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Abstract— Objective: Event-related potentials (ERPs) reflect 

electropotential changes within specific cortical regions in 
response to specific events or stimuli during cognitive processes. 
The P300 speller is an important application of ERP-based 
brain-computer interfaces (BCIs), offering potential assistance to 
individuals with severe motor disabilities by decoding their 
electroencephalography (EEG) to communicate. Methods: This 
study introduced a novel speller paradigm using a dynamically 
growing bubble (GB) visualization as the stimulus, departing 
from the conventional flash stimulus (TF). Additionally, we 
proposed a “Lock a Target by Two Flashes” (LT2F) method to 
offer more versatile stimulus flash rules, complementing the row 
and column (RC) and single character (SC) modes. We applied 
the “Sub and Global” multi-window mode to EEGNet 
(mwEEGNet) to enhance classification and explored the 
performance of eight other representative algorithms. Results: 
Twenty healthy volunteers participated in the experiments. Our 
analysis revealed that our proposed pattern elicited more 
pronounced negative peaks in the parietal and occipital brain 
regions between 200 ms and 230 ms post-stimulus onset compared 
with the TF pattern. Compared to the TF pattern, the GB pattern 
yielded a 2.00% increase in online character accuracy (ACC) and 
a 5.39 bits/min improvement in information transfer rate (ITR) 
when using mwEEGNet. Furthermore, results demonstrated that 
mwEEGNet outperformed other methods in classification 
performance. Conclusion and Significance: These results 
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underscore the significance of our work in advancing ERP-based 
BCIs.  
 

Index Terms—Brain-computer interface (BCI), event-related 
potential (ERP), speller paradigm, growing bubble, multiple 
windows. 
 

I. INTRODUCTION 
RAIN computer interfaces (BCIs) offer a direct 
communication pathway between the brain and the 

outside environment without depending on the human body’s 
normal peripheral neural pathways and muscle tissue [1]. 
Electroencephalography (EEG), a non-invasive method 
widely used in BCI systems, acquires signals through 
electrodes placed on the scalp [2]. The acquired EEGs are 
translated into commands after pre-processing, feature 
extraction, and classification [3, 4]. The event-related 
potentials (ERPs) are cognitive potentials that result from the 
reception and processing of sensory information and the 
advanced processing of some cognitive activities, such as 
selective attention, memory updating, and semantic 
understanding [5]. ERPs include various potential 
components, such as N200 (N2), P300 (P3, including P3a and 
P3b), and N400 (N4).  

Designing a good paradigm to evoke ERPs in data 
acquisition is imperative. As research on ERPs has advanced, 
the speller paradigm - which makes use of visual ERPs - has 
developed, and many studies have explored different stimulus 
elements and flash strategies. Regarding stimulus elements, 
Farwell et al. [6] first proposed a system using a 6 6×  matrix 
stimulus interface comprising 26 letters and 10 digits, with 
rows and columns (RC) flashing in random order. Compared 
with the traditional 2-dimensional speller, Qu et al. [7] 
proposed a 3-dimensional P300 speller paradigm in which 
non-flashing characters had a blue background, and their 
background color turned green whenever the character flashed. 
Wu et al. [8] proposed a green circle and red dot spelling 
paradigm (GC-RD) to increase the amplitude of the P3a in the 
parietal area. Xu et al. [9] developed a speller based on 
miniature asymmetric visual evoked potentials (aVEPs), which 
encodes 32 characters with a space-code division multiple 
access scheme. It used very small and inconspicuous visual 
stimuli to implement an efficient BCI system. Kaufmann et al. 

A Growing Bubble Speller Paradigm for 
Brain-Computer Interface Based on 

Event-related Potentials 
Jing Jin*, Senior Member, IEEE, Xueqing Zhao, Ian Daly, Shurui Li, Xingyu Wang, Andrzej Cichocki, 

Fellow, IEEE, Tzyy-Ping Jung, Fellow, IEEE  

B 

mailto:shuruili1008@163.com


> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

2 

[10] used famous faces to cover characters transparently and 
found that these familiar faces evoked more ERP components 
and significantly reduced the sequence needed for correct 
character classification. As the study of the face paradigm 
gradually developed, the stimuli expanded to include facial 
emotions [11], cartoon and virtual faces [12], self-faces [13], 
and distinct color faces [14]. In addition, studies of 
motion-onset visual evoked potentials (mVEPs) based BCI 
spellers (also known as N200 spellers) have confirmed the 
validity of the non-flashing visual BCI paradigm [15, 16]. With 
flash strategies, Guan et al. [17] designed the single character 
(SC) paradigm to eliminate adjacent disturbances and 
double-flash problems. Jin et al. proposed a flashing pattern 
based on the binomial coefficient [18]. It considered the 
number of possible combinations given by the binomial 
coefficients to design the stimulus presentation, reducing the 
flashes per trial. The participants who used the lateral 
single-character speller (LSC) [19] needed to focus on only one 
side of the screen at a time. According to the study results, this 
left-right layout reduces local disturbances. The concepts of 
regions and multi-stages have also been added to the design to 
improve system performance [20-22]. 

Many studies have focused on ERP decoding and obtained 
significant results. Researchers widely use the linear 
discriminant analysis (LDA) classifier, which has been 
enhanced through a stepwise method called SWLDA [23], in 
ERP decoding. Introducing the shrinkage LDA (SKLDA) [24], 
which combined LDA with covariance shrinkage, has led to 
the detection of single-trial ERP signals and has shown 
superior classification performance compared to LDA and 
SWLDA classifiers. In addition, many studies have used the 
support vector machine (SVM) as a classifier [25, 26]. Li et al. 
[27] proposed an extreme gradient boosting based 
discriminant information mining (XGB-DIM) method for 
EEG classification. With the development of deep learning 
[28], convolutional neural networks (CNN), which have 
achieved state-of-the-art (SOTA) performance in computer 
vision (CV) [29, 30], are increasingly being applied to EEG 
decoding [31, 32]. Several studies have documented using 
different types of CNNs to detect ERPs. A robust and compact 
architecture proposed by Lawhern et al. [33], called EEGNet, 
used depthwise and separable convolutions to reduce network 
parameters and had neurophysiological interpretability. 
EEG-Inception [34] integrated inception modules to facilitate 
the extraction of feature maps at different temporal scales. Ma 
et al. [35] introduced the ERP-CapsNet framework, which 
used a capsule network (CapsNet) to extract the 
discriminative spatial-temporal ERP features and encode 
them in capsules to reduce the loss of valuable information. 
Wang et al. [36] combined capsule networks with temporal 
and spatial attention modules to propose ST-CapsNet. The 
phase preservation neural network (PPNN) employed a series 
of dilated temporal convolutional layers to capture temporal 
dynamics while preserving phase information [37]. 

Potentials evoked by the motion behavior of visual objects 
have the advantage of being insensitive to contrast and 

luminance compared to flash mode [15]. Manually 
determined flash rules currently have a limited variety. 
Enumeration with constraints provides a more comprehensive 
set of flash rules but demands more computational cost. For 
the ERP-based BCIs , spatial features of the EEG vary over 
time after stimulation onset. Setting different spatial feature 
weights for various periods is expected to enhance the 
decoding performance of the classifier. In this work, we 
explore the possibility of using a dynamically changing 
stimulus element in the speller and consider a more 
generalized approach to obtain flash rules. The classification 
step also introduces the “Sub and Global” multi-window 
mode. Here are the main contributions of this work: 1) we 
design a new growing bubble stimulus pattern using 
dynamically increasing radii instead of the typical flash; 2) we 
explore a more general flash strategy that uses two flashes to 
lock a unique target; 3) we use multi-window EEGNet 
(mwEEGNet) as the classifier for this system and present the 
classification results of eight other representative methods 
using data from both patterns. The experimental results 
showed that compared to the typical flash, our proposed 
pattern elicited more pronounced negative peaks in the 
parietal and occipital brain regions between 200 ms and 230 
ms post-stimulus onset compared with the TF pattern and had 
better classification performance. Also, mwEEGNet 
outperformed other methods in classification. 
 

II. EXPERIMENTS AND METHODS 

A. Experimental Paradigm 
In our experiments, participants sat 60 cm in front of a 

23-inch LED monitor (DELL P2314H) with a standard RGB 
color gamut, 1920 1080×  pixels, and a 60 Hz refresh rate. The 
system ran on the Intel(R) Core(TM) i9-13900HX CPU, 
NVIDIA GeForce GTX 4060 with CUDA 11.8, and Python 3.8. 
Participants were asked to relax and avoid unnecessary 
movements during the experiment. The stimulation interface 
was constructed with Psychopy. 

 
Fig. 1.  Experimental procedure used with the TF and GB patterns. 
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This study contained two types of experiments: the typical 
flash (TF) speller and the growing bubble (GB) speller, as 
shown in Fig. 1. Each participant completed the two paradigm 
experiments on the same day, with a 15-minute rest between 
experiments. Both paradigms used a 5 8×  grid to display 
stimuli but different intensification methods to highlight each 
stimulus. Each paradigm comprised both offline and online 
components, with participants taking a 10-minute break 
between these sections. Throughout the experiments, 
participants silently counted the number of flashes 
corresponding to the target character. 

Each participant in the offline experiment had to spell 40 
different targets. Each target comprised five runs, with each run 
consisting of 16 trials. An 800 ms interval separated each run. 
We set the stimulus onset asynchrony (SOA) to 200 ms. One 
intensification was regarded as a trial. At the onset of each new 
target, a red square indicated the target location for 2 seconds. 
After completing five runs, a 500 ms blue square provided 
feedback. The red and blue squares appeared at the target 
position during the offline phase. We used the offline data from 
each participant to train a personalized model, which was 
subsequently used for online decoding 

Each participant was asked to spell 40 different character 
targets in the online experiment. For both patterns, the number 
of online runs was determined by the same early stopping 

strategy with the same parameters. Section II.E describes how 
to implement early stopping online. The stimulus interface 
provided character recognition results in the bottom area, with 
green displaying matching results and red displaying 
mismatches. However, to assess the effectiveness of various 
algorithms, we collected complete online data as the test set. 
Following an early stop, only the result was returned, but the 
flashes continued until five runs later when the blue square 
appeared at the recognition position. 

Table I shows the stimulation parameters. In the GB pattern, 
the bubble (circle) radius linearly increases from 0.4h to h over 
200 ms, where h is the height of the characters. The opacity of 
the bubble is 0.5, and its color is white. For the TF pattern, the 
circle’s radius is h for the first 100 ms, and then decreases to 0 
in the next 100 ms. When the characters are intensified, their 
color becomes white, and the contrast is 1. In other cases, their 
contrast is set to −0.3. 

 

B. Flash Strategy  
P300 BCI systems typically use a row/column (RC) [6] or 

single character (SC) [17] flash approach. Increasing the 
number of characters flashing simultaneously and reducing the 
number of flashes per run can enhance the information transfer 
rate (ITR), provided that paradigms maintain comparable 
identification accuracy. P300 spellers need at least two flashes 
to locate a character when multiple characters are intensified at 
once. In the 6 6×  RC mode, a row and a column can lock only 
one specific character, ensuring precise character localization. 
Beyond the RC flashing format, a more generalized approach is 
required to ensure that two flashes can infer the position of a 
single character. Here, we introduce a method called Lock a 
Target by Two Flashes (LT2F). 

Suppose the character matrix of the speller is 1sS ×∈ , 
 where   ( )s m n m n= × ≤ , m  is the number of characters 
simultaneously intensified, and n  represents half of the flash 
number. LT2F can be used to determine the rule with 2n  

 
Fig. 2.  The flowchart of LT2F to determine the flash rule. 
 TABLE I 

STIMULATION INTERFACE PARAMETER SETTING 

Name Setting 
Background color = black 
Rectangle color = white, opacity = 0.15 
Character 1 color = white, contrastunintensified = −0.3,  

contrastintensified = 1 
Character 2 colordefault = white, contrastdefault = −0.3,  

colormatched = green, contrastmatched = 1,  
colormismatched = red, contrastmismatched = 1 

Circle (TF) color = white, radius = h, opacity = 0.5 
Bubble (GB) color = white, radius ∈ [0.4h, h], opacity = 0.5 
Note: where Character 1 is the character in the spelling region, Character 
2 is the character in the feedback, and h is the height of the characters. 
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flashes. These rules allocate different characters within the 
speller to distinct two-flash sets. The pseudocode and Fig. 2 
illustrate the functioning of LT2F. 

The elements within the same column of the rule matrix, Q , 
are intensified simultaneously. A run comprising 2n  flashes 
corresponds to the rule matrix Q . Each Q  contains two parts, 

half A
m nQ ×∈ and half B

m nQ ×∈ . In the LT2F method, each 
character appears once in matrices half AQ  and half BQ  
respectively. The half-flash rule half AQ  can be either manually 
designated or randomly generated. The pseudocode’s Steps 1 
and 2 show the random generation approach. The elements in 
S  are shuffled randomly and reshaped into the matrix half AQ . It 
can also be further manually designed to avoid the adjacent 
disturbances. After half AQ  is determined, the corresponding 

half BQ  can be calculated via Steps 3-9 outlined in the 
pseudocode.  

As shown in the right side of Fig. 2, following the diagonal 
direction determines the other half of the flash rule. This 
ensures that each flash in the second half-flash rule has at most 
one intersection with each flash in the first half-flash rule, and 
intersections cover all characters. The newly generated flash, 
comprising m  elements, intersects exclusively with each of the 
m  columns in half AQ . A total of n  generated flashes make up 

half BQ .  
The left side in Fig. 2 shows a part of the flash rule used in 

this study where 5,  8m n= = , and 5 16Q ×∈ . The numbers 
1-40 within the matrix denote element indices, while blocks of 
the same color in the Half Flash Rule denote elements within 
the same flash. We generate different Q  using LT2F and 
randomly shuffled half AQ  and half BQ  in each case. To avoid the 
target appearing in the adjacent flash, the Q  whose last column 
of half AQ  has an empty intersection with the first column of 

half BQ  is considered a satisfied flash rule and put in a flash rule 
pool comprising 500 entries. Subsequently, for each run, the 
flash rule matrix Q  is randomly from the flash rule pool. 

 
C. Participants and Data Acquisition 

We recruited twenty healthy volunteers (P1-P20, 21-28 years 
old, 6 females, and 14 males) with normal or corrected to 

normal vision to participate in the study. All participants are 
right-handed and have normal color vision. Their native 
language is Mandarin, and they are familiar with the characters 
on the display. The Local Institutional Review Board approved 
the experimental procedures (Document Number: 
ECUST-2022-054). Each participant provided written 
informed consent after thoroughly explaining the study’s 
objectives, tasks, and potential consequences of participation. 
Among the participants, nine (P6, P8, P9, P13, P15, P16, P17, 
P18, and P20) prior experience with BCI experiments.  

The experiments used a wireless EEG acquisition system 
NSW364 (Neuracle, NeuSen W series, 59 EEG, 4EOG, 1ECG) 
to acquire data at the 1000 Hz sampling rate with Ag/AgCl 
electrodes (channels) placed at the positions following the 
10-20 system, as shown in Fig. 3. We maintained electrode 
impedance below 20 kΩ. The reference channel is CPz and the 
ground channel is AFz. Of the 39 black channels shown in Fig. 
3 for data acquisition, 26 were used for EEG decoding, based 
on existing literature [14, 24]. We used channels T7 and T8 for 
re-reference. 

 

D. Decoding Process 
In this study, the decoding workflow includes 

pre-processing and classification algorithms. Pre-processing 
comprised re-referencing the stored EEG signals using the 
average data from T7 and T8 and down-sampling them to 250 
Hz. We used an IIR notch filter centered at 50 Hz to remove 
power line interference. A 4th-order Butterworth filter was 
used for band-pass filtering between 1 and 40 Hz to reduce the 
noise in the EEG. We extracted data segments from the 0-1 s 
after stimulus onset for the classification of each trial, and we 
corrected the baseline using data from the 100 ms preceding 
stimulus. The EEG signals were then standardized using 
z-scoring. 

Here, we use the multi-window EEGNet as the classifier, 
called mwEEGNet. This model recognizes the targets from 
spellers by classifying the EEG features after pre-processing. 
Fig. 4 and Table II illustrate the detailed model structure. 

The input features undergo decomposition into multiple 
overlapping sub-windows using a sliding method in the first 

 
Algorithm 1 Lock a Target by Two Flashes (LT2F) 
Input: Element (character) vector 1sS ×∈  , number of elements flashing 
simultaneously m  , number of flashes in a trial 2n .  

Output: Flash rule matrix 2m nQ ×∈ , where Q  consists of two parts, 

half A
m nQ ×∈  and half B

m nQ ×∈ . 
1: random shuffle  S S←  
2: half A reshape , ] into [Q mS n←  

3: 1 ni n←for  to   do  
4:     zeros ([ ,1])tmp m←  

5:     1 mi m←for  to   do  

6:         half A[ ] [ ,  ( 1)% ]m m m ntmp i Q i i n i← − +  
7:     end 
8:     half B[:,  ]nQ i tmp←  
9: end 
10: half A half Bconcatenate and  in the 2nd dimensionQ Q Q←  
11: return Q  
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Fig. 3.  Channel locations of NSW364.  
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step, starting from 0 ms to 500 ms with a width of 200 ms and 
an overlap of 100 ms. Consequentially, the mwEEGNet 
classifier considers a total of 4 sub-windows: 0-200 ms, 
100-300 ms, 200-400 ms, and 300-500 ms. All windows with 
C  channels and iT  time samples are imported into the network 
framework in parallel. The model uses the Adam optimizer [38] 
and minimizes the binary cross-entropy loss function. A 
manual rescaling weight is given to the loss of each batch 
element to mitigate the imbalance of sample categories. In this 
study, the weight of loss is [0.125, 0.875] and the learning rate 
is 0.001. We run 200 training iterations with a batch size of 512 
using Pytorch [39]. As shown in Table II, the mwEEGNet 
architecture comprises four blocks. The data from each window 
undergo sequential processing in Blocks 1-3 blocks and are 
then concatenated before entering the Out block. 

Block 1 comprises a temporal 2D convolution layer 
(Conv2D) and a batch normalization layer (BN) [40]. The 
kernel size ( )1,  //2iT  is chosen to be half of the input window 
length iT , where [1,  5]i ∈  is the number of windows (4 
sub-windows and a global window) and 1F  is 8, indicating the 

number of temporal filters.  
Block 2 works as a spatial filter and has a depthwise 

convolution (DepthwiseConv2D) [41] to weigh the selected 
channels with kernel size ( ),  1C  (where 26C =  is the number 
of used channels when decoding) and the depth parameter 

2D = . Feature maps after DepthwiseConv2D are sent to BN, 
then through the exponential linear unit (ELU) [42] activation 
function. An average pooling layer is used for temporal 
dimension reduction and 1B  is set to 2 for sub-windows or 4 for 
the global window. The dropout [43] probability is set to 0.5 to 
prevent overfitting when training on small sample sizes.  

A separable convolution [41] consisting of 
DepthwiseConv2D of size ( )11,  // //iT B K  and point convolution 
is included in Block 3, where K  is a hyperparameter that 
controls the convolution kernel size. For the global window, we 
still consider setting the kernel size to half of the input feature 
map of this layer in the time dimension ( 2)K =  and using the 
average pooling layer of size (1, 8) to reduce the dimensionality. 
For sub-windows, the kernel width is equal to the feature map 
width of the input to this layer ( 1)K = , and the size of the 
average pooling layer is (1, 4). 

As shown in Fig. 4, Block Out performs the classification 
process after concatenating the output features of Block 3. 

 

E. Online Adaptive Setting 
We set up an adaptive strategy in the online system to 

achieve the early stop. As shown in Fig. 1, all character 
probabilities are averaged over multiple runs for each target. 
When the maximum character probability is not less than 1.5 

TABLE II 
THE ILLUSTRATION OF THE MWEEGNET ARCHITECTURE 

Block Type Filter Kernel Output Activation Options 

1 

Input   ( )1,  ,  iC T    

Conv2D 1F  ( )1,  //2iT  ( )1,  ,  iF C T  Linear padding = same 

BatchNorm   ( )1,  ,  iF C T    

2 

DepthwiseConv2D 1D F∗  ( ),  1C  ( )1,  1,  iD F T∗  Linear depth = D, max norm = 1 
     padding = valid 
BatchNorm   ( )1,  1,  iD F T∗    

Activation   ( )1,  1,  iD F T∗  ELU  

AveragePool2D  ( )11,  B  ( )1 1,  1,  //iD F T B∗   1 2 (sub) or 4 (global)B =  
Dropout   ( )1 1,  1,  //iD F T B∗   0.5p =  

3 

SeparableConv2D 1D F∗  ( )11,  // //iT B K  ( )1 1,  1,  //iD F T B∗  Linear 1 (sub) or 2 (global)K =  
     padding = same 
BatchNorm   ( )1 1,  1,  //iD F T B∗    

Activation   ( )1 1,  1,  //iD F T B∗  ELU  

AveragePool2D  ( )21,  B  ( )1 1 2,  1,  // //iD F T B B∗   2 4 (sub) or 8 (global)B =  
Dropout   ( )1 1 2,  1,  // //iD F T B B∗   0.5p =  

Out 
Flatten   

5

1 1 2
1

( ( // // ))i
i

D F T B B
=

∗ ∗∑
 

  

Dense   classN  Softmax max norm = 0.25 

Note: where C = number of channels, Ti = number of time points in the ith window (i ∈ [1, 4] for sub-windows, i = 5 for global window), F1 = number of 
temporal filters, D = depth multiplier (number of spatial filters), B1 = width of the average pool layer in block 2 (2 for sub-windows, 4 for the global window), 
B2 = width of the average pool layer in block 3 (4 for sub-windows, 8 for the global window), K is the parameter that decides the size of the kernel, and Nclass 
= number of classes. 

 

 
Fig. 4.  An overview of the decoding process framework. 
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times the second largest character probability, we consider the 
recognition reliable, and a new run for the same target is 
unnecessary. The maximum number of runs is set to 5, which is 
the same as the offline number of runs. If the confidence 
criterion is not met after 5 runs, the algorithm will directly 
output the character corresponding to the maximum average 
probability. 

F. Evaluation and Statistical Analysis 
The classification accuracy (ACC), F1-score (F1), average 

run number (AVR), and information transfer rate (ITR) [44] are 
calculated to measure the performance of the TF and the GB 
pattern. The ITR is defined as:  

 ( )2 2 2
1 60ITR log log 1 log

1
PM P P P

M T
− = + + − − 

 (1) 

where M  is the number of character classes (here, 40)M = , 
P  represents the character classification accuracy, and 

2.5 4   (1 5)T j j= + ≤ ≤  is the time required to obtain a 
character. There is a 2.5 s interval between each target character, 
including 500 ms for feedback presentation and 2s for the next 
target cue. Each trial lasts 200 ms, and a single run comprising 
16 trials takes 4 s. 

For statistical analysis of the experimental outcomes, we 
used IBM SPSS Statistics, version 25. The Shapiro-Wilk (S-W) 
test is used to check whether the sample conforms to a normal 
distribution. Given that most indicators did not exhibit a normal 
distribution, we chose the Wilcoxon signed-rank test to 
statistically analyze the system’s performance. 

 

III. EXPERIMENTAL RESULTS 

A. ERP Analysis 
We visualized the offline data from 20 participants after 

pre-processing without applying z-scoring. Selected channels 
in the frontal, central, parietal, and occipital regions were 
included for display. Fig. 5 shows the grand-averaged 
amplitudes of target and nontarget trials for each of the two 
stimulus patterns. Bimodal waves were observed on channels 
F3, Fz, F4, C3, Cz, and C4 between 210 ms and 350 ms in both 
patterns. The P100 component predominantly manifested in the 
parietal and occipital regions, while the P300 distribution 

 
Fig. 5.  The grand-averaged ERP amplitudes of 20 participants over 19 channels in two spelling paradigms. 
 

 
Fig. 6.  The signed R-squared value maps from 0 s to 1 s of 20 participants over 
26 channels in the TF and GB patterns. 
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extended along the zero-line channels, with amplitudes 
exceeding 2 μV on channels Cz, Pz, POz, PO3, PO4, Oz, O1, 
and O2. 

The P300 components of the GB pattern in the frontal and 
central region had lower amplitudes than those evoked by the 
adjsmaller than that of the TF pattern. The GB pattern showed 
stronger negative deflections in the parietal and occipital 
regions from 200 ms to 250 ms than the TF pattern, especially 
in channels Oz, O1, and O2. Based on existing studies [15, 16, 
45], we conclude that small to large stimulus patterns of GB 
create motion-specific stimuli that lead to this phenomenon. 

Fig. 6 shows the signed R-squared values of ERPs from 0 s to 
1 s averaged over all the participants. The formula is given as 
follows: 

 ( )
target nontarget target nontarget

target nontarget target nontarget

mean( ) mean( )
std

N N X X
r

N N X X
−

= ⋅


＋
 (2) 

where Ntarget and Nnontarget refer to the number of targets and 
nontargets, respectively, and Xtarget and Xnontarget are the features 
of the corresponding classes. Then, 2 2sgn( )R r r= . The signed 
R-squared maps also indicated that greater discriminative 
negative components can be evoked by GB at about 200-230 
ms. 
 

B. Offline Analysis  
We evaluated the performance using mwEEGNet through 

5-fold cross-validation, considering both single-trial and 
character offline classification results. 

Fig. 7 (a) presents each participant’s single-trial average 
ACC and F1 scores after cross-validation. Most participants 
obtained higher ACC and F1 scores with the GB pattern. On 
average, participants attained ACC and F1 scores of 97.12% 
and 93.08%, respectively, with the GB pattern, compared to 
96.14% and 90.69% with the TF pattern. Fig. 7 (b) and (c) 
depict the average offline character ACC and ITR scores as the 
number of runs increases. The GB pattern showed higher ACC 
and ITR scores with the same number of runs. When decoding 
with only the first run of each character, the GB pattern 
achieved an average character ACC of 88.35% and an ITR of 
39.96 bits/min, while the TF pattern achieved an average 
character ACC of 86.00% and an ITR of 38.27 bits/min. 
Notably, the GB pattern achieved a character accuracy of 99.30% 
using 3 runs of data. 

 

C. Online Analysis  
Each participant attended an online spelling task of 40 

characters for both patterns after offline training. The online 
system used an early stopping strategy to reduce the number 
of runs of a single character. Table III shows the online 
single-trial and character recognition results. The calculated 
p-values indicate the significance of the differences between 
each evaluated metric pair.  

When using mwEEGNet as a classifier, the single trial ACC 

in the GB pattern was significantly higher than that achieved 
by the TF pattern, with a difference of 1.23%. The online ITR 
of the GB pattern achieved 32.49 bits/min on average, with a 
peak value of 39.42 bits/min, and the average run number used 
by participants was 1.87. The participant, P14, who performed 
poorly during offline cross-validation, had a lower ITR of 
19.69 bits/min for the online experiment. 

 

IV. DISCUSSION 
In this study, we developed the GB speller paradigm using 

mwEEGNet as the classifier. This paradigm used the LT2F 
method to arrange the stimulus order within each run. The 
relevance of the input features to the predicted results was 
visualized to provide interpretability. The rationale for 
incorporating multi-windows stems from observing temporal 
changes in the cortical regions activated by target stimuli, 
potentially resulting in varying channel weights. We 
examined the weight distribution across each window and 
assessed how the number of windows impacted the 
mwEEGNet classifier’s performance. Subsequently, we 
delved into comparing the performance of nine distinct 
classifiers across the two paradigms to underscore the system 
and algorithm effectiveness. The offline data served as the 
training set, while all online data constituted the test set. 
Finally, we analyzed the limitations of this study. 

 
(a) 

 
(b)                                                    (c) 
 

Fig. 7.  The offline performance of the TF and GB patterns including (a) the 
ACC (%) and F1 (%) scores based on trial classification, (b) the ACC (%) of 
character recognition and (c) the ITR (bits/min). 
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A. Feature relevance on the classification decision when 
using mwEEGNet 

We used DeepLIFT [46] to demonstrate the importance of 
each input feature to the model output. Positive relevance 

values indicate evidence supporting the prediction, while 
negative relevance values indicate evidence against the 
prediction [33]. As shown in Fig. 8, TF and GB obtained 
stronger relevance in the parietal and occipital regions at about 
100-400 ms when features were correctly predicted (Label 1_1 

TABLE III 
ONLINE ACC, F1, AVR, ITR, AND SIGNIFICANCE COMPARISON FOR THE TF AND GB PATTERNS FOR ALL PARTICIPANTS 

Participant 
Trial [TF, GB]  Character [TF, GB] 

ACC (%) F1 (%)  ACC (%) F1 (%) AVR ITR (bits/min) 
P1 [96.91, 97.29] [92.56, 93.46]  [100.00, 100.00] [100.00, 100.00] [2.13, 1.68] [29.03, 34.71] 
P2 [96.21, 97.04] [90.73, 92.95]  [97.50, 97.50] [96.67, 96.67] [2.10, 1.90] [27.64, 29.83] 
P3 [97.09, 97.86] [93.19, 95.13]  [100.00, 100.00] [100.00, 100.00] [1.83, 1.75] [32.58, 33.61] 
P4 [93.48, 95.88] [84.04, 90.12]  [97.50, 100.00] [96.67, 100.00] [2.93, 2.05] [21.22, 29.84] 
P5 [96.02, 96.79] [90.83, 92.10]  [97.50, 100.00] [96.67, 100.00] [1.93, 1.95] [29.54, 31.00] 
P6 [97.40, 98.88] [93.83, 97.41]  [100.00, 100.00] [100.00, 100.00] [1.80, 1.40] [32.92, 39.42] 
P7 [96.52, 97.37] [92.21, 93.66]  [100.00, 100.00] [100.00, 100.00] [1.98, 1.73] [30.70, 33.97] 
P8 [96.41, 96.83] [91.71, 92.26]  [100.00, 100.00] [100.00, 100.00] [2.18, 1.93] [28.51, 31.31] 
P9 [96.23, 98.12] [90.86, 95.52]  [100.00, 100.00] [100.00, 100.00] [1.95, 1.58] [31.00, 36.29] 
P10 [94.74, 96.33] [87.80, 90.94]  [97.50, 100.00] [96.67, 100.00] [2.53, 1.88] [23.91, 31.93] 
P11 [95.30, 95.56] [88.96, 89.42]  [95.00, 97.50] [93.33, 96.67] [2.63, 2.33] [22.02, 25.53] 
P12 [96.78, 98.44] [92.12, 96.32]  [97.50, 100.00] [96.67, 100.00] [1.70, 1.40] [32.39, 39.42] 
P13 [88.79, 97.21] [70.96, 93.34]  [75.00, 100.00] [70.00, 100.00] [3.63, 1.85] [11.26, 32.25] 
P14 [93.62, 93.41] [84.24, 83.18]  [97.50, 97.50] [96.67, 96.67] [3.63, 3.20] [17.72, 19.69] 
P15 [94.58, 96.60] [87.31, 91.89]  [100.00, 100.00] [100.00, 100.00] [3.03, 2.03] [21.87, 30.12] 
P16 [95.81, 95.12] [90.26, 88.40]  [100.00, 100.00] [100.00, 100.00] [2.20, 2.40] [28.26, 26.39] 
P17 [97.89, 97.85] [95.17, 95.03]  [100.00, 100.00] [100.00, 100.00] [1.78, 1.53] [33.26, 37.13] 
P18 [97.83, 98.17] [94.84, 95.67]  [100.00, 100.00] [100.00, 100.00] [1.80, 1.45] [32.92, 38.47] 
P19 [96.73, 97.32] [92.07, 93.64]  [97.50, 100.00] [96.67, 100.00] [2.10, 1.58] [27.64, 36.29] 
P20 [95.81, 96.75] [89.97, 92.38]  [100.00, 100.00] [100.00, 100.00] [2.28, 1.83] [27.53, 32.58] 
AVG [95.71, 96.94] [89.68, 92.64]  [97.63, 99.63] [97.00, 99.50] [2.30, 1.87] [27.10, 32.49] 
STD [2.04, 1.27] [5.34, 3.22]  [5.53, 0.92] [6.66, 1.22] [0.58, 0.42] [5.82, 4.94] 
p  <0.001 0.001  0.011 0.014 <0.001 <0.001 

Note: AVG refers to the average value, and STD refers to the standard deviation. p-values are calculated by the Wilcoxon signed-rank test, and samples are 
significantly different from each other when 𝑝𝑝 ≤ 0.05. For different metrics, the better-performing data are indicated in bold.  

 

Fig. 8.  The participant-averaged feature relevance for the trained mwEEGNet in the TF and GB patterns by using DeepLIFT. Label i_j indicates that the true 
label is Class i and the predicted label is Class j. Class 1 represents the target, and Class 0 is the nontarget. 
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and 0_0). When incorrectly predicted (Label 1_0 and Label 
0_1), the feature relevance values were more widely distributed 
on the scalp. Around 200-230 ms, Label 1_1 of GB exhibited 
stronger feature relevance. This aligns with the ERP analysis in 
Section III.A. 
 

B. The Weights of the Spatial Convolution in Different 
Window 

We used MNE [47] to visualize the weights 1CW ×∈  of 
the DepthwiseConv2D layer within the mwEEGNet classifier. 
Fig. 9 shows the spatial weights of the participants’ averages, 
with P12 exhibiting higher ITR and P14 displaying lower ITR. 
The Average weights were calculated by taking the average of 
the absolute values across all the participants’ filters. The 
weights for P12 and P14 were calculated by averaging the 
absolute values of the respective self-filters’ weights. We 
segmented the data into five time windows: 0-200 ms, 
100-300 ms, 200-400 ms, 300-500 ms, and 0-1 s. Across both 
paradigms, the weights within each window for the Average 
group showed elevated values in the parietal and occipital 
regions compared to other cortical regions. Spatial patterns 
fluctuate across time windows. For P12, Pz exhibited notably 
higher weights in sub-windows 2 and 3, with this trend less 
prominent in other windows. Conversely, in P14, PO3 and 
PO4 exhibited higher weights in sub-windows 2 and 3 within 
the TF pattern, while sub-window 2 in the GB pattern 
emphasized P3 and Pz more.  
 

C. The Effect of Multiple Windows on mwEEGNet 
We used the offline data as the training set and the whole 

online data as a test set to compare the classification 
performance with different numbers of windows. The “Sub and 
Global” mode was used to design mwEEGNet. We segmented 
the entire data into nine sub-windo ws by extracting data from 
0 to 1 s post-stimulus onset, with a window length of 200 ms 
and a stride of 100 ms. As the number of sub-windows SWN  
increased, the network parameters grew linearly. Table IV 
shows the effect of different sub-window numbers on the 
performance of mwEEGNet, where SW 1N =  means the 
inclusion of the 0-200 ms window, SW 2N = means the 
inclusion of the windows 0-200 ms and 100-300 ms. The 
network parameters increased by 2232 for each additional 
window. As shown in Table IV and Table V, the used method 
achieved higher trial ACC and F1 scores than those achieved by 
EEGNet SW( 0)N = . However, with further window additions 

SW( 4)N ≥ , the enhancement in classification performance 
plateaued and, in some cases, experienced a slight decline, 
albeit still surpassing EEGNet. In this study, we used 4 
sub-windows based on the preliminary testing of paradigms. 
According to our study, the early visual component and the 
P300 component, which are key features of the two paradigms, 
predominantly manifest during the first 0-500ms of visual 
perception and conclude before 600 ms. 
 

D. Comparison of Classification Performance with Other 
Classifiers 

We assessed the performance of various classifiers across 
two paradigms, encompassing three traditional machine 
learning methods and six neural networks. For XGBDIM, we 
used the multi-XGBDIM function from the open-source code. 
The channel combination was set as follows: [Fz, F3, F4, FCz, 
FC3, FC4, Cz, C3, C4], [TP7, CP3, Pz, P7, P3, POz, PO7, PO3, 
Oz], [TP8, CP4, Pz, P8, P4, POz, PO8, PO4, Oz], and [P3, Pz, 
P4, PO3, POz, PO4, O1, Oz, O2]. All other parameters were 
kept at default. To address data imbalance Nnontarget : Ntarget = 7:1, 
we set the weight of the cross-entropy to [0.125, 0.875]. The 
training involved 200 iterations (epochs) for these models, with 
a batch size of 512 for EEGInception, PPNN, and EEGNet. 
ERPCapsNet and STCapsNet, however, used batch sizes of 128 
and 64, respectively, based on findings from the original paper 
indicating inferior classification results with a batch size of 512. 
The Adam optimizer was used for training, with a learning rate 
of 0.001. 

As shown in Table V, classifiers generally obtained better 
classification performance in the GB pattern than in the TF 
pattern. The results of significance tests showed that 
mwEEGNet achieved statistically significant improvements 
relative to SKLDA, SVM, XGBDIM, ERPCapsNet, 
STCapsNet, PPNN, and EEGNet in trial ACC, trial F1, and 
character ACC. Furthermore, mwEEGNet demonstrated 
significant superiority over EEGInception in both trial ACC 
and F1 scores. Fig. 10 shows the ITRs of different algorithms 
for the TF and GB patterns, with mwEEGNet exhibiting the 
best performance. Table VI shows the computational 

 
Fig. 9.  Topographies of spatial convolution weights on different windows in 
the DepthwiseConv2D layer. The Average weights are calculated by taking 
the average of the absolute values from all the participants’ filters. The 
weights for P12 and P14 are calculated by averaging the absolute values of 
self filters’ weights. 
 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

10 

complexity of different network models. MACs are 
multiply-accumulate operations, while Params denote the count 
of trainable network parameters. The computational 
complexity of mwEEGNet was manageable. 

 

E. Limitations and Future Works 
Table III and Fig. 7 showed that some participants (e.g., P12) 

achieved good offline and online performance, the TF offline 
single trial ACC was 97.41%, while the TF online single trial 
ACC reached 96.78%. Similarly, the GB offline single trial 
ACC reached 98.50%, while the GB online single trial ACC 
reached 98.44%. An automated offline adaptive approach 

TABLE IV  
PARTICIPANT-AVERAGED TRIAL ACC (%), TRIAL F1 (%), CHARACTER ACC (%), AND ITR (BITS/MIN) FOR THE TF AND GB PATTERNS WHEN USING 

DIFFERENT NUMBERS OF SUB-WINDOWS 
Number of  

sub-windows SWN  1 2 3 4 5 6 7 8 9 

Params 4706 6938 9170 11402 13634 15866 18098 20330 22562 

TF 

Trial ACC 95.17 95.75 95.73 95.83 95.82 95.72 95.68 95.70 95.67 
Trial F1 87.85 89.55 89.61 89.97 89.98 89.68 89.69 89.68 89.65 
Char ACC 1 78.75 83.13 83.38 83.25 82.25 83.00 81.50 82.50 83.25 
Char ACC 2 91.25 92.75 93.25 92.88 93.88 93.00 93.00 92.38 92.38 
Char ACC 3 95.50 96.38 95.88 95.75 96.63 96.00 95.63 96.00 95.13 
Char ACC 4 96.63 97.88 97.63 98.00 97.50 98.13 97.25 97.75 97.00 
Char ACC 5 97.38 98.25 98.00 98.25 97.75 98.00 98.13 98.50 98.13 
ITR 1 32.51 35.62 35.79 35.57 34.84 35.57 34.45 35.05 35.71 
ITR 2 25.90 26.78 26.95 26.65 27.30 26.90 26.90 26.51 26.53 
ITR 3 20.31 20.71 20.51 20.39 20.72 20.58 20.41 20.55 20.24 
ITR 4 16.22 16.62 16.56 16.63 16.51 16.76 16.49 16.59 16.36 
ITR 5 13.55 13.76 13.71 13.76 13.65 13.74 13.74 13.83 13.76 

GB 

Trial ACC 96.35 96.58 96.87 97.01 97.00 97.00 97.03 96.85 96.84 
Trial F1 90.93 91.68 92.39 92.82 92.85 92.83 92.96 92.49 92.50 
Char ACC 1 86.38 86.00 87.13 88.88 89.38 90.00 88.88 87.50 88.00 
Char ACC 2 96.75 96.00 97.63 98.25 97.75 97.50 97.25 97.50 97.75 
Char ACC 3 98.38 98.88 99.25 98.75 99.13 98.88 98.88 99.00 99.00 
Char ACC 4 99.13 99.38 99.50 99.75 99.50 99.75 99.50 99.63 99.63 
Char ACC 5 99.50 99.38 99.75 99.75 99.63 99.75 99.50 99.50 99.63 
ITR 1 37.61 37.30 38.17 39.43 39.80 40.45 39.52 38.49 38.94 
ITR 2 28.46 28.08 28.98 29.37 29.05 28.94 28.79 28.95 29.00 
ITR 3 21.27 21.51 21.67 21.46 21.61 21.50 21.49 21.55 21.56 
ITR 4 16.95 17.02 17.08 17.16 17.08 17.16 17.07 17.12 17.11 
ITR 5 14.04 14.00 14.11 14.11 14.07 14.11 14.03 14.04 14.07 

Note: where SW 1N =  means including the 0-200 ms window, SW 2N =  means including the 0-200 ms and 100-300 ms windows, and so on. Char 
ACC i and ITR i (i = 1, 2, 3, 4, 5) represent the character ACC and ITR obtained through the first i runs. Params represents the number of trainable 
parameters in the model when assuming an input size of (512, 1, 26, 250). The maximum of each row is indicated in bold. 
  

TABLE V  
PARTICIPANT-AVERAGED TRIAL ACC (%), TRIAL F1 (%), AND CHARACTER ACC (%) ACHIEVED BY THE DIFFERENT CLASSIFIERS FOR THE TF AND GB 

PATTERNS 
  SKLDA SVM XGBDIM ERPCapsNet STCapsNet EEGInception PPNN EEGNet mwEEGNet 

Trial 
ACC 

TF 93.99*** 91.98*** 87.42*** 93.94*** 93.73*** 94.99*** 94.74*** 95.07*** 95.83 
GB 95.32*** 93.28*** 89.77*** 95.34*** 95.02*** 96.58** 96.41*** 96.35*** 97.01 

Trial 
F1 

TF 85.64*** 81.50*** 77.75*** 84.67*** 84.46*** 88.67** 86.67*** 87.41*** 89.97 
GB 88.64*** 84.31*** 80.94*** 88.34*** 87.63*** 92.16* 91.24*** 90.80*** 92.82 

Char 
ACC 1 

TF 73.88** 63.50*** 67.00*** 68.88*** 70.50*** 81.50 77.38** 78.25** 83.25 
GB 78.75*** 70.63*** 71.13*** 77.00*** 76.38*** 86.88 85.38* 86.00* 88.88 

Char 
ACC 2 

TF 87.88** 79.38*** 84.25*** 84.50** 86.25** 90.75 89.25** 91.00 92.88 
GB 92.00*** 86.50*** 87.50*** 92.75*** 91.75*** 96.50** 96.88* 95.75** 98.25 

Char 
ACC 3  

TF 92.38** 86.63*** 89.25** 91.00** 90.75** 94.75 93.38* 95.25 95.75 
GB 94.88** 92.63** 93.13** 96.75** 95.50** 98.75 97.88* 98.13 98.75 

Char 
ACC 4 

TF 95.00** 92.63*** 92.63** 95.25** 94.88* 98.00 95.88 96.75* 98.00 
GB 97.25** 96.63** 95.00** 98.38* 97.50* 99.38 98.75* 99.38 99.75 

Char 
ACC 5  

TF 95.88** 94.75** 95.63** 96.25** 96.50* 97.50 96.88 97.13* 98.25 
GB 98.13** 97.00** 97.00** 98.83 98.25. 99.38 98.88* 99.50 99.75 

Note: Char ACC i (i = 1, 2, 3, 4, 5) represents the character ACC obtained through the first i runs. The *, **and *** symbols indicate p-values less than 
0.05, 0.01, and 0.001, respectively, after conducting the Wilcoxon signed-rank test. The maximum of each row is indicated in bold. 
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might be necessary to determine the optimal amount of training 
data for each participant during offline processing. For example, 
ERP-sensitive participants may require less offline training to 
obtain a suitable model. Although manually determined flash 
rules offer limited variability, employing the enumeration with 
constraints method can yield more comprehensive flash rules, 
albeit at the cost of increased time. While the LT2F strategy 
provides a straightforward means of generating flashing rules, 
it still has room for improvement. As shown in Fig. 2, if m n= , 
when participants perform free spelling, neighboring flashes 
(the double-flash problem) may occur because each flash in 

half AQ  and each flash in half BQ  have an intersection.  
 

V. CONCLUSION 
In this study, we developed a novel GB spelling paradigm 

that elicited more significant negative peaks in the parietal and 
occipital regions 200-230 ms post-stimulus onset. Our 
paradigm exhibited superior performance to the traditional TF 
spelling paradigm, highlighting the potential of the proposed 
growing bubble stimuli. The LT2F flash strategy also provides 
a more general approach to establishing flash rules, ensuring 
that a combination of two flashes can uniquely identify each 
character. We also addressed the variability in spatial features 
across different periods by employing a “Sub and Global” 
mode to enhance classification performance in the mwEEGNet 
model, which incorporated multi-window functionality. Our 
experimental results underscore the effectiveness of this 
approach, signifying its significance for advancing ERP-based 
BCIs. 
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Fig. 10.  The ITRs of different classifiers for the TF and GB patterns.  
 

TABLE VI 
THE COMPLEXITY MEASURE METRICS OF DIFFERENT NETWORK MODELS 

Method MACs Params 
ERPCapsNet 0.12G 7243570 
STCapsNet 0.12G 7244582 

EEGInception 6.73G 27618 
PPNN 3.2G 12226 

EEGNet 3.41G 2474 
mwEEGNet  4.01G 11402 

Note: The input size is (512, 1, 26, 250), MACs: the multiply- 
accumulate operations, Params: the number of trainable network 
parameters, G: Giga-109. 
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