quadcopter's task is to ultimately land at the target

position, so we choose the squared term 2r representing the

spatial position of the drone and the squared term 2|| ||u

representing the attitude control information of the drone as

the feature vectors of the cost function. This cost function will

determine the specific trajectory of the quadcopter drone to the

target.

For the initialization of parameters in the cost function,

different entries of θ are allowed to have their own lower and

upper bounds, which can be derived from prior knowledge or

simply initialized as:

{ }0

r
R Rθ θ

∞
Ω = ∈ ≤ (13)

where

{ }max , , 1,...,iiR c c i r= = (14)

Figure 2 DNN model architecture

By default [19], the initial weight search space is

[] []{ }0 1 2 3 4, , 8,8 , 0,0.5θ θ θ θΩ = ∈ − ∈ (15)

IV. SIMULATION

In this section, a six-degree-of-freedom quadrotor
maneuver simulation platform, as depicted in Figure 4, was
established in a Python environment. A pre-trained deep
neural network in Python was utilized to preprocess the input
corrections. The simulation objective is to enable the
unmanned aerial vehicle (UAV) to learn a cost functional by
receiving preprocessed directional corrections from the deep
neural network. The UAV needs to learn how to navigate from
its initial position through two differently sized and positioned
square frames and finally land successfully at the target
location. Additionally, the UAV has no prior information
about the flight scenario (square frames) and, therefore, cannot
accomplish the task successfully without receiving manual
corrections.

User directional corrections are input via the keyboard
using the keys "up," "down," "W," "S," "A," and "D,"
representing ascent/descent, forward/backward, and left/right
movement for the UAV. Multiple correction inputs are
allowed during the iteration process.

In the constructed virtual environment, the initial position

of the quadrotor UAV is located at ��
���
� ��16 0 4
� (the

lower left corner), and the target position is at ��
∗ �

�16 0 16
� (the upper right corner), passing through pink

and blue boxes along the way. The initial attitude of the UAV

is ��/�
���

� �1 0 0 0
� , while its target attitude is ��/�
∗ �

�1 0 0 0
� . The time horizon for this simulation is

50T = , i.e., 50T s∆ = .

Figure 4 A six-degree-of-freedom quadrotor maneuver simulation platform

Here are the basic parameters for the quadcopter UAV and
the constructed scenario.

Table 1 UAV parameters

UAV Parameters

Inertia(x/y/z) (kg*m^2) Mass (kg) Length (m) Rotor Para

1 1 1 1

Table 2 Scenario parameters

Scenario Parameters

Region Obstacle

X Y Z Thick Height Width Reference Point

(-16,16) (-16,16) (0,20) 1 6.5 6.5
P:

(-5,-2.5,3.5)

B:

(10,-5,7.5)

A. Neural Network for Error Recovery of Human Direction-

al Corrections

In this section, the neural network described in the third
section was constructed using Python and trained.

Figure 3 shows the iterative performance of the deep neural
network. It can be observed from the figure that the network
has approached convergence after 200 iterations.

Table 3 presents the training results, indicating that the
neural network performed well in this scenario.

Table 3 Neural network training results

Neural Network Training Results

Amount MSE R

Training 202 0.0080 0.9981

Test 86 0.0113 0.9885

Table 4 Training process demonstration with Error Recovery Neural

Network

Table 4 illustrates the complete process of multiple rounds
of training for the quadrotor UAV in a virtual environment to
ultimately accomplish the task.

Table 5 displays the corrections provided by the user for
each round and the time of correction.

Figure 3 Iterative performance

Table 5 Corresponding correction information. The red correction in the

third iteration was identified as an error input by the user due to negligence
and was subsequently removed by the neural network.

Human Directional Corrections and the Time

Iteration k Correction ka Correction Time kt

1 “W”, “S” 17,31

2 “UP” 6

3 (“W”), “S” (23),26

To test the effectiveness of error recovery, we conducted a
comparison between this algorithm and one without a recovery
neural network in teaching drone flight trajectories in the same
scenario. Table 6 shows the training process demonstration.

Table 7 shows the corrections of the algorithm without the
error recovery neural network.

Table 6 Training process demonstration without error recovery neural
network

Table 7 Corresponding correction information. The red correction in the
third iteration was an error which had not been deleted.

Human Directional Corrections and the Time

Iteration k Correction ka Correction Time kt

1 “W”, “S” 17,31

2 “UP” 6

3 “W”, “S” 23,26

4 “S” 24

5 “UP”, “S” 11,28

6 “S” 29

In a scenario where the initial human directional
corrections were the same, the second experiment, which

lacked the error recovery neural network, introduced an
incorrect correction into the algorithm during the second
iteration. This led the algorithm to learn incorrect behavior,
necessitating more rounds of training compared to the
algorithm with the error recovery neural network to rectify the
error. The additional rounds of training also increased the risk
of introducing more error corrections.

B. Low Dimensional Cost Function

Headings, or heads, are organizational devices that guide
the reader through your paper. There are two types: component
heads and text heads.

To better evaluate the iterative performance of the low-
dimensional cost function used in this paper, a model using a
7-dimensional cost function is introduced for reference. Both
models run in the same environment.

Table 8 shows the average time per training cycle for the
model using a 4-dimensional cost function and a 7-
dimensional cost function. It is evident that in this training
environment, the training time corresponding to the low-
dimensional cost function is approximately half of that for the
high-dimensional cost function.

Table 8 Average time per iteration of algorithm with four-dimension and
seven-dimension cost function

Average Time per Iteration of Algorithm

Four dimensions(4D) Seven dimensions(7D) Ratio

0.066 0.122 54.10%

Furthermore, with the inclusion of the error recovery
neural network, the proposed model (4D+DNN) still requires
less computation time compared to the model with the high-
dimensional cost function without preprocessing in Table 9.
The average time per training round is 0.088 s, approximately
72.13% of the time required for the high-dimensional cost
function.

Table 9 Average time per iteration of algorithm with four-dimension cost
function and error recovery neural network

Average Time per Iteration of Algorithm

4D +DNN Seven dimensions(7D) Ratio

0.088 0.122 72.13%

Table 10 Training process demonstration with low dimensional cost
function

Table 10 and Table 11 illustrate the iteration results of flight
trajectories completing the same task in the same scenario

under two types of cost functions. It is evident that when using
a low-dimensional cost function, the trajectories are more
sensitive to human directional corrections, leading to a
significant reduction in the number of iterations.

Table 11 Training process demonstration with high dimension cost function

Figure 5 depicts the relationship between the convergence

of cost function parameters in two dimensions and the number

of iterations. The data used in the graph has been standardized

for comparison. It can be observed that the low-dimensional

cost function requires fewer rounds to achieve convergence

relatively. Overall, the model presented in this paper

demonstrates promising path learning performance.

V. CONCLUSION

This paper has developed a lightweight imitation learning
algorithm that utilizes neural networks for error recovery in
human directional corrections. The algorithm is suitable for
simple scenarios with high repetition and is designed to be
deployed on intelligent devices with limited storage space,
making it convenient for novice users to debug and use. The
proposed method has been validated through simulation
experiments with a quadrotor UAV. The results confirm the
convergence of the proposed method and indicate that it can
effectively filter error corrections, leading to faster iteration
speeds and fewer iteration rounds. This study shows promise
for practical applications in industrial transportation, such as
logistics, and contributes to an in-depth understanding of
human decision-making thinking and behavioural patterns,

providing useful insights for the design and optimization of
intelligent systems. In the future, We will continue to study
the deep combination of reinforcement learning and human
demonstration, consider the introduction of multimodal
information fusion technology to achieve human-robot
interaction (HRI) for more complex tasks, and further
experimentally validate the algorithm effectiveness on actual
UAV platforms.

REFERENCES

[1] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, "Imitation learning: A

survey of learning methods," ACM Computing Surveys (CSUR), vol. 50, no.

2, pp. 1-35, 2017.
[2] W. Si, N. Wang, and C. Yang, "A review on manipulation skill acquisition

through teleoperation ‐ based learning from demonstration," Cognitive

Computation and Systems, vol. 3, no. 1, pp. 1-16, 2021.

[3] Z. Jin, W. Si, A. Liu, W.-A. Zhang, L. Yu, and C. Yang, "Learning a

flexible neural energy function with a unique minimum for globally stable
and accurate demonstration learning," IEEE Transactions on Robotics, 2023.

[4] W. Si, Y. Guan, and N. Wang, "Adaptive compliant skill learning for

contact-rich manipulation with human in the loop," IEEE Robotics and
Automation Letters, vol. 7, no. 3, pp. 5834-5841, 2022.

[5] W. Si, N. Wang, Q. Li, and C. Yang, "A framework for composite layup
skill learning and generalizing through teleoperation," Frontiers in

Neurorobotics, vol. 16, p. 840240, 2022.

[6] S. Arora and P. Doshi, "A survey of inverse reinforcement learning:
Challenges, methods and progress," Artificial Intelligence, vol. 297, p.

103500, 2021.

[7] X. CHEN, L. CAO, and M. HE, "Overview of deep inverse reinforcement
learning [J]," Computer Engineering and Applications, vol. 54, no. 5, pp. 24-

35, 2018.

[8] W. Jin, T. D. Murphey, Z. Lu, and S. Mou, "Learning from human
directional corrections," IEEE Transactions on Robotics, vol. 39, no. 1, pp.

625-644, 2022.

[9] J. Y. Zhang and A. D. Dragan, "Learning from extrapolated corrections,"
in 2019 International Conference on Robotics and Automation (ICRA), 2019,

pp. 7034-7040: IEEE.

[10] A. Jain, B. Wojcik, T. Joachims, and A. Saxena, "Learning trajectory
preferences for manipulators via iterative improvement," Advances in neural

information processing systems, vol. 26, 2013.

[11] J. K. Flake and E. I. Fried, "Measurement schmeasurement:
Questionable measurement practices and how to avoid them," Advances in

Methods and Practices in Psychological Science, vol. 3, no. 4, pp. 456-465,

2020.
[12] A. H. Marblestone, G. Wayne, and K. P. Kording, "Toward an

integration of deep learning and neuroscience," Frontiers in computational

neuroscience, vol. 10, p. 94, 2016.
[13] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," nature, vol. 521,

no. 7553, pp. 436-444, 2015.

[14] S. Feng, H. Zhou, and H. Dong, "Using deep neural network with small
dataset to predict material defects," Materials & Design, vol. 162, pp. 300-

310, 2019.

[15] R. May, G. Dandy, and H. Maier, "Review of input variable selection
methods for artificial neural networks," Artificial neural networks-

methodological advances and biomedical applications, vol. 10, no. 1, pp. 19-

45, 2011.
[16] H. B. Demuth, M. H. Beale, O. De Jess, and M. T. Hagan, Neural

network design. Martin Hagan, 2014.

[17] W. Jin, D. Kulić, S. Mou, and S. Hirche, "Inverse optimal control from
incomplete trajectory observations," The International Journal of Robotics

Research, vol. 40, no. 6-7, pp. 848-865, 2021.

[18] W. Jin, D. Kulić, J. F.-S. Lin, S. Mou, and S. Hirche, "Inverse optimal
control for multiphase cost functions," IEEE Transactions on Robotics, vol.

35, no. 6, pp. 1387-1398, 2019.

[19] A. Bobu, A. Bajcsy, J. F. Fisac, and A. D. Dragan, "Learning under
misspecified objective spaces," in Conference on Robot Learning, 2018, pp.

796-805: PMLR.

Figure 5 Relationship between parameter convergence and iteration rounds.

The green line represents the proposed algorithm in this paper, while the red
line represents the high-dimensional cost function algorithm.

