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Abstract
We study the Minkowski problem corresponding to the p-harmonic measures and obtain
results previously known for harmonicmeasures due to Jerison (InventMath 105(2):375–400,
1991). We show that a class of Borel measures on spheres can be prescribed by p-harmonic
measures on convex domains.
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1 Introduction

One of the most fundamental problems in the geometric analysis of convex bodies is the
Minkowski problem. The original form of the problem seeks to find a convex polyhedron
that has a specified set of vectors and real numbers as its normals and surface areas of its
faces under stipulated conditions. It can be reformulated more generally as seeking to find
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a convex domain that induces a specified measure on a sphere as the image of its surface
measure mapped by its normals. In this form, the original problem is identical to the case of
having a discrete measure on a sphere. Similar related problems are to show the uniqueness
of such domains up to translations and to find convex domains with smooth boundaries when
the regularity of theGaussian curvature of its boundary as a function of its normal is specified.

The literature goes back toMinkowski [41, 42]whoproved the existence and uniqueness of
a convex polyhedron with specified discrete spherical measure if and only if the centroid is at
the origin and support of themeasure is not concentrated on an equator (or great sub-spheres).
The problem for measures having continuous density was also illustrated by Minkowski
and later solved for general measures by Alexandrov [5, 7] and Fenchel-Jessen [19]. The
problem corresponding to convex domains with smooth boundaries involves establishing
regularity of solutions for Monge-Ampère type equations on the sphere, which is rather
difficult and has involved many significant works including Lewy [38], Pogorelov [44],
Nirenberg [43], Cheng-Yau [13], Caffarelli [10–12], etc. Furthermore, the harmonicmeasures
on the boundary of convex domains being equivalent to the surface measures (see Dahlberg
[16]), an analogous Minkowski problem with surface measures being replaced by harmonic
measures, has been studied by Jerison [26]. The objective of the present paper is to study the
Minkowski problem corresponding to p-harmonic measures for 1 < p < ∞, which, to our
knowledge, remained open.

For n ≥ 3, we consider convex domains � ⊂ R
n and the Gauss map g� : ∂� → S

n−1

where g�(x) is the outer unit normal at x ∈ ∂�, which is defined almost everywhere on
the boundary as convexity implies that ∂� is locally Lipschitz. We consider a positive finite
Borel measure μ on Sn−1 that satisfies the following necessary conditions:

(i)
∫
Sn−1

| 〈ζ, ξ 〉 | dμ(ξ) > 0, ∀ζ ∈ S
n−1,

(i i)
∫
Sn−1

ξ dμ(ξ) = 0.
(1.1)

The original Minkowski problem seeks the existence up to a translation of a unique compact
convex domain�with non-empty interior such that (g�)∗Hn−1 ¬

∂� = μ, where (g�)∗Hn−1

is the pushforward measure on S
n−1 and μ satisfies (i) and (i i) of the above. We show the

existence of the domain corresponding to Hn−1 being replaced by p-harmonic measures.
Given any convex set K ⊂ R

n , the p-harmonic measure ωp supported on ∂K associated
to a function u = uK is given by

ωp(E) =
∫

∂K∩E
|∇u|p−1dHn−1,

for any measurable E ⊆ R
n , where u vanish on ∂K and is non-negative and p-harmonic in

a neighborhood of it. This includes K being open or the closure of an open convex domain
as well as the case of K being a convex set of empty interior. It also includes the case of u
having a possible blow-up or being arbitrarily large somewhere in the interior of the domain
away from the boundary, that resembles the behavior of Green’s function for the linear case.
The p-harmonic measure has been studied by Lewis [36], Lewis-Nyström-Vogel [33], see
also [3, 25, 29, 30], etc. The Gauss map gK , which is defined almost everywhere from ∂K
to S

n−1 when K is convex and of non-empty interior with gK (x) ∈ S
n−1 being the outer

unit normal for Hn−1-a.e. x ∈ ∂K , can be generalized to be defined as a set-valued map
where gK (x) constitutes the set of all normals at any x ∈ ∂K as in [26]; the notion of push
forward (gK )∗ for measures can be accordingly generalized, which coincides with the case
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when gK is single-valued. This is necessary to include convex sets of empty interior and
lower dimensional sets. Further details are in Sect. 2.

The main result of this paper is the following.

Theorem 1.2 Given a finite regularBorelmeasureμonSn−1 satisfying conditions (1.1), there
exists a bounded convex domain � with non-empty interior such that (g�)∗ωp

¬
∂� = μ,

where g� is theHn−1-a.e. defined Gauss map and ωp is any p-harmonic measure on ∂� for
1 < p < ∞.

Many further problems of similar character as the Minkowski problem have been studied
with different measures as replacement of the surface measures, e.g. capacitary measures,
curvature measures, etc. We refer to [8, 14, 22–24, 40], and references therein. The proof of
the existence of domains involves variational methods with respect to the Minkowski sum of
convex domains � + t�′ as in Jerison [26, 27] and Colesanti et al. [15] (see also [1, 2, 4]);
adaptations of such methods form the key elements of our proof of existence. The problem
of the existence of domains is converted to a constrained minimization problem of functions
by virtue of the dualistic relation between convex domains to their support functions and
positive continuous functions to their Wulff shapes, see Sect. 2 for details. However, contrary
to surface measures, harmonic measures, capacitary measures, and others, the p-harmonic
measures are not uniquely defined on the boundary of convex domains as their definition
in general involves the choice of a p-harmonic function. Nevertheless, we show that the
arbitrarity of the choice can be maintained as the characteristics of being p-harmonic at the
boundary are similar for all p-harmonic measures and they admit natural approximants that
can be uniquely defined for the purpose of establishing existence via limiting argument.

The paper is organized as follows. In Sect. 2, we develop our notations and provide
a self-contained account of preliminaries on convex domains, geometric features of their
boundaries, and approximations. We also enlist the definitions and known results on p-
harmonic functions, p-harmonic measures, andMinkowski problems. In Sect. 3, we compute
the first variation of densities of p-harmonic measures defined on smooth convex domains
of the form � + t�′. Then we provide an account of weak convergence of p-harmonic mea-
sures which are used to construct approximants of the measures. The properties of the first
variation are used in the variational methods for the existence of the domains for discrete
measures, which are further used as approximations for the existence of the domains for
general measures in the proof of Theorem 1.2 at the end.

The uniqueness up to translation and regularity of the domains are nontrivial and have not
been addressed in this paper. These objectives are to be pursued in the future.

2 Notations and preliminaries

In this section, we introduce some notations and review some well-known properties of
convex domains, p-harmonic measures and Minkowski problems.

For n ≥ 1, we denote points in R
n as x = (x1, . . . , xn) so that if {e1, . . . , en} is the

standard basis then (x1, . . . , xn) = ∑n
i=1 xi ei . The standard inner product on R

n shall be
denoted by 〈·, ·〉 and the Euclidean norm by | · |. For functions f : R

n → R and F =
( f1, . . . , fm) : R

n → R
m , the gradient defined by ∇ f = ∑n

i=1(∂i f )ei , the Jacobian
defined by DF = ∑m

i=1
∑n

j=1(∂i f j )ei ⊗ e j and the Hessian defined by D2 f = D(∇ f ) =∑n
i, j=1(∂

2
i, j f )ei ⊗ e j , are as usual.
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In general, hyperplanes in Rn shall be denoted as

Hy,α := {
x ∈ R

n : 〈x, y〉 = α
}
, (2.1)

for some y ∈ R
n andα ∈ R; the half-spaces corresponding to 〈x, y〉 < α and 〈x, y〉 > α shall

be respectively denoted as H−
y,α and H+

y,α . Thus, we have H
−
y,α = H+−y,−α, H+

y,α = H−−y,−α

and Hy,α = H−y,−α , for any y ∈ R
n and α ∈ R. In particular, H+

en ,0
is denoted by R

n+.
Given a measure space (X , μ) and a map f : X → Y , the pushforward measure f∗μ on

Y is defined on any measurable subset E ⊆ Y as

( f∗μ)(E) = μ( f −1(E)),

which is absolutely continuous with respect to μ and in the infinitesimal form, for any
function g : Y → R it is written as g d( f∗μ) = (g ◦ f )dμ. For any Borel set E ⊆ R

n , the
k-dimensional Hausdorff measure on R

n is defined by

Hk(E) = lim
δ→0+ inf

{∑
j

r kj : E ⊂
⋃
j

Br j (x j ), r j ≤ δ

}
,

where Br (x) = {y ∈ R
n : |y − x | < r} is the standard metric ball of radius r centered at

x ∈ R
n . The distance of E from a point y ∈ R

n is defined by dist(y, E) = inf{|x − y| :
x ∈ E}. The boundary of the unit sphere B1(0) of Rn shall be denoted as Sn−1. We have the
transformation to polar coordinates Rn \ {0} → (0,∞) × S

n−1 as x �→ (|x |, x/|x |) and its
inverse (r , θ) �→ rθ . For any F ∈ L1(Rn) we have

∫
Rn

F(x)dx = ωn

∫ ∞

0

[ ∫
Sn−1

F(rθ)rn−1dθ

]
dr , (2.2)

where theLebesguemeasureLn ofRn and the uniformmeasureHn−1 onSn−1 are abbreviated
as dx and dθ in infinitesimal form and ωn = 2πn/2/�(n/2) is the surface area of Sn−1.

2.1 Convex domains

Here we shall denote � ⊂ R
n as a convex domain, i.e. open and connected non-empty

convex subset and K ⊂ R
n as a convex body, i.e. closure of a bounded convex domain,

hence a compact convex subset with non-empty interior. We highlight some essential notions
and properties related to convex sets and functions. For further details on the theory of convex
bodies, we refer to Schneider [45] and Gardner [20].

For A ⊂ R
n , a function f : A → R is convex iff the epigraph K = {(x, c) ∈ A × R :

f (x) ≤ c} is convex, which implies f is continuous and locally Lipschitz; we denote K(A)

as the set of all convex functions f : A → R and hence, K(A) ⊂ C0,1
loc (A). We recall that

f ∈ C1(�)∩K(�) iff 〈∇ f (x) − ∇ f (y), x − y〉 ≥ 0 for all x, y ∈ � and f ∈ C2(�)∩K(�)

iff D2 f ≥ 0. In general, for f ∈ K(Rn), the sub-differential of f at x ∈ R
n , given by

∂ f (x) = {
v ∈ R

n : f (y) ≥ f (x) + 〈v, y − x〉} , (2.3)

is a convex subset and f is differentiable at x iff ∂ f (x) is a singleton. An important class of
convex functions, is the class of sub-linear functions that are sub-additive and homogeneous
of degree 1; in other words, they are defined by functions h : Rn → R satisfying

h(x + y) ≤ h(x) + h(y) and h(λx) = λh(x) ∀ x, y ∈ R
n, λ ≥ 0. (2.4)
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A closed subset K ⊂ R
n is convex iff for any z ∈ R

n there exists a unique projection pK (z) ∈
K satisfying |z− pK (z)| = dist(z, K ); in this case, we have dist(·, K ) ∈ K(Rn)∩C1(Rn \K )

and

ξK (z) := ∇ dist(z, K ) = z − pK (z)

dist(z, K )
, ∀ z ∈ R

n \ K . (2.5)

Thus, for any z ∈ R
n \ K , we have pK (z) ∈ ∂K and |∇ dist(z, K )| = 1. For any x ∈ K and

t ∈ [0, 1], since t �→ |z − (t x + (1− t)pK (z))|2 attains minimum at t = 0, its slope at t = 0
is non-negative which leads to

〈x − pK (z), z − pK (z)〉 ≤ 0, ∀ x ∈ K , z ∈ R
n \ K . (2.6)

Furthermore, the ray emerging from pK (z) connecting z being Rz,K = {pK (z) + λξK (z) :
λ ≥ 0}, we note that pK (z′) = pK (z) and ξK (z′) = ξK (z) for all z′ ∈ Rz,K . The continuity
of pK also ensures that for any x ∈ ∂K their exists z ∈ R

n \ K such that pK (z) = x and
hence Rz,K ⊆ pK−1(x). If ∂K is smooth enough at x ∈ ∂K then Rz,K = pK−1(x) and
ξK (z) coincides with the outer unit normal at x ∈ ∂K . This leads to the following.

Definition 2.7 If K is closed and convex, for any x ∈ ∂K , the vector ξK (z) ∈ S
n−1 as in

(2.5) is called a (outer) normal vector of K at x if z ∈ pK−1(x).

For any A ⊂ R
n , the support function hA : Rn → R is defined as

hA(y) = sup {〈x, y〉 : x ∈ A} . (2.8)

Thus, we have h� = h�̄ and hK (y) = maxx∈K 〈x, y〉 for a compact convex subset K ⊂ R
n .

Note that hK is linear (i.e. hK (y) = 〈x, y〉 for every y ∈ R
n) iff K = {x}. Furthermore, the

convexity implies x ∈ K iff 〈x, y〉 ≤ hK (y) for every y, i.e. in terms of the subdifferential
(2.3), ∂hK (0) = K . The supporting hyperplane of K with outer normal y ∈ R

n \ {0}, is
given by

HK (y) := Hy,hK (y) = {
x ∈ R

n : 〈x, y〉 = hK (y)
}
, (2.9)

so that K ⊂ H−
y,hK (y) = {x ∈ R

n : 〈x, y〉 ≤ hK (y)} (called supporting half-space) and it
can be shown in terms of the subdifferential (2.3) that for any y ∈ R

n \ {0} we have
∂hK (y) = K ∩ HK (y) ⊂ ∂K ,

see [45]. Thus, hK is differentiable at y ∈ R
n \ {0} with ∇hK (y) = x iff K ∩ HK (y) = {x};

in this case hK∩HK (y)(·) = 〈x, ·〉 = 〈∇hK (y), ·〉 and K is called strictly convex at x and if
it holds for every point then the set is called strictly convex. For such domains, since hK is
homogeneous of degree 1, hence y �→ ∇hK (y) is homogeneous of degree 0, i.e.

∇hK (λy) = ∇hK (y), ∀ λ ≥ 0. (2.10)

In general, it is evident that support functions are sub-linear and moreover, all sub-linear
functions are support functions by virtue of the following theorem, see [45, Theorem 1.7.1].

Theorem 2.11 For any sublinear function h : Rn → R, there exists a unique convex body
K = {x ∈ R

n : 〈x, y〉 ≤ h(y) ∀ y ∈ R
n} such that hK = h.

Due to homogeneity, it suffices to define the set K = {x ∈ R
n : 〈x, ξ 〉 ≤ h(ξ) ∀ ξ ∈ S

n−1}
in Theorem2.11 having h as its support function and henceforth, it suffices to consider support
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functions restricted to Sn−1 for all things and purposes. Also, this implies that for any convex
set K , we have

K =
⋂

ξ∈Sn−1

{
x ∈ R

n : 〈x, ξ 〉 ≤ hK (ξ)
}
. (2.12)

Thus, it is evident that we have K ⊆ K ′ iff hK ≤ hK ′ . Now, alongside having supporting
hyperplanes with a fixed normal, one can have a supporting hyperplane at a fixed point in
the boundary. These two notions are related to each other via projection. Indeed, from (2.6),
we note that hK (z − pK (z)) = 〈pK (z), z − pK (z)〉 for any z ∈ R

n \ K and hence, we have

hK (ξK (z)) = 〈pK (z), ξK (z)〉 , (2.13)

with ξK (z) is as in (2.5). Therefore, for any x ∈ ∂K , their exists a supporting hyperplane of
K at x given by

HK [x] = {
x ′ ∈ R

n : 〈x ′ − pK (z), z − pK (z)
〉 = 0

}
, with z ∈ pK

−1(x); (2.14)

which is related to (2.9) by HK [x] = HK (z − pK (z)) from (2.13). Thus, from homogeneity
of support functions, HK [x] = HK (ξK (z)) for any z ∈ pK−1(x) where ξK (z) is as in (2.5)
and moreover, ∂K is smooth at x ∈ ∂K iff HK [x] is unique with a unique outer unit normal.

We recall that, for any E, F ⊆ R
n , the Minkowski sum is defined by

E + F = {x + y : x ∈ E, y ∈ F}; (2.15)

also, we shall denote by cE = {cy : y ∈ E} for any c ∈ R. It is not hard to check that
if E, F are convex then so is E + F and αE for all α ≥ 0. Furthermore, for compact
convex sets, the decomposition to Minkowski sums is unique, i.e. if E + K1 = E + K2 then
K1 = K2. In particular, note that Br (x) = {x}+ r B1(0). One of the most important features
of convex sets is that their support functions are Minkowski additive, i.e. for compact convex
sets E, F ⊂ R

n , we have

hαE+βF = αhE + βhF ∀ α, β ≥ 0, (2.16)

and hence, for supporting hyperplanes as in (2.9), HαE+βF (·) = αHE (·) + βHF (·) holds as
well. For any general E ⊂ R

n , the convex hull of E , denoted by conv(E), is defined as the
smallest convex set (intersection of all convex sets) containing E and we have

conv(E + F) = conv(E) + conv(F).

If E is convex, then conv(E) = E , if E open (or closed) so is conv(E). In fact, points in
convex hull of a set comprise convex combinations of affinely independent points of the set;
i.e. for any x ∈ conv(E), there exists affinely independent x1, . . . , xk ∈ E for k ≤ n+ 1 and
λ1, . . . , λk ≥ 0 such that x = ∑

j λ j x j where
∑

j λ j = 1 (see [45, Theorem 1.1.4]).

Definition 2.17 The convex hulls of finitely many points are called polytopes. For any
m ≤ n, if the points x1, . . . , xm+1 ∈ R

n are affinely indepedent then the polytope
P = conv({x1, . . . , xm+1}) is called a m-simplex with vertices x1, . . . , xm+1.

Thus, conv(E) is the union of all m-simplices for m ≤ n with vertices in E . Conversely,
for a convex set K , the set of points in K that cannot be written as λx + (1 − λ)y for any
x, y ∈ K is denoted as ext(K ) with elements called extreme points. Any compact convex
set is the closed convex hull of its extreme points, i.e. K = conv(ext(K )) (Krein-Milman
theorem) and hence, polytopes are the only convex bodies with finitely many extreme points.
Therefore, for any polytopes P1 and P2 and α, β ≥ 0, evidently αP1+βP2 is also a polytope.
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If H is a supporting hyperplane of a polytope P = conv({x1, . . . , xk}), then we have

H ∩ P = conv(H ∩ {x1, . . . , xk}),
which is also a polytope of a lower dimension; such polytopes are called faces of P . In fact, all
polytopes are finite intersections of their supporting half-spaces corresponding to their faces
codimension 1, see [45, Theroem 2.4.3]. Furthermore, we have the following characterization
theorem of polytopes, we refer to [45, Corollary 2.4.4 and Theorem 2.4.6] for the proof.

Theorem 2.18 A convex set is a bounded intersection of finitely many closed half-spaces iff
it is a polytope. Moreover, there exists ξ1, . . . , ξk ∈ S

n−1 with respect to which a polytope P
is uniquely represented as P = {

x ∈ R
n : 〈x, ξi 〉 ≤ hP (ξi ) ∀ i ∈ {1, . . . , k}}.

The vectors ξ1, . . . , ξk ∈ S
n−1 of Theorem 2.18 are normal vectors of P with hP (ξi )’s

uniquely determining the polytope and are chosen so that P∩HP (ξi ) are the 1-codimensional
faces.

2.2 Convex geometry

We enlist some essential features and geometric notions of convex domains with smooth
boundaries which have some generalizations to more general convex domains.

Recalling the notion of smoothness of boundaries, � ⊂ R
n is said to be of class Ck (resp.

Ck,α) for k ∈ N and 0 < α ≤ 1 if for any x ∈ ∂�, there exists r > 0 and a bijection
ψ : Br (x) → R

n with ψ,ψ−1 ∈ Ck (resp. Ck,α) such that ψ(Br (x) ∩ �) ⊂ R
n+ and

ψ(Br (x) ∩ ∂�) ⊂ ∂Rn+; equivalently, for any x ∈ ∂� there exists a neighborhood U and
φ ∈ Ck(Rn−1) (resp. Ck,α(Rn−1)) such that after a possible rotation, we have

� ∩U = U ∩ {
(x0, x

′) ∈ R × R
n−1 : φ(x ′) < x0

} ;
∂� ∩U = U ∩ {

(x0, x
′) ∈ R × R

n−1 : φ(x ′) = x0
}
.

(2.19)

In addition, if � is convex then φ of (2.19) is a convex function. If � is of class Ck (resp.
Ck,α), then any f ∈ Ck(∂�) (resp. Ck,α(∂�)) can be extended to a function in Ck(�̄) (resp.
Ck,α(�̄)).

If ∂K is of class C1 for a convex domain K , then for every x ∈ ∂K there exists a normal
vector at x as inDefinition 2.7 that is unique up to scaling. This gives rise to gK : ∂K → S

n−1,
called Gauss map, where gK (x) is the outer unit normal at x ∈ ∂K . Thus, notice that for any
z ∈ pK−1(x), we have gK (x) = (z − x)/|z − x | = ξK (z) with ξK (z) is as in (2.5) and in
terms of support function, from (2.13), we have

hK (gK (x)) = 〈x, gK (x)〉 , ∀ x ∈ ∂K . (2.20)

In particular, for balls we have gBr (x0) : ∂Br (x0) → S
n−1 given by gBr (x0)(x) = (x − x0)/r

for any x0 ∈ R
n and r > 0. Recall that the tangent space at x ∈ ∂K is given by

Tx (∂K ) = {
y ∈ R

n : 〈y, gK (x)〉 = 0
}

and from (2.20), we observe that HK (gK (x)) = {x}+Tx (∂K ). The boundary ∂K being aC1-
manifold, we have gK ∈ C1(∂K ,Sn−1) and we recall some familiar notions from differential
geometry. Since Tx (∂K ) = TgK (x)(S

n−1), the following Weingarten map, is defined by

WK (x) := d gK (x) : Tx (∂K ) → Tx (∂K ).
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The principal curvatures are the eigenvalues κ1(x), . . . , κn−1(x) of WK (x); the mean cur-
vature and the Gaussian curvature are respectively given by

H(x) = Tr(WK (x))

n − 1
= 1

n − 1

(
κ1 + . . . + κn−1

)
and κ(x) = det(WK (x)) = κ1 . . . κn−1.

If K is strictly convex then K ∩ HK (gK (x)) = {x} for any x ∈ ∂K and gK−1 : Sn−1 → ∂K
is well defined; moreover, hK being differentiable everywhere in R

n \ {0}, from (2.20) we
have

hK (ξ) = 〈
ξ, gK−1(ξ)

〉
and ∇hK (ξ) = gK−1(ξ), ∀ ξ ∈ S

n−1. (2.21)

Definition 2.22 Aconvex set K is said to be of classCk+ (resp.Ck,α
+ ) for any k ∈ N, α ∈ (0, 1]

if ∂K is of class Ck (resp. Ck,α) and the Gauss map gK : ∂K → S
n−1 is a diffeomorphism.

TheGaussmapbeing a diffeomorphism is equivalent to theWeingartenmapbeing ofmaximal
rank everywhere. This is further equivalent to all principal curvatures being non-zero or
equivalently the Gaussian curvature being non-zero; the convexity implies that the curvatures
are positive everywhere. The corresponding domains are called strongly convex.

If K is of class C2+, note that gK−1 ∈ C1(Sn−1, ∂K ) and hK ∈ C2(Rn \ {0}). Hence,
from homogeneity of hK , (2.21) and (2.10), we have

hK (y) = 〈y,∇hK (y)〉 and D2hK (y)y = 0, ∀ y ∈ R
n \ {0}, (2.23)

where the latter equality of the above can be obtained by differentiating the former. We have
the inverse Weingarten map

WK
−1(ξ) := (WK (gK−1(ξ)))

−1 = d gK−1(ξ) : Tξ (S
n−1) → Tξ (S

n−1)

defined for all ξ ∈ S
n−1, which is the non-singular part of D2hK (ξ). Indeed, with ξ ∈ S

n−1

being fixed, there exists an orthonormal basis {e1, . . . , en−1, ξ} of Rn and hence, {ei } span
the tangent space Tξ (S

n−1). Any x ∈ R
n , in this basis, is given by

x =
n−1∑
k=1

xkek + 〈x, ξ 〉 ξ, with xk =
〈
x, ek

〉
. (2.24)

Since D2hK (ξ)ξ = 0 from (2.23), the only non-zero entries of D2hK (ξ) are
〈
D2hK (ξ)e j , ei

〉
for i, j ∈ {1, . . . , n − 1} which, from (2.21), are the entries of d∇hK (ξ) = d gK−1(ξ) =
WK

−1(ξ), with respect to the above basis. In other words, we have

D2hK (ξ) =
n−1∑
i, j=1

〈
WK

−1(ξ)e j , ei
〉
ei ⊗ e j . (2.25)

Thus, D2hK (ξ) has eigenvalues {1/κ1(gK−1(ξ)), . . . , 1/κn−1(gK−1(ξ)), 0}, where κi ’s are
the principal curvatures of ∂K . With ξ ∈ U ⊂ S

n−1 and a coordinate chart ϕ : U → V ⊂
R
n−1, the covariant derivatives of f : S

n−1 → R of first and second orders are locally
defined by

(i) � f :=
n−1∑
i=1

(�i f ) e
i , where �i f (x) := ∂i ( f ◦ ϕ−1)(ϕ(x)),

(i i) �2 f :=
n−1∑
i, j=1

(�i, j f ) e
i ⊗ e j , where �i, j f (x) := ∂i, j ( f ◦ ϕ−1)(ϕ(x)),

(2.26)
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Letting χ = ϕ−1 : V → U ⊂ S
n−1, note that since |χ |2 = 1 hence by differentiating

successively we have
〈
χ, ∂ jχ

〉 = 0 and
〈
χ, ∂i, jχ

〉 = − 〈
∂iχ, ∂ jχ

〉
. We can chooseU , ϕ such

that χ(0) = ξ and that ∂ jχ(0) = e j for all j ∈ {1, . . . , n−1} takingU = S
n−1+ = {

x ∈ R
n :

〈x, ξ 〉 = √
1−∑n−1

i=1 |xi |2
}
andϕ = (x1, . . . , xn−1), leading toχ(z1, . . . , zn−1) = ∑n−1

i=1 zi ei+√
1−∑n−1

i=1 |zi |2 ξ . Thus, we have ∂ jχ = e j − (z j/
√

1−∑n−1
i=1 |zi |2) ξ and ∂i, jχ(0) = −δi, jχ(0)

(one can define a similar chart on the other hemisphere for U = S
n−1− corresponding to the

negative square root). Taking hK restricted to S
n−1, (2.23) can be written in terms of local

coordinates as

hK ◦ χ = 〈χ,∇hK ◦ χ〉 and (D2hK ◦ χ)χ = 0. (2.27)

By differentiating and using the above, we get

∂ j (hK ◦ χ) = 〈
∂ jχ,∇hK ◦ χ

〉 + 〈
χ, (D2hK ◦ χ)∂ jχ

〉 = 〈
∂ jχ,∇hK ◦ χ

〉
.

Evaluating at 0, we get� j hK (ξ) = 〈∇hK (ξ), e j
〉
. Hence, from (2.24) and (2.27), notice that

∇hK (ξ) = hK (ξ)ξ + �hK (ξ). (2.28)

By differentiating twice at 0 and using the choice of chart, we get

∂i, j (hK ◦ χ)(0) = 〈
∂i, jχ(0),∇hK ◦ χ(0)

〉 + 〈
∂ jχ(0), (D2hK ◦ χ)(0)∂iχ(0)

〉
= −δi, j 〈χ(0),∇hK (χ(0))〉 +

〈
e j , (D2hK (χ(0))ei

〉

which, from (2.23) and (2.25), further implies

�2hK (ξ) = WK
−1(ξ) − hK (ξ)I, (2.29)

where I is the identity matrix. Therefore, we have the following for C2+ domains;

det
(�2hK (ξ) + hK (ξ)I

) = det(WK
−1(ξ)) = 1/κ(gK−1(ξ)), (2.30)

where κ is the Gaussian curvature. One can show that a domain is C2+ iff it is C2 and κ > 0.
From transformation rule of the Jacobian, note that

(gK )∗Hn−1 ¬
∂K = | det(d gK−1)|Hn−1 ¬

Sn−1 = 1/(κ ◦ gK−1)Hn−1 ¬
Sn−1

and from (2.30), for any f ∈ L1(∂K ,Hn−1), we have
∫

∂K
f (x) dHn−1(x) =

∫
Sn−1

f (gK−1(ξ)) det
(�2hK (ξ) + hK (ξ)I

)
dξ. (2.31)

In general, since convex functions are locally Lipschitz, the boundary of a convex domain
� can be locally written as a graph of a Lipschitz function and the Gauss map can be
definedHn−1-a.e. on ∂�. Precisely, for a small enough neighborhood U , if φ ∈ K(Rn−1) ∩
C0,1(Rn−1) is as in (2.19) then, for a.e. x ′ ∈ R

n−1, φ is differentiable and

g�(φ(x ′), x ′) = (−1,∇φ(x ′))/
√
1 + |∇φ(x ′)|2.

Moreover, a classical theorem of Aleksandrov [6, 9] (see also [18]) is the following.

Theorem 2.32 (Aleksandrov) If φ : Rn → R is convex, then φ is twice-differentiable a.e.
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Consequently, for a convex domain � and K = �̄, we have WK (x) and κ(x) ≥ 0 well-
defined for Hn−1-a.e. x ∈ ∂� and the surface measure S� on S

n−1 induced by the almost
everywhere defined Gauss map is defined by

S�(E) := Hn−1
(

{x ∈ ∂� : g�(x) is well-defined, g�(x) ∈ E}
)

(2.33)

for any measurable E ⊆ S
n−1 and we denote S� = SK if K = �̄. For any w ∈

L1(Sn−1,Hn−1), the integral formula (2.31) generalizes to∫
∂�

w(g�(x)) dHn−1(x) =
∫
Sn−1

w(ξ) dS�(ξ). (2.34)

It is evident that if g� is defined everywhere then S� = (g�)∗Hn−1 and if � is C2+, then
dS�(ξ) = det(�2h�(ξ) + h�(ξ)I)dξ as earlier.

For a general convex set K the Gauss map is re-defined as a set-valued map at x ∈ ∂K as

gK (x) = {
ξ ∈ S

n−1 : 〈x ′ − x, ξ
〉 ≤ 0, ∀ x ′ ∈ K

}
, (2.35)

i.e. the set of all normal vectors ξ ∈ S
n−1 of every supporting hyperplane HK [x] at x ∈ ∂K .

The push forward (gK )∗ can be re-defined with respect to the re-defined inverse image

gK−1(E) = {x ∈ ∂K : gK (x) ∩ E �= ∅} , (2.36)

so that we can re-define SK = (gK )∗Hn−1 as SK (E) = Hn−1(gK−1(E)) for any convex
domain K and measurable E ⊆ S

n−1. If K = �̄ for a convex domain� then, the set (2.35) is
a singleton forHn−1-a.e. x ∈ ∂K . More generally, the set (2.35) can be a cone at non-smooth
boundary points or a discrete set if K is of lower dimension. Henceforth, according to the
regularity of the convex set K , the notions gK and SK shall be assumed at the appropriate
level of generality, hereafter.

For any A ⊂ R
n , let us denote C+(A) as the class of positive, continuous functions

f : A → R. If 0 ∈ � then from (2.12) it is clear that h� ∈ C+(Sn−1). Conversely, any
h ∈ C+(Sn−1) coincides with the support function of a domain �h except possibly for a set
of zero surface measure on Sn−1; the domain �h , called theWulff shape of h, is defined by

�̄h =
⋂

ξ∈Sn−1

{x ∈ R
n : 〈x, ξ 〉 ≤ h(ξ)}. (2.37)

Indeed, since h is positive and continuous, it is evident that �h is a bounded convex domain
with 0 ∈ �h . One can extend h to be a 1-homogeneous function on R

n \ {0} as y �→
|y|h(y/|y|) and letting K = �̄h , clearly hK ≤ h. Moreover, if x ∈ ∂K then (2.37) implies
〈x, ξ 〉 = h(ξ) for some ξ ∈ S

n−1 and (2.12) implies
〈
x, ξ ′〉 = hK (ξ ′) for some ξ ′ ∈ S

n−1;
if h(ξ) > hK (ξ) then ξ �= ξ ′ and hence Hξ,h(ξ) and Hξ ′,hK (ξ ′) are two different supporting
hyperplanes at x with normals ξ, ξ ′ making x a non-smooth point of ∂K . Thus Aleksandrov’s
theorem enforces hK (ξ) = h(ξ) for SK -a.e. ξ ∈ S

n−1 and thus we have a generalization of
Theorem 2.11 as follows.

Theorem 2.38 Given any h ∈ C+(Sn−1), there exists a bounded convex domain � = �h as
in (2.37) such that 0 ∈ � and h�(ξ) = h(ξ) holds for S�-a.e. ξ ∈ S

n−1.

Let � be a compact convex domain with 0 ∈ � and K = �̄. Then, integral formulae on
∂K can be obtained independently using the radial map rK : Rn \ {0} → [0,∞) defined by

rK (y) = sup {r ≥ 0 : ry ∈ K } . (2.39)
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It is clear that for any α > 0, we have rαK (y) = αrK (y) and rK (αy) = rK (y)/α. Also, it is
not hard to see that rK (y)y ∈ ∂K for any y ∈ R

n \{0}. This gives rise to the radial projection
ρK : Sn−1 → ∂K defined by ρK (θ) = rK (θ)θ , which is the polar coordinate image on ∂K .
From the polar coordinate formula (2.2) we have the following, for any F ∈ L1(K )

∫
K
F(x)dx = ωn

∫
Sn−1

[ ∫ rK (θ)

0
F(rθ)rn−1dr

]
dθ; (2.40)

in particular, we have |K | = (ωn/n)
∫
Sn−1 rK (θ)ndθ . Hence, from the divergence theorem,

we have that
∫
∂�

〈x, gK (x)〉 dHn−1 = ∫
Sn−1 |ρK (θ)|ndθ , and

Hn−1 ¬
∂K = (ρK )∗

(
|x |n/ 〈x, gK (x)〉 θ

¬
Sn−1

)

so that, dHn−1 = |ρK (θ)|n/ 〈ρK (θ), gK (ρK (θ))〉 dθ = |rK (θ)|n−1/ 〈θ, gK (ρK (θ))〉 dθ , in
infinitesimal form. Thus we have the following due to Aleksandrov (see [7, Lemma 1]).

Theorem 2.41 Let � be a bounded convex domain with 0 ∈ �, K = �̄ and gK be the Gauss
map defined Hn−1-a.e. on ∂K. For any f ∈ L1(∂K ,Hn−1), we have the following;

∫
∂K

f (x) dHn−1(x) =
∫
Sn−1

f
(
ρK (θ)

) rK (θ)n−1

〈gK (ρK (θ)), θ〉dθ. (2.42)

Furthermore, as Hn−1-a.e. points on ∂K are smooth, hence recalling (2.20), we can also
re-write the above formulae using dHn−1 = |ρK (θ)|n/hK (gK (ρK (θ))) dθ . Unlike (2.30),
(2.31) above, this density can be used for any convex body that are not necessarily smooth.

2.3 Hausdorff distance and approximations

Here we provide some details on properties of distance functions on convex sets, results on
compactness and approximations.

The Hausdorff distance between Borel sets E, E ′ ⊂ R
n is defined as

dH(E, E ′) = max
(
sup{dist(y, E) : y ∈ E ′} , sup{dist(y, E ′) : y ∈ E}

)
;

equivalently, we have dH(E, E ′) = supy∈Rn | dist(y, E) − dist(y, E ′)|. The Hausdorff dis-
tance of convex sets can be characterized by support functions as

dH(E, F) = dH(∂E, ∂F) = ‖hE − hF‖L∞(Sn−1), (2.43)

see [45, Lemmas 1.8.1, 1.8.14]. Any compact convex set K can be approximated by polytopes
with respect to dH, since, given any ε > 0, the compactness implies there exists points
x1, . . . , xN such that K contained in the union of Bε(x j )’s and then the polytope P =
conv({x1, . . . , xN }) satisfies P ⊂ K ⊂ P + ε Sn−1 and dH(K , P) < ε. More generally, the
space of bounded convex bodies is locally compact with respect to the Hausdorff distance.

Theorem 2.44 (Blaschke selection theorem) Given any bounded sequence of convex sets
{Km}, there exists a subsequence {Km j } and a convex set K such that dH(Km j , K ) → 0+
as j → ∞.

If dH(K j , K ) → 0+ as j → ∞, (2.43) and Aleksandrov’s theorem implies gK j → gK
Hn−1 a.e. Moreover, since dist(x0, ∂K ) ≤ dist(x0, ∂K j ) + dH(K j , K ), it is not hard to see
from local compactness, that then any subsequential limit x0 of radial projections ρK j (θ)
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lies on ∂K , leading to uniform convergence of the projections, hence rK j → rK uniformly
as j → ∞ and the densities of Hn−1 with respect to radial projections

|ρK j (θ)|n
hK j (gK j (ρK j (θ)))

→ |ρK (θ)|n
hK (gK (ρK (θ)))

Hn−1 − a.e. θ ∈ S
n−1. (2.45)

We have the following approximation theorem for convex domains, see Weil [47, 48].

Theorem 2.46 Given any convex set K with Hn−1-a.e. defined Gaussian curvature κ, there
exists a sequence {K j } of convex sets of classC2+ such that as j → ∞we have dH(K j , K ) →
0+ and if κ j is the Gaussian curvature of K j then the following holds:

(1) 1/κ j → 1/κ pointwise Hn−1-a.e. as j → ∞;
(2) 1/κ j → 1/κ in L1(Sn−1,Hn−1) as j → ∞;
(3)

∫
·(1/κ j ) dξ⇀

∫
·(1/κ) dξ as j → ∞.

Thus, from Theorem 2.46, we can conclude that given a convex domain � with Gaussian
curvature κ, there exists C2+ (or C2,α

+ ) domains � j with Gaussian curvature κ j , such that
as j → ∞, we have dH(� j ,�) → 0+ and (g� j )∗Hn−1⇀(g�)∗Hn−1, i.e. for any w ∈
C(Sn−1),

lim
j→∞

∫
Sn−1

w(ξ)

κ j (gK j
−1(ξ))

dξ =
∫
Sn−1

w(ξ)

κ(gK−1(ξ))
dξ. (2.47)

For general convex sets, we have the weak convergence of surface measures with respect to
Hausdorff distance, i.e. as j → ∞,

SK j ⇀SK if dH(K j , K ) → 0+, (2.48)

when the measures are defined with respect to (2.35) and (2.36), see [45, Theorem 4.2.1].
In general, there are results of weak convergence with respect to the Hausdorff distance for
any support measures and curvature measures for general convex sets, the proofs involve
approximation of convex sets by convex domains, in particular, polytopes with non-empty
interiors that have combinatorial formulae for support measures. We refer to [45, Chaper 4,5]
for further details.

2.4 p-harmonic functions andmeasures

Here we provide some preliminaries and some well-known classical results for p-harmonic
functions and p-harmonic measures.We refer to [25, 29, 30, 33, 36, 46], etc. for more details.

Just as a harmonic function in a domain � ⊂ R
n being minimizer of the Dirichlet energy∫

�
|∇w|2 dx with w|∂� = f , is the unique solution of the Dirichlet problem �v = 0 in �

and v = f on ∂�, the minimizers of the p-Dirichlet energy
∫
�

|∇w|p dx are weak solutions
to the p-Laplacian equation �pu = div(|∇u|p−2∇u) = 0 in �, i.e.

∫
�

|∇u|p−2 〈∇u,∇φ〉 dx = 0, ∀ φ ∈ C∞
0 (�),

and are called p-harmonic functions for 1 ≤ p < ∞. They coincide with harmonic functions
for p = 2. The existence of weak solution u ∈ W 1,p(�) is classical and follows from direct
methods of calculus of variations. We have the following monotonicity inequality for any
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measurable E ⊆ R
n , functions u, v ∈ W 1,p(E) and a constant c = c(p) > 0, given by∫

E

〈|∇u|p−2∇u − |∇v|p−2∇v,∇u − ∇v
〉
dx

≥ c

⎧⎪⎨
⎪⎩

∫
E |∇u−∇v|p dx if p ≥ 2,( ∫

E |∇u−∇v|p dx
)2/p

( ∫
E (|∇u|+|∇v|)p dx

)2/p−1 if 1 < p < 2,
(2.49)

which can be used to show the comparison principle for the p-Laplacian, i.e. �pv ≤ �pu
on � and u ≤ v on ∂� in the trace sense implies u ≤ v on �; we refer to [25] for a proof.
The uniqueness of weak solutions of �pu = 0 in � and u = f on ∂� follows easily from
the comparison principle. The regularity theory of p-harmonic functions is more involved. It
has been shown by DiBenedetto [17], Lewis [35] and Tolksdorff [46] that the weak solutions
of �pu = 0 in � for 1 < p < ∞ are locally C1,β , i.e. there exists β = β(n, p) ∈ (0, 1)
such that for any B ⊂⊂ �, we have

‖u‖C1,β (B) = ‖u‖L∞(B) + ‖∇u‖L∞(B,Rn) + sup
x,y∈B
x �=y

|∇u(x) − ∇u(y)|
|x − y|β

≤ c ‖u‖W 1,p(�), (2.50)

for some c = c(n, p, diam(B)) > 0. For p > 2 the regularity is optimal. Furthermore,
the continuity of the gradient implies that if ∇u �= 0 in �′ ⊂ �, then we can conclude
u ∈ C∞(�′) from Schauder estimates, see [21]. The boundary regularity is also known for
�pu = 0 in � and u = f on ∂� if � is of class C1,α and f ∈ C1,α(∂�), see Lieberman
[39]; in this case u ∈ C1,β(�̄) for some β = β(n, p, α) ∈ (0, 1) along with the following
global estimate

‖u‖C1,β (�) ≤ C
(
n, p, α, ‖ f ‖C1,α(∂�), ‖u‖W 1,p(�),�

)
. (2.51)

Given a bounded and sufficiently regular domain � ⊂ R
n , for any f ∈ C(∂�) and v

being the solution of the Dirichlet problem �v = 0 in � and v = f on ∂�, we have

v(x) =
∫

∂�

f (y)dωx (y) (2.52)

from maximum principle and Riesz representation theorem, where ωx is a measure on ∂�

referred to as the harmonic measure at x ∈ �. The measure can be prescribed by the Green’s
function with a pole at x , i.e. the weak (distributional) solution of the Dirichlet problem
�Gx = δx in � and Gx = 0 on ∂�. If ∂� is smooth enough with unit normal ν, it is
not difficult to see that dωx = (∂Gx/∂ν)dHn−1 = 〈∇Gx , ν〉 dHn−1. This notion can be
generalized to the case for the p-Laplacian for 1 < p < ∞. Given a neighbourhood N of ∂�,
if u ∈ W 1,p(�∩ N ) is a positive weak solution to the p-Laplacian in �∩ N , then upon zero
extension u ∈ W 1,p(N ). Since p-superharmonic functions form a non-negative distribution
as shown in [25], from a theorem of Schwartz we have that there exists a non-negative Radon
measure ωp on ∂� such that∫

�

|∇u|p−2 〈∇u,∇φ〉 dx = −
∫

∂�

φ dωp,

for any φ ∈ C∞
0 (N ); the measure ωp is called the p-harmonic measure associated to u.

Such measures can also be defined for more general A-harmonic functions that are referred
as Riesz measures, see [25, 28]. If ∂� is Lipschitz with unit normal ν∂� defined almost
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everywhere on ∂�, then dωp = −|∇u|p−2 〈∇u, ν∂�〉 dHn−1; moreover, since {u > 0} in �

we have ∂� = ∂{u > 0} and ν∂� = −∇u/|∇u| and hence

dωp = |∇u|p−1dHn−1 ¬
∂�. (2.53)

Evidently, for the case p = 2, if N = R
n \ {x} and u = Gx then ω2 = ωx . More generally,

the function u may have a similar blow-up inside � \ N but the p-harmonicity in � ∩ N
implies that u ∈ C1,β

loc (�∩N ) for some β ∈ (0, 1) from (2.50). Given such a neighbourhood,
it is evident that we can select finer reduced neighborhood N ′ of ∂� i.e. ∂� ⊂ N ′ ⊆ N ,
having the same properties. Such neighborhood N (without relabelling) when chosen up to
possible reduction, we can assume without loss of generality that ∇u �= 0 in � ∩ N so that
u ∈ C∞(� ∩ N ) as stated above, and furthermore, we can assume

‖u‖L∞(∂N∩�) + ‖∇u‖L∞(∂N∩�) < ∞;
in other words, all possible singularities of u are strictly in the interior of � \ N̄ . Any such
reductions can be chosen as long as it contains ∂� without changing any properties of the
measure since the support of the measure is within ∂�.

The fundamental solution of the p-Laplacian, given by

�(x) =
{
1/|x | n−p

p−1 for p �= n;
log(1/|x |) for p = n,

(2.54)

solves �p� = 0 in R
n \ {0} and can be used to form examples of p-harmonic measures.

The above notion of p-harmonic measure is defined for any open connected domains �,
including convex domains. The notion extends to a convex set K of non-empty interior in
the same way taking � as the interior of K so that given a neighbourhood N of ∂K and a
function u ∈ W 1,p(K ∩ N ), we have the notion of a p-harmonic measure ωp associated to
u given by dωp = |∇u|p−1dHn−1 ¬

∂K . Then, this can be further extended naturally to the
case of K being a convex set of empty interior i.e. K = ∂K ; given N is a neighborhood of K
and u ∈ W 1,p(N ) being a positive weak solution to the p-Laplacian in N \ K and u vanish
on K , there exists a non-negative Radon measure ωp on K such that

∫
N

|∇u|p−2 〈∇u,∇φ〉 dx = −
∫
K

φ dωp,

for any φ ∈ C∞
0 (N ) similarly as above which is called the p-harmonic measure associated

to u, and dωp = |∇u|p−1dHn−1 ¬
K if K is Lipschitz. We refer to [37] for further details

on quasi-linear equations on low dimensional sets. In general, since for all convex sets K we
have ∂K locally Lipschitz, hence dωp = |∇u|p−1dHn−1 ¬

∂K for u = uK .

2.5 Minkowski problem

Given a positive finite Borel measure μ on S
n−1 that satisfies the conditions (1.1), the

Minkowski problem can be regarded as the inquiry for existence of a convex domain �

satisfying

μ� = μ, (2.55)

where μ� = (g�)∗η for some prescribed measure η on ∂� and g� is the Gauss map. The
prescribed measure η is typically absolutely continous with respect to Hn−1 ¬

∂� and with
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respect to the Gauss map, we can express the density of the induced measure on S
n−1 as

dμ�(ξ) = F [h�](ξ)dξ (2.56)

for a functional F : K(Sn−1) → R. Existence of domains for the Minkowski problem
involves computation of the first variation of measures corresponding to �t = �+ t�0 with
the support functions h�t = h� + th�0 ,

L�[v] := d

dt

∣∣∣
t=0

F [h�t ] = d

dt

∣∣∣
t=0

F [h� + th�0 ]. (2.57)

This is used to show the existence of domains using continuity method or variational tech-
niques of constrained minimization problems.

In case of the originalMinkowski problem,we haveη = Hn−1 andμ� = (g�)∗Hn−1. The
case of the given measure being discrete was considered in [41, 42], where the corresponding
convex domains are polytopes. The continuous case has been shown in [5, 7, 19] and the
smooth case in [13]. If � is of class C2+ and the covariant derivatives are as in (2.26) defined
by the charts as shown in the previous subsection, then recalling (2.30) and (2.31), we note
that the density (2.56) in this case, is the reciprocal of the Gauss curvature, i.e.

dμ�(ξ) = det(�2h� + h�I)dξ = dξ

κ(g�
−1(ξ))

.

Furthermore, if μ� = (g�)∗η where dη = f dHn−1 for a function f : ∂� → R, then we
have

F [h�](ξ) = ( f ◦ g�
−1)(ξ)

κ(g�
−1(ξ))

= f
(
g�

−1(ξ)
)
det(�2h� + h�I). (2.58)

The above formulae hold for S�-a.e. ξ ∈ S
n−1 for a general convex domain. As examples of

the above, the prescribed measure is the harmonic measure ω at origin in [26] where we have
μ� = (g�)∗ω and f = (∂G/∂ν) where G is the Green’s function with pole at 0; in the case
of capacitary measures in [15], we have f = |∇U |p where U is the capacitary function.
In our case, we consider μ� = (g�)∗ωp where ωp a the p harmonic measure with respect
to a function u and the domain � being convex, we have f = |∇u|p−1 for 1 < p < ∞.

3 Existence for p-harmonic Minkowski problem

In this section, we consider the Minkowski problem (2.55) for p-harmonic measures. We
establish the existence of solutions of the problem. Henceforth, we shall denote

μ� = (g�)∗ωp, (3.1)

where ωp is the p harmonic measure with respect to a function u = u� ∈ W 1,p(� ∩ N )

given by dωp = |∇u|p−1dHn−1 ¬
∂� where u is p-harmonic in � ∩ N and satisfies⎧⎪⎨

⎪⎩
div(|∇u|p−2∇u) = 0 in � ∩ N ;
u > 0 in �;
u = 0 on ∂�,

(3.2)

where N is a neighbourhood of ∂�; thus, u ∈ W 1,p(N ) upon zero extension. Up to possible
reduction, the choice of N is made so that ∇u �= 0 in � ∩ N and

‖u‖L∞(N̄∩�) + ‖∇u‖L∞(N̄∩�) < ∞, (3.3)
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and we also assume that ∂N is C∞. For a general bounded convex set K , if K = �̄ for a
convex domain� then we defineμK = μ�; if K is of empty interior, i.e. K = ∂K , we define
μK = (gK )∗ωp in the sense of (2.35) and (2.36), where ωp is the p-harmonic measure with
respect to a function u = uK ∈ W 1,p(N ) with N being a neighbourhood of K , given by
dωp = |∇u|p−1dHn−1 ¬

K where u is p-harmonic in N and satisfies

⎧⎪⎨
⎪⎩
div(|∇u|p−2∇u) = 0 in N \ K ;
u ≥ 0 in N ;
u = 0 on K .

(3.4)

Thus, in general, we have μK defined on Sn−1 associated to u = uK ∈ W 1,p(N ) as

μK (E) =
∫
gK −1(E)

|∇u|p−1dHn−1, for any measurable E ⊆ S
n−1, (3.5)

where gK and gK−1(E) are in the sense of (2.35) and (2.36). If K = �̄ for a convex domain
� then (3.5) coincides with the standard push forward measure (3.1).

3.1 First variation of density of p-harmonic measures

Here, we consider � as strongly convex domain of class C2,α
+ so that g� : ∂� → S

n−1 is
a diffeomorphism. Let its support function be h�. Using the same notations as Sect. 2, from
(3.1) and (2.53), we have

dμ� = |∇u(F�(ξ))|p−1dHn−1 ¬
∂� = F [h�](ξ)dξ,

where F�(ξ) := g�
−1(ξ) = ∇h�(ξ) and recalling (2.58), we have

F [h�](ξ) = |∇u(F�(ξ))|p−1 det(�2h� + h�I).

Henceforth, we shall denote h = h� and F = F�. Thus, from (2.20) and (2.23), we have
h(ξ) = h�(ξ) = 〈

ξ, g�
−1(ξ)

〉 = 〈x, g�(x)〉 and

F(ξ) = F�(ξ) = g�
−1(ξ) = ∇h(ξ).

As in Sect. 2, we shall consider the orthonormal frame field {e1, . . . , en−1} of Sn−1 so that
for any ξ ∈ S

n−1, the tangent space Tξ (S
n−1) is spanned by {ei (ξ)}; furthermore, we denote

covariant derivatives with respect to the frame as in (2.26) with respect to the coordinate
charts as in Sect. 2. We have det(�2h� + h�I) = 1/(κ ◦ g�

−1) from (2.30) and (2.31), and
recalling (2.53), for any integrable function f : ∂� → R, we have

∫
∂�

f (x) dωp(x)

=
∫
Sn−1

f (g�
−1(ξ))|∇u(g�

−1(ξ))|p−1 det
(�2h�(ξ) + h�(ξ)I

)
dξ. (3.6)

We consider a convex domain �0 ⊂ R
n , also of class C2,α

+ to find the first variation for
p-harmonic measures on the following family of domains,

�t = � + t�0 with support functions h�t = h� + th�0 = h + tv. (3.7)
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Without loss of generality, we assume 0 ∈ �0 so that v ≥ 0 and hence we have � ⊆ �t for
t ≥ 0 and �t ⊆ � for t ≤ 0, more generally �s ⊆ �t if s ≤ t . We take a small enough

τ = τ
(
n, dH(∂�, ∂N ), dH(∂�0, ∂N ), ‖u‖W 1,p(N )

)
> 0, (3.8)

so that for all |t | ≤ τ the domain�t is also of classC2,α
+ and ∂�t ⊂ N and ∂N∩� = ∂N∩�t .

Also, note that, from (2.43) we have dH(�t ,�) = |t |‖v‖L∞(Sn−1) and hence dH(�t ,�) →
0+ as t → 0. Moreover, from Steiner’s formula for volumes and mixed volumes, we have

t �→ |� + t�0|, Hn−1(∂� + t∂�0) are smooth; (3.9)

in fact, the above maps are polynomials, see [45, Chapter 5].
We consider the p-harmonic measures corresponding to u(·, t) ∈ W 1,p(�t ∩ N ) defined

as the weak solution of the following Dirichlet problem⎧⎪⎨
⎪⎩
div

(|∇u(·, t)|p−2∇u(·, t)) = 0, in �t ∩ N ;
u(x, t) = 0, ∀ x ∈ ∂�t ∩ N ;
u(x, t) = u

( x
1+t

)
, ∀ x ∈ ∂N ∩ �t ;

(3.10)

for t ∈ [−τ, τ ] for τ > 0 small enough, so that upon zero extension, u(·, t) ∈ W 1,p(N ).
Then the corresponding measure is defined by

dμ�t = |∇u(F(ξ, t), t)|p−1dHn−1 ¬
∂�t = F [h�t ](ξ)dξ

where F(ξ, t) := F�t (ξ) = g�t −1(ξ) = ∇h(ξ) + t∇v(ξ) and

F [h + tv](ξ) = |∇u(F(ξ, t), t)|p−1 det
(�2h + hI + t(�2v + vI)

)
. (3.11)

We need to establish some properties of the first variation as in (2.57). The behavior with
respect to dilations is provided in the following lemma.

Lemma 3.12 Let F be as in (3.11) and Lh[v] = d
dt

∣∣
t=0F [h + tv], then we have

F [(1 + t)h] = (1 + t)n−pF [h] and Lh[h] = (n − p)F [h], (3.13)

for all |t | ≤ τ with a small enough τ > 0 as in (3.8).

Proof Let λ = 1 + t and consider the case of �0 = � and v = h of the above. Then, we
have �t = λ� and F�t = g�t −1 = λ∇h. Let us denote uλ(·) = u(·, λ − 1) as the weak
solution of the problem (3.10) for this case, i.e.⎧⎪⎨

⎪⎩
div

(|∇uλ|p−2∇uλ

) = 0, in λ� ∩ N ;
uλ(x) = 0, ∀ x ∈ ∂λ� ∩ N ;
uλ(x) = u(x/λ), ∀ x ∈ ∂N ∩ λ�;

(3.14)

for |λ − 1| ≤ τ being small enough. Using these in (3.11), we can conclude

F [λh](ξ) = |∇uλ(λ∇h(ξ))|p−1λn−1 det
(�2h + hI

)

=
( |∇uλ(λ∇h(ξ))|

|∇u(∇h(ξ))|
)p−1

λn−1F [h](ξ).

Now, note that (3.2) trivially implies that u(x/λ) is also a solution of (3.14) and hence, from
uniqueness uλ(x) = u(x/λ) in λ�. Therefore, using ∇uλ(x) = 1

λ
∇u(x/λ) on the above,

we get (3.13) (the second part of (3.13) follows immediately from the first) and the proof is
finished. ��
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Towards the computation of the first variation, we need to establish some basic properties.
From (2.50), (2.51), we know that weak solutions u(·, t) ∈ W 1,p(�t ∩ N ) of (3.10) are C1,β

in �t for any t ∈ [−τ, τ ] and some β = β(n, p) ∈ (0, 1).
First, we show uniform continuity of t �→ u(·, t).

Lemma 3.15 For any t ∈ [−τ, τ ], if u(·, t) ∈ C1,β
loc (�t ∩ N ) is the solution of the Dirichlet

problem (3.10), then t �→ u(·, t),∇u(·, t) are uniformly continuous on compact subsets of
N .

Proof From (3.10), note that for any η ∈ W 1,p(N ), we have∫
�t∩N

|∇u(x, t)|p−2 〈∇u(x, t),∇η(x)〉 dx

=
∫

∂(�t∩N )

η(x)|∇u(x, t)|p−2 〈∇u(x, t), ν∂(�t∩N )(x)
〉
dHn−1(x)

= 1

|1 + t |p−2(1 + t)

∫
�t∩∂N

η(x)|∇u( x
1+t )|p−2 〈∇u

(
x

1+t

)
, ν�t∩∂N (x)

〉
dHn−1(x)

+
∫

∂�t
η(x)|∇u(x, t)|p−2 〈∇u(x, t), g�t (x)〉 dHn−1(x)

(3.16)

for any t ∈ [−τ, τ ]. From boundary conditions of (3.10) and comparison principle, we
can conclude u(x, t) > 0 in �t ∩ N , hence g�t (x) = −∇u(x, t)/|∇u(x, t)| for all x ∈
∂�t , |t | < τ for a small enough τ in (3.8). Using (3.16) for t, s ∈ [−τ, τ ] and taking their
difference, we obtain∫

�t∩N
|∇u(x, t)|p−2 〈∇u(x, t),∇η(x)〉 dx −

∫
�s∩N

|∇u(x, s)|p−2 〈∇u(x, s),∇η(x)〉 dx

= 1

|1 + t |p−2(1 + t)

∫
�t∩∂N

η(x)|∇u( x
1+t )|p−2 〈∇u

(
x

1+t

)
, ν�t∩∂N (x)

〉
dHn−1(x)

− 1

|1 + s|p−2(1 + s)

∫
�s∩∂N

η(x)|∇u( x
1+s )|p−2 〈∇u

(
x

1+s

)
, ν�s∩∂N (x)

〉
dHn−1(x)

−
( ∫

∂�t
η(x)|∇u(x, t)|p−1 dHn−1(x) −

∫
∂�s

η(x)|∇u(x, s)|p−1 dHn−1(x)
)

Then taking η(x) = u(x, t) − u(x, s) on the above and using (2.49), it is not difficult to see
that we can obtain∫

�min{t,s}∩N
|∇u(x, t) − ∇u(x, s)|p dx ≤ cM pω(|t − s|),

where c = c(n, p, τ ) > 0, M = ‖u‖L∞(�∩∂N )+‖∇u‖L∞(�∩∂N )+max|t |≤τ ‖u(·, t)‖W 1,p(N )

< ∞ and ω(|t − s|) → 0+ as t → s, since ∇u is continuous in � ∩ N and ∇u(·, t) is
continuous in�t∩N from (2.50) for all t , and furthermore |�t |−|�s | → 0 andHn−1(∂�t )−
Hn−1(∂�s) → 0 as t → s from (3.9). The continuity of x �→ ∇u(x, t) for every t also
implies that all points are Lebesgue points and hence the above is enough to conclude the
following pointwise convergences

|u(x, t) − u(x, s)| + |∇u(x, t) − ∇u(x, s)| → 0+ as t → s.

From (2.50), we also have the following local estimates for any B ⊂⊂ N with M as above
and c = c(n, p, τ, diam(B)) > 0, given by

|u(x, t) − u(y, t)| ≤ cM |x − y|, |∇u(x, t) − ∇u(y, t)| ≤ cM |x − y|β, ∀ x, y ∈ B,
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for every t ∈ [−τ, τ ], that affirms equicontinuity of {u(·, t),∇u(·, t)}0≤|t |≤τ . Uniform con-
tinuity follows from the Arzelà-Ascoli theorem and the proof is finished. ��
Remark 3.17 Notice that, u(·, t) being the solution of (3.10), from uniqueness and (3.2) we
have u(x, 0) = u(x) and hence, from the Lemma (3.15), u(x, t) → u(x) uniformly as t → 0.
Hence, ∇u(·, t) �= 0 in �t ∩ N and ‖u(·, t)‖L∞(N̄∩�t ) + ‖∇u(·, t)‖L∞(N̄∩�t ) < ∞ for all
|t | ≤ τ .

Now we need to investigate the differentiability of t �→ u(·, t). This is shown in the
following that involve some standard regularity results and adaptations of the techniques in
Colesanti et al. [15]. For any function f (·, t) related to (3.10), let us denote

ḟ (x) = ∂

∂t

∣∣∣
t=0

f (x, t),

if the derivative exists. Thus,we have Ḟ(ξ) = ∇v(ξ) and in the following proposition,we find
u̇. Note that if t �→ u(·, t) is differentiable, then ∂t (div(|∇u|p−2∇u)) = div(A(∇u)∇∂t u) =
0, where we henceforth denote

A(∇u) := |∇u|p−2
(
I + (p − 2)

∇u ⊗ ∇u

|∇u|2
)

, (3.18)

which is uniformly elliptic modulo the weight |∇u|p−2. Indeed, it is not hard to see that

min{1, p − 1}|∇u|p−2|ζ |2 ≤ 〈A(∇u)ζ, ζ 〉 ≤ max{1, p − 1}|∇u|p−2|ζ |2, ∀ ζ ∈ R
n .

(3.19)

However, the differentiability of t �→ u(·, t) being unknown apriori, difference quotients are
to be used. This is shown in the following.

Proposition 3.20 If u(·, t) ∈ W 1,p(�t ∩ N ) is the solution of (3.10) and A is as in (3.18),
then the following holds:

(1) t �→ u(·, t) is differentiable at t = 0 for all x ∈ �̄ ∩ N and u̇ ∈ C2,β(� ∩ N );
(2) u̇ is a solution of the equation div(A(∇u)∇u̇) = 0 in � ∩ N;
(3) u̇(x) = −〈∇u(x), x〉 for all x ∈ ∂N ∩ �;
(4) u̇(x) = |∇u(x)|v(g�(x)) for all x ∈ ∂�.

Proof For t �= 0, let w(x, t) = (u(x, t) − u(x, 0))/t and for any s ∈ [0, 1], let us denote
us(x, t) = su(x, t) + (1 − s)u(x, 0).

Then, u′
s := dus/ds = tw(x, t) and for any |t | ≤ τ , note that we have

0 = �pu(x, t) − �pu(x, 0) =
∫ 1

0

d

ds
(�pus(x, t)) ds

=
∫ 1

0
div

(
A(∇us(x, t))∇u′

s(x, t)
)
ds = t

∫ 1

0
div

(
A(∇us(x, t))∇w(x, t)

)
ds

(3.21)

where A is as in (3.18). Thus, for t �= 0, we have that w(x, t) is a solution of the equation
div(Bu(x, t)∇w(x, t) = 0, where entries of Bu are given by

Bu(x, t)i, j = 〈
Bu(x, t)e j , ei

〉 =
∫ 1

0

〈
A(∇us(x, t))e j , ei

〉
ds. (3.22)
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From Lemma 3.15 and Remark 3.17, note that ∇us(x, t) → ∇u(x, 0) = ∇u(x) uni-
formly as t → 0, which together with (3.22) implies Bu(·, t) → A(∇u) uniformly as
well. Also, from Remark 3.17, ∇u(·, t) �= 0 in �t ∩ N for all |t | ≤ τ . Therefore, there
exists 0 < λ ≤ � < ∞ possibly dependent on n, p,min|t |≤τ inf x∈�t∩N |∇u(x, t)| and
max|t |≤τ supx∈�t∩N |∇u(x, t)| such that from (3.19) and (3.22), we can conclude

λ|y|2 ≤ 〈Bu(x, t)y, y〉 ≤ �|y|2, ∀ x ∈ (� ∩ �t ) ∩ N , y ∈ R
n,

for any t ∈ [−τ, τ ], thereby making the equations uniformly elliptic. Hence, for t �= 0, we
have w(·, t) ∈ C∞(� ∩ �t ∩ N ). The limit of w(x, t) needs to be established as t → 0 for
the proof.

To this end, note that for B ⊂⊂ � ∩ N there exists τ ′ = τ ′(B) ≤ τ such that
B ∩ �t �= ∅ for t ∈ [−τ ′, τ ′]. From (2.50) used on the Eq. (3.10) implies that
u(·, t) ∈ C1,β

loc (�t ∩ N ) for β = β(n, p) ∈ (0, 1), hence (3.19) and (3.22) gives
‖Bu(·, t)i, j‖C0,σ (B∩�t ) ≤ C ′(n, p, M, diam(B)) for some σ = σ(n, p, β) ∈ (0, 1), where
M = max|t |≤τ ‖u(·, t)‖W 1,p(N ). Then, from a standard compactness argument

‖Bu(·, t)i, j‖C0,σ (B) ≤ C(n, p, M, diam(B)), ∀ t ∈ [−τ ′, τ ′].
Therefore, we can invoke interior Schauder estimates, see [21, Theorem 6.2], for the equation
div(Bu(x, t)∇w(x, t)) = 0 on � ∩ N to conclude that there exists 0 < τ ′ = τ ′(B) ≤ τ for
any B ⊂⊂ � ∩ N such that

‖w(·, t)‖C2,β (B) ≤ �′, ∀ 0 < |t | ≤ τ ′, (3.23)

for some �′ = �′(n, p, λ, M, diam(B)
)

> 0 and β ∈ (0, 1). It is not hard to see that (3.23)
implies uniform boundedness and equicontinuity of the family {w(·, t)}0<|t |≤τ ′ and hence
Arzelà-Ascoli theorem yields the existence of a convergent subsequence. For a sequence
tk → 0 as k → ∞, let w ∈ W 1,p(� ∩ N ) be such a subsequential limit, i.e.

w(x) := lim
k→∞ w(x, tk) = lim

k→∞
u(x, tk) − u(x, 0)

tk
, ∀ x ∈ � ∩ N ; (3.24)

then taking tk → 0 on (3.23) we get w ∈ C2,α
loc (� ∩ N ) and since Bu(·, tk) → A(∇u)

uniformly, we have that w is a solution of div(A(∇u)∇w) = 0 in � ∩ N .
Now we look into the boundary behavior of w. Since �t ’s are of class C2,α and u ∈

C∞(�t∩N ) for all |t | ≤ τ , (2.51) used for the Eq. (3.10) implies that u(·, t) ∈ C1,γ (�t ∩ N )

for some γ = γ (n, p, α) ∈ (0, 1) and ‖u(·, t)‖C1,γ (�t∩N ) ≤ C(n, p, α, M, N ) with M > 0
as above. This, together with (3.19), (3.22) and (3.9), further imply

‖Bu(·, t)i, j‖C0,σ (�∩N ) ≤ C(n, p, α, M, N ), ∀ t ∈ [−τ, τ ],
for some σ = σ(n, p, γ ) ∈ (0, 1). Recalling ∂N ∩ �t = ∂N ∩ � for all |t | ≤ τ and from
boundary condition of (3.10), note that we have

w(x, t) =
u
(

x
1+t

)
− u(x)

t

= −〈∇u(x), x〉
(1 + t)

+ O(|t |γ ), ∀ x ∈ ∂N ∩ �t = ∂N ∩ �, t �= 0, (3.25)

which implies ‖w(·, t)‖L∞(∂N∩�) ≤ C(n, p, τ, γ, M, N ). Also from boundary condition of
(3.10), we can conclude that for some β = β(n, p, γ ) ∈ (0, 1),

‖w(·, t)‖C2,β (∂(�∩�t∩N )) ≤ C(n, p, τ, γ, M, N ), ∀ 0 < |t | ≤ τ. (3.26)
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Therefore, we can invoke global Schauder estimates up to the boundary, see [21, Theorem
6.6], for the equation div(Bu(x, t)∇w(x, t)) = 0 on (� ∩ �t ) ∩ N to conclude

‖w(·, t)‖C2,β (�∩�t∩N ) ≤ �′′, ∀ 0 < |t | ≤ τ, (3.27)

for some �′′ = �′′(n, p, α, λ, τ, M, N
)

> 0 and β ∈ (0, 1). Taking tk → 0 on (3.26) and
(3.27) and using (3.9), we get w ∈ C2,β(� ∩ N ) and ‖w‖C2,β (�∩N ) ≤ �′′. Using this we
can find the boundary values of w at x ∈ ∂(� ∩ N ) by taking sequences x j ∈ � ∩ N such
that x j → x as j → ∞ and using (3.24) as

w(x) = lim
j→∞ w(x j ) = lim

j→∞ lim
k→∞ w(x j , tk) = lim

j→∞ lim
k→∞

u(x j , tk) − u(x j , 0)

tk
.

Since we have ∂N ∩ �tk = ∂N ∩ �, the evaluation of the limit is clear on ∂N ∩ � taking
tk → 0 and using (3.25) and continuity of ∇u, to obtain

w(x) = −〈∇u(x), x〉 , ∀ x ∈ ∂N ∩ �.

However, finding w at ∂� is more involved since values at ∂�tk ’s can accumulate to that
on ∂� as tk → 0 and the limits may not be interchangeable in general. Here, the strong
convexity of the domain is used to obtain sequences xk ∈ ∂�tk with a common normal to
evaluate the limit diagonally. Indeed, since �t ’s are of class C2,α

+ , hence g�t : ∂�t → S
n−1

is a diffeomorphism for every |t | ≤ τ . Hence, for any x ∈ ∂� with g�(x) = ξ ∈ S
n−1, let

xk = g�tk
−1(ξ) ∈ ∂�tk . Then, recalling (3.7) and (2.21), notice that

xk = ∇h(ξ) + tk∇v(ξ) = x + tk∇v(ξ), (3.28)

and thus xk → x as k → ∞. Since (3.26) and (3.27) together with (3.28) imply

|w(xk, tk) − w(x, tk)| ≤ C |xk − x | = C |∇v(ξ)||tk |,
for C = C

(
n, p, α, λ, τ, M, N

)
> 0. This is used in (3.24) to obtain

w(x) = lim
k→∞ w(xk, tk) = lim

k→∞
u(xk, tk) − u(xk, 0)

tk
= lim

k→∞ −u(xk)

tk
, (3.29)

since u(xk, tk) = 0 from boundary conditions of (3.10) as xk ∈ ∂�tk . Furthermore, since x ∈
∂�, from boundary conditions of (3.2) we also have u(x) = 0. Also, since u ∈ C1,γ (� ∩ N )

with ‖u‖C1,γ (�∩N ) ≤ C(n, p, α, ‖u‖L∞(N̄∩�) +‖∇u‖L∞(N̄∩�), N ), therefore, using (3.28),
note that

u(xk) − u(x) = 〈∇u(x), xk − x〉 + O(|xk − x |1+γ ) = tk 〈∇u(x),∇v(ξ)〉 + O(|tk |1+γ ).

Using these on (3.29) we obtain

w(x) = lim
k→∞

u(x) − u(xk)

tk
= −〈∇u(x),∇v(ξ)〉 , ∀ x ∈ ∂�. (3.30)

Recall that, since ∂� = ∂{u > 0}, the outer normal ν∂� = ξ = −∇u/|∇u| and since
v = h�0 , from (2.21), v(ξ) = 〈ξ,∇v(ξ)〉. Using these on (3.30), we finally obtain w(x) =
|∇u(x)|v(ξ).

Thus, we established that any subsequential limit w as in (3.24) must be a solution of
the equation div(A(∇u)∇w) = 0 in � ∩ N and moreover, w(x) = − 〈∇u(x), x〉 for all
x ∈ ∂N∩� andw(x) = |∇u(x)|v(g�(x)) for all x ∈ ∂�∩N . This equation being uniformly
elliptic in � ∩ N , w is unique for every subsequence leading to lim inf t→0 w(·, t) = w =
lim supt→0 w(·, t). Therefore, the limit exists and hence w = u̇, which completes the proof.

��
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In view of the above lemma, let us define the operator �u : C(∂�) → C(∂�) as

�u[ f ](x) = 〈∇w(x), g�(x)〉 , (3.31)

for all x ∈ ∂�, f ∈ C(∂�), where w ∈ C1(� ∩ N ) is the solution of the Dirichlet problem⎧⎪⎨
⎪⎩
div(A(∇u)∇w) = 0 in � ∩ N ;
w(x) = −〈∇u(x), x〉 ∀ x ∈ ∂N ∩ �;
w(x) = f (x) ∀ x ∈ ∂� ∩ N ;

(3.32)

with A(∇u) as in (3.18). Notice that Proposition 3.20 implies that

�u
[|∇u|(v ◦ g�)

]
(x) = 〈∇u̇(x), g�(x)〉 , ∀ x ∈ ∂�. (3.33)

We have the following technical lemma.

Lemma 3.34 Let w ∈ C1(� ∩ N ) be the solution of (3.32). For any η ∈ C1(�), we have

(p − 1)
∫

∂�

η|∇u|p−2 〈∇w(x), g�(x)〉 dHn−1(x)

=
∫

�∩N
|∇u|p−2

(
〈∇w,∇η〉 + (p − 2)

|∇u|2 〈∇w,∇u〉 〈∇u,∇η〉
)
dx

+
∫

∂N∩�

η
〈
A(∇u)

(∇u + D2u x
)
, ν∂N∩�(x)

〉
dHn−1(x).

(3.35)

Proof If w ∈ C1(� ∩ N ) is the solution of (3.32), then for any η ∈ C1(�), we have∫
�∩N

〈A(∇u)∇w,∇η〉 dx =
∫

∂(�∩N )

η
〈
A(∇u)∇w, ν∂(N∩�)(x)

〉
dHn−1(x). (3.36)

Recalling (3.18), we note that

A(∇u)∇w = |∇u|p−2
(
∇w + (p − 2)

|∇u|2 〈∇w,∇u〉 ∇u
)
. (3.37)

Since g�(x) = −∇u(x)/|∇u(x)| for x ∈ ∂�, hence the right hand side of (3.36), together
with (3.37), becomes∫

∂�

η 〈A(∇u)∇w, g�(x)〉 dHn−1(x) +
∫

∂N∩�

η 〈A(∇u)∇w, ν∂N∩�(x)〉 dHn−1(x)

=
∫

∂�

η|∇u|p−2
(

〈∇w, g�(x)〉 + (p − 2)

|∇u|2 〈∇w,∇u〉 〈∇u, g�(x)〉
)
dHn−1(x)

−
∫

∂N∩�

η
〈
A(∇u)

(∇u + D2u x
)
, ν∂N∩�(x)

〉
dHn−1(x)

= (p − 1)
∫

∂�

η|∇u|p−2 〈∇w(x), g�(x)〉 dHn−1(x)

−
∫

∂N∩�

η
〈
A(∇u)

(∇u + D2u x
)
, ν∂N∩�(x)

〉
dHn−1(x).

Using (3.37) on the left-hand side of (3.36) together with the above, we obtain (3.35) and the
proof is finished. ��

Using the above, we show that �u is self-adjoint on L2(∂�, |∇u|p−2Hn−1) in the fol-
lowing.
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Proposition 3.38 Let�u : C(∂�) → C(∂�) be as in (3.31). Then, for anyψ1, ψ2 ∈ C(∂�),
the following holds,∫

∂�

ψ1�u[ψ2] |∇u|p−2dHn−1 =
∫

∂�

ψ2�u[ψ1] |∇u|p−2dHn−1. (3.39)

Proof Given any ψ1, ψ2 ∈ C(∂�), there exists w1, w2 ∈ C1(� ∩ N ) that are solutions of
(3.32) with w1 = ψ1 and w2 = ψ2 on ∂� and w1 = −〈∇u, x〉 = w2 on ∂N ∩ �. Hence,
using (3.35) of Lemma 3.34, note that∫

∂�

ψ1�u[ψ2]|∇u|p−2dHn−1

=
∫

∂�

w1 〈∇w2(x), g�(x)〉 |∇u|p−2dHn−1(x)

= 1

p − 1

∫
�∩N

|∇u|p−2
(

〈∇w2,∇w1〉 + (p − 2)

|∇u|2 〈∇w2,∇u〉 〈∇u,∇w1〉
)
dx

− 1

p − 1

∫
∂N∩�

〈∇u, x〉 〈
A(∇u)

(∇u + D2u x
)
, ν∂N∩�(x)

〉
dHn−1(x),

which is symmetric with respect to w1 and w2. This completes the proof. ��
Remark 3.40 For the special case p = 2, notice that we have A(∇u) = I and �u = �

corresponds to the Neumann operator as in [26, 27].

Our next goal is to compute the first variation explicitly to establish its self-adjointness.
We shall denote C[�2h+hI] = cofactor matrix of (�2h+hI) (transpose of adjoint) so that,

C[�2h + hI](�2h + hI) = det(�2h + hI)I = 1/(κ ◦ g�
−1)I. (3.41)

Furthermore, since WK
−1 = �2h + hI for K = �̄, note that the above can be rewritten as

WK (x) = κ(x) C[�2h + hI](g�(x)), ∀ x ∈ ∂�. (3.42)

The function u of (3.2) being p-harmonic is C1,β up to the boundary from (2.51), is
uniformly elliptic in a neighborhood of ∂� since � is of class C2,α

+ . Hence, from boundary
Schauder estimates, see [21], D2u is pointwise well-defined on ∂�. The following lemma
which prescribes the Hessian D2u on ∂�, has been shown for the case p = 2 in [26, Lemma
A].

Remark 3.43 The sign in the following Lemma is reversed to that of [26, Lemma A] as the
Green’s function G ≤ 0 in [26], therefore our choice u ≥ 0 corresponds to u = −G for
p = 2.

Lemma 3.44 Let u : � → R be as in (3.2) and {e1, . . . , en−1, } be an orthonormal frame
field of Sn−1 such that for any ξ ∈ S

n−1 the unit vectors ei = ei (ξ) ∈ S
n−1 span the tangent

space Tξ (S
n−1). The covariant derivatives being defined as in (2.26) with respect to the

suitable local coordinate charts related to the frame, we have the following:

(1)
〈
D2u(F(ξ))ei , e j

〉 = −κ(F(ξ))|∇u(F(ξ))| Ci, j [�2h + hI];
(2)

〈
D2u(F(ξ))ξ, ei

〉 = −κ(F(ξ))
∑

j Ci, j [�2h + hI]� j (|∇u(F(ξ))|);
(3)

〈
D2u(F(ξ))ξ, ξ

〉 = 1
(p−1)κ(F(ξ))|∇u(F(ξ))|Tr(C[�2h + hI]);

whereCi, j [·] = 〈C[·]e j , ei 〉are entries of the cofactormatrix as in (3.41) for i, j ∈ {1, . . . , n−
1} with respect to this frame and F(ξ) = g�

−1(ξ) = ∇h(ξ).
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Proof Let K = �̄ and the coordinate charts for the covariant derivatives be as in Sect. 2 in a
neighborhood U of ξ ∈ S

n−1, i.e. for 0 ∈ V ⊂ R
n−1 the coordinates χ : V → U ⊂ S

n−1

satisfying χ(0) = ξ , ∂ jχ(0) = e j and ∂i, jχ(0) = −δi, jχ(0) for all i, j ∈ {1, . . . , n − 1}.
By differentiating F ◦ χ = g�

−1 ◦ χ = ∇h ◦ χ , we note that ∂ j (F ◦ χ) = (D2h ◦ χ)∂ jχ

for any j ∈ {1, . . . , n − 1} and hence, at χ = χ(z) ∈ U ⊂ S
n−1 for any z ∈ V ⊂ R

n−1, we
have � j F(χ) = D2h(χ)∂ jχ , in particular, at 0 ∈ V , we have

� j F(ξ) = D2h(ξ)e j = WK
−1(ξ)e j = (�2h(ξ) + h(ξ)I)e j . (3.45)

Since any χ ∈ U ⊂ S
n−1 is the outer unit normal at F(χ) ∈ ∂� as F = g�

−1, hence we
have χ = −∇u(F(χ))/|∇u(F(χ))|. Using this together with the above, we get〈� j F(χ),∇u(F(χ))

〉 = −|∇u(F(χ))| 〈� j F(χ), χ
〉

= −|∇u(F(χ))| 〈D2h(χ)χ, ∂ jχ
〉 = 0, (3.46)

since, recalling (2.27), D2h(χ)χ = 0. Now, we differentiate (3.46) by covariant derivative
�i at ξ = χ(0) for any i ∈ {1, . . . , n − 1} to obtain〈

D2u(F(ξ))�i F(ξ),� j F(ξ)
〉 + 〈�i, j F(ξ),∇u(F(ξ))

〉 = 0. (3.47)

We can take χ defined on the lower hemisphere without loss of generality and �i, j F(ξ)

can be computed transforming zi/
√

1−∑n−1
i=1 |zi |2 �→ yi so that χ(z) �→ (y1, . . . , yn−1,−1)/√

1−∑n−1
i=1 |yi |2, χ(0) �→ (0,−1) and ei �→ ei as in [26]. Then, using (3.45) on (3.47), one can

obtain 〈
D2u(F(ξ))WK

−1(ξ)ei ,WK
−1(ξ)e j

〉
= −|∇u(F(ξ))|

〈
WK

−1(ξ)ei , e j
〉
, (3.48)

(see the end of [26, p. 382]). We successively multiply the above entrywise with the entries
of WK (F(ξ)) = κ(F(ξ)) C[�2h + hI] recalling (3.42), then sum over to obtain (1).

Next, we differentiate the equation |∇u(F(χ))| = − 〈∇u(F(χ)), χ〉 at ξ = χ(0) to
obtain

� j (|∇u(F(ξ))|) = −
〈
D2u(F(ξ))� j F(ξ), ξ

〉
−

〈
∇u(F(ξ)), e j

〉
= −

〈
D2u(F(ξ))WK

−1(ξ)e j , ξ
〉
,

as
〈∇u(F(ξ)), e j

〉 = −|∇u(F(ξ))| 〈ξ, e j
〉 = 0 from orthonormality. Multiplying with the

entries of WK (F(ξ)) = κ(F(ξ)) C[�2h + hI] from (3.42) and summing over, we can simi-
larly obtain (2).

Finally, since u is a solution of the Eq. (3.2), we have

0 = div(|∇u|p−2∇u) = |∇u|p−2
(
�u + (p − 2)

|∇u|2
〈
D2u∇u,∇u

〉 )
,

in � ∩ N and u ∈ C∞(� ∩ N ). Taking pointwise limit, together with (1), we get

(p − 2)
〈
D2u(F(ξ))ξ, ξ

〉 = −�u(F(ξ)) = −Tr(D2u(F(ξ)))

= −
∑
i

〈
D2u(F(ξ))ei , ei

〉
− 〈

D2u(F(ξ))ξ, ξ
〉

= κ(F(ξ))|∇u(F(ξ))|Tr(C[�2h + hI]) − 〈
D2u(F(ξ))ξ, ξ

〉
,

which yields (3). Thus the proof is finished. ��
Now we obtain the first variation of the density of p-harmonic measures in the following

which has been shown previously for a special case of p = 2 by Jerison [26, Proposition 2].
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Proposition 3.49 Given support functions h = h� and v = h�0 , the first variation, defined
as Lh[v] = d

dt

∣∣
t=0F [h + tv] as in (2.57) with F as in (3.11), is given by

Lh[v] =
n−1∑
i, j=1

� j

(
Ci, j [�2h + hI]|∇u|p−1�iv

)

− (p − 1)

κ
|∇u|p−2�u

[|∇u|(v ◦ g�)
]
, (3.50)

whereCi, j [·] = 〈C[·]e j , ei 〉are entries of the cofactormatrix as in (3.41) for i, j ∈ {1, . . . , n−
1} with respect to a local orthonormal frame {ei } and �u is as in (3.31).

Proof It is standard as shown in [13], that

d

dt

∣∣∣
t=0

det
(�2h + hI + t(�2v + vI)

) = Tr
(C[�2h + hI](�2v + vI)

)
.

RecallingF [h + tv](ξ) = |∇u(F(ξ, t), t)|p−1 det
(�2h + hI+ t(�2v + vI)

)
and using the

above, note that

Lh[v] = |∇u(F(ξ))|p−1 d

dt

∣∣∣
t=0

det
(�2h + hI + t(�2v + vI)

)

+ det(�2h + hI)
d

dt

∣∣∣
t=0

|∇u(F(ξ, t), t)|p−1

= |∇u(F(ξ))|p−1 Tr
(C[�2h + hI](�2v + vI)

)

+ (p − 1)|∇u(F(ξ))|p−2 det(�2h + hI)
d

dt

∣∣∣
t=0

|∇u(F(ξ, t), t)|,

(3.51)

and we need to compute only the last term of the above. Notice that, from the boundary
condition of (3.10), the outer unit normal at F(ξ, t) ∈ ∂�t is given by

ξ = g�t (F(ξ, t)) = − ∇u(F(ξ, t), t)

|∇u(F(ξ, t), t)| ,

hence, |∇u(F(ξ, t), t)| = − 〈∇u(F(ξ, t), t), ξ 〉. Therefore, we obtain
d

dt

∣∣∣
t=0

|∇u(F(ξ, t), t)| = − d

dt

∣∣∣
t=0

〈∇u(F(ξ, t), t), ξ 〉
= −

( 〈
D2u(F(ξ))Ḟ(ξ), ξ

〉 + 〈∇u̇(F(ξ)), ξ 〉
)

= −(I1 + I2).
(3.52)

Since, Ḟ(ξ) = ∇v(ξ) and recalling (2.28), we have ∇v(ξ) = v(ξ)ξ + ∑n−1
i=1

�iv(ξ)ei .
Using this together with Lemma 3.44 we compute the first term of (3.52) as

I1 = 〈
D2u(F(ξ))ξ, ξ

〉
v(ξ) +

n−1∑
i=1

〈
D2u(F(ξ))ξ, ei

〉�iv(ξ)

= 1

(p − 1)
κ(F(ξ))|∇u(F(ξ))|v(ξ)Tr

(C[�2h + hI])

− κ(F(ξ))

n−1∑
i, j=1

Ci, j [�2h + hI]� j (|∇u(F(ξ))|)�iv(ξ).
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It has been shown in [13] that
∑

j
� j Ci, j [�2h + hI] = 0 for any i and using this on the

latter term of the above, we obtain

I1 = −κ(F(ξ))

n−1∑
i, j=1

� j
(Ci, j [�2h + hI]|∇u(F(ξ))|)�iv(ξ)

+ 1

(p − 1)
κ(F(ξ))|∇u(F(ξ))|v(ξ)Tr

(C[�2h + hI]) .

(3.53)

Using (3.53) on (3.52), we obtain

d

dt

∣∣∣
t=0

|∇u(F(ξ, t), t)| = κ(F(ξ))

n−1∑
i, j=1

� j
(Ci, j [�2h + hI]|∇u(F(ξ))|)�iv(ξ)

− κ(F(ξ))

(p − 1)
|∇u(F(ξ))|v(ξ)Tr(C[�2h + hI]) − 〈∇u̇(F(ξ)), ξ 〉 ,

(3.54)

Recalling det(�2h + hI) = 1/κ(F(ξ)) from (2.30), we use (3.54) in (3.51) to get

Lh[v] = |∇u(F(ξ))|p−1 Tr
(C[�2h + hI](�2v + vI)

)

+ (p − 1)|∇u(F(ξ))|p−2
n−1∑
i, j=1

� j
(Ci, j [�2h + hI]|∇u(F(ξ))|)�iv(ξ)

− |∇u(F(ξ))|p−1v(ξ)Tr(C[�2h + hI])

− (p − 1)
|∇u(F(ξ))|p−2

κ(F(ξ))
〈∇u̇(F(ξ)), ξ 〉 .

(3.55)

Now, we use the following identity to replace the second term of the above,

n−1∑
i, j=1

� j

(
Ci, j [�2h + hI]|∇u(F(ξ))|p−1�iv(ξ)

)

=
n−1∑
i, j=1

� j

(
Ci, j [�2h + hI]|∇u(F(ξ))|p−1

)�iv(ξ)

+
n−1∑
i, j=1

Ci, j [�2h + hI]|∇u(F(ξ))|p−1� j,iv(ξ)

= (p − 1)|∇u(F(ξ))|p−2
n−1∑
i, j=1

� j
(Ci, j [�2h + hI]|∇u(F(ξ))|)�iv(ξ)

+ |∇u(F(ξ))|p−1 Tr
(C[�2h + hI]�2v

)
.

(3.56)

Using (3.56) on (3.55), we observe that the first and third term in (3.55) get cancelled off and
we are left with

Lh[v] =
n−1∑
i, j=1

� j

(
Ci, j [�2h + hI]|∇u(F(ξ))|p−1�iv(ξ)

)

−(p − 1)
|∇u(F(ξ))|p−2

κ(F(ξ))
〈∇u̇(F(ξ)), ξ 〉 ,

which completes the proof since �u
[|∇u|(v ◦ g�)

]
(F(ξ)) = 〈∇u̇(F(ξ)), ξ 〉 from (3.33). ��
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The following shows the self-adjointness of the first variation in L2(Sn−1,Hn−1).

Corollary 3.57 The first variation Lh being as above, for any v1, v2 ∈ C(Sn−1), we have∫
Sn−1

v1 Lh[v2] dξ =
∫
Sn−1

v2 Lh[v1] dξ. (3.58)

Proof From Proposition 3.49 and (2.30), we have∫
Sn−1

v1(ξ)Lh[v2](ξ) dξ

=
∫
Sn−1

n−1∑
i, j=1

v1(ξ)� j

(
Ci, j [�2h + hI]|∇u(F(ξ))|p−1�iv2(ξ)

)
dξ

− (p − 1)
∫
Sn−1

v1(ξ)�u
[|∇u|(v2 ◦ g�)

]
(F(ξ))

|∇u(F(ξ))|p−2

κ(F(ξ))
dξ

= J1 + J2.

Note that, using integral by parts (Stoke’s theorem for compact manifold without boundary)
on the first term of the above, we have

J1 = −
∫
Sn−1

n−1∑
i, j=1

|∇u(F(ξ))|p−1Ci, j [�2h + hI]�iv2(ξ)� jv1(ξ) dξ

which is symmetric in v1 and v2. For the second term, using (2.30) and (2.31), we have

J2 = −(p − 1)
∫

∂�

(v1 ◦ g�)�u
[|∇u|(v2 ◦ g�)

]|∇u|p−2 dHn−1,

which is also symmetric in v1 and v2 from self-adjointness (3.39) of �u from Proposition
3.38. Combining both cases of the above, the proof is finished. ��

3.2 Convergence of p-harmonic measures

The goal here is to establish weak convergence of p-harmonic measures with respect to
the Hausdorff distance. Given a convex domain � ⊂ R

n , a neighborhood N of ∂� and
u ∈ W 1,p(� ∩ N ) as in (3.2), we consider a sequence of convex domains � j ⊂ R

n such
that dH(� j ,�) → 0+ as j → ∞; recalling (2.43), dH(∂� j , ∂�) → 0+.

First, we have the following lemma due to Jerison [26].

Lemma 3.59 Given � ⊂ R
n and dH(� j ,�) → 0+ as j → ∞, if 0 ∈ � ∩ � j for

all j ≥ j0 for some j0 ∈ N, then there exists r > 0 such that, up to a subsequence,
(1 − 1/ j)� j/r ⊂ �/r .

Proof Note that | dist(0, ∂� j ) − dist(0, ∂�)| ≤ dH(∂� j , ∂�) = dH(� j ,�) ≤ 1/ j , for all
j ≥ j0 with j0 ∈ N large enough. Hence, we choose

0 < r < min{dist(0, ∂�), inf
j≥ j0

dist(0, ∂� j )}

so that Br (0) ⊂ � j ∩� for all j ≥ j0. Let �̃ = �/r and �̃ j = � j/r . Hence B1(0) ⊂ �̃ j ∩�̃

for all j ≥ j0 and dH(�̃ j , �̃) → 0+. Thus, 1 = hB1(0) ≤ min{h�̃ j
, h�̃} and recalling (2.43),

we have the convergence of support functions. Hence, up to a subsequence, 1 ≤ h�̃ j
≤
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h�̃ + 1/ j for all j ≥ j0 which implies (1 − 1/ j)h�̃ j
≤ h�̃ − (h�̃ − 1)/ j − 1/ j2 ≤ h�̃,

and the proof is complete. ��
Note that lim j→∞ dH

(
(1−1/ j)� j ,�

) = lim j→∞ dH(� j ,�) = 0. Henceforth, in view
of Lemma 3.59, we shall assume without loss of generality that

0 ∈ � ∩ � j and � j ⊂ �, ∀ j ≥ j0, (3.60)

for a large enough j0 ∈ N. We can also similarly assume without loss of generality that
� ⊂ � j (1+ 1/ j) for all j ≥ j0. Furthermore, since dH(∂� j , ∂�) → 0+, for any sequence
of neighborhoods N j of ∂� j we have dH(N j , N ) → 0+ as j → ∞. We can assume without
loss of generality that N is a convex ring (see [34], e.g. annulus) so that the outer and inner
segments of ∂N enclose convex domains. Hence, in view of (2.43) and Lemma 3.59, we can
regard that being subject to a possible small extension and dilation, N is also a neighborhood
of ∂� j so that ∂N ∩ � j = ∂N ∩ � for all j ≥ j0, which shall be assumed hereafter.

There exists a unique u j ∈ W 1,p(� j ∩ N ) which is the weak solution of the Dirichlet
problem

⎧⎪⎨
⎪⎩
div

(|∇u j |p−2∇u j
) = 0, in � j ∩ N ;

u j = 0, in ∂� j ∩ N ;
u j = u, in ∂N ∩ � j ;

(3.61)

for all j ≥ j0 and upon zero extension, u j ∈ W 1,p(N ). We consider the p-harmonic measure
with respect to u j as ωp, j so that dωp, j = |∇u j |p−1dHn−1 ¬

∂� j .

Remark 3.62 In view of the above, given dH
(
� j ,�) → 0+ as j → ∞, we can assume

without loss of generality that � j (1 − 1/ j) ⊂ � ⊂ � j (1 + 1/ j) for j ≥ j0 large enough.
Hence, (3.61) can be re-defined with dilations on� as�/(1+1/ j) or�/(1−1/ j) for which
points in � are transformed as x �→ x/(1+ 1/ j) and x �→ x/(1− 1/ j) respectively. In this
sense, the approximants defined by (3.61) can be regarded as a generalization of (3.10) for
t > 0 or t < 0, since for �t = � + t�0, recall that dH(�t ,�) = |t |‖h�0‖L∞(Sn−1) → 0+
as t → 0. All the following results corresponding to (3.61) remain unaffected with respect
to these dilations.

Towards the weak convergence of p-harmonic measures, we make use of the following
geometric lemma due to Jerison [27, Lemma 3.3], which says that most of the boundaries of
convex domains close enough by Hausdorff distance, can be locally flattened, except for a
small measure set. It can be shown using convexity and Vitali covering theorem.

Lemma 3.63 For a convex domain �, given any ε > 0 there exists δ = δ(ε) > 0 and a finite
collection of disjoint balls Brk (xk) for 1 ≤ k ≤ N0, with rk < ε and xk ∈ ∂�, such that for
every �′ with dH(�′,�) < δ, we have

Hn−1
(

∂� \
N0⋃
k=1

B̄rk (xk)

)
< ε,

and after a possible rotation and translation, ∂�, ∂�′ are graphs of functions φ, φ′ ∈
C0,1(Rn−1) in Brk/ε(xk), satisfying |∇φ(x)| + |∇φ′(x)| ≤ ε for all x ∈ R

n with |x | < rk/ε.

The following is a part of [27, Lemma 3.7] and can be shown using the density of radial
projection in (2.42), i.e. dHn−1 = |ρ�(θ)|n/h�(g�(ρ�(θ))) dθ on Lemma 3.63.

123



On the Minkowski problem for p-harmonic… Page 29 of 38 36

Corollary 3.64 For a convex domain �, given any ε > 0 there exists δ = δ(ε) > 0, s0 > 0
and a family of balls B on S

n−1 such that the folllowing holds:

(1) Every B ∈ B has radius s0.
(2) If Br (0) ⊂ � ⊂ BR(0), then there exists N0 > 0 depending on R/r such that any point

in S
n−1 belongs to atmost N0 balls of B.

(3) θ(Sn−1 \ F) < ε where F = ⋃
B∈B B and θ = Hn−1 ¬

Sn−1 is the uniform measure.

Now, we sketch the weak convergence of p-harmonic measures in the following.

Proposition 3.65 Given a bounded convex domain � ⊂ R
n, for any sequence of convex

domains � j ⊂ R
n with dH(� j ,�) → 0+ as j → ∞, if ωp, j is the p-harmonic measure

with respect to the solution u j ∈ W 1,p(N ) of (3.61), then up to a subsequence, ∇u j → ∇u
uniformly in N and we have the weak convergence ωp, j⇀ωp as j → ∞, i.e. for any
η ∈ C(N̄ ), we have

lim
j→∞

∫
∂� j

η|∇u j |p−1dHn−1 =
∫

∂�

η|∇u|p−1dHn−1. (3.66)

Proof From boundary conditions of (3.61) and comparison principle, we have u j > 0 in � j

and hence, g� j = −∇u j/|∇u j |. Then, testing the Eq. (3.61) with any η ∈ W 1,p(N ), we
have ∫

� j∩N
|∇u j |p−2 〈∇u j ,∇η

〉
dx

=
∫

∂(� j∩N )

η|∇u j |p−2 〈∇u j , ν∂(� j∩N )

〉
dHn−1

=
∫

� j∩∂N
η|∇u|p−2 〈∇u, ν� j∩∂N

〉
dHn−1 +

∫
∂� j

η|∇u j |p−1 dHn−1.

Since ∂N ∩� j = ∂N ∩� for all j ≥ j0, we test the Eq. (3.2) with η and take the difference
with the above to obtain∫

� j∩N
|∇u j |p−2 〈∇u j ,∇η

〉
dx −

∫
�∩N

|∇u|p−2 〈∇u,∇η〉 dx

= −
(∫

∂� j

η|∇u j |p−1 dHn−1 −
∫

∂�

η|∇u|p−1 dHn−1
)

.

(3.67)

Now we show that∇u j → ∇u uniformly in N as j → ∞. However, in this case |�\� j |
or |Hn−1(∂�)−Hn−1(∂� j )| are not generally dominated by dH(� j ,�). Therefore, Lemma
3.63 and Corollary 3.64 can be used by taking radial projections of (2.42) and decompose
the integral on S

n−1 into F = ⋃
B∈B B and S

n−1 \ F as in Corollary 3.64, then obtain for
any ε > 0,
∣∣∣
∫
B

|∇(u j ◦ ρ j )|p−1 − |∇(u ◦ ρ)|p−1dθ

∣∣∣ ≤ cε
∫
B

|∇(u ◦ ρ)|p−1dθ, ∀ j ≥ j0(ε), B ∈ B,

where ρ j → ρ Hn−1-a.e. in S
n−1. This involves refined estimates of p-harmonic functions

in [15, 31, 32], etc. used to obtain e.g. [15, Lemma 4.5] to which we refer to and omit the
details here. The above together with θ(Sn−1 \ F) < ε from Corollary 3.64 allows us to
estimate the integral on whole of Sn−1 and then using (2.45) and (2.42), we have

∣∣∣
∫

∂� j

|∇u j |p−1dHn−1 −
∫

∂�

|∇u|p−1dHn−1
∣∣∣ ≤ cε‖u‖p−1

W 1,p(N )
, ∀ j ≥ j0(ε).
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An integral on�\� j can be similarly estimated using (2.40), Corollary 3.64 since r� j → r�
uniformly as j → ∞. Using these estimates together with η = u j − u on (3.67) and using
the monotonicity (2.49), we can conclude∫

Br
|∇u j − ∇u|p dx ≤ cε‖u‖p

W 1,p(N )
, ∀ j ≥ j0(ε),

for any Br ⊂ � j ∩ N . The continuity of the gradients ∇u j ,∇u from (2.50) implies that
all points are Lebesgue points and hence the above is enough to conclude the following
pointwise convergence of ∇u j −∇u; the estimate of (2.50) for ∇u j shows equicontinuity of
the family {∇u j } j≥ j0 and uniform convergence ∇u j → ∇u in N as j → ∞ follows from
the Arzelà-Ascoli theorem. This used in (3.67) directly leads us to conclude

lim
j→∞

∫
∂� j

η|∇u j |p−1dHn−1 =
∫

∂�

η|∇u|p−1dHn−1

for any η ∈ C1(N̄ ) and hence also for any η ∈ C(N̄ ) by taking approximations. The proof
is finished. ��
Remark 3.68 The proof of weak convergence of p-harmonic measures above is easier com-
pared to other measures with a higher exponent on the gradient because in our case, the
exponent (p − 1) is precisely what appears in the weak form of the equations and so we
do not require a reverse Hölder inequality as in [15]. It is so remarked in [27] that the weak
convergence in case of harmonic measure in [26] is easier than that of capacitary measures
in [27] for p = 2.

Let μ� j = (g� j )∗ωp, j be the corresponding measure as an approximation to μ�. As
g� j → g� Hn−1-a.e. we have the weak convergence μ� j ⇀μ� as a consequence of the
above. Thus,

lim
j→∞

∫
Sn−1

w dμ� j =
∫
Sn−1

w dμ�, ∀ w ∈ C(Sn−1). (3.69)

More generally, we consider u = uK ∈ W 1,p(N ) for a general convex set K and a
neighborhood N of ∂K , where either u satisfies (3.2) if K = �̄ or u satisfies (3.4) if K = ∂K .
Then ωp defined by dωp = |∇u|p−1dHn−1 on ∂K and μK is as in (3.5) and defined with
respect to (2.35) and (2.36) in general. We consider {K j } such that dH(K j , K ) → 0+. If
K j = �̄ j are of non-empty interior then we define u j ∈ W 1,p(� j ∩ N ) similarly as (3.61),
otherwise if K j = ∂K j and K = ∂K then we define u j ∈ W 1,p(N ) as the unique solution
of ⎧⎪⎨

⎪⎩
div

(|∇u j |p−2∇u j
) = 0, in N \ K j ;

u j = 0, in K j ∩ N ;
u j = u, in ∂N \ K j .

(3.70)

The p-harmonic measures are defined by dωp, j = |∇u j |p−1dHn−1 ¬
∂K j and the weak

convergence ωp, j⇀ωp can be obtained similarly as Proposition 3.65. Therefore, the weak
convergence for measures for the p-harmonic Minkowski problem on general convex sets,

μK j ⇀μK , if dH(K j , K ) → 0+, (3.71)

when the measures are defined as in (3.5) with respect to (2.35) and (2.36), can also be
obtained using the above and approximation of general convex sets by polytopes, in ways
similar to that of (2.48). We refer to [45, Chapter 4,5] for details of such arguments.
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In the following, given a convex set K , we denote the functional

�(K ) :=
∫
Sn−1

hK (ξ) dμK (ξ) (3.72)

and �(�) = �(K ) if �̄ = K . It is easy to see from (2.43) and (3.71), that �(K j ) → �(K )

uniformly if dH(K j , K ) → 0+ as j → ∞.

Remark 3.73 For a compact convex set K of non-empty interior note that

�(K ) =
∫
Sn−1

hK (ξ)|∇u(gK−1(ξ))|p−1dSK (ξ)

closely resembles the well known formula of volumes given by

|K | = 1

n

∫
Sn−1

hK (ξ)dSK (ξ).

Hence we can conclude that if K �→ μK is defined by a common p-harmonic function u
for C2+ domains then � is a measure absolutely continuous with respect to the Lebesgue
measure. For non-smooth domains or convex sets of empty interior, the measure � can be
singular.

We complete this subsection with the following.

Lemma 3.74 Given convex domains � j ,� j,0 ⊂ R
n with dH(� j ,�), dH(� j,0,�0) → 0+

as j → ∞, let �t = � + t�0 and �t
j = � j + t� j,0 for |t | < τ small enough. Then, let

dμ�t = |∇u(·, t)|p−1dHn−1 ¬
∂�t ,

where u(·, t) is the unique solution of the Dirichlet problem (3.10) and let dμ�t
j
be defined

similarly; then with � as (3.72), if t �→ �(�t
j ) is differentiable at t = 0 for all j ≥ j0 then

t �→ �(�t ) is also differentiable at t = 0 and we have

lim
j→∞

d

dt

∣∣∣
t=0

�
(
�t

j

)
= d

dt

∣∣∣
t=0

�
(
�t ) = d

dt

∣∣∣
t=0

lim
j→∞ �

(
�t

j

)
. (3.75)

Proof From (2.16), we note that

�(�t
j ) − �(� j ) =

∫
Sn−1

h�t
j
dμ�t

j
−

∫
Sn−1

h� j dμ� j

=
∫
Sn−1

h� j dμ�t
j
−

∫
Sn−1

h� j dμ� j + t
∫
Sn−1

h� j,0 dμ�t
j
.

Recalling (2.43), we know that h� j , h� j,0 → h�, h�0 uniformly as j → ∞. Hence for each
t �= 0, we have (�(�t

j ) − �(� j ))/t → (�(�t ) − �(�))/t uniformly (independent of t) as
j → ∞. Also from (2.43), note that

dH
(
�t

j ,� j

)
= |t |‖h� j,0‖L∞ and dH(�t ,�) = |t |‖h�0‖L∞ ,

which converge to zero uniformly (independent of j) as t → 0 as well. From (3.69) and
above,μ�t

j
⇀μ�t as j → ∞ for all t andμ�t

j
⇀μ� j as t → 0 for all j ≥ j0. This is enough

to conclude the proof. ��
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3.3 Proof of existence

We shall prove the existence of p-harmonic measures prescribing measures on spheres in
two steps; first, for discrete measures and then for the general case thereby leading to the
proof of Theorem 1.2 in the end.

The following proposition resembles the Hadamard’s variational formula.

Proposition 3.76 Given convex domains �t = � + t�0 with |t | < τ small enough, v =
h�0 > 0 and � as in (3.72) with dμ�t = |∇u(·, t)|p−1dHn−1 ¬

∂�t where u(·, t) is the
unique solution of the Dirichlet problem (3.10), we have

d

dt

∣∣∣
t=0

�
(
�t ) = (n − p + 1)

∫
Sn−1

v dμ�. (3.77)

Proof First, we assume that �,�0 are of class C2,α
+ . Then, recalling dμ�t (ξ) = F [h +

tv](ξ) dξ where h� = h, observe that

d

dt

∣∣∣
t=0

�(�t ) = d

dt

∣∣∣
t=0

∫
Sn−1

h�t (ξ) dμ�t (ξ) = d

dt

∣∣∣
t=0

∫
Sn−1

(h + tv)F [h + tv](ξ) dξ

=
∫
Sn−1

v(ξ)F [h](ξ) dξ +
∫
Sn−1

h(ξ)
d

dt

∣∣∣
t=0

F [h + tv](ξ) dξ

=
∫
Sn−1

v(ξ) dμ�(ξ) +
∫
Sn−1

h(ξ)Lh[v](ξ) dξ

=
∫
Sn−1

v(ξ) dμ�(ξ) +
∫
Sn−1

v(ξ)Lh[h](ξ) dξ,

(3.78)

where the self-adjointness of Corollary 3.57 is used to obtain the last equality of the above.
Now, recalling (3.13) of Lemma 3.12, we have Lh[h](ξ) = (n − p)F [h](ξ). Using this on
(3.78), we obtain

d

dt

∣∣∣
t=0

�
(
�t ) = (n − p + 1)

∫
Sn−1

v(ξ) dμ�(ξ),

for the case ofC2,α
+ domains. The general case follows fromapproximation of convexdomains

by C2,α
+ domains using Theorem 2.46 and (2.47) along with (3.69) and (3.75). ��

In the following lemma, we consider the possibility of having a lower dimensional convex
set in order to be able to assert the existence theorem for convex sets of non-empty interior.

Lemma 3.79 Given a compact convex set K and ameasureμ on Sn−1, we have the following:

(1) If dimH(K ) = n − 1, then K is contained in a hyperplane; precisely, there exists
ξ0 ∈ S

n−1 and c ∈ R such that K ⊂ {x : 〈x, ξ0〉 = c} and μK as in (3.5) is given by

μK =
( ∫

K
|∇u|p−1dHn−1

)(
δξ0 + δ−ξ0

)
.

(2) If μ = a
(
δξ0 + δ−ξ0

)
for some ξ0 ∈ S

n−1 and a > 0, then μ does not satisfy (i) of (1.1).

Proof To prove (1), recalling (2.12) since K = ∩ξ∈Sn−1H−
ξ,hK (ξ), observe that dimH(K ) =

n−1 can only occur if at least two half-spaces share a commonboundary and K is degenerated
to a 1-codimensional subset of a hyperplane, i.e. HK (ξ) = HK (ξ ′) for some ξ �= ξ ′ ∈ S

n−1
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which can happen only if ξ ′ = −ξ and hK (ξ ′) = −hK (ξ). These together imply hK (−ξ) =
−hK (ξ); but, from the definition of support function, since

−hK (−ξ) ≤ 〈x, ξ 〉 ≤ hK (ξ), ∀ x ∈ K , ξ ∈ S
n−1,

therefore equality has to hold. Thus, we have K ⊂ {x : 〈x, ξ0〉 = c} where ξ0 = ξ and
c = hK (ξ). Then, we observe that, in the sense of (2.35), we have gK (x) = {ξ0,−ξ0} for
Hn−1-a.e. x ∈ K . Precisely, if F ⊂ K is the lower dimensional boundary of K within the
hyperplane then gK (x) = {ξ0,−ξ0} for all x ∈ K \ F and Hn−1(F) = 0. Also in this
case K = ∂K . Hence, for any measurable E ⊆ S

n−1, note that, gK−1(E) in the sense of
(2.36) is of full Hn−1-measure only if ξ0 ∈ E or −ξ0 ∈ E ; to be precise, letting F ′ =
{x ∈ F : gK (x) ∩ E �= ∅} ⊆ F , we have that gK−1(E) = (K \ F)∪ F ′ if {ξ0,−ξ0}∩ E �= ∅
and otherwise gK−1(E) = F ′. Thus,

SK = Hn−1(K )
(
δξ0 + δ−ξ0

)
and μK =

( ∫
K

|∇u|p−1dHn−1
)(

δξ0 + δ−ξ0

)
,

from (3.5), which completes the first part.
To prove (2), we observe that if μ = a

(
δξ0 + δ−ξ0

)
for some ξ0 ∈ S

n−1 and a > 0, then
∫
Sn−1

|〈ζ, ξ 〉| dμ(ξ) = a (|〈ζ, ξ0〉| + |〈ζ,−ξ0〉|) = 2a |〈ζ, ξ0〉| ,

which vanishes for any ζ ∈ S
n−1 normal to ξ0. This completes the second part and the proof.

��
The following theorem is a discrete version of Theorem 1.2, which is an essential step

towards the general existence theorem.Herewe require a technical assumption of an antipodal
condition and p �= n + 1, which shall be ultimately removed.

Theorem 3.80 Let μ be a discrete positive Borel measure on S
n−1 satisfying conditions

(1.1) and has no antipodal pair of point masses i.e. if μ({ξ}) > 0 for some ξ ∈ S
n−1 then

μ({−ξ}) = 0. Then there exists a polytope P with non-empty interior such that μP = μ and
�(P) = 1 with μP = (gP )∗ωp as in (3.5), where ωp is any p-harmonic measure on ∂P and
� is as in (3.72), for any 1 < p < ∞ with p �= n + 1.

Proof By virtue of the duality relation of Theorem 2.38 between convex domains and positive
continuous functions onSn−1, the existence of the polytope P shall be obtained fromexistence
of minimizer of the following constrained minimization problem

b = inf

{∫
Sn−1

h dμ : h ∈ C+
(
S
n−1) , �(�h) ≥ 1

}
, (3.81)

where �h is the Wulff shape of h as in (2.37), hence �̄h = {x ∈ R
n : 〈x, ξ 〉 ≤ h(ξ) ∀ ξ ∈

S
n−1}, and � is as in (3.72) for a suitably defined measure μ�h , to be mentioned below.
Since μ is discrete, there exists ξ1, . . . , ξm ∈ S

n−1 such that we have

μ =
m∑
i=1

ciδξi

where, the condition (1.1) implies for all ξ ∈ S
n−1, we have

m∑
i=1

ci |〈ξ, ξi 〉| > 0 and
m∑
i=1

ciξi = 0, (3.82)
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and in particular, c1, . . . , cm > 0. Let us define P1 = {
x ∈ R

n : 〈x, ξi 〉 ≤ h(ξi ) ∀ i ∈
{1, . . . ,m}} for some h ∈ C+(Sn−1), which is a polytope from Theorem 2.18. We note that
�̄h ⊆ P1 and hP1(ξi ) = supx∈P1 〈x, ξi 〉 ≤ h(ξi ) from the definition of P1 andHn−1(∂�h) ≤
Hn−1(∂P1). Thus, we have

∫
Sn−1

hP1 dμ =
m∑
i=1

ci hP1(ξi ) ≤
m∑
i=1

ci h(ξi ) =
∫
Sn−1

h dμ. (3.83)

We also note that 0 ∈ �h if h > 0 and from Theorem 2.38, for S�h -a.e. ξ ∈ S
n−1, we have

h(ξ) = h�h (ξ) ≤ hP1(ξ) that may or may not include the set {ξ1, . . . , ξm}.
For any bounded sequence h j ∈ C+(Sn−1), let us denote the corresponding sequence of

polytopes as above, i.e. Pj = {
x ∈ R

n : 〈x, ξi 〉 ≤ h j (ξi ) ∀ i ∈ {1, . . . ,m}}. Then, �̄h j ⊆ Pj

and (3.83) leads to

m∑
i=1

ci hPj (ξi ) ≤ lim sup
j→∞

∫
Sn−1

h j dμ =: M < ∞

and since ci > 0, this implies for all x ∈ Pj we have 〈x, ξi 〉 ≤ hPj (ξi ) ≤ M/(min1≤i≤m ci ).
Thus, we can conclude that the sequence of polytopes {Pj } is bounded and hence, from
Blaschke selection theorem (Theorem 2.44), there exists P such that, up to subsequence,
dH(Pj , P) → 0+ as j → ∞. From Theorem 2.18, P is also a polytope with normals
ξ1, . . . , ξm .

Let u = uP be the p-harmonic function corresponding to any fixed p-harmonic measure
of P , defined in the neighborhood of ∂P that contains ∂Pj for all j ≥ j0, since from (2.43)
dH(∂Pj , ∂P) → 0+ as j → ∞. With respect to this u, we choose u j uniquely as solutions
of the Dirichlet problem (3.61) as in the previous subsection, so that we have μPj ⇀μP from
(3.71). We shall define μ�h j

with respect to u j similarly as μPj on neighborhoods of ∂Pj

that contain ∂�h j for j ≥ j0 large enough. In other words, we have defined

μPj = (gPj )∗
(|∇u j |p−1Hn−1 ¬

∂Pj

)
and μ�h j

= (g�h j
)∗

(|∇u j |p−1Hn−1 ¬
∂�h j

)
.

Now, let h j ∈ C+(Sn−1) be a minimizing sequence of the infima (3.81) where � is as in
(3.72) with μ�h j

as above. Since μPj ⇀μP , we have hence �(Pj ) → �(P) as j → ∞ and
since �h j ⊆ Pj , hence from (3.81) note that 1 ≤ �(�h j ) ≤ �(Pj ) and therefore,

∫
Sn−1

hPdμP = �(P) = lim
j→∞ �(Pj ) ≥ 1.

Suppose, P is of empty interior, hence P = ∂P and Hausdorff dimension dimH(P) < n.
Notice that the above enforces dimH(P) ≥ n − 1 (otherwise, Hn−1(P) = 0 = Hn−1(∂P)

which, from (3.5), implies μP ≡ 0 and hence �(P) = 0 contradicting the above). Then,
dimH(P) = n−1. As in (1) of Lemma 3.79, this can occur only if at least two half-spaces of
P share a common boundary and degenerate the whole polytope to a 1-codimensional face;
if those are the half spaces corresponding to ξi �= ξ j ∈ S

n−1, it enforces ξ j = −ξi . But since
ci , c j > 0, this contradicts the antipodal condition. Thus, P is of non-empty interior.

Therefore, let P0 �= ∅ be the interior of P and hence �(P0) ≥ 1, hP0 is a minimizer
of (3.81) and from (i i) of (1.1), the function ξ �→ hP0(ξ) + γ ξ is also a minimizer for
any γ > 0. Hence, without loss of generality, we can regard hP0(ξ) > 0 for all ξ ∈ S

n−1.
Recalling Theorem 2.38, for any arbitrary v ∈ C+(Sn−1), let �v is the Wulff shape of v as
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in (2.37) and then h�v = v holds S�v -a.e. Let h0 = hP0 and

�t = P0 + t�v so that h�t = hP0 + th�v = h0 + tv, S�v − a.e.

With respect to u = uP denoted above that is p-harmonic in a neighborhood of ∂P = ∂P0,
we choose μ�t to denote �(�t ) as in (3.72), defined by dμ�t = |∇u(·, t)|p−1dHn−1 ¬

∂�t

where u(·, t) is the unique solution of theDirichlet problem (3.10).Without loss of generality,
we can replace Pj and�h j above with infinitesimal dilations by (1+ t)with |t | < 1/ j which
does not affect the Hausdorff convergence. Then, μ�t with respect to u(·, t) for |t | < 1/ j
forms a special class of approximants amongμ�h j

with respect tou j of the above (seeRemark
3.62). Therefore, the minimization at h0 leads to the existence of Lagrange multiplier λ such
that we have

d

dt

∣∣∣
t=0

∫
Sn−1

(h0 + tv) dμ = λ
d

dt

∣∣∣
t=0

�(�t ). (3.84)

Now (3.77) of Proposition 3.76 together with (3.84), lead to∫
Sn−1

v dμ = λ(n − p + 1)
∫
Sn−1

v dμP0

for any v ∈ C+(Sn−1). Then, the above is also obtained for any v ∈ C(Sn−1) using v =
v+ − v−, which is enough to conclude μ = λ(n − p + 1)μP0 . Since h0 is the minimizer of
(3.81), we have

b =
∫
Sn−1

h0dμ = λ(n − p + 1)
∫
Sn−1

hP0dμP0 = λ(n − p + 1)�(P0),

so that λ = b/(n − p + 1)�(P0) and hence, μ = b
�(P0)

μP0 . In other words, we have

μ∫
Sn−1

hP0dμ

= μP0∫
Sn−1

hP0dμP0

,

which is equivalent to μ = cμP0 for some c > 0. By rescaling P0, we can ensure μP0 = μ

and �(P0) = 1. The proof is complete. ��
Finally, we are ready to prove the existence theorem for general Borel measures.

Proof of Theorem 1.2 Given the measure μ on S
n−1 satisfying (1.1), note that from (i) of

(1.1), we have

δ = inf
ζ∈Sn−1

∫
Sn−1

|〈ζ, ξ 〉| dμ(ξ) > 0.

There exists discrete measures μ j on S
n−1 such that μ j⇀μ as j → ∞ and we can assume

that there exists c = c(δ) > 0 such that for all j ∈ N, we have

inf
ζ∈Sn−1

∫
Sn−1

|〈ζ, ξ 〉| dμ j (ξ) ≥ c. (3.85)

Without loss of generality we can assume thatμ j ’s have no antipodal pair of point masses
Indeed, if μ j ({ξ j }), μ j ({−ξ j }) > 0 then μ j = c(δξ j + δ−ξ j ) + ν j for some other discrete

measure ν j andwe can replaceμ j withμ
ε j
j = c(δξ ′

j
+δ−ξ j )+ν j where 0 < |ξ ′

j −ξ j | < ε j for

ε j > 0 small enough, so that μ
ε j
j ({ξ j }) = 0 while μ

ε j
j ({−ξ j }) > 0 and μ

ε j
j ⇀μ as j → ∞.
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After finitely many replacements by such small perturbations on all antipodal points, we can
regard μ j ’s have no antipodal point masses for each j ∈ N.

Now we can use Theorem 3.80 above to conclude for all j ∈ N there exists a polytope Pj

of non-empty interior such that μPj = μ j and �(Pj ) = 1 defined as in (3.72) with respect
to μPj = (gPj )∗ωp, j where ωp, j is any p-harmonic measure on ∂Pj for p �= n + 1. For

the case p = n + 1, we denote μ
ε j
Pj

and �ε j corresponding to p = n + 1 + ε j and using

Theorem 3.80, take Pj such that μ
ε j
Pj

= μ j and �ε j (Pj ) = 1 where ε j �= 0 is small enough;

the limits remain the same since ‖με j
Pj

− μPj ‖, |�ε j (·) − �(·)| → 0+ as ε j → 0. We show

that the sequence of polytopes {Pj } is bounded. Indeed, for any x ∈ P̄j we have

∫
Sn−1

〈x, ξ 〉 dμ j (ξ) ≤
∫
Sn−1

hPj (ξ)dμ j (ξ) =
∫
Sn−1

hPj dμPj = �(Pj ) = 1.

Up to a suitable translation, we have 0 ∈ Pj and x j ,−x j ∈ ∂Pj such that diam(Pj ) = 2|x j |.
Therefore, we have 〈±x j , ξ 〉 ≤ hPj (ξ) and hence | 〈x j , ξ 〉 | ≤ hPj (ξ). Using this on the
above together with (3.85), we get

c|x j | ≤
∫
Sn−1

∣∣〈x j , ξ 〉∣∣ dμ j (ξ) ≤
∫
Sn−1

hPj (ξ)dμ j (ξ) = 1,

which implies diam(Pj )/2 = |x j | ≤ 1/c. FromBlaschke selection theorem (Theorem 2.44),
there exists a convex set K such that, up to subsequence, dH(Pj , K ) → 0+ as j → ∞. Letωp

be any p-harmonic measure on ∂K with respect to which we haveμK as in (3.5) and u = uK

be the corresponding p-harmonic function in a neighborhood of ∂K . Then, we choose the
p-harmonic measures ωp, j as dωp, j = |∇u j |p−1dHn−1 ¬

∂Pj where, with respect to this
u = uK , we choose u j ’s uniquely as the solutions of the Dirichlet problem (3.61) as in the
previous subsection, so that we have μPj ⇀μK from (3.71) and hence �(Pj ) → �(K ) as
j → ∞, leading to �(K ) = 1 and from uniqueness of the weak limit, μK = μ. Now we
show that K has a non-empty interior.

Suppose K is of empty interior so that K = ∂K then, the Hausdorff dimension
dimH(K ) < n. Now if dimH(K ) < n − 1 then Hn−1(K ) = 0 = Hn−1(∂K ) would
imply μK ≡ 0 from (3.5) and hence �(K ) = 0 which contradicts �(K ) = 1. Therefore, as
dimH(K ) ∈ N, we conclude dimH(K ) = n − 1. Since μK = μ satisfy (1.1), we invoke
Lemma 3.79 for a contradiction.

Therefore, there exists a domain � such that K = �̄ and μ� = μ. The proof is complete.
��
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