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Abstract—Robot learning from teleoperation-based demon-
stration has been proven to be an effective method for robot
skills learning. However, the human demonstration process
is mentally and physically challenging due to the dexterous
and continuous interaction control. Especially, for contact-rich
tasks human operators need to control the pose and contact
force between the end-effector and the environment, only based
on visual and haptic feedback. To tackle the problem, this
work studies a stable guidance method for teleoperation-based
demonstration to improve the experience and performance of
human demonstration and reduce the workload of human
operators. The guidance design is based on a dynamic system-
based imitation learning model, which is achieved by human
demonstration. The virtual guidance force will decrease as the
virtual guidance’s iterative learning. The efficiency of human
demonstration is improved, and human operators’ physical and
mental workload is reduced. Two typical experiments, robot-
assisted polishing and robot-assisted ultrasound scanning, are
conducted to validate the performance of the guidance method.

I. INTRODUCTION

Telerobotics has been studied since 1950 and various
multimodal feedback-based teleoperation systems have been
developed [1]. Teleoperation provides a solution for remote
operations for dangerous environments and tasks, so teler-
obotics was used in various fields, such as the medical field,
space exploration, nuclear industry and rehabilitation [2],
[3]. Nowadays, robot learning through teleoperation-based
demonstration has attained much attention because teleop-
eration provides a human-in-the-loop mechanism for online
demonstration, interaction and correction [1], [4]. One of the
main components in the teleoperation-based demonstration
is the teleoperation interface, also named the human-robot
interface.

The safety and intuitiveness of the human-robot interface
are challenging. To address these challenges, various methods
have been proposed, such as the shared control method [5],
[6], virtual guidance [7], and immersive teleoperation devices
[8]. The shared control uses human-robot collaboration to
complete challenging tasks by reducing the workload of hu-
man operators [9]. In the shared control framework, humans
only focus on intelligent and decision-making tasks, such
as task decisions, while robots are responsible for certain
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repetitive tasks. In addition, various human-robot interactive
interfaces based on state-of-the-art hardware devices have
been developed to benefit teleoperation, such as virtual reality
(VR) [10], augmented reality (AR), haptic devices, etc.,
which can provide immersive telepresence [8]. Furthermore,
one of the methods for teleoperation is virtual guidance for
dexterous manipulation [11].

The virtual guidance can constrain robots’ motion to
satisfy the task-relevant requirements, which could improve
safety and control performance [12]. This has been employed
in medical applications and flexible manufacturing. In [13],
a library of virtual guiding fixtures has been studied to assist
multiple tasks by providing intuitive haptic guidance, which
proves this method could improve performance in terms of
efficiency, human workload and control accuracy. However,
the existing guidance methods usually require dedicated
designs for a specific task, hence they are less generalised
to new tasks.

The virtual guidance methods have been proposed in the
existing papers [7], [13]–[15]. Virtual fixtures for bilateral
teleoperation have been proposed for medical applications
and manufacturing. For example, the interactive generation
of virtual guidance method for manufacturing tasks in un-
structured environments is studied in [14]. In addition, vision-
based virtual guidance (VG) generation methods are studied
for bilateral teleoperation. Furthermore, VG can also be
employed in multiple-user teleoperations for robotic surgical
training [16]. Learning from demonstration-based methods
for VG design has been proposed [17]. The imitation learning
method was used for human intention prediction and shared
control [18]. Various learning from demonstration (LfD)
methods and frameworks have been developed for human-
robot skill transfer, specifically for the contact-rich manipu-
lation tasks [4], [19]. The LfD method offers advantages in
learning efficiency and generalization, making it suitable for
learning motion, force, and stiffness skills [20]. Additionally,
the LfD method has been investigated for applications in
physical human-robot interaction, among other areas.

The VG has been studied to assist the human demonstra-
tion of human-robot skills transfer [21]. However, this VG
is only considered in the kinesthetic guidance. In [22], the
author studied the vision-based VG for dexterous manipula-
tion. Although the above work has been proven ineffective
in teleoperation and human-robot interaction, designing the
VG needs more time and effort. In addition, most of the
existing VG methods assume the design rules are designed
in advance, and the design by humans is optimal.

A Stable Guidance Method for Teleoperation-based
Robot Learning from Demonstration



This paper aims to benefit the design of a virtual guid-
ance method for teleoperation and robot learning from
teleoperation-based demonstration. We propose a novel VG
design method for tele-manipulation, especially for safety-
critical medical examination tasks, such as ultrasound scan-
ning. We studied the human demonstration method to attain
rough skills, based on which we got a neural energy function
with a unique minimum (NEUM) [23]. The NEUM can plan
a trajectory from the high energy points to the low energy
points, which can finally converge to the global minimum
point [23]. Comparing the existing energy VG method, such
as the artificial potential field-based virtual fixture [24], the
NEUM-based guidance can guarantee convergence globally.
We evaluate the effectiveness of the proposed method through
robot-assisted ultrasound scanning tasks. The main contribu-
tions of this paper are summarized below:

• The VG design investigates a NEUM-based imitation
learning model which is built based on human demon-
stration, for human-robot skill transfer. Comparing the
existing VG method, the proposed method could only
need demonstration to build the guidance, without com-
plex design and parameters modification.

• In addition, NEUM-based VG can also guarantee the
convergence of the desired VG. Learned skills provide
guidance for human teachers when doing teleoperation-
based demonstrations. This VG method has been eval-
uated through robot-assisted ultrasound scanning and
polishing tasks.

In the following section II, the bilateral teleoperation
control system is designed, and the proposed VG method
is also presented. The experiment system setup is given in
Section III. In Section IV, we conduct experiments to evaluate
the effectiveness and performance of the proposed method.
The results are given in Section V. In Section VI, we discuss
the results and conclude this paper and potential work in the
future.

II. METHODOLOGY

A. Bilateral teleoperation control design

For bilateral teleoperation, the dynamics of the robot
system in Cartesian space are given [25],

AL(qL)ẍL +BL(qL, q̇L)ẋL +GL(qL) = uL + fh (1)

AF (qF )ẍF +BF (qF , q̇F )ẋF +GF (qF ) = uF + fe (2)

where AL(qL) and AF (qF ) are the inertia matrix,
BL(qL, q̇L) and BF (qF , q̇F ) are the Coriolis and centrifugal
terms, and GL(qL) and GF (qF ) represent the gravity of the
leader and follower robots1 respectively. uL and fh are the
control input and operator force of the leader robot. qL and
q̇L are the joint position and velocity of leader robot. The ẋL

and ẍL are the velocity and acceleration of the leader robot
in Cartesian space. uF and fe are the control and interaction
force of the follower robot. qF and q̇F are the joint position

1Note the leader robot refers to the teleoperation device, Touch X, and
the follower robot refers to the Franka robot manipulator.

and velocity of the follower robot, the ẋF and ẍF represent
the velocity and acceleration of the follower robot.

Impedance control builds the models of the relationship
between the robot and the environment as a mass-spring-
damper system [25]. We designed the impedance controller
in task space for the follower robot,

uF = KF (xL − xF )−DF ẋF (3)

where uF is the control command of follower robot, KF is
the stiffness matrix, the DF represents the damping matrix.
xL and xF are the positions of the leader and follower robots,
respectively.

The force feedback is designed to reflect the interaction
force between the follower robot and its environment. The
controller of the leader robot is designed as follows,

uL = −KLfe −DLẋL (4)

where uL is the control input of the leader robot, DL is
the damping matrix. fe is the interaction force between the
follower robot and environment, KL is the scaling parameter.
One advantage of bilateral teleoperation is that force feedback
for the human operator benefits the human-robot skill trans-
fer. To reflect the contact force on the haptic device side, we
design the following controller,

fm = −KLfe (5)

where KL is the scaling parameter to transform the contact
force on the end-effector side to the haptic side.

B. NEUM and dynamic system learning based on the human
demonstration

To build the NEUM, we attain the demonstration data set
by teleoperation. D = {x, ẋ}T=0:N

t=0:tn
is the demonstration data

set, where x and ẋ are the position and velocity of end-
effector (tools, including the polishing tool and ultrasound
probe in the Cartesian space), respectively.

We developed the NEUM for human skills encoding [23],
which has various advantages. The NEUM has the form,

V (x) = V1(x)− V1(0) + V2(x)
V1(x) = ωT f(x)

f(x) =
[
f1(x), · · · , fk(x), · · · , fdH

(x)
]T

fk(x) = ϱ(aTk z(x) + bk)

z(x) =
[
∥x∥1+ϵ

2 ∥x∥ϵ2xT
]T

V2(x) = αxTx

(6)

where V1(x) is a neural network with weight parameter ω ∈
RdH and feature f(x) : Rdx → RdH . The activation function
is designed as ϱ(s) = es−e−s

es+e−s . Function z(x) : Rdx → Rdx+1

is a manually designed encoder, ak ∈ Rdx+1 and bk ∈ R are
feature parameters, ϵ, α ∈ R++ are positive scalars. Function
V2(x) is used to ensure the radially unbounded property of
the V (x). It has been shown in our previous work [23] that
if the following constraints hold,

ak,1 > 0

a2k,1 −
∑dx+1

i=2 a2k,i > 0,∀k ∈ [1, · · · , dH ]

ωk > 0

, (7)



the NEUM V (x) has a unique minimum located at x = 0,
and simultaneously be positive-definite, radially unbounded
and continuously differentiable.

The NEUM can then be learned by solving the following
optimization problem

min
Θ

J(Θ) (8)

subject to (7)
where Θ = {ak, bk, ω}k=[1,··· ,dH ] is the collection of the
learned parameters, and the objective function J(Θ) is de-
fined as follows

J(Θ) =
∑
t,n

jt,n(Θ) + L2∥Θ∥22

jt,n(Θ) = tanh(βjt,n) =
eβjt,n−e−βjt,n

eβjt,n+e−βjt,n

jt,n(Θ) =
ẋT ∂V (xt,n,Θ)

∂xt,n

∥ẋ∥2∥
∂V (xt,n,Θ)

∂xt,n
∥2

, (9)

Using the learned NEUM, we can then learn a globally sta-
ble autonomous dynamic system (ADS) to encode the human
demonstration preferences. The stable ADS is formulated as
ẋ = g(x) = o(x) + u, where o(x) is the original ADS
function, which can be learned via any regression algorithm
on the demonstration data set D. The correct term u can be
obtained by online solving the following QP problem,

min
u

uTu (10)

subject to

(o(x) + u)T
∂V (x)

∂x
⩽ −ρ(x) (11)

The optimization problem admits a closed-form solution,
which is provided as follows:

u = −
ReLu

(
o(x)T ∂V (x)

∂x + ρ(x)
)

∥∥∥∂V (x)
∂x

∥∥∥2
2

∂V (x)

∂x
(12)

where the activation function ReLu(s) has the form

ReLu(s) =

{
s, s > 0

0, else
(13)

As a result, the stable ADS is given as

ẋ = o(x)−
ReLu

(
o(x)T ∂V (x)

∂x + ρ(x)
)

∥∥∥∂V (x)
∂x

∥∥∥2
2

∂V (x)

∂x
(14)

where V (x) is given in (6).

C. Virtual guidance design

The VG is designed based on the guidance of NEUM. In
this work, we only consider the force feedback, and ignore
the torque feedback in orientation. Thus the virtual force is
designed as the following,

VFR = K(Pd − Pc) +D(Vd − Vd) (15)

where VFR ∈ R3×1 is the virtual force, Pd ∈ R3×1 and
Vd ∈ R3×1 are the desired position and velocity respectively.

Fig. 1. The block diagram of bilateral teleoperation enhanced by stable VG.

Fig. 2. The setup of the bilateral teleoperation platform.

Pc ∈ R3×1 and Vc ∈ R3×1 are the desired position and
velocity respectively where K ∈ R3×3 and D ∈ R3×3 are the
spring and damping terms for the virtual system respectively.

To transmit the virtual force from the follower robot side
to the leader device side,

VLB =LB
FB RVFB (16)

where LB
FBR is the rotation matrix from the base frame of the

leader device to the base frame of the follower robot. VFR

and the VLR are the virtual force in follower robot side and
leader robot side respectively.

FL = fc + VLB (17)

fc = KscfFC (18)

where fFC ∈ R3×1 is the contact force between the end-
effector and environment on follower robot side, Ksc ∈ R3×1

is the scaling parameter for force feedback, fc ∈ R3×1 is the
force feedback of the leader robot based on the follower robot
side. FL ∈ R3×1 is the total force in the leader robot side.

III. SYSTEM DESCRIPTION

The bilateral teleoperation system enhanced by the stable
VG method is shown in Fig. 1. The proposed framework
includes multimodal feedback-based bilateral teleoperation
control, virtual guidance and robot-environment interaction.
The human teleoperates the robot through the haptic device,
and the exerted force by the human is fh. The haptic device
is controlled by the human operator, force feedback from
the follower robot and virtual guidance, which could provide
a cue for the human operator. Although the VG provides
guidance force for human operator, the final command for
haptic is determined by the human operator. Human operator



could adjust the pose of the haptic device based on the virtual
feedback and the desired trajectory. When the robot interacts
with environments, the contact force fe will be rendered by
force feedback. The VG force is generated based on the
virtual guidance model and current robot states, position and
velocity. The VG model is attained through NEUM and a
dynamic system.

A. Hardware system

As shown in 2, Franka robot is used to conduct the
experiment, which is running at 1K Hz. The haptic Touch X
is used as a teleoperation device, which runs at 1K Hz and
provides haptic feedback for human operators. The RealSense
camera (435i) is used to provide visual feedback for human
operators. The joint torque sensors are used to calculate
the interaction force between the robot end effector and the
environment, running at 1k Hz. One laptop computer is used
to control the robot, and another laptop is used to visualize
the image feedback. For the ultrasound scanning experiment,
an ultrasound probe is used for ultrasound scanning and
an artificial Phantom is used to simulate the human body.
One polishing tool is used to polish the component with an
unknown surface, which is manufactured by 3D printing.

B. Software system

The bilateral teleoperation system consists of robot control,
virtual guidance algorithm, bilateral teleoperation, etc. A
laptop running a Linux system was used to implement the
control algorithms. To integrate these different components,
ROS Medolic is used to communicate among different mod-
ules: robot control, virtual guidance module, force feedback,
and visual feedback. Libfrank and C++ are used to control
the Franka robot at 1K Hz. The low-level controller of the
Franka robot is implemented by the impedance controller
in Cartesian space. The impedance controller can achieve
compliant interaction between the end-effector of the robot
arm and the objects. For the NEUM implementation details,
please refer to our previous work [23].

IV. EXPERIMENT VALIDATION

We adopt two typical tasks, robot-assisted ultrasound scan-
ning and robot-assisted polishing, to evaluate the performance
of virtual guidance for bilateral teleoperation. In our previous
work, we developed a robot-assisted ultrasound system and
conducted a user study to compare the performance of
various teleoperation interfaces [3]. The study revealed that
the ultrasound scanning task is quite challenging for human
operators. Therefore, in this work, we adopt this task as an
experimental case. So in this work, we adopt this task as an
experiment case. We present the details and the challenges
of these tasks by pure bilateral teleoperation as follows.

A. Task description

a) Ultrasound scanning approaching, as shown in Fig.
3. In our setup of robot-assisted ultrasound scanning by
teleoperation, we only use the monocular camera for visual
feedback and the haptic device for force feedback. We
conducted experiments on the Phantom. The robot from a

Fig. 3. The ultrasound scanning task (a) and polish task (b) by the bilateral
teleoperation system.

random pose at the beginning achieves the desired position
on Phantom, as shown in Fig. 3. In this task, the teleoperation
needs to adjust the position and orientation simultaneously.

b) Polishing task by the collaborative robot in an unknown
environment continuously, as shown in Fig. 3. In our previ-
ous work, we studied impedance learning for robot-human-
environment physical interaction [26]. The robot-assisted
polishing task presents significant challenges for teleopera-
tion demonstrations. In this work, we further evaluate the
performance of the virtual guidance by a manufacturing
application. In this task, the human operator needs to adjust
the position and contact force simultaneously based on the
visual and force feedback. The interaction with unknown
interfaces and bilateral teleoperation without virtual guidance
is still challenging for human operators nowadays.

V. EXPERIMENT STUDY CASES

A bilateral teleoperation system is developed, and the
experiment setup can be seen in Fig. 2. Based on this
experimental platform, we conduct two tasks: ultrasound
scanning and robot-assisted polishing.

Fig. 4. Energy field for ultrasound
scanning.

Fig. 5. Trajectories reproducing by
energy fields for ultrasound scanning
approach.

A. Medical examination - ultrasound scanning

As shown in Fig. 4, the energy function for ultrasound
scanning is built based on human demonstration. The curved
surfaces represent the energy fields, and the points on the
same surface have the same energy. The red dotted lines
are the demonstration trajectory for the building of virtual
guidance, in which the data set has five demonstration
trajectories. The black point is the target goal. As shown in



Fig. 6. Results of the polishing experiment under virtual guidance.

Fig. 5, the black lines are the reproducing trajectories, based
on the energy field and the given target goal.

The method is also effective for the contact-rich task. As
shown in Fig. 7, virtual guidance based on the energy fields
is generated based on human demonstration. As shown in
Fig. 8, only five demonstrations are required for the energy
field and virtual guidance. The reproducing trajectories, black
lines, demonstrate that the energy fields could generate virtual
guidance to converge to the desired target.

Fig. 7. Energy field for polishing. Fig. 8. Trajectories reproducing based
on the energy field for polishing.

The experiment results of robot-assisted polishing are
shown in Fig. 6. (a) shows the desired trajectories of the
human operator and the actual trajectories of the polishing
tool in x1 (X-axis), x2 (Y-axis), and x3 (Z-axis), respectively.
(b) shows the actual contact forces of fc,1, fc,2,fc,3 in X-axis,
Y-axis, and Z-axis, respectively. (c) is the virtual guidance
force,fv,1, fv,2,fv,3.

The tracking error in X is around 4cm; when the hu-
man operator deviates from the desired position, the virtual
guidance force will be large, as shown in (c). The tracking
accuracy along the Z-axis is large because the polishing tools
interact with the rigid environment 3D printing component.
The contact force in the Z-axis is large, almost to 6N. How-
ever, the virtual guidance force is small, because the human
operator exerts contact force along the Z-axis by deviating
from the current position. Because the low-level controller
is impedance control, the contact force can be generated
through control of the position from the equilibrium point.
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Fig. 9. Subjective evaluation based on NASA-TLX scores for teleoperation
with virtual guidance and without.

B. Performance evaluation based on NASA-TLX

To compare the effectiveness of virtual guidance, user
study experiments were conducted for the aforementioned
tasks. During the experiment, participants were tasked with
completing the designated tasks using direct teleoperation
without guidance, as well as with virtual guidance. Following
each task completion, participants were asked to fill out
the NASA-TLX questionnaire, rating their experience across
six aspects: mental demand (MD), physical demand (PD),
temporal demand (TD), performance (PE), effort (EF), and
frustration (FR). The scores are presented in Fig. 9 as a
box plot, to graphically demonstrate the maximum, upper
quartile, median value, lower quartile, and minimum value
(shown as horizontal lines from top to bottom respectively)
as well as mean value (shown as a cross point). Overall,
users of direct teleoperation without guidance tended to
assign lower scores across all aspects. The most significant
contrast in scores is observed notably in mental demand
(MD), where the mean value without guidance (13.4) nearly
doubles that with virtual guidance (6.8). Similarly, discernible
distinctions between virtual guidance and no guidance are
apparent in physical demand (PD) and effort (EF), with
differences of 4.2 and 4, respectively. Participants utilizing



direct teleoperation without guidance also exhibited lower
scores in performance (PE) and frustration (FR), suggesting
that increased task demands and effort correlated with slightly
diminished performance when compared to virtual guidance.

VI. DISCUSSION AND CONCLUSION

In this paper, we proposed a stable virtual guidance method
for teleoperation-based robot learning from demonstration.
Two tasks, ultrasound scanning and robot-assisted polish-
ing, have been conducted to evaluate the performance of
the proposed method. The VG is designed by a neural
energy function with a unique minimum, which can generate
guidance force, from the high energy position to the low
energy position for the teleoperation operator. The unique
minimum feature can guarantee to converge to the desired
position. In addition, the virtual guidance is built based on
a human demonstration data set. We developed a bilateral
teleoperation system for conducting user studies to evaluate
its effectiveness.

Under VG guidance, human operators can mentally and
physically reduce the workload. However, as mentioned
above, it is hard to demonstrate one optimal trajectory
through a one-shot demonstration based on visual and force
feedback teleoperation, especially for the contact-rich tasks
and dexterous manipulation tasks, which often require the
operator to control the orientation, position and contact force
simultaneously, such as polishing in the manufacturing and
ultrasound scanning in robot-assisted medical examination.
However, human operators can correct and interact through
the human-in-the-loop mechanism to update the previous
demonstration. In the future, this correction and human
demonstration will be investigated to optimize the VG. In
this case, the iterative optimization method can be used to
update the NEUM, which will further provide better virtual
guidance for human operators. We also plan to investigate
the adaptive design of virtual guidance for different tasks to
improve user experience.

VII. SUPPLEMENTAL MATERIALS

Supplementary Video S1
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