
Hypernetwork-aided Channel Estimation for
Integrated Data and Energy Transfer

Yushi Lei, Yusha Liu, Member, IEEE, Jie Hu, Senior Member, IEEE, and Kun Yang, Fellow, IEEE

Abstract—Integrated data and energy transfer (IDET) is an
important component of future communication networks due
to its characteristic to provide continuous and reliable wireless
power to battery-limited devices. In order to get full advantages
of IDET technology in future communication networks and
realize efficient beamforming design, the base station (BS) must
obtain accurate downlink channel state information (CSI). In
this work, we propose an energy harvesting (EH) aided channel
estimation scheme using a novel deep learning (DL) architecture
in an end-to-end training mode. This architecture simultaneously
obtains CSI from both an energy harvester and a data decoder
at an IDET receiver. By designing a hypernetwork-aided deep
neural network (DNN), we achieve more accurate channel esti-
mation, while effectively reducing the pilot overhead in channel
estimation. Simulation results show that compared to the state of
the art, our EH aided channel estimation scheme attains a lower
normalized mean square error (NMSE).

Index Terms—Integrated data and energy transfer (IDET),
energy harvesting (EH) aided channel estimation, hypernetwork.

I. INTRODUCTION

Radio frequency (RF) signals have been used both in
wireless data transfer (WDT) and wireless energy transfer
(WET). In recent years, with the explosive growth of low-
power devices, such as Internet-of-Things (IoT) [1] and wire-
less sensor networks (WSN) [2], IDET has attracted much
attention because of its potential in battery-limited wireless
networks. Researchers have explored IDET in conjunction
with various advanced technologies, including multiple-input
multiple-output (MIMO) [3] and cognitive radio networks [4].
Among these, the integration of MIMO with IDET, commonly
referred to as MIMO-IDET, has demonstrated significant im-
provements in transmission efficiency [3]. This integration
allows for enhanced data and energy transfer capabilities,
making it a promising solution for modern wireless communi-
cation systems. However, the effectiveness of such systems is
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heavily dependent on the accurate estimation of CSI, as CSI
directly impacts the efficiency of both data transmission and
EH processes. Given the importance of precise CSI estimation,
ongoing research in relevant area focuses on developing ad-
vanced methodologies to enhance the accuracy and reliability
of channel estimation. These efforts are vital for ensuring
that MIMO-IDET systems can achieve their potential in terms
of performance and efficiency, particularly in environments
characterized by the presence of numerous low-power devices
and the need for efficient energy management.

In existing literature, channel estimation methods typically
include traditional approaches such as least squares (LS) and
minimum mean-square error (MMSE), as well as advanced
techniques like compressed sensing (CS) and DL-based meth-
ods. For WDT CSI acquisition, methods primarily employ the
transmitted data signal for channel estimation, with uplink
CSI usually playing a supporting role in downlink channel
estimation, and increasingly, these methods are based on
DL with different neural network architectures [5]–[7]. For
example, Dong et al. [5] developed a deep convolutional
neural network (CNN)-based channel estimation approach for
MIMO-orthogonal frequency division multiplexing (OFDM)
systems, which estimates the channel from the received signal
at the receiver, enhancing robustness across various channel
conditions. Guo et al. [6] proposed a high-precision DL-based
downlink CSI acquisition framework that leverages uplink
CSI. Recognizing the lack of full radio channel reciprocity
between uplink and downlink in frequency division duplex
(FDD) systems, Banerjee et al. [7] developed a conditional
generative adversarial network (CGAN) approach for uplink-
to-downlink CSI mapping. Different from WDT, WET channel
estimation methods generally use the amplitude information
present in energy signals to estimate partial downlink CSI.
L.A.López et al. [8] leveraged the received energy signal for
LS estimation to design the energy beamforming for powering
multiple users with stringent EH demands in massive MIMO
system. Other studies [9], [10] have employed DL methods
for channel estimation by having the energy transmitter (ET)
estimate the channel based on harvested energy feedback from
the energy receiver (ER). On the basis of WDT and WET, the
IDET system, which receives both data and energy signals
at the receiver, offers potential for a more adaptable channel
estimation scheme. However, existing WDT and WET channel
estimation methods cannot be directly applied to IDET, as
IDET aims to balance data rate and harvested energy, rather
than prioritizing one over the other. Xu et al. [11] explored cas-
caded channel estimation in an intelligent reflecting surface-
assisted IDET system, transforming the problem into a sparse



signal reconstruction task solvable via CS. By contrast, with 
channel estimation implemented via an MMSE estimator, 
Amudala et al. [12] modeled a MIMO relaying system con-
sidering spatially-correlated relay-user channels and used a 
non-linear EH model to optimize the weighted sum energy 
efficiency metric. These diverse approaches highlight the need 
for innovative solutions tailored to the unique challenges of 
IDET systems.

However, despite employing various methods to enhance 
channel estimation performance, existing IDET literature has 
primarily concentrated on using data signals for channel 
estimation, neglecting the potential benefits of energy signals. 
This oversight limits the effectiveness of current approaches, 
since they fail to fully exploit the dual nature of IDET 
systems, which inspires our design. In this letter, we introduce 
the HyperDNN architecture, a high-performance DL-based 
joint scheme for pilot training and channel estimation in 
IDET systems by employing the hypernetwork framework. 
Our proposed HyperDNN leverages both data and energy 
signals, aiming to improve the channel estimation efficiency 
on an existing basis. The main contributions of this work are 
summarized as follows.

• We develop an end-to-end hypernetwork-aided DNN
structure for channel estimation in an IDET system,
referred to as HyperDNN, where pilot generation and CSI
estimation are achieved by DNNs, and the whole process
can be jointly optimized.

• We introduce a hypernetwork [13] for extracting channel
amplitude information from energy harvested by the
IDET receiver to help with channel estimation. Instead of
employing a big DNN with all data and energy signals as
inputs, the hypernetwork is a newly introduced relatively
small DNN. It takes energy signal as input and outputs
weight parameter for the main DNN to assist in channel
estimation, where the main DNN is also a relatively
small DNN with data signal as input. This hypernetwork
guarantees a certain degree of the channel estimation
accuracy while reducing network size.

• Simulation results show that by jointly utilizing the data
and energy signals, the proposed HyperDNN architecture
can perform channel estimation more accurately than
traditional method, and its performance is better than that
only uses data signal. Moreover, a shorter pilot sequence
is designed by DNN in an end-to-end training manner,
reducing the system overhead.

The rest of the paper is organized as follows. Section II
describes our system model. Section III introduces the pro-
posed HyperDNN architecture. Simulation results are provided
in Section IV, while Section V provides the main conclusions.

Notations: In this paper, the uppercase and lowercase bold-
face letters, X and x, denote matrices and vectors, respec-
tively. Cm×n represents the dimension of a matrix/vector.
Furthermore, (·)−1, (·)T , and (·)H represent matrix inversion,
transpose, and Hermitian transpose operations, respectively.
|·| and ∥·∥ denote the absolute value and the Euclidean
norm. ℜ(·) and ℑ(·) denote the real and imaginary parts
of a complex vector or matrix. E[·] denotes the statistical

expectation, vec(·) denotes the vectorization of a matrix by
stacking columns/rows. CN (m,n) represents the distribution
of a circularly symmetric complex Gaussian (CSCG) random
variables with a mean m and a variance n. U(a, b) represents
a uniform distribution between a and b.

II. SYSTEM MODEL

In this section, we introduce a multiple-input single-output
(MISO) IDET system model, as shown in Fig. 1, where an
M -antenna IDET transmitter at the BS transmits RF signal to
a single-antenna IDET receiver.

Fig. 1. System Model.

In the t-th (t = 1, 2, · · · , T ) time slot, a pilot signal is first
transmitted, which is followed by data transmission. At the
beginning of each time slot, an M -antenna IDET transmitter
first transmits L pilot symbols X ∈ CM×L to the single-
antenna IDET receiver. The power constraint of the pilot
symbols is expressed as

∥xl∥2 ≤ P, ∀l = 1, · · · , L, (1)

where xl represents the l-th column of the pilot signal X and
P is the maximum transmit power of the IDET transmitter.

We consider a quasi-static flat-fading channel, where the
channel remains invariant within each single time slot and
changes independently across different time slots. Specifically,
we assume a multi-path channel with P paths [14]. Each
path is characterized by the angle of departure (AoD) θp,
the path gain αp ∼ CN

(
0, σ2

α

)
, and fading amplitudes

βp ∼ CN
(
0, σ2

β

)
. Based on the above assumptions, the

channel h ∈ CM×1 can be modelled as

h =
P∑

p=1

αpa (θp)βp, (2)

where a(θp) ∈ CM×1 is the steering vector. We consider the
uniform linear array (ULA) antenna with the steering vector
being expressed as

a (θp) =
[
1, e−

j2πd
λ sin (θp), · · · , e−

j2πd
λ (M−1)sin (θp)

]T
, (3)

where d is the antenna spacing, and λ is the carrier wavelength.
At any time slot, at the IDET receiver, the L received

discrete-time pilot samples y ∈ C1×L can be expressed as

y = (h)
H
X+ na, (4)



a

where h is the channel vector given by (2) and na ∈ C1×L 

is additive white Gaussian noise (AWGN) with zero mean 
and variance σ2. The receiver is capable of executing IDET
functionality. Specifically, the IDET receiver is equipped with
a circuit that can harvest energy and decode data from received
signals at the same time by using the power splitting structure
[15]. Accordingly, the receiving vector y can be divided into
two parts, one is used for EH and the other for data decoding.
As shown in Fig. 1, the received data signal yI and energy
signal yE after power splitting can be modelled respectively
as

yI =
√
1− ρ y, (5a)

yE = ηρ |y|2 , (5b)

where ρ ∈ [0, 1] is the power splitting ratio and η ∈ [0, 1]
denotes the energy conversion efficiency. Note that a linear EH
model is used in this work. For non-linear energy harvester,
we can modified the structure by employing a trained DNN
to simulate the actual receiving energy [16]. In conventional
approaches [17], CSI is solely extracted from data signal yI

by using traditional channel estimation methods like MMSE
usually [18], [19], and then acquired by the BS.

III. HYPERNETWORK-AIDED CHANNEL ESTIMATION

Different from the conventional methods which extract
downlink CSI only from the data signal yI , in this section, we
propose an end-to-end channel estimation approach that also
takes the channel information extracted from the harvested
energy into consideration, as shown in Fig. 2. Specifically, at
the transmitter, a linear layer is employed for pilot training.
The received pilot signals at the receiver are first processed
by a power splitter, obtaining the data and the energy signal.
During the channel estimation process, the proposed Hyper-
DNN learns downlink CSI from both data signal yI via the
main DNN and energy signal yE via the hypernetwork. The
hypernetwork deals with energy signal yE , outputting weight
parameters to assist channel estimation of the main DNN,
hence improving the accuracy of channel estimation while
imposing moderate complexity. The hyperDNN structure is
comprised with a main DNN and a hypernetwork, which
are discussed in Sections III-A and III-B, respectively, and
the training details of the proposed HyperDNN for channel
estimation in IDET system is discussed in Section III-C.

A. Main DNN
Pilot transmission and power splitting are discussed in

Section II. After the power splitting, we build a main DNN
for performing channel estimation, which learns downlink CSI
embedded in the data signal.

In the main DNN, the channel estimation is implemented by
applying a multi-layer fully-connected DNN and the downlink
CSI is extracted from data signal yI only. We separate the real
and imaginary components of yI and employ them as inputs
to the main DNN, with R (yI) and I (yI) representing the real
and imaginary parts of the elements in yI respectively. Further,
the complex to real value representation can be denoted as the

2L× 1 vector c2r (yI) =
[
R (yI)

T
, I (yI)

T
]T

.

The procedure of acquiring downlink CSI from yI can be
carried out through the M (CE)-layer fully-connected DNN,
which can be expressed as

c2r
(
ĥ
)
=W

(CE)
M(CE)

[
· · · fReLU

(
W

(CE)
1 c2r (yI) + b

(CE)
1

)
· · ·

]
+ b

(CE)
M(CE) ,

≜f (CE)
(
yI

∣∣∣Ω(CE)
)
, (6)

where c2r(ĥ) is the output of the main DNN, which
represents the channel estimation values acquired
through the main DNN processing, with the dimension
of 2M × 1.

{
W

(CE)
1 ,b

(CE)
1 , . . . ,W

(CE)
M(CE) ,b

(CE)
M(CE)

}
is

the set of the optimization parameters for the main
DNN, where W

(CE)
m are the weight matrixes and

b
(CE)
m are the bias vectors of the m-th layer. Denoting

Ω(CE) =
{
W

(CE)
1 ,b

(CE)
1 , . . . ,W

(CE)
M(CE) ,b

(CE)
M(CE)

}
in (6)

as the symbol of optimization parameters, and ℓ
(CE)
m ,

m = 1, . . . ,M (CE) as the number of neurons in the fully
connected layers. The dimension of the weight matrixes
W

(CE)
m can be expressed as ℓ

(CE)
m × ℓ

(CE)
m+1 and the dimension

of the bias vectors b
(CE)
m are ℓ

(CE)
m × 1, with the known

condition that ℓ
(CE)
M(CE) = 2M . fReLU (·) is the rectified

linear unit (ReLU) activation function of first
(
M (CE) − 1

)
fully connected layers, while the output layer produces the
estimated channel c2r(ĥ) through the linear (or identity)
function, i.e., φo(v) = v.

B. Hypernetwork

While the main DNN deals with the received data signal
yI , we also construct a hypernetwork to extract the amplitude
information of the channel from energy signal yE , assisting
the channel estimation. Accordingly, a more precise channel
estimation at the IDET transmitter may be obtained.

The input of the hypernetwork is the values of harvested
energy yE , which is a L × 1 vector denoted by g(yE).
Through the processing of a M (H)-layer fully-connected DNN,
the output of the hypernetwork represents a parameter for
adjusting the weights of the main DNN and ultimately aiding
channel estimation. This procedure can be expressed as

ωωω = W
(H)

M(H)

[
· · · fReLU

(
W

(H)
1 g (yE) + b

(H)
1

)
· · ·

]
+ b

(H)

M(H) ,

≜ f (H)
(
yE

∣∣∣Ω(H)
)
, (7)

where ωωω is the common weight parameters at each time
slot, which is used to adjust the weights of the main DNN.{
W

(H)
1 ,b

(H)
1 , · · · ,W(H)

M(H) ,b
(H)

M(H)

}
is the set of the optimiza-

tion parameters for the hypernetwork, where W
(H)
m denote

the weights and b
(H)
m denote the bias. Denoting Ω(H) ={

W
(H)
1 ,b

(H)
1 , · · · ,W(H)

M(H) ,b
(H)

M(H)

}
in (7) as the symbol of

optimization parameters, and ℓ
(H)
m , m = 1, · · · ,M (H) as the

number of neurons in the fully connected layers, thus, W(H)
m

are ℓ
(H)
m ×ℓ

(H)
m+1 weight matrices, b(H)

m are ℓ
(H)
m ×1 bias vectors

and the output of the hypernetwork ωωω is a (
∑M(H)

m=1 ℓ
(H)
m ) × 1

vector. The ReLU activation function is also used in the first



Fig. 2. The proposed HyperDNN architecture for channel estimation of IDET.(
M (H) − 1

)
fully connected layers, and linear (or identity)

function is used in the last layer.
Further, we virtually split the output of the hypernetwork

ωωω into ωωω = [ωωω1, · · · ,ωωωM(CE) ], where ωωωm ∈ Cℓ(CE)
m ×1. The

adjustment method of (
∑M(H)

m=1 ℓ
(H)
m ) × 1 vector ωωω to the

weights of the main DNN can be expressed as

W(CE)
m =

∼
W

(CE)

m · diag {ωωωm} , m = 1, · · · ,M (CE), (8)

where
∼
W

(CE)

m contains the weight parameters
of the main DNN to be adjusted. We define
∼
Ω

(CE)
=

{
∼
W

(CE)

1 ,b
(CE)
1 , · · · ,

∼
W

(CE)

M(CE) ,b
(CE)
M(CE)

}
as the

set of optimization parameters for the channel estimation of
the proposed energy signal aided channel estimation structure.

Note that we emphasize the IDET system in this work, in
which data signal may not carry complete CSI information
due to power splitting and data processing. Therefore, we
consider using hypernetwork to extract the amplitude channel
information also carried in energy signal, which is exclusive to
the IDET system, to help with channel estimation. When using
conventional system that received signal is not split, there is
no energy signal and no need to introduce the hypernetwork
[13].

C. Training
The proposed energy signal aided channel estimation model

consists of both the main DNN and the hypernetwork, and is
trained in an end-to-end approach that aims to minimize the
training squared error between the estimated and real channel.
The corresponding optimization problem can be formulated as

min
x,Ω(CE),Ω(H)

E
[∥∥∥ĥ− h

∥∥∥2], (9a)

s.t. ĥ = f (CE)
(
yI

∣∣∣∣∼Ω(CE)
,ωωω,Ω(H)

)
, (9b)

ωωω = f (H)
(
yE

∣∣∣Ω(H)
)
, (9c)

∥xl∥2 ≤ P, ∀l = 1, · · · , L, (9d)

where yI and yE are respectively the data and energy parts of
the received signal after power splitting; f (CE) (·) represents

the training process of the main DNN with input yI ; optimiza-

tion parameters include
∼
ΩΩΩ

(CE)
, ω and Ω(H); f (H) (·) represents

the training process of the hypernetwork with input yE and
the optimization parameters Ω(H).

The optimization problem of (9) can be implemented of-
fline in practice according to Algorithm 1. Specifically, noise
samples are first generated according to noise statistics. Note
that the noise considered in this paper is AWGN, with a mean
of 0 and a variance of σ2

a. Secondly, the channel samples are
generated according to the channel model of (2). We use the
standard P -path multipath channel with AoD θp, path gain
αp and fading amplitude βp, where the AoD θp obeys the
uniform distribution of θp ∼ U (−π/6, π/6). Since we assume
the quasi-static time-invariant fading channel, the path gain αp

and fading amplitude βp are independent random values that
obey the Gaussian random distribution. After the generation
of channel samples, the system model and neural networks
structure are constructed. Finally, the samples are sent to the
neural networks for training. Pilots and other optimization
parameters in this structure are jointly optimized in an end-
to-end training form under the premise of transmitter power
limitation.

Compared with the basic DL channel estimation scheme,
in which the main DNN structure is used and the parameters
Ω(CE) are optimized only, the proposed energy signal aided
channel estimation method also optimizes the parameters Ω(H)

of the hypernetwork and the pilot signal X. At the same time,
the proposed scheme also learns how to estimate the channel
more accurately from the received signal, reducing the pilot
overhead of downlink transmission. The training parameters
are given in detail in Section IV.

IV. NUMERICAL RESULTS

In this section, we evaluate the channel estimation perfor-
mance of the proposed HyperDNN. The simulation setting
details are given in Section IV-A, while the numerical results
are shown in Section IV-B.

A. Simulation Settings

We adopt the 3GPP standardized spatial channel model
(SCM) [14] for the proposed structure. Since we assume a



Algorithm 1: Training Procedure of the Proposed
Hypernetwork aided Channel Estimation

Input: M , L, ρ, P , σ2
a // system parameters;

θp, αp, βp // channel parameters;

Nep, Nbatch, Nb // numbers of

epochs, batches, and batch size;

α(0) // initial learning rate;

Objective: minimize NMSE = E[∥ĥ− h∥2/∥h∥2]
Output: x,Ω(CE),Ω(H) // pilot, and

optimization parameters of DNN;

Initialization:
i← 0;

Training:
while i < Nep do

if i < Nep/3 then
α(i) = 10−3;

else
if i < 3Nep/4 then

α(i) = 10−4;
else

α(i) = 10−5;
end

end
t← 0;
while t < Nbatch do

Generate training set S(t) on batch size Nb;
Update optimization parameters on set S(t) by

Adam optimizer with the objective of
minimizing NMSE, including

1.Update Ω(H) of the hypernetwork and output
ωωω using (7);

2.Update Ω(CE) of the main DNN and output
c2r

(
ĥ
)

using (6) and (8);

end
end

time invariant channel, the channel model uses i.i.d. fading
amplitudes βp in this experiment. For power splitter, we use a
fixed energy conversion efficiency η (i.e. η=1) and a power
splitting ratio ρ that can be adjusted. The details of the
simulation parameters are listed in Table I.

We use the standard DL libraries TensorFlow and Keras to
implement the proposed energy signal aided channel estima-
tion structure. The whole network is trained with 104 epochs
and 1024 mini-batch size, with the learning rate gradually
decrease from 10−3 to 10−5. For the basic DL approach
(basic DNN) only utilizing data signal yI , we adopt a 4-
layer DNN structure, including 3 dense layer and a binary
output layer, with ℓ

(CE)
1 = 1024, ℓ

(CE)
2 = 512, ℓ

(CE)
3 = 512

TABLE I
SIMULATION PARAMETERS

Parameters Values

No. of paths (P ) 2
AoDs (θp) U(−π/6, π/6)
No. of transmit antennas (M ) 64
Pilot length (L) 8, 16, 32
Power splitting Rate (ρ) [0.2, 0.9]
Energy conversion efficiency (η) 1
Learning rate per epoch (α(i)) 10−3 to 10−5

epochs (Nep) 104

batches (Nbatch) 1
Mini-batch size (Nb) 1024

ReLU hidden neurons and 2M = 128 output nodes. For the
proposed energy signal aided channel estimation structure,
on the basis of adopting basic DNN, a 3 dense layer one
binary layer neural hypernetwork structure is employed, with
ℓ
(H)
1 = 128, ℓ(H)

2 = 512, ℓ(H)
3 = 1024 ReLU hidden neurons,

the number of output nodes is equal to the sum of input nodes
and hidden neurons in basic DNN. The parameter initialization
of the neural network is realized by Xavier initialization on
the TensorFlow. During the optimization process, we adopt
the adaptive moment estimation (Adam) optimizer. After each
iteration, pilot signal X is normalized to satisfy the power
constraint ∥xl∥2 ≤ P . The objective function uses NMSE
to measure the channel estimation performance, which is
expressed as NMSE = E[∥ĥ− h∥2/∥h∥2].

B. Numerical Results

We first compare the NMSE of the proposed HyperDNN
approach with the basic DNN which only utilizes data signal
yI , the traditional MMSE approach, and the SF-CNN men-
tioned in [5]. The calculation formula for MMSE estimator
can be expressed as

ĥMMSE = Rh

(
XHXRh + σ2

aI
)
XHyI , (10)

where Rh is the correlation matrix of the real channel h which
can be denoted as E

[
hhH

]
, I is the identity matrix. The

NMSE versus signal-to-noise ratio (SNR) is shown in Fig. 3,
where power splitting rate ρ is 0.3. We can see that with the
increase of pilot lengths L and SNR, the NMSE decreases,
because it represents a more accurate channel testing and a
more ideal environmental condition. At a pilot length of 16,
hyperDNN has a lower NMSE than SF-CNN at a high SNR.
Furthermore, the proposed HyperDNN achieves the lowest
NMSE, especially compared with basic DNN and MMSE
approaches, due to exploiting the energy signal.

In Fig. 4, we study the influence of different power splitting
rates ρ on channel estimation NMSE. We can see that a power
splitting rate region between 0.2 and 0.4 brings better training
performance, achieving a lower NMSE. This is because an
intermediate power splitting rate, not too large nor too small,
can minimize noise interference to the data signal while
allowing the energy signal to contribute to the CSI estimation.



Fig. 3. NMSE of the proposed method, basic DNN, MMSE, and SF-CNN
method for channel estimation with M = 64, ρ = 0.3, with different pilot
lengths L (the pilot transmission mode in SF-CNN is fixed [5]).

Fig. 4. NMSE of the proposed method over frequency-flat fading channels
having different power splitting rate ρ for an M = 64 system, with SNR= 10
and 15dB, pilot lengths L = 8, 16 and 32.

When the power splitting rate is too large, the data signal
becomes smaller, making it more susceptible to noise during
RF-to-baseband conversion. However, with the improvement
of training conditions (such as the increase of pilot length L
and/or SNR), when the system itself can have a lower NMSE,
the performance gain brought by the power splitting rate is
less obvious.

V. CONCLUSIONS

In this paper, we proposed an energy signal-assisted channel
estimation framework for IDET, referred to as HyperDNN.
Unlike existing channel estimation methods, our approach
features a DL-based end-to-end structure where pilot training
and CSI estimation are jointly optimized. Additionally, we
have employed a hypernetwork to extract channel information
from the energy signal. The proposed HyperDNN framework
introduces additional performance gains, offering valuable
insights for future research.

Our future work will consider more practical channel char-
acteristics, e.g., the channel’s temporal correlations, Doppler
frequency offset. Moreover, we will explore solutions for how

to address the channel estimation in the FDD mode, where
uplink and downlink channels differ.
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link channel estimation for FDD massive MIMO using conditional gen-
erative adversarial networks,” IEEE Trans. Wireless Commun., vol. 22,
no. 1, pp. 122–137, 2023.

[8] O. L. A. López, D. Kumar, R. D. Souza, P. Popovski, A. Tölli,
and M. Latva-Aho, “Massive MIMO with radio stripes for indoor
wireless energy transfer,” IEEE Trans. Wireless Commun., vol. 21, no. 9,
pp. 7088–7104, 2022.

[9] J.-M. Kang, C.-J. Chun, and I.-M. Kim, “Deep-learning-based channel
estimation for wireless energy transfer,” IEEE Commun. Lett., vol. 22,
no. 11, pp. 2310–2313, 2018.

[10] J.-M. Kang, C.-J. Chun, I.-M. Kim, and D. I. Kim, “Deep RNN-based
channel tracking for wireless energy transfer system,” IEEE Sys. J.,
vol. 14, no. 3, pp. 4340–4343, 2020.

[11] X. Xu, W. Zhu, S. Yang, J. Bao, W.-P. Zhu, and Z. Liu, “Second order
rectified parallel factor model based cascaded channel estimation in IRS-
assisted SWIPT system,” IEEE Trans. Veh. Technol., vol. 72, no. 10,
pp. 13314–13325, 2023.

[12] D. N. Amudala and R. Budhiraja, “Wireless information and power
transfer enabled massive MIMO multi-way relaying,” IEEE Trans.
Wireless Commun., vol. 22, no. 10, pp. 6654–6672, 2023.

[13] Y. Liu and O. Simeone, “Learning how to transfer from uplink to
downlink via hyper-recurrent neural network for FDD massive MIMO,”
IEEE Trans. Wireless Commun., vol. 21, no. 10, pp. 7975–7989, 2022.

[14] 3GPP TR 25.996 V16.0.0, “Spatial channel model for multiple input
multiple output (MIMO) simulations (Release 16),” 3rd Generation
Partnership Project Std., Jul. 2020.

[15] Y. Zheng, S. A. Tegos, Y. Xiao, P. D. Diamantoulakis, Z. Ma, and G. K.
Karagiannidis, “Zero-energy device networks with wireless-powered
RISs,” IEEE Trans. Veh. Technol., vol. 72, no. 10, pp. 13655–13660,
2023.

[16] M. Varasteh, J. Hoydis, and B. Clerckx, “Learning to communicate and
energize: Modulation, coding, and multiple access designs for wireless
information-power transmission,” IEEE Trans. Commun., vol. 68, no. 11,
pp. 6822–6839, 2020.

[17] B. Kim, J.-M. Kang, H.-M. Kim, and J. Kang, “Joint channel estimation,
training design, Tx power allocation, and Rx power splitting for MIMO
SWIPT systems,” IEEE Commun. Lett., vol. 25, no. 4, pp. 1269–1273,
2021.

[18] X. Zhou, “Training-based SWIPT: Optimal power splitting at the re-
ceiver,” IEEE Trans. Veh. Technol., vol. 64, no. 9, pp. 4377–4382, 2015.

[19] G. Dong, H. Zhang, and D. Yuan, “Downlink achievable rate of massive
MIMO enabled SWIPT systems over Rician channels,” IEEE Commun.
Lett., vol. 22, no. 3, pp. 578–581, 2018.


