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A B S T R A C T

The importance of exchange rate volatility forecasting has both practical and academic merit.
Our aim is to provide a comprehensive analysis of the forecasting ability of financial and
macroeconomics variables for future exchange rate volatility. We employ seven widely traded
currencies against the US dollar and examine linear models and a variety of machine learning,
dimensionality reduction and forecast combination approaches, along with creating a grand
forecast (amalgamation approach) from these approaches. Our findings highlight the predictive
power of the amalgamation approach, as well as the positive contribution of macroeconomic
and financial variables in the forecasting experiment. Furthermore, we generate forecasts on the
separate frequencies of volatility using wavelet analysis, in order to extract frequency-related
information and examine timing effects in the performance of the methods.

. Introduction

Forecasting volatility plays a central role in derivative pricing, developing trading strategies, pricing, trading volatility derivatives
nd hedging portfolios. In this study we provide a comprehensive analysis of the forecasting ability of financial and macroeconomic
ariables for predicting future exchange rate volatility (RV). The study focuses on seven widely traded currencies against the USD.
e evaluate the performance of various linear models, alongside advanced machine learning techniques, dimensionality reduction
ethods, and forecast combination approaches. Additionally, we develop a grand forecast using an amalgamation approach, which

ntegrates the forecasts from these diverse methods to enhance predictive accuracy. Finally, we employ wavelet analysis to extract
requency-related information and investigate the timing effects on the performance of the forecasting methods. This approach allows
s to capture the influence of short-, medium-, and long-term volatility components, providing deeper insights into the effectiveness
f different models across varying time horizons.

Over the recent years more elaborate methods as well as various sets of candidate predictors have been proposed in the literature.
ue to the fact that volatility exhibits countercyclical movements, developments in the autoregressive (AR) process of volatility has
een on the spotlight of the literature (for example see, Engle (1982) and Bollerslev (1986) for the (G)ARCH family models, Taylor
2008) for stochastic volatility models and Corsi (2009) for the heterogen𝜖ous AR model). However, a different strand of literature
ocuses on the potential financial and macroeconomic drivers of volatility. The literature related to the so-called ‘‘disconnect puzzle’’
as been initiated by Schwert (1989). The argument is based on the premise that volatility makes countercyclical movements and that
here is no evidence that fundamentals have any impact. More recently, a richer dataset of financial and macroeconomic variables
ave been employed and further insight on the research question towards the solution of the puzzle has been provided by Mele
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(2007), Paye (2012), Christiansen et al. (2012), Conrad and Loch (2015), Mittnik et al. (2015), Nonejad (2017) and Wang et al.
(2018).

The literature addresses the issue of variable selection by using methodologies that aggregate information. In brief, Paye (2012)
employs a variety of variables and finds an in-sample link between these variables and stock market volatility. However, out-of-
sample improvements in forecasting accuracy mainly stem from simple combinations of individual forecasts and are sensitive to the
time span of the dataset. Christiansen et al. (2012) focus on forecasting four different asset classes: equities, commodities, foreign
xchange rates, and bonds by employing a comprehensive set of macro-finance variables. Employing Bayesian estimation techniques
he authors find that the strongest predictive ability lies in variables associated with time-varying risk premia, leverage or financial
istress. Their findings indicate that the Bayesian Model Averaging forecasting models beat autoregressive benchmarks although
his performance varies across asset classes and over time. Finally, Nonejad (2017) employs a variety of Bayesian models and finds

that Bayesian Model Averaging with time-varying regression coefficients provides superior density and point forecasts compared to
raditional approaches.

In a similar context, there is a small group of papers associating the performance of the predictors with the long- or short-term
components of volatility. Conrad and Loch (2015) disentangle short- and long-term volatility via the GARCH-MIDAS component
model (Engle et al., 2013) and confirm the counter-cyclical behaviour of stock market volatility for a broad set of macroeconomic
ariables. Long-term volatility is mainly driven by information related to the current state of the economy as well as to expectations
egarding future macroeconomic conditions. Using boosting techniques, Mittnik et al. (2015) substantially improve out-of-sample

volatility forecasts for short- and long-run horizons and confirm the non-linear link between financial variables and future volatility.
Despite the progress that has been made in the past, the literature provides sporadic solutions regarding individual methods or

predictors and has failed to answer the problem of model selection. Second, empirical evidence around the information contained in
separate frequencies remains scarce and there is little evidence towards the performance of the predictors in the separate frequency
components (see among others, Baruník and Hlínková, 2016; Faria and Verona, 2018b,a, 2021; Risse, 2019; Souropanis and Vivian,
2023; Gradojevic and Tsiakas, 2021). In a relatively similar context, Niu et al. (2024) shed light on the predictive performance of
different industries on the volatility driven by cash flows or discount rate fluctuations. Last, despite the fact that exchange rates are
he most widely traded asset, little or no attention has been paid to the impact of financial and macroeconomic variables on future
xchange rate volatility.

We contribute to the literature by filling the aforementioned gaps. First, we explore the predictive power of a large set of
macroeconomic and financial predictors in forecasting volatility. Second, we explore the predictive power of a number of widely
used models which aggregate information. Third, we introduce an amalgamation technique in order to alleviate the issue of model
selection and uncertainty over the choice of useful predictors.1 Fourth, we shed light on the frequency components of volatility by
applying wavelet decomposition, a technique that has been barely used so far in the volatility forecasting framework.2 Last, we build
 framework on the impact of particular timing effects on the volatility forecasting performance. Hence, we evaluate the models
ased on their performance on different periods and market regimes.

The amalgamation approach has been highlighted as a very simple and powerful tool in forecasting. The investor has access to
everal models and predictors, each one of which has very appealing properties. Hence, it is made very difficult to make the ‘‘best’’
election. To avoid uncertainty associated with the employment of a specific predictor/model, we construct amalgam/consensus

forecasts by simply averaging forecasts generated by the aforementioned approaches. Intuitively, the outliers are cancelled out at
very iteration, leaving the investor with only the relevant information.

We present the major and theoretically well-established transmission channels in order to show the impact of macroeconomic
nd financial variables in volatility forecasting. For this purpose, we evaluate both the in-sample and out-of-sample performance
f a group of 33 potential financial and macroeconomic predictors that have been typically employed in the exchange rate/stock
arket forecasting literature and are associated with equity market developments, interest rates, bonds, spreads, macroeconomic

onditions and liquidity, risk and economic activity. The predictive power is tested on the monthly volatility of New Zealand Dollar
NZD), Norwegian Krona (NOK), Japanese Yen (YEN), United Kingdom Pound Sterling (GBP), Canadian Dollar (CAD), Australian
ollar (AUD) and Swiss Franc (CHF); the basis currency is United States Dollar (USD). Our dataset spans from February 1986 to
ecember 2019. The forecasting period begins in January 1993 and is recursively updated.

Initially, we assess the in-sample ability of candidate predictors by employing simple autoregressive models augmented with one
predictor at a time. Our results indicate that, aside from a few consistently strong predictors like the MSCI return, the size factor,
he monthly inflation rate, and monthly M1 growth, the volatility of each currency is influenced by a distinct set of predictors.
hen, we focus on out-of-sample forecasting. The benchmark models of our forecasts are evaluated against is an autoregressive
rocess. We use the 𝑅2

𝑂 𝑂 𝑆 metric and the MSFE-adjusted statistic proposed by Clark and West (2007) to evaluate our forecasts.
The out-of-sample forecasting performance of individual predictors aligns with the in-sample findings. Forecasting RV for GBP
nd CHF proves relatively easier, while predicting YEN volatility remains notably challenging. To avoid the predictor selection
roblem faced by the investor, we forecast RV using a variety of machine learning techniques, dimensionality reduction methods,

and forecast combination approaches, including amalgamated forecasts. Our results indicate that Lasso, Neural Networks (NN),
and Principal Component Analysis (PCA) provide substantial improvements over the benchmark, while the proposed amalgamation
methods consistently outperform all other approaches across all currencies.

1 See Rapach and Strauss (2012), Rapach et al. (2010) and Panopoulou and Souropanis (2019).
2 See also (Souropanis and Vivian, 2023).
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In order to understand further the sources of volatility predictability, we explore the performance of candidate predictors on
the frequency components of volatility. Despite the fact that a strand of the academic literature has pointed out the importance of
ifferent components in financial time series, its main focus has been the equity premium returns. Conrad and Loch (2015) employ a

GARCH-MIDAS to decompose stock returns into short-run and long-run components and examine the long-run (conditional) volatility
component using macroeconomic variables. In a similar spirit, Yi et al. (2019) argue that the frequencies of the predictors contain
separate information regarding the state of the economy. Ferreira and Santa-Clara (2011) employ the sum-of-the-parts method to
orecast each component of stock market returns, i.e. dividend yield, earnings growth, and price-earnings ratio growth.

Wavelet decomposition is a powerful tool that has recently attracted academic interest on financial applications, providing
romising results. For instance, Caraiani (2017), Faria and Verona (2018b,a, 2021) and Risse (2019) employ wavelet decomposition

in exchange rates, equity markets and gold, respectively. This method allows us to obtain the time- and frequency-varying
characteristics of time series, which in turn allows us to analyse each frequency separately. In our context, we apply wavelet multi-
resolution decomposition on volatility and based on the forecasting performance of the predictors at each frequency component,

e can identify the sources of predictability. We also examine whether the decomposed frequencies of the predictors and the
volatility are aligned. We decompose RV into short-, medium-, and long-run frequency components. In the short-run, the predictive
performance of most models is weak, with only a few predictors significantly outperforming the benchmark, particularly for GBP.
In the medium-run, we observe substantial improvements in predictive accuracy, with more individual predictors performing well
and most aggregation and amalgamation methods surpassing the benchmark. In the long-run, further enhancements are evident,
with the amalgamation approach outperforming alternative methods in most cases. Macroeconomic and financial predictors capture
the long-run dynamics of RV, explaining the stable, long-term volatility trends. When we extend the decomposition to both RV
and the predictors, the results remain consistent. Finally, following Faria and Verona (2018b), we sum the forecasted decomposed
omponents, leading to a marked improvement in the forecasting ability of all predictors and models. Once again, the proposed
avelet amalgamation approach outperforms all alternative methods in every case. We assess the impact of wavelets on model
erformance using the Model Confidence Set methodology by Hansen et al. (2011a). The results provide strong evidence supporting
he use of wavelets, particularly the wavelet amalgamation approach, across all currencies.

Finally, we conduct a series of robustness checks to validate the performance of all models. Specifically, we examine their
effectiveness across various dimensions, including: (a) alternative loss functions, (b) different phases of the business cycle, (c)
varying sentiment periods, (d) liquidity conditions, (e) distinct out-of-sample periods, and (f) different weighting schemes in the
amalgamation approach using the discounted MSFE. Our results hold in all cases.

Our findings provide evidence that macroeconomic and financial predictors should be taken into consideration in volatility
forecasting, since they outforecast the benchmark. Moreover, the results verify the prevailing argument in the literature that
macroeconomic variables forecast better, mainly, the long-run frequency component. In addition, we observe that this dynamic is
mainly driven by the trend component of the predictors. Another important finding of the paper is related to the methods aggregating
nformation. These methods seem to be able to outperform individual predictors, suggesting that they contain useful information,

which can enhance the forecasting performance if they are considered as a group and amalgamated (i.e. averaging of the forecasts,
n order to alleviate the echo related to the uncertainty of isolating one best method beforehand). Next, we sum the forecasted

decomposed series and observe even higher predictive gains against the benchmark AR model. Last, we evaluate the performance
of the amalgam forecasts during different sub-periods, based on theoretically supported transmission channels.

The remainder of the paper is structured as follows. Section 2 describes the conceptual background supporting the employment
f macroeconomic and financial predictors in volatility forecasting. Section 3 presents the data and the respective transformations

of candidate predictors. In Section 4, we outline our proposed methodology and the evaluation metrics of the forecasts, while in
ection 5 we discuss our findings. In Section 6, we present further results and robustness tests and in Section 7 we discuss the main

conclusions.

2. Conceptual background

In this section, we summarize the main theoretical channels between RV and fundamentals. The seminal work of Schwert
(1989) has established the notorious ‘‘disconnect’’ puzzle. However, most recent research demonstrates positive signals in favour of
establishing a theoretical and empirical relationship between fundamentals and volatility. While the main body of the literature is
dealing with volatility in equity markets, rather than exchange rates, a few of these channels apply in both markets. These channels
are (i) the business cycle, (ii) liquidity, (iii) sentiment and (iv) uncertainty.

Regarding the first channel, the literature suggests that market volatility is closely related with the business cycle (Schwert,
1989; Engle and Rangel, 2008; and Brandt and Kang, 2004). However, only sporadic references make the respective connection for
the exchange rates. The argument that business cycle and FX volatility are related, is based on the premise that by changing the
regime of the business, central banks take politically driven fiscal actions in order to amplify the effects of the change (for instance,
see Lobo and Tufte, 1998).3 Ehrmann and Fratzscher (2005) find that news about fundamentals have an essential impact during
high uncertainty periods and increase further the previous exchange rate volatility. Similarly, Schwert (1989) claims that market
prices react asymmetrically and fluctuate more during recessionary periods.

3 There is a strand in the literature that supports the reverse causal relationship, by claiming that FX fluctuations impact the business cycle ((Krol, 2014;
Gumus and Taşpınar, 2015; Karras and Song, 1996)).
3 
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A second important determinant of exchange rate fluctuations is the liquidity factor. Aghion et al. (2009) show that productivity
growth is affected by the regime of the exchange rates, subject to the level of economic development of the country. Dornbusch
(1976) has outlined the importance of monetary shocks for exchange rates via an adjustment process of exchange rates to the
rice levels of the economy. Alternatively, Grilli and Roubini (1992) show that bond supply shocks impact FX volatility. A financial

interpretation is provided by Brunnermeier and Pedersen (2009). The authors argue that the investors’ liquidity available for trading
ctivities is tightly linked to the asset’s market liquidity. Thus leveraged investors are pushed to short sales leading prices to a
urther decrease, generating liquidity spirals and extensive volatility. The negative relationship between liquidity and volatility is
lso supported by Menkhoff et al. (2012), since low interest rate currencies provide a hedge against volatility shocks.

The third channel linking volatility with fundamentals is attributed to the investor sentiment. Chu et al. (2022) find that non-
fundamental variables perform better in low sentiment periods, rather than in high sentiment ones, in returns forecasting. The
authors interpret the periods of high sentiment as the periods where non-fundamentalists rule over the market. Lof (2015) shows
that the ratio of fundamentalists in the markets varies significantly over time. As a result, the participation of non-rational investors
n the market can lead prices away from the fundamental value. Menkhoff and Rebitzky (2008) claim that adjustments of the prices

towards the equilibrium level are more rapid if the distance of the current price from the fundamental value is high, and vice versa.
In general, we anticipate that high sentiment periods will not benefit macroeconomic variables in terms of forecasting performance.

The last channel outlines the importance of uncertainty in the market. The impact of small or major events increase the
uncertainty of the market around political decisions, disrupting the current expectations about fundamentals (Bartsch, 2019).
Similarly, Pástor and Veronesi (2013) point out the essential impact of political uncertainty on the markets, as investors cannot
oresee the response of the policy makers. Markiewicz (2012) supports the relationship between uncertainty and fundamentals, by

demonstrating that agents assign varying degrees of importance to specific models across different time periods, even when the
underlying fundamental processes remain unchanged.

These four channels map the main drivers of volatility. However, it is very difficult to avoid endogenous effects and interactions
mong the channels.

3. Data

Our sample covers the period extending from February 1986 to December 2019 (𝑇 = 407 observations) on a monthly frequency.
We consider the volatility of seven widely traded exchange rates; namely the New Zealand Dollar (NZD), Norwegian Krona (NOK),
Japanese Yen (YEN), United Kingdom Pound Sterling (GBP), Canadian Dollar (CAD), Australian Dollar (AUD) and Swiss Franc (CHF)
against the US dollar. The data are collected from the FRED database.4

3.1. Exchange rate volatility

We compute a proxy of the exchange rate variance as the sum of squared daily returns, ∑𝑛
𝑖=1 𝑟

2
𝑖 , where 𝑟𝑖 is the daily logarithmic

return of the currency under examination and 𝑛 is the number of trading days of each month. Following, among others, Paye (2012)
and Nonejad (2017), we define volatility (RV) to be the natural logarithm of the square root of the variance as follows:

𝑅𝑉𝑡 = 𝑙 𝑜𝑔
√

√

√

√

𝑛
∑

𝑖=1
𝑟2𝑖 , 𝑡 = 1, 2,… , 𝑇

where 𝑇 is the whole sample period. The notation 𝑅𝑉𝑡 we employ shows the connection between the monthly volatility measure
we calculate and the realized variance literature that employs intraday returns to measure return variation.5

Table A.1 in the Appendix shows summary statistics for the logarithm of the volatility series of the exchange rates employed. The
average logarithm of exchange volatility fluctuates within a close range, i.e. between −4.09 (CAD) and −3.56 (NZD). The standard
deviation of RV ranges from 0.35 (GBP) to 0.49 (CAD). The volatility of all currencies under consideration exhibits positive skewness,
which ranges from 0.07 (NZD) to 0.51 (GBP) with the exception of CAD for which skewness is negative at −0.06.

Figure A.1, in the Appendix shows the evolution of volatility for the currencies under investigation. Overall, we observe that all
currencies behave very similarly qualitatively as calm periods alternate with turbulent ones. Turbulent periods include the collapse
of Exchange Rate Mechanism (1992–1993), the Asian financial crisis (1997), the Russian financial crisis (1998), and the recent
financial turmoil (2008–2010). Such peaks and troughs are more apparent to some currencies than others.

3.2. Candidate predictors

We are interested in identifying financial and macroeconomic drivers of volatility in exchange rate markets. The importance of
S fundamentals on exchange rates has been reported in the literature (Faust et al., 2007; Anderson et al., 2003; Wang et al., 2023).

Our dataset, consisting of 33 candidate predictors, is presented in the Appendix, and is briefly described below.
The first set of predictors consists of variables associated with equity market developments. Bahmani-Oskooee and Saha (2015)

provide a comprehensive literature review pointing out the relationship between stock markets and exchange rates. We employ the

4 https://fred.stlouisfed.org/
5 The choice of volatility frequency is dictated by data availability. Since we do not have access to intraday data, we cannot compute daily realized volatility.
4 
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Dividend Price ratio (DP) and the Earnings Price ratio (EP) calculated as the difference between the log of dividends/earnings and
the log of prices. We also employ the Fama French factors, i.e. the US stock market excess returns (MKT), the size (SMB), value
HML) and short-term reversal (STR) factors. Finally, we use the world stock market MSCI index return (see Christiansen et al.,

2012 and Mittnik et al., 2015) to capture global stock market developments.
Second, we employ interest rates, spreads and bond market factors. Interest rate-related variables enjoy a strong theoretical

connection linking them with exchange rates.6 In our case, we employ the 3-month US Treasury Bill rate (TB), the long term US bond
return (LTR), the term spread (TS) calculated as the difference between the long term yield on government bonds and the Treasury-
bill (Campbell and Shiller, 1991), the 𝛥TED (among others used by Buncic and Piras, 2016) calculated as the first differences of the
ap between the 3-month LIBOR rate (US dollar base) and the 3-month Treasury Bill rate. Our set of bond market variables also
ncludes the long-term US government bond yields (LTY) and the default yield spread (DFY) calculated as the difference between
AA- and AAA-rated corporate bond yields, (Welch and Goyal, 2008).

The third set of predictors depicts general macroeconomic conditions in the US market. Our dataset includes the monthly and
annual US inflation growth rate (INFM and INFA, respectively), the monthly and annual US industrial production growth rate (IPM
and IPA, respectively), the monthly and annual money supply growth rate (M1M and M1A, respectively), the number of employees
to non-farm activities (PAYEMS) and the US Policy Uncertainty Index (EPU). Following Christiansen et al. (2012), we also use the

onsumer Sentiment (SENT) Index, as published by the University of Michigan, the Capacity Utilization (CAP), the Diffusion Index
(DIFF), the Consumer Confidence (CONF), the monthly change in Housing Starts (H-S), the Chicago Business Barometer (PMBB)
and the Purchasing Manager Index (PMI).

The last set of predictors are considered to approximate liquidity, risk and economic activity related factors. The first variable
considered is the (Pástor and Stambaugh, 2003) Factor (PS) that works as a liquidity proxy. Gold (GOLD) is universally considered as
a ‘‘safe haven’’ for investors during financial turbulence. In addition, we use VIX, the so-called ‘‘fear index’’ in our dataset (Liang et al.,
2023 use the global financial stress index, which is not available for our full sample size). Following Buncic and Piras (2016), we
include Oil (WTI) as a proxy for the economic activity. Given the significant number of commodities and their role in the economic
activity, we use the Commodity Research Bureau Index (CRB) to summarize the relevant information derived from commodities.

For detailed description regarding transformations of the variables, as well as the data-sources, see Table A.2, in the Appendix.7

4. Methodology

In this section we describe our methodology. First, we provide an overview of the in-sample analysis, then, we present the
forecasting process of RV, as well as the main models used. Apart from the bivariate setup, we employ a range of models from more
elaborate machine learning models to simple combination of forecasts since such models are able to concentrate on the relevant
information. Next, we aggregate the forecasts from these models, since the investor is unable to know which model performs better a
priori. In the last part, we describe the frequency decomposition approach to forecasting volatility. Finally, we include a description
of the forecast evaluation methods.

4.1. In-sample predictive ability

First, we focus on the in-sample predictive ability of candidate predictors. Since volatility is quite persistent (see, among
others, Müller et al. (1997), Chernov (2007) and Corsi (2009)) we consider an AR(𝑝) model augmented with one of the candidate
predictors at a time. In this respect, the predictive regression is given by the following regression:

𝑅𝑉𝑡 = 𝑏𝑗 ,0 +
𝑝
∑

𝑖=1
𝑏𝑗 ,𝑖𝑅𝑉𝑡−𝑖 + 𝛽𝑗𝑥𝑗 ,𝑡−1 + 𝑢𝑗 ,𝑡 (1)

where 𝑅𝑉𝑡 is the volatility in each of the exchange rate markets considered, 𝑏𝑖 and 𝛽𝑗 are the slope coefficients for the autoregressive
rocess and the candidate predictor 𝑥𝑗 (where 𝑗 = 1,… , 33) respectively and 𝑢 denotes the error term. We select the optimal number
f lags of the autoregressive term among the first six by maximizing the adjusted 𝑅2 Information Criterion. The null hypothesis of
o predictive ability for predictor 𝑗 is 𝐻0 ∶ 𝛽𝑗 = 0 against the alternative is 𝐻1 ∶ 𝛽𝑗 ≠ 0. We compute Newey–West standard errors
n order to take into account biases due to heteroscedasticity and persistence in the series.

4.2. Forecast construction and evaluation

We now describe the forecasting approaches we follow, which include machine learning, dimensionality reduction and forecast
ombination methodologies that take into account a large number of predictors.

One step ahead forecasts are generated by continuously updating the estimation window, i.e. following a recursive (expanding)
window. More in detail, we divide the total sample of 𝑇 observations into an in-sample portion of the first 𝑅 observations and an
out-of-sample portion of 𝑃 = 𝑇 −𝑅 observations used for forecasting. Similar to Christiansen et al. (2012), our out-of-sample period
begins in 1993. Hence, the observations of the first seven years are used as our in-sample period, i.e. 𝑅 = 83 observations, and the
remaining 𝑃 = 324 monthly observations form the out-of-sample period. The total sample period is February 1986 to December
2019, while the out-of-sample period starts in January 1993.

6 Variables related to central bank news announcements are embedded in the interest rate series.
7 Due to the large number of predictors, the descriptive statistics are not reported. However, they are available from the authors upon request.
5 
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4.2.1. Univariate models
4.2.1.1. Benchmark. Our benchmark forecasting model is the AR(𝑝) model where 𝑝 = 1,… , 6 is selected based on the adjusted 𝑅2

�̄�2) information criterion. The AR(𝑝) is given by:

𝑅𝑉𝑡 = 𝑏0 +
𝑝
∑

𝑖=1
𝑏𝑖𝑅𝑉𝑡−𝑖 + 𝑢𝑡 (2)

where 𝑅𝑉𝑡 is the volatility at time 𝑡 and 𝑢𝑡 is the error term. The forecasts of the autoregressive benchmark model are computed as
follows:

𝑓 (𝐴𝑅(𝑝))
𝑡 = �̂�0 +

𝑝
∑

𝑖=1
�̂�𝑖𝑅𝑉𝑡−𝑖 (3)

4.2.1.2. Univariate framework. We assess the predictive power of each predictor by augmenting the benchmark model:

𝑅𝑉𝑡 = 𝑏𝑗 ,0 +
𝑝
∑

𝑖=1
𝑏𝑗 ,𝑖𝑅𝑉𝑡−𝑖 + 𝛽𝑗𝑥𝑗 ,𝑡−1 + 𝑢𝑡 (4)

where 𝑥𝑗 ,𝑡 is the candidate predictor 𝑗 at time 𝑡, 𝑗 = 1,… , 33 and 𝛽𝑗 is the respective slope coefficient. Similar to our in-sample
experiment, we set the maximum number of lags (𝑝) equal to six and select the optimal one by maximizing the �̄�2. Forecasts are
generated by the following linear regression model:

𝑓𝑗 ,𝑡 = �̂�𝑗 ,0 +
𝑝
∑

𝑖=1
�̂�𝑗 ,𝑖𝑅𝑉𝑡−𝑖 + 𝛽𝑗𝑥𝑗 ,𝑡−1 (5)

4.3. Machine learning techniques

4.3.1. Lasso
A machine learning method often proposed in the literature is the Lasso (L) estimation (Least absolute shrinkage and selection

perator) introduced by Tibshirani (1996). Lasso is a linear regularization technique, extensively employed in experiments using
high dimensional datasets. This method performs shrinkage to the estimates by penalizing the related coefficients via the 𝐿1 penalty
function. Specifically, coefficient estimates are obtained by solving the following minimization problem:

min
𝛽𝑗

⎛

⎜

⎜

⎝

1
2

𝑇
∑

𝑡=1

(

𝑅𝑉𝑡 − 𝑏0 −
𝑝
∑

𝑖=1
𝑏𝑖𝑅𝑉𝑡−𝑖 −

𝑁
∑

𝑗=1
𝛽𝑗𝑥𝑗 ,𝑡−1

)2

+ 𝜆1
𝑁
∑

𝑗=1

|

|

|

𝛽𝑗
|

|

|

⎞

⎟

⎟

⎠

where 𝑅𝑉 is the volatility, 𝑥𝑗 presents the candidate predictors 𝑗, 𝑁 is the number of predictors and 𝜆1 is a positive regularization
parameter. As the value of 𝜆1 increases so does the number of coefficients that shrink to zero resulting in a more parsimonious
model.8

4.3.2. Neural networks
Neural Networks (NN) have recently attracted attention in forecasting applications (see, for example, Sermpinis et al., 2013

and Qi and Wu, 2003). The architecture of the proposed NN consists of three layers. In the first layer the inputs (candidate predictors)
are introduced, the middle layer is the hidden layer consisting of neurons (hidden units) while the final layer is the output layer. The

N is trained by minimizing the mean squared error loss function (i.e. the squared difference of the actual and the forecast value).
e employ the Bayesian Regularization (BR) algorithm that pushes non-relevant weights to zero in order to avoid over-fitting.

urthermore, to avoid the loss function to be trapped in local minima, we repeat the training 50 times with different random initial
arameters and use the median value. We split the in-sample period into two subsets; the first 70% of the data is used for training
hile the second one is the validation set.

4.3.3. Support vector regression
A method that has been broadly used in forecasting processes (see among others Risse, 2019; Sermpinis et al., 2015; Plakandaras

et al., 2015) is Support Vector Regression (SVR). SVR can be considered as a regression problem which has as a main objective the
determination of a function 𝑓 (𝑥) that can provide accurate forecasts on a targeted value. The main advantage of this technique
is its ability to generate non-linear decision boundaries through linear classifiers, while having a simple geometric interpretation.
Additionally, the solution is global and unique and does not suffer from multiple local minima (in contrast to NNs). In this respect,
SVR can balance model accuracy with complexity and show a remarkable forecasting ability.

8 The model does not suffer from a look-ahead bias, since at every iteration, we use all available information up to time 𝑡 in order to select the optimal
value for 𝜆1. The selected value is used to generate the forecast for time 𝑡 + 1. In brief, we test a number of values, ranging from 0.01 to 50 by 0.05 intervals,
and then select the one according to the maximum adjusted 𝑅2.
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4.4. Dimensionality reduction techniques

4.4.1. Principal component analysis
Principal Components Analysis (PCA) has been successfully used in a variety of settings, (Dunis et al., 2013; Neely et al., 2014).

In PCA, a large set of candidate predictors (𝑥𝑗 , 𝑗 = 1,… , 33 in our case) are transformed into new uncorrelated latent factors
̂𝑡 = (𝐹1,𝑡,… , 𝐹𝑁 ,𝑡) that are able to capture maximum variability. The generated principal components filter noise from big datasets
nd reduce over-fitting. By construction, most information is aggregated by the first principal component. In order to keep our

model parsimonious the number of components is selected among the first 4 according to the adjusted 𝑅2. The model is given by:

𝑅𝑉 (𝑃 𝐶 𝐴)
𝑡 = 𝑏0 +

𝑝
∑

𝑖=1
𝑏𝑖𝑅𝑉𝑡−𝑖 +

𝐾
∑

𝑘=1
𝛽𝑘𝐹𝑘,𝑡−1 + 𝑢𝑡, 𝐾 = 1,… , 4 (6)

4.4.2. Independent component analysis
Independent Component Analysis (ICA), proposed by Jutten and Herault (1991), isolates different types of mixed signals without

knowing the mixing mechanism. The components are mutually statistically independent.
Similar to PCA, ICA creates components that maximize the independence, rather than the variance. The components are mutually

statistically independent. Once the independent components �̂�𝑡 = (�̂�1,𝑡,… , �̂�𝑁 ,𝑡) are obtained, we estimate the following model via
OLS selecting among the first 4 independent components according to the adjusted 𝑅2:

𝑅𝑉 (𝐼 𝐶 𝐴)
𝑡 = 𝑏0 +

𝑝
∑

𝑖=1
𝑏𝑖𝑅𝑉𝑡−𝑖 +

𝐾
∑

𝑘=1
𝛽𝑘�̂�𝑘,𝑡−1 + 𝑢𝑡, 𝐾 = 1,… , 4 (7)

4.4.3. Partial least squares
Partial Least Squares (PLS), introduced by Wold (1966), is linked with both PCA and multiple linear regression. This technique

aims at condensing a large set of variables/predictors into a small set of factors, while simultaneously maximizing the covariance
with the dependent variable, 𝑅𝑉 in our case. While PCA-generated components aim at capturing the variability of the predictors,
LS-extracted orthogonal components take into account the covariance of the predictors with the target variable. Kelly and Pruitt

(2013, 2015) were the first to apply a generalized version of PLS, the three-pass regression filter in Finance. We follow Stivers
(2018) and Rapach and Zhou (2022), in order to keep the model parsimonious and use one target relevant factor from the set of
otential predictors. In order to extract the factors, we apply the (De Jong, 1993) SIMPLS algorithm. The forecasting regression is

given by:

𝑅𝑉 (𝑃 𝐿𝑆)
𝑡 = 𝑏0 +

𝑝
∑

𝑖=1
𝑏𝑖𝑅𝑉𝑡−𝑖 + 𝛽 𝑧𝑡−1 + 𝑢𝑡 (8)

where 𝛽 is the PLS regression coefficient and 𝑧𝑡 is the target factor.

4.5. Combination forecasts

An efficient way to reduce the uncertainty associated with a single candidate predictor is to combine the respective individual
forecasts. Bates and Granger (1969) claim that model combinations can outperform individual predictors, if the latter are not
perfectly correlated. Forecast combination methods have been used in several forecast experiments (see, for example, Timmermann
(2006), De Zwart et al. (2009), Rapach et al. (2010), Beckmann and Schüssler (2016), Li and Tsiakas (2017)) with relative success
despite their simplicity. The aim is to pool forecasts instead of pooling information. In this study, we consider mean, trimmed mean
nd median forecast combination schemes.9 Specifically, the mean combination scheme attaches equal weight to all 𝑗 forecasts

generated by the univariate models given by Eq. (5). In this respect, the mean combination forecast, 𝑓 (𝑃 𝑂 𝑂 𝐿)
𝑡 , is given by:

𝑓 (𝑃 𝑂 𝑂 𝐿)
𝑡+1 =

𝑁
∑

𝑗=1

1
𝑁
𝑓𝑗 ,𝑡+1 (9)

We also consider two versions of Trimmed mean (TRIM) combination forecasts10 by discarding the 3 and 10 higher and lower
forecasts, so that excluded forecasts are equal to 𝑘 = [3, 10]. In this way, we exclude the extreme values that might have a severe
impact on 𝑃 𝑂 𝑂 𝐿. Hence, we employ the simple average of the trimmed vector of individual forecasts:

𝑓 (𝑇 𝑅𝐼 𝑀 ,𝑘)
𝑡+1 =

𝑁−𝑘
∑

𝑗=𝑘+1

1
𝑁 − 𝑘

𝑓𝑗 ,𝑡+1 (10)

9 It is beyond the scope of this paper to employ more elaborate forecast combination methodologies. For additional specifications, please refer to Rapach
nd Zhou (2013).
10 Among others, see Crespo Cuaresma et al. (2018); and Della Corte and Tsiakas (2012).
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where 𝑓𝑘+1∶𝑁−𝑘,𝑡+1 is the column vector of the sorted, in increasing order, forecasts where the first and last 𝑘 elements have been
emoved.

Finally, we employ the median combination scheme. In this case, each element of the row of the vector of forecasts is the median
f the column vector of the individual forecasts, i.e.

𝑓 (𝑀 𝐸 𝐷 𝐼 𝐴𝑁)
𝑡+1 = median

[

𝑓𝑗 ,𝑡+1
]

where 𝑓𝑗 ,𝑡+1 is the matrix containing the entire set of forecasts for the individual predictors and 𝑗 = 1,… , 33.

4.6. Amalgam forecasts

Following, among others, Rapach and Strauss (2012), Meligkotsidou et al. (2014) and Li and Tsiakas (2017), we construct an
amalgamation of forecasts. The new ‘grand’ forecast is generated by the entire set of machine learning, dimension reduction and
ombination forecasts, as described above. Hence, the amalgam forecast is formed as an equally weighted average of the elements
f the following vector 𝐟𝑡+1= [𝑓 (𝑃 𝑂 𝑂 𝐿)

𝑡+1 𝑓 (𝑀 𝐸 𝐷 𝐼 𝐴𝑁)
𝑡+1 𝑓 (𝑇 𝑅𝐼 𝑀 ,3)

𝑡+1 𝑓 (𝑇 𝑅𝐼 𝑀 ,10)
𝑡+1 𝑓 (𝑃 𝐶 𝐴)

𝑡+1 𝑓 (𝐿)
𝑡+1 𝑓

(𝐼 𝐶 𝐴)
𝑡+1 𝑓 (𝑃 𝐿𝑆)

𝑡+1 𝑓 (𝑁 𝑁)
𝑡+1 𝑓 (𝑆 𝑉 𝑅)

𝑡+1 ]:

𝑓 (𝐴𝑀 𝐴𝐿𝐺)
𝑡+1 = 1

𝑁1

𝑁1=10
∑

𝑛1=1
𝐟𝑡+1

(

𝑛1
)

(11)

We also create three additional amalgam specifications, by trimming the 1,2 and 3 top and bottom forecasts at each point of the
out-of-sample period and averaging the remaining forecasts. We denote these as AMALG1, AMALG2 and AMALG3, respectively.

4.7. Perfect insight forecasts

In order to get an understanding of the level of predictability we can attain, we also create a forecast by selecting the individual
redictors that demonstrate lower Mean Square Forecast Error (MSFE) values than the benchmark. We equally weight the forecasts
roduced by Eq. (4) for these predictors and generate the perfect insight forecast.

4.8. Frequency based forecasting

In order to examine the impact of the frequency components of the time-series, We employ wavelet analysis. Wavelet analysis
s a powerful decomposition tool that has recently gained more attention in financial forecasting applications. The original time
eries are transformed into new orthogonal signals, which represent different frequencies. A wavelet resembles the movement of a
ave. There are two main functions. One reveals the low-frequency characteristics of a signal, the father wavelet (𝜙) and the other

one presents the high-frequency properties, the mother wavelet (𝜓). Shifting and scaling are the two parameters that characterize
 specific wavelet. Scaling denotes the level of scaling in time of a signal and it is inversely proportional to the frequency. Hence,
 larger scale helps to capture gradual changes in time, while a smaller scale helps to detect abrupt changes in time. Shifting refers

to moving the wavelet along the signal. Hence, wavelet analysis is a decomposition in both time and frequency. Similarity of the
shape of the wavelet and the signal can lead to the extraction of additional information in each frequency. Hence, the choice of the
wavelet function is important. The scaled and transformed mother and father wavelets are given by:

𝜓𝑗 ,𝑘(𝑡) =
𝜓(2−𝑗 𝑡 − 𝑘)

√

2𝐽

𝜙𝑗 ,𝑘(𝑡) =
𝜙(2−𝑗 𝑡 − 𝑘)

√

2𝐽

(12)

Then the coefficients of the high frequency 𝑑𝑗 ,𝑘 and low frequency 𝑠𝑗 ,𝑘 have the following form:

𝑠𝑗 ,𝑘 = ∫ 𝜓𝑗 ,𝑘 ⋅ 𝑦𝑡𝑑 𝑡

𝑑𝑗 ,𝑘 = ∫ 𝜙𝑗 ,𝑘 ⋅ 𝑦𝑡𝑑 𝑡
(13)

Additionally, the father and mother wavelet functions satisfy:

∫

∞

−∞
𝜙(𝑥)𝑑 𝑥 = 1

∫

∞

−∞
𝜓(𝑥)𝑑 𝑥 = 0.

(14)

where 𝐽 denotes the maximum level of decomposition, 𝑗 = 1, 2,… , 𝐽 , i.e. the number of scales and 𝑘 is the 𝑘th wavelet coefficient.
A lower level of the decomposition represent a higher frequency wavelet component. For a given time series 𝑦𝑡 with 𝑁 observations
the multi-resolution analysis (MRA) representation is given by Eq. (12).

𝑦𝑡 =
∑

𝑘
𝑠𝐽 ,𝑘 ⋅ 𝜙𝐽 ,𝑘(𝑡) +

∑

𝑘
𝑑𝐽 ,𝑘 ⋅ 𝜓𝐽 ,𝑘(𝑡) +

∑

𝑘
𝑑𝐽−1,𝑘 ⋅ 𝜓𝐽 ,𝑘(𝑡) + ….. +

∑

𝑘
𝑑1,𝑘 ⋅ 𝜓1,𝑘(𝑡)

= 𝑦𝑆𝐽𝑡 +
∑

𝑦
𝐿𝑗
𝑡

(15)
𝑗
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where 𝑦𝑆𝐽𝑡 =
∑

𝑘 𝑠𝐽 ,𝑘 ⋅ 𝜙𝐽 ,𝑘(𝑡) is a smooth component and 𝑦
𝐿𝑗
𝑡 =

∑

𝑘 𝑑𝑗 ,𝑘 ⋅ 𝜓𝑗 ,𝑘(𝑡) are the wavelet detailed components. In this study
we use the Maximal Overlap Discrete Wavelet Transform (MODWT) which is not restricted by the sample size. We decompose the
time series into five wavelet detail components, 𝑦𝐿𝑗𝑡 and one smooth component, 𝑦𝑆5𝑡 . Since we are using monthly data, the first
detail 𝑦𝐿1

𝑡 captures oscillations between 2–4 months, the second 𝑦𝐿2
𝑡 between 4 and 8 months, while the 𝑦𝐿3

𝑡 , 𝑦𝐿4
𝑡 , 𝑦𝐿5

𝑡 details capture
oscillation for periods of 8–16, 16–32 and 32–64 months, respectively.

Our analysis is closely related to Souropanis and Vivian (2023), Caraiani (2017) and Faria and Verona (2021). We use the
MODWT and a Haar wavelet filter11 with reflecting boundary conditions to decompose both the volatility series and the candidate
predictors. We apply the MODWT at 5 levels, hence we obtain 5 details and one final smooth component. We group the decomposed
signals in three frequency categories: high (short-run), medium, and low (long-run):

𝐻 𝑖𝑔 ℎ ∶ (𝐻) 𝑅𝑉 𝐻 = 𝑅𝑉 𝐿1 + 𝑅𝑉 𝐿2

𝑀 𝑒𝑑 𝑖𝑢𝑚 ∶ (𝑀) 𝑅𝑉𝑀 = 𝑅𝑉 𝐿3
𝑡 + 𝑅𝑉 𝐿4 + 𝑅𝑉 𝐿5

𝐿𝑜𝑤 ∶ (𝐿) 𝑅𝑉 𝐿 = 𝑅𝑉 𝑆5

(16)

In order to avoid any forward looking bias, we perform the wavelet decomposition at each time-step 𝑡, using only information up
o time 𝑡 and then we forecast the time-step 𝑡 + 1. The three calculated frequencies are denoted as 𝑅𝑉 𝑓

𝑡 where 𝑓 = [𝐻 , 𝑀 , 𝐿].
Figure A.2, in the Appendix, presents the low (short-run), medium and high (long-run) frequency time series over the entire

sample period for the currencies under consideration. We observe that there are country specific events that have affected the
variability of RV of the respective countries, as well as events that had a universal impact on every currency in our the dataset. For
example, the Black Monday event and the collapse of Lehman Brothers has raised the heat on every currency. On the other hand,
the Baht crisis and its contagious effect on Asian markets, or the massive short-selling of GBP in 1992, have affected the volatility
only in the respective exchange rates.

4.9. Forecast evaluation

In this section we outline our forecast evaluation methodology. We use the (Campbell and Thompson, 2008) out-of-sample 𝑅2

metric, denoted as 𝑅2
𝑂 𝑂 𝑆 , in order to measure the performance of the candidate models/specifications (ℎ) relative to the benchmark.

Our benchmark model forecasts are the ones generated by Eq. (2), i.e. the AR(𝑝) model. Hence, the 𝑅2
𝑂 𝑂 𝑆 is given by:

𝑅2
𝑜𝑜𝑠 = 1 − 𝑀 𝑆 𝐹 𝐸ℎ

𝑀 𝑆 𝐹 𝐸𝐴𝑅(𝑝)
.

𝑅2
𝑂 𝑂 𝑆 measures the proportional reduction in the Mean Square Forecast Error (MSFE) of model ℎ against the MSFE of the benchmark.

A positive 𝑅2
𝑂 𝑂 𝑆 value means that the competing model outperforms the benchmark by providing better forecasts.

We assess the statistical significance of superior forecasting performance by the MSFE-adjusted metric proposed by Clark and
West (2007). This test is computed as:

𝑀 𝑆 𝐹 𝐸𝑎𝑑 𝑗 = 1
𝑃

𝑇−1
∑

𝑡=𝑅+1

{

(

𝑅𝑉𝑡+1 − 𝑓
(𝐴𝑅(𝑝))
𝑡+1

)2
−
[

(

𝑅𝑉𝑡+1 − 𝑓
(ℎ)
𝑡+1

)2
−
(

𝑓 (𝐴𝑅(𝑝))
𝑡+1 − 𝑓 (ℎ)

𝑡+1

)2
]}

(17)

where 𝑃 is the number of out-of-sample observations (𝑃 = 324), 𝑇 is the number of the total sample (𝑇 = 407), 𝑅𝑉𝑡+1 is the
ctual volatility, 𝑓 (𝐴𝑅(𝑝))

𝑡+1 is the forecasted volatility as computed by Eq. (3) and 𝑓 (ℎ)
𝑡+1 is the forecast of volatility by the ℎth candidate

model/specification. Eq. (17) is composed of two segments, the first one is the 𝑀 𝑆 𝐹 𝐸 of the parsimonious model and the second one
is the difference of the squared errors between the large model and the squared difference between the forecasts of the parsimonious
model and the competing one. The Clark and West test is an one-sided test and the null (𝐻0) is given by 𝑀 𝑆 𝐹 𝐸𝐴𝑅(𝑝) ≤ 𝑀 𝑆 𝐹 𝐸ℎ
against the alternative (𝐻1) ∶ 𝑀 𝑆 𝐹 𝐸𝐴𝑅(𝑝) > 𝑀 𝑆 𝐹 𝐸ℎ. The test can be well approximated by the critical values of the standard
normal distribution.

5. Empirical findings

5.1. In-sample estimates

Our in-sample estimates for each predictive variable are reported in Table A.3 in the Appendix. Our findings suggest that all
currencies have persistent RV series, with an AR(6) model selected for YEN, CAD and AUD, an AR(4) for the NZD and an AR(3)
for the remaining series. Our results indicate that apart from a few robust predictors, RV in each currency is driven by different
predictors. For example, equity market related predictors have an impact on CAD, NZD, AUD and CHF, whereas predictors related
to the macroeconomic conditions explain better NOK, GBP, AUD and CHF. There is also evidence of a couple of variables being
significant for all volatility series. Specifically, the world MSCI index affects negatively volatility, while increases in the default yield
lead to decreases in volatility. We also observe that MKT, INFM and M1M are statistically significant for the 6 out of 7 currencies.
On the contrary, there is a number of variables with small or no significance, such as SMB, HML, 𝛥TED, M1A, SENT and GOLD.

11 Berger (2016) argues that Haar filtering is optimal for such applications, since it does not suffer from look-ahead bias.
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Despite the fact that we cannot argue in favour of predictors’ uniform positive performance, there is evidence that the majority of
inancial and macroeconomic variables explain exchange rate volatility.

Focusing on the RV series, we observe that NZD, YEN and CAD volatilities are harder to predict than the other currencies
with fewer significant values, mainly belonging to the equity market and liquidity and risk groups. On the other hand, predictors
linked to macroeconomic conditions explain better the NOK, GBP, AUD and CHF volatility, while interest rate variables seem to
have a significant impact on NOK, CAD and CHF. Notably, our results indicate that the CHF volatility is impacted more by the US
variables compared to the other currencies. On the other hand, YEN is more difficult to predict since only 11 out of 33 predictors
are statistically significant.

5.2. Out-of-sample results

In this section we present our out-of-sample empirical findings. As discussed in the previous section, in-sample analysis is useful
n order to assess the goodness-of-fit of candidate predictors. However, in order to robustly evaluate the forecasts, we employ out-
f-sample analysis. We first focus on the static performance of predictors/specifications as depicted in 𝑅2

𝑂 𝑂 𝑆 and then we examine
he dynamic evolution of the performance. Our aim is not only to identify the models with superior forecasting ability, but also the

ones that exhibit this ability persistently over time.

5.2.1. Individual predictors
We first analyse the forecasting ability of the individual candidate predictors in order to identify potential groups of predictors

hat may tend to predict more accurately the RV of exchange rates. The results corresponding to each group of predictors are
reported in different panels on Table 1. It is clear that the AR(𝑝) benchmark beats the simple AR(1) process in every case. Hence,
there is strong evidence that we are comparing the candidate predictors against a tougher benchmark. Overall, we observe that the
out-of-sample forecasting ability of individual predictors is consistent with the in-sample estimations. Predictors that provided good
in-sample estimates generate statistically significant forecasts and positive 𝑅2

𝑂 𝑂 𝑆 values.
The overall results show that GBP and CHF are easier to predict, since a significant amount of predictors outperforms the

benchmark. On the other hand, our results indicate that YEN volatility proves to be the most challenging one to forecast since
only 4 predictors outperform the benchmark. For the remaining four currencies, around a third of the predictors prove valuable.

At a group level, we observe that predictors associated with Interest rates, Spreads and Bonds, as well as, those related to the
Equity market, are performing better. The variables in Panel C demonstrate a mixed performance, though. In addition, there are
some predictors that stand out due to the fact that they are able to provide positive 𝑅2

𝑂 𝑂 𝑆 values in 6 out of 7 exchange rates, such
as MSCI, LTY and CCONF, followed by DP, MKT, DFY and IPM (in 5 out of 7 exchange rates).12

5.2.2. Information aggregates
Despite the high positive 𝑅2

𝑂 𝑂 𝑆 values presented in the previous subsection, the investor is facing the problem of variable
election, since there is no single predictor that robustly outperforms the benchmark in all currencies. Hence, we focus on the
ut-of-sample predictive performance of the information aggregation methods described earlier.

Our results are presented in Table 2. First, we observe that all methods generate positive and statistically significant 𝑅2
𝑂 𝑂 𝑆 in

he majority of cases. For example, even in the case of YEN (the hardest to predict in the case of individual predictors) we observe
that almost all methods are able to capture additional information and outperform the benchmark.

Second, by comparing the results in Tables 1 and 2, we observe higher 𝑅2
𝑂 𝑂 𝑆 in the case of information aggregation methods.

More in detail, the machine learning techniques are in general successful with the exception of SVR that generates small
improvements in 4 out of 7 volatility series. Lasso and NN show significant improvements over the benchmark, with 𝑅2

𝑂 𝑂 𝑆 values
which exceed 10% for CHF. Turning to dimensionality reduction methods, we observe that PCA is the most successful method with
enefits ranging from 0.72% (YEN) to 13.67% (CAD). Finally, combining information across predictors via simple pooling schemes

generates moderate benefits for all series with small positive and significant 𝑅2
𝑂 𝑂 𝑆 .

Third, Table 2 reveals an increased accuracy of the amalgamation techniques, where the forecasts of all the techniques, as
escribed in the previous section, are combined to create a grand forecast. The 𝑅2

𝑂 𝑂 𝑆 is positive, statistically significant and mostly
igher than the remaining methods in every case for all currencies. Overall, we provide evidence that aggregating information
rom both linear and non-linear models can benefit significantly RV forecasting, allowing the investor to take advantage of all the
nformation at hand. Our results indicate that the 𝑅2

𝑂 𝑂 𝑆 values among the AMALG specifications are similar and very high. This
rovides bi-fold evidence, first, the excellent forecasting performance is robust and is not affected by outliers, and second, the
ombination of information from different types of methods enhances significantly the forecasting exercise. More specifically, the
MALG3 has the highest 𝑅2

𝑂 𝑂 𝑆 in the cases of NZD (7.24%) and AUD (9.44%). AMALG1 outperforms the other models in the case
f YEN while AMALG in the case of NOK. However, irrespective of the specification, amalgamated forecasts are always in the group
f the top performing methods.

In the last row of Table 2, we assume that the investor knows a priori the best performing individual predictors and combines their
forecasts. Hence, the investor has a perfect insight (PI) on the performance of the predictors. We observe that, with the exception

12 We observe the odd result of negative but statistically significant 𝑅2
𝑂 𝑂 𝑆 in a few cases. Such results are acceptable by theory (Clark and West, 2007).

According to Li and Tsiakas (2017), the CW test tests for equal performance in the population, while 𝑅2
𝑂 𝑂 𝑆 embodies the performance in a finite sample. This

is the underlying reason that we come across the odd feature of negative 𝑅2 and statistically significant MSFE-adjusted.
𝑂 𝑂 𝑆

10 
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Table 1
Out-of-Sample Forecasts for the individual predictors.

NZD NOK YEN GBP CAD AUD CHF

𝐴𝑅(𝑝) vs 𝐴𝑅(1) 15.38*** 4.91*** 0.45* 4.37*** 10.05*** 4.34*** 6.23***

Panel A: Equity Market Variables

DP 0.35** −1.71 −2.15 1.77*** 1.57*** −0.34* 0.32***
EP −0.52 −2.18 −0.85 −0.89 1.77*** −5.09 −1.42
MKT 2.79*** 0.37 0.01 1.16** 1.67** 4.23*** 1.20***
SMB −0.55 −0.75 −1.34 −0.37 −2.34 −2.19 −0.36
HML −1.15 −2.21 −0.89 −0.76 −0.60 −1.32 −0.47
STR 0.92** −0.18 0.30 −0.42 −0.26 1.56** 1.30***
MSCI 3.73*** 1.55** 0.51 2.44*** 1.41** 4.91*** 1.61***

Panel B: Interest rates, Spreads and Bond Market Factors

TB −0.17 −2.23 −1.31 −1.55 4.71*** −4.41 −0.84
LTR −0.25 −0.25 0.16** 1.09** 1.07** −0.23 3.17***
TS −0.58 0.10 −1.05 −0.28 −0.20 −2.52 0.61*
𝛥TED −0.65 −4.03 −1.26 −0.69** 4.55*** −2.65 −1.39*
LTY 3.98*** 5.62*** −0.40 5.74*** 3.71*** 7.98*** 2.88***
DFY 0.75* 0.83* −0.18 0.77* 0.76** 2.27*** −0.19

Panel C: Macroeconomic Conditions

INFM −27.77 −65.00 −13.95 −21.98 −67.62 −13.35 −28.48
INFA −0.71 −0.82 −0.93 0.73** 0.62* −0.71 −0.08
IPM 0.83* 3.61** 0.05 4.75** −0.54 2.53** 1.52**
IPA −3.20 −0.01* −0.64 1.29** −4.22 −2.28 −1.04
M1M 0.59 −1.25* −1.83 1.70** 0.67* 0.74 −0.03**
M1A −0.59 −0.57 −0.89 0.73** −0.35 −0.72 −0.76
PAYEMS −1.15 3.69*** −0.04 2.70*** 0.23 −1.00 0.13**
EPU 0.01 −0.60 −0.26 1.45** 0.17 0.21* −0.29
SENT −0.92 −0.80 −0.57 −0.42 −1.12 −0.85 −0.85
CAP −0.71 −0.82 −0.17 0.42 1.72*** −0.03 1.55*
DIFF −1.10 −1.02 −0.56 −1.16 −1.15 −1.29 0.43
CCONF 0.41* 1.31** 0.87* 2.68** −1.36 1.62* 1.23**
H-S −0.95 1.13** 0.93** 1.30** −0.28 −0.50 1.37**
PMBB −1.81* −0.04 −0.56 0.54* −1.00 −0.66* 2.01**
PMI 1.89** −0.57 0.22 1.38** 2.52*** 1.74** 0.07

Panel D: Liquidity, Risk and Economic Activity

PS −1.71 0.56 −0.92 0.15 −0.37 0.13 −0.13
GOLD −0.20 −0.54 −0.78 −0.55 −0.38 −0.94 −0.28
𝛥VXO 0.40 0.85* −0.45 3.28*** −0.56 0.61* 0.88**
WTI −0.45 −0.55 −0.21 −0.26 −0.35 −0.45 −0.13
CRB 1.45*** 0.32 −0.58 1.60** −0.35 0.91* 0.34

Notes: The Table illustrates the out-of-sample performance of the predictors under consideration against the benchmark. The benchmark is a simple AR(𝑝) process.
We set the maximum number of lags (𝑝) equal to six. In each iteration, we select the optimal one by maximizing the adjusted-𝑅2. We test the performance of
the forecasts based on: 𝑓𝑗 ,𝑡 = �̂�0.𝑗 +

∑𝑝
𝑖=1 𝑏1,𝑗 ,𝑖𝑅𝑉𝑡−𝑖 + �̂�2,𝑗𝑥𝑗 ,𝑡−1. In Panels A to D, we compute the results for each group of individual predictors. The performance

is measured by the 𝑅2
𝑂 𝑂 𝑆 , which measures the reduction in MSFE of the rival against that of the benchmark. Statistical significance is assessed by the Clark and

West (2007) one-sided upper-tailed statistic, which tests the 𝐻0 that the MSFE of the benchmark is less or equal to that of the rival against 𝐻1 that the forecast
MSFE of the benchmark is greater than that of the competing model. ‘‘***’’, ‘‘**’’ and ‘‘*’’ denote 1%, 5% and 10% levels of statistical significance, respectively.

of YEN, the performance of PI, regardless of the currency under consideration is moderate and similar. PCA, Lasso, NN as well as,
all the AMALG specifications provide significantly better forecasts, outperforming the PI consistently, irrespective of the currency
under consideration.

As a next step, we examine the dynamic evolution of the out-of-sample performance of the predictors. We compute the Scaled
Net Cumulative Squared Errors (SNCSE):

𝑆 𝑁 𝐶 𝑆 𝐸 =
∑𝑡

1(𝑅𝑉𝑡 − �̂�𝑉𝑏,𝑡)
2 −

∑𝑡
1(𝑅𝑉𝑡 − �̂�𝑉𝑗 ,𝑡)2

∑𝑃
1 (𝑅𝑉𝑡 − �̂�𝑉𝑏,𝑡)2

, where 𝑡 = 1,… , 𝑃 (18)

which is basically the 𝑅2
𝑂 𝑂 𝑆 per time 𝑡. Upward movements indicate a period where the rival model beats the benchmark and

ice-versa.
Our results are depicted in Fig. 1, below. We observe that the performance of the amalgamation specifications is relatively stable.

Moreover, we observe that turbulent periods offer significant gains compared to the benchmark. The sub-prime crisis in the US and
the high financial uncertainty in the Eurozone in September 2011 have benefited the performance of the majority of methods under
consideration. Nevertheless, we could claim that the amalgamation forecasts follow a positive and stable performance over time.
11 
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Table 2
Out-of-Sample Forecasts for the aggregate information methods.

NZD NOK YEN GBP CAD AUD CHF

LASSO 2.39*** 2.91*** −1.45 7.78*** 7.81*** 3.88*** 10.06***
NN 3.72*** 1.23*** −0.12*** 8.65*** 8.30*** 6.36*** 13.00***
SVR −0.01 −0.55 0.57** 0.98*** 0.94** −0.64 1.89***
PCA 4.76*** 4.51*** 0.72*** 9.42*** 13.67*** 6.97*** 8.57***
ICA −2.17*** −33.97** −1.75** −17.12** −4.89*** 1.30** −12.25**
PLS −2.77*** −9.29*** −6.63*** 5.86*** −0.99*** 0.47*** 6.88***
POOL 1.55*** 1.88*** 0.93*** 2.55*** 2.39*** 1.81*** 2.27***
MEDIAN 0.56*** 0.55** 0.32** 0.88*** 0.84*** 0.82*** 0.77***
TRIM3 1.37*** 2.14*** 1.08*** 2.43*** 2.34*** 1.84*** 2.45***
TRIM10 1.54*** 2.91*** 1.19** 3.56*** 3.14*** 2.05*** 3.03***

AMALG 5.70*** 5.59*** 2.91*** 7.79*** 7.75*** 7.22*** 9.98***
AMALG1 6.18*** 5.38*** 3.35*** 7.82*** 7.87*** 7.83*** 10.28***
AMALG2 6.33*** 5.26*** 3.30*** 7.63*** 7.86*** 7.92*** 9.86***
AMALG3 7.24*** 4.61*** 3.14*** 8.36*** 9.30*** 9.44*** 11.40***

PI 2.53*** 1.27** 0.02 2.94*** 4.25*** 2.50*** 2.64***

The table presents the forecasting performance of the methods aggregating information from the entire set of predictors, measured by the 𝑅2
𝑂 𝑂 𝑆 . Statistical

ignificance is assessed by the Clark and West (2007) statistic. ‘‘***’’, ‘‘**’’ and ‘‘*’’ denote 1%, 5% and 10% levels of statistical significance, respectively.

5.2.3. Frequency based empirical findings
In order to identify the frequency based sources of predictability, we apply the wavelet methodology. We decompose the RV

signal in different frequencies and extend our experiment by aggregating the forecasted frequencies, since the investor is primarily
interested in forecasting the original RV times series.

In the first step, we evaluate the performance of the individual predictors in the short-run, medium-run and long-run frequency
omponents of RV, as shown in Tables A.4, A.5 and A.6 in the Appendix.

�̂�𝑉 𝑓
𝑡 = �̂�𝑗 +

𝑝
∑

𝑖=1
�̂�𝑗 ,𝑖𝑅𝑉𝑡−𝑖 + 𝛽𝑗𝑋𝑗 ,𝑡−1 (19)

To avoid any look-ahead bias, we perform the decomposition process, as described in Eq. (16), at every time-step 𝑡, using data up
o this point of time, in order to forecast 𝑡 + 1.

The results regarding the short-run frequency component demonstrate a weak performance of the predictors, for almost every
currency under consideration, apart from GBP. A few sporadic predictors outperform the benchmark, but there is no sufficient
evidence for robust behaviour, as reported in Table A.4. On the contrary, when we focus on the medium frequency, as shown in
Table A.5, there is a significant improvement in the number of individual predictors that outforecast the benchmark. Remarkably,
almost every method in Panel B shows positive performance.13 In addition, in Panel C all amalgamation specifications demonstrate
ignificant gains against the benchmark. Finally, the results presented in Table A.6 indicate that a handful of individual predictors
ncrease their gains in terms of performance. On the other hand, almost all methods in Panels B and C are able to outperform
he benchmark significantly. The aforementioned results provide enough evidence to assume that macroeconomic and financial
redictors capture information contained in the medium- and long-run frequency, namely they are able to capture relatively stable
rends of the RV time series. However, we need to point out that our results are not fully aligned with the findings of Engle et al.

(2013) regarding the performance of inflation and industrial production growth on the long component of volatility.
We extend our analysis by decomposing the candidate predictors in a similar way. In this respect, we focus on the impact of the

redictor’s frequency on the respective frequency of the RV, such as:

�̂�𝑉 𝑓
𝑡 = �̂�𝑗 +

𝑝
∑

𝑖=1
�̂�𝑗 ,𝑖𝑅𝑉𝑡−𝑖 + 𝛽𝑗𝑋𝑓

𝑗 ,𝑡−1 (20)

Our findings are presented in Tables A.7–A.9 for the short-run, medium-run and long-run component, respectively. We observe that
the short-run (high) frequency component of the predictors is hardly statistically significant. Intuitively, this finding is attributed to
the volatile nature of the high frequency components. With respect to the medium frequency, we observe that the performance is
significantly improved, especially for those methods aggregating information. The amalgamation approaches, in 6 out of 7 currencies
perform better than their rivals. Last, in the low frequencies, the performance is outstanding. Apparently, the long lasting patterns
followed by the macroeconomic variables are able to capture long-term behaviour in the RV series.

Inspired by the work of Ferreira and Santa-Clara (2011) and, more recently, Faria and Verona (2018b) we sum the forecasted
decomposed parts. The sum of forecasts of decomposed parts should approximate the actual RV series, such as:

�̂�𝑉𝑡,𝑗 = �̂�𝑉 𝑆 𝑆
𝑡,𝑗 + �̂�𝑉𝑀 𝑆

𝑡,𝑗 + �̂�𝑉 𝐿𝑆
𝑡,𝑗 (21)

13 The bizarre results of PLS and ICA, which generate a large negative but statistically significant 𝑅2
𝑂 𝑂 𝑆 metric, are dictated by one outlier forecast at the end

f the out-of-sample period.
12 



A.K. Alexandridis et al. Journal of International Financial Markets, Institutions & Money 97 (2024) 102067 
Fig. 1. Dynamic evolution of out-of-sample forecasts.
Notes: The Figure plots the Scaled Net Cumulative Squared Errors between the benchmark and the rivals, following the specifications of the initial experiment.
Due to the large set of predictors and methods, we demonstrate the performance of the combination and dimensionality reduction techniques.

where �̂�𝑉 𝑆 𝑆
𝑡,𝑗 , �̂�𝑉𝑀 𝑆

𝑡,𝑗 and �̂�𝑉 𝐿𝑆
𝑡,𝑗 are generated according to Eqs. 4 and 20. These forecasts are compared against the AR(𝑝) process, as

discussed in Eq. (3). The information derived from the former set of results is, on one hand, essential in understanding the dynamics
of the RV series and the predictors, but on the other hand, these series are not directly tradable. Hence, the investor requires a
model to forecast RV. For this reason, we use a naive aggregation of the sub-frequencies’ forecasts, as shown in Table 4.
13 
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Fig. 1. (continued).

Overall, we see an improvement in all Panels, but this can vary among currencies and predictors. For example, by comparing
the results of Table 2 with Panels B and C of Table 3, we see that the forecasts of Table 4 for NOK, CHF and, less obviously, for
GBP do not improve against their rivals.

On the other hand, in Table 4 we observe an essential improvement in the overall performance of the predictors by aligning the
respective frequencies of the dependent and independent variable. For instance, the predictors for GBP, CAD and AUD are almost
uniformly statistically significant. Furthermore, it is noteworthy that the amalgamation forecasts demonstrate significant gains, both
in terms of 𝑅2 and CW statistic, for every currency. More precisely, the 𝑅2 ranges from 4.35% for AMALG3 in YEN to 17.86%
𝑂 𝑂 𝑆 𝑂 𝑂 𝑆

14 
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Fig. 1. (continued).

for AMALG3 in CAD. A close inspection of Table 4 reveals that the amalgamation forecasts outperform all other predictors under
consideration.

5.3. Model confidence set

We further investigate the impact of wavelets on model performance by comparing the forecasting results of 14 models, which
aggregate information in three different ways: (a) without decomposition (denoted with the subscript 1), (b) after decomposing
15 
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Fig. 1. (continued).

only the dependent variable (denoted with the subscript 2), and (c) after decomposing both X and Y (denoted with the subscript 3),
using the Model Confidence Set (Hansen et al., 2011b). Similar to Bucci (2020), we use the 85% MCS to compare the models and
increase it to 90%. The results reported in Table 5, provide strong evidence in favour of incorporating the wavelet methodology in
the forecasting exercises. Apart from GBP and CHF, all other currencies are dominated by the models accounting for different
frequencies. Overall, we observe that the AMALG approach is promoted in all currencies. Furthermore, we observe that the
decomposition plays a pivotal role in forecasting, since only a handful of models are selected without any decomposition. Last,
we see that aggregating the forecasts after aligning the respective frequencies of RV and X (models with subscript 3) perform better,
underlining the importance of using the correct type of information to forecast inner frequencies of RV, rather than using the original
series as the dependent variable.

6. Robustness checks

In this section, we examine the performance of the models under different financial conditions and periods. Such periods are
related to (i) the business cycle, (ii) the market sentiment, (iii) the liquidity in the market, and, (iv) impactful events.

6.1. Alternative loss functions

The sensitivity of loss functions to a few outliers in the forecast series has been raised by the literature and thoroughly investigated
by Patton (2011). In order to provide further evidence on the robustness of the results, we show the overall relative performance of
the rival models, by first averaging the ranking of each model among all currencies and, as a second step, ranking the averages. A
model can perform relatively poor in one currency but good in another. Hence, the forecaster trading a variety of currencies, should
be able to identify which model demonstrates overall superior forecasting performance across different loss functions. Based on the
results of Table 6, we observe that the specifications of amalgamation forecasts report the least losses, irrespective of the metric
under consideration.

6.2. Performance during recessions and expansions

The impact of recessions/ expansions in forecasting returns and volatility has been recognized in the literature (see, among
others, Neely et al., 2014 and Souropanis and Vivian, 2023). We identify business cycle periods, i.e. recessions and expansions, by
the National Bureau of Economic Research (NBER) reported dates and measure the performance based on the standard 𝑅2

𝑂 𝑂 𝑆 metric,
adjusted to isolate for the business cycle periods.

Specifically, we employ the modified 𝑅2
𝑂 𝑂 𝑆 , so that:

𝑅2
𝑐 = 1 −

∑𝑃
1 (𝑅𝑉𝑡 − �̂�𝑉𝑡)

2𝐼𝑐𝑡
∑𝑃 𝑐

2

, 𝑐 = 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐 𝑒𝑠𝑠𝑖𝑜𝑛 (22)

1 (𝑅𝑉𝑡 − �̂�𝑉𝑏,𝑡)𝐼𝑡
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Table 3
Out-of-Sample forecasts for the aggregated forecasted wavelet frequencies decomposing only RV.

NZD NOK YEN GBP CAD AUD CHF

Panel A: Individual Predictors

DP −0.00** −3.87 −2.52 2.39*** 0.45*** 1.66** −0.27***
EP −0.74 −3.73 −1.28 0.59 1.12*** −2.99 −1.51
MKT 2.51*** −1.66 0.04 2.57*** 1.96** 5.74*** 1.21**
SMB −0.89 −2.84 −1.26 1.22** −1.99 −0.25** −0.20
HML −1.23 −4.85 −1.03 0.69* −0.13 0.64 −0.42
STR 0.71** −2.33 0.28 0.88** 0.06* 3.14*** 1.22**
MSCI 3.56*** −0.47 0.53* 3.91*** 1.69** 6.38*** 1.64***
TB −0.45 −4.05 −1.21 −0.10 4.37*** −2.35 −0.85
LTR −0.56 −2.68 0.08** 2.73*** 1.68** 1.40** 3.37***
TS −0.82 −1.70 −1.10 0.89** 0.17 0.03* 0.31*
𝛥TED −0.96 −6.23 −1.24 0.39** 3.42*** −1.13 −1.00**
LTY 3.51*** 3.88** −0.28* 6.31*** 3.76*** 8.95*** 2.70***
DFY 0.53* −1.26 −0.42 2.11*** 1.32** 3.63*** −0.18
INFM −28.37** −67.61 −12.83** −19.90 −64.31* −11.51*** −28.31*
INFA −0.90 −3.04 −1.19 2.20*** 0.87** 0.93* 0.02
IPM 0.51* 1.48** −0.14 5.80*** −0.14 3.62*** 1.33***
IPA −3.51 −1.66 −0.76 2.07*** −4.17 −0.65 −1.50
M1M 0.41 −3.32 −1.69 2.55*** 1.15* 2.26** 0.04**
M1A −0.88 −2.81 −0.66 1.26** 0.11 0.98** −1.33
PAYEMS −1.42 1.73*** −0.12 4.03*** 0.54* 0.37* −0.14**
EPU −0.32 −2.76 −0.27 2.86*** 0.57* 1.81** −0.20
SENT −1.23 −2.90 −0.55 1.25* −0.66 0.76* −0.81
CAP −1.15 −3.11 −0.13 1.90** 2.28*** 1.57** 1.66**
DIFF −1.36 −2.95 −0.44 0.01 −0.81 0.33 0.38
CCONF 0.07 −0.70* 0.67* 4.04*** −0.98 2.79** 1.17**
H-S −1.38 −0.82 0.63** 2.76*** 0.12 0.99** 1.42**
PMBB −1.91* −1.97 0.09* 1.91*** −0.84 0.91*** 1.96**
PMI 1.67** −2.75 0.27 3.07*** 2.96*** 3.39*** 0.01
PS −1.97 −1.53 −0.81 1.59** 0.04 1.62*** −0.04
GOLD −0.47 −2.62 −0.61 1.00** 0.07 0.67** −0.14
𝛥VXO 0.12 −0.96 −0.35 5.10*** −0.65 2.33*** 0.89**
WTI −0.75 −2.70 −0.19 1.15* 0.07 1.07** −0.27
CRB 1.18** −1.77 −0.43 3.05*** 0.04 2.63*** 0.63*

Panel B: Aggregating Information

LASSO 0.93** 3.07*** 2.18*** 5.83*** 2.55*** 4.80*** 7.76***
NN 4.28*** −2.83** 1.71*** 7.46*** 9.32*** 8.22*** 11.40***
SVR −0.39 −2.41 0.71* 1.90** 0.49* 0.83* 0.74*
PCA 5.96*** 2.37*** 1.90*** 10.06*** 12.81*** 7.83*** 9.00***
ICA −3.16*** −34.93** −5.00*** −16.82** 0.03*** 0.29*** −15.48**
PLS −36.41*** −72.56** −27.40*** −30.07*** −21.49*** −13.52*** −26.70***
POOL 1.28*** −0.25 0.93** 3.78*** 2.59*** 3.33*** 2.14***
MEDIAN 0.39 −1.73 0.32 2.35*** 1.04** 2.24*** 0.48*
TRIM3 1.10** −0.03 1.09** 3.67*** 2.62*** 3.34*** 2.32***
TRIM10 1.25*** 0.65* 1.16** 4.60*** 3.36*** 3.48*** 2.80***

Panel C: Amalgamation Forecasts

AMLG 5.20*** 1.96** 4.56*** 7.62*** 7.93*** 9.89*** 8.99***
AMLG1 5.63*** 0.84** 4.77*** 7.41*** 8.62*** 10.65*** 9.11***
AMLG2 5.07*** −0.87** 4.38*** 6.04*** 8.23*** 10.77*** 8.04***
AMLG3 4.28*** −6.87*** 3.22*** 3.85*** 9.36*** 12.02*** 6.80***

Notes: Table 3 demonstrates the performance of the predictors after aggregating the forecasts of each frequency separately. The aggregate forecasts is given by:
�̂�𝑉𝑡,𝑗 = �̂�𝑉 𝑆 𝑆

𝑡,𝑗 + �̂�𝑉 𝑀 𝑆
𝑡,𝑗 + �̂�𝑉 𝐿𝑆

𝑡,𝑗 where �̂�𝑉 𝑆 𝑆
𝑡,𝑗 , �̂�𝑉 𝑀 𝑆

𝑡,𝑗 and �̂�𝑉 𝐿𝑆
𝑡,𝑗 are generated according to �̂�𝑉 𝑓

𝑡 = �̂�𝑗 +
∑𝑝
𝑖=1 �̂�𝑗 ,𝑖𝑅𝑉𝑡−𝑖 +𝛽𝑗𝑋𝑗 ,𝑡−1 The performance is measured by the

𝑅2
𝑂 𝑂 𝑆 . Statistical significance is assessed by the Clark and West (2007) statistic. ‘‘***’’, ‘‘**’’ and ‘‘*’’ denote 1%, 5% and 10% levels of statistical significance,

respectively.

where 𝐼𝑐𝑡 is a dummy variable that takes values 1 for expansion periods and 0 for recessions. The related findings are reported in
Table A.10 in the Appendix. Overall, our results are in line with the existing literature for all currencies. Our models perform better
during recessions than expansions. This finding complements the findings presented in Fig. 1, where we have shown that the main
gains are obtained during crises periods. The only exception is YEN, which demonstrates a similar performance between the two
periods. Moreover, we observe that the performance is gradually improved (in the majority of cases) as we move from Panel A to
Panel C, i.e. employing decomposed RV and candidate predictors. This implies that by decomposing the series, we can elaborate on
he separate frequencies distinctively and extract the most useful information. Focusing on the competing methodologies employed,
e should note that our main findings hold as the amalgamation forecasts show superior predictive ability.
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Table 4
Out-of-Sample forecasts for the aggregated forecasted wavelet frequencies decomposing both the RV and the X variables.

NZD NOK YEN GBP CAD AUD CHF

Panel A: Individual Predictors

DP −2.55 −9.73 −2.75 −2.34*** 0.20*** −5.17 −3.23***
EP −3.29 −10.31 −5.09 −3.74 2.50*** −8.77 −3.98
MKT 5.93*** −2.64 0.11* 4.54*** 3.72*** 6.74*** 2.07***
SMB −1.25 −10.62 −0.57* −1.17 0.16*** −5.25 −1.36
HML −0.47 −5.81 −2.12 1.36*** 1.03*** 0.55** 0.03*
STR −0.40** −1.87* 0.68** 1.31*** 5.52*** 0.67*** 1.27***
MSCI 5.38*** 2.79** 0.57** 4.81*** 5.88*** 7.92*** 3.40***
TB −3.37 −15.64 −1.10 −3.22 −5.03*** −12.62 −3.84
LTR 0.38** −9.47** 1.91*** 0.45*** −2.09*** 1.69*** 1.69***
TS 0.79** −4.43 −1.87 −0.53 3.26*** −3.52 −3.08
𝛥TED −2.39** −12.09 −1.01 −4.41** −6.08*** −6.98 0.18***
LTY 3.49*** 1.98*** −0.99** 8.12*** 6.71*** 8.52*** 1.93***
DFY −2.13*** −3.33 0.56** −1.26 3.77*** 3.49*** −1.36
INFM 1.28** −4.70* 2.16*** 1.66*** 4.14*** 2.01*** −3.18***
INFA −1.51 −2.26 −2.68 1.72*** 3.62*** −0.33** 2.32***
IPM 2.10** 2.47** 0.47** 6.95*** 2.81** 5.53*** −1.27**
IPA −3.61 0.44*** 0.23* 5.71*** −1.97** −2.41 0.80***
M1M 1.79** −5.25 −2.70 −3.75** 0.67** 2.23** −1.56*
M1A −2.28 −5.41 −1.55 −0.74*** 1.04** 3.16*** −4.78
PAYEMS −1.61 0.02*** −1.54 3.24*** 2.25*** 0.60** −1.65*
EPU 0.81** −3.24* 0.32** 4.78*** 3.62*** −0.76** 2.12**
SENT −2.60 −4.38 −0.78 1.83*** −1.07*** −0.31** −0.05*
CAP 1.78*** −2.08* 0.36** 1.69** 6.12*** 4.51*** −0.74*
DIFF −5.01 −5.08 −5.49 −0.45* −0.38** −7.72 −1.19
CCONF −1.07* −0.92** 2.01*** 3.61*** −1.29* 1.47** −1.28**
H-S −1.99 −0.07** 0.79** 1.92*** 1.34*** 1.30*** 2.11**
PMBB −0.66** −3.05 −1.81 1.11*** 1.62*** −0.11*** −0.40
PMI 3.38*** −3.18** 0.13*** 6.39*** 5.38*** 3.80*** −0.64**
PS −2.98* −5.31 −3.99 1.38*** 1.43** −3.57** −3.74
GOLD 0.54** −2.02** −1.05** 0.23** 6.00*** −1.60** 1.15***
𝛥VXO 2.38*** 1.91*** −1.20** 5.95*** 2.38*** 3.31*** 0.88***
WTI −3.14 −0.13* −1.48 1.39** 2.78*** −1.75 −1.26
CRB 1.06** −0.50** −6.56 1.53*** 5.35*** 0.55*** 0.29**

Panel B: Aggregating Information

LASSO 3.23*** −4.23*** 4.88*** 8.77*** 9.44*** 8.03*** 8.71***
NN −8.71*** −14.00*** −7.87*** 1.08*** −0.70*** −2.84*** −0.06***
SVR 3.83*** −2.81*** 1.36*** −2.91*** 9.49*** −0.54*** 5.24***
PCA 3.02*** −0.72*** −1.01*** 6.37*** 12.54*** 2.03*** 9.25***
ICA −3.19** −9.27** −5.61** 0.23*** −7.05** −1.40*** −6.14***
PLS −28.85*** −30.31*** −21.27*** −6.39*** −11.93*** −16.87*** −5.43***
POOL 3.91*** 2.20** 1.83** 6.72*** 7.38*** 5.99*** 3.21***
MEDIAN 2.03*** 1.36* 1.24** 4.76*** 5.06*** 4.04*** 0.80**
TRIM3 4.02*** 2.38** 2.08*** 6.88*** 7.45*** 6.34*** 3.46***
TRIM10 4.08*** 2.98** 1.90*** 7.33*** 7.98*** 6.88*** 3.26***

Panel C: Amalgamation Forecasts

AMLG 8.82*** 6.83*** 5.76*** 13.77*** 17.06*** 13.17*** 11.52***
AMLG1 8.99*** 6.90*** 5.45*** 13.40*** 17.09*** 13.03*** 11.35***
AMLG2 9.06*** 6.91*** 5.68*** 13.16*** 17.25*** 12.60*** 11.17***
AMLG3 7.85*** 5.61*** 4.35*** 14.63*** 17.86*** 13.70*** 11.00***

Notes: Table 4 illustrates the performance of the predictors after aggregating the forecasts of each frequency separately. The aggregate forecasts is given by:
�̂�𝑉𝑡,𝑗 = �̂�𝑉 𝑆 𝑆

𝑡,𝑗 + �̂�𝑉 𝑀 𝑆
𝑡,𝑗 + �̂�𝑉 𝐿𝑆

𝑡,𝑗 where �̂�𝑉 𝑆 𝑆
𝑡,𝑗 , �̂�𝑉 𝑀 𝑆

𝑡,𝑗 and �̂�𝑉 𝐿𝑆
𝑡,𝑗 are generated according to �̂�𝑉 𝑓

𝑡 = �̂�𝑗 +
∑𝑝
𝑖=1 �̂�𝑗 ,𝑖𝑅𝑉𝑡−𝑖 +𝛽𝑗𝑋𝑓

𝑗 ,𝑡−1 The performance is measured by the
𝑅2
𝑂 𝑂 𝑆 . Statistical significance is assessed by the Clark and West (2007) statistic. ‘‘***’’, ‘‘**’’ and ‘‘*’’ denote 1%, 5% and 10% levels of statistical significance,

respectively.

6.3. Performance during different sentiment periods

Next, we analyse the impact of different sentiment periods. De Long et al. (1990) argue that the existence of traders suffering
from cognitive biases creates mispricing in the market. In the same spirit, Barberis et al. (1998) claim that investors are bound on
their former beliefs and fail to adjust in response to new information. We measure the sentiment of the market by employing the
Aligned Sentiment Index of Huang et al. (2015) and split the data into high (HSENT) and low (LSENT) sentiment periods, according
o the median value of the index. The index is based on the standard investor sentiment index of Baker and Wurgler (2007) that is

also employed by Stambaugh et al. (2012).
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Table 5
Model Confidence Set for each exchange rate.

NZD NOK YEN GBP CAD AUD CHF NZD NOK YEN GBP CAD AUD CHF

𝑀 𝐶85% 𝑀 𝐶90%
𝐴𝑀 𝐴𝐿𝐺3 𝐿𝐴𝑆 𝑆 𝑂1 𝐴𝑀 𝐴𝐿𝐺2 𝐴𝑀 𝐴𝐿𝐺33 𝐴𝑀 𝐴𝐿𝐺33 𝐴𝑀 𝐴𝐿𝐺12 𝐴𝑀 𝐴𝐿𝐺11 𝐴𝑀 𝐴𝐿𝐺23 𝐴𝑀 𝐴𝐿𝐺2 𝐴𝑀 𝐴𝐿𝐺2 𝐴𝑀 𝐴𝐿𝐺33 𝐴𝑀 𝐴𝐿𝐺33 𝐴𝑀 𝐴𝐿𝐺33 𝐴𝑀 𝐴𝐿𝐺11
𝐴𝑀 𝐴𝐿𝐺13 𝑃 𝐶 𝐴2 𝐿𝐴𝑆 𝑆 𝑂3 𝐴𝑀 𝐴𝐿𝐺22 𝐿𝐴𝑆 𝑆 𝑂1 𝐿𝐴𝑆 𝑆 𝑂3 𝐿𝐴𝑆 𝑆 𝑂3 𝐿𝐴𝑆 𝑆 𝑂1
𝐴𝑀 𝐴𝐿𝐺23 𝑇 𝑅𝐼 𝑀31 𝐴𝑀 𝐴𝐿𝐺12 𝐴𝑀 𝐴𝐿𝐺23 𝐴𝑀 𝐴𝐿𝐺33 𝐴𝑀 𝐴𝐿𝐺12 𝐴𝑀 𝐴𝐿𝐺12 𝐴𝑀 𝐴𝐿𝐺33

𝐿𝐴𝑆 𝑆 𝑂2 𝐴𝑀 𝐴𝐿𝐺13 𝐴𝑀 𝐴𝐿𝐺32 𝐴𝑀 𝐴𝐿𝐺23 𝐴𝑀 𝐴𝐿𝐺13 𝐴𝑀 𝐴𝐿𝐺13 𝐴𝑀 𝐴𝐿𝐺23
𝑇 𝑅𝐼 𝑀101 𝐴𝑀 𝐴𝐿𝐺23 𝐴𝑀 𝐴𝐿𝐺13 𝐴𝑀 𝐴𝐿𝐺13 𝐴𝑀 𝐴𝐿𝐺23 𝐴𝑀 𝐴𝐿𝐺23 𝐴𝑀 𝐴𝐿𝐺13
𝐴𝑀 𝐴𝐿𝐺31 𝐴𝑀 𝐴𝐿𝐺3 𝐴𝑀 𝐴𝐿𝐺3 𝑁 𝑁2 𝐴𝑀 𝐴𝐿𝐺3 𝐴𝑀 𝐴𝐿𝐺3 𝑁 𝑁2
𝑃 𝐶 𝐴1 𝐴𝑀 𝐴𝐿𝐺33 𝐴𝑀 𝐴𝐿𝐺31 𝐴𝑀 𝐴𝐿𝐺31
𝐴𝑀 𝐴𝐿𝐺21 𝐴𝑀 𝐴𝐿𝐺3 𝐴𝑀 𝐴𝐿𝐺3
𝐴𝑀 𝐴𝐿𝐺11 𝑁 𝑁1 𝑁 𝑁1
𝐴𝑀 𝐴𝐿𝐺33

Notes: The table reports the included models in the Model Confidence Set for two different intervals, 85% and 90%, respectively. The set consists of forecasts generated by both individual predictors
and dimensionality reduction techniques. The subscript ‘‘1’’ denotes the methods without employing any decomposition, ‘‘2’’ after applying wavelets only on RV, and ‘‘3’’ when both RV and X are
decomposed.

Table 6
Alternative Loss Functions Metrics.

QLIKE MSE LOG MSE SD MSE prop MAE MAE LOG MAE SD MAE prop

AR(p) 1 11 3 7 8 5 6 9
Lasso 5 14 12 10 6 12 13 8
NN 8 13 4 12 15 13 15 12
SVR 7 12 11 14 14 10 14 11
PCA 13 10 15 4 12 11 12 6
ICA 5 3 14 9 13 6 10 10
PLS 8 6 13 8 7 4 5 13
POOL 12 8 5 13 9 8 8 4
MEDIAN 10 9 7 6 11 9 11 5
TRIM3 11 7 10 10 10 7 7 8
TRIM10 12 5 9 11 5 4 9 7
AMALG 6 2 8 5 2 1 1 3
AMALG1 3 3 6 3 3 3 2 2
AMALG2 4 1 1 2 1 2 3 1
AMALG3 2 4 2 1 4 4 4 1

Notes: The table reports the ranking of the average ranking among the currencies for each method based on alternative loss functions. As a first step, we rank
ach method for each currency, then we average the rankings in order to identify how well each method performs on average, last, we rank the averages.

The finding are presented in Table A.11, in the Appendix. Our results provide evidence that the models work better during high
sentiment periods. Especially for some currencies, the difference in performance between the two periods is relatively significant.

n the other hand this is not true for Yen, a currency that is widely characterized as a ‘‘safe haven’’ (see for instance, Hossfeld and
acDonald, 2015).

6.4. Performance during different liquidity periods

The importance of liquidity for realized volatility has been highlighted by Adrian and Shin (2010). The liquidity index we
employ is based on the broadly used liquidity factors of Pástor and Stambaugh (2003). Similar to the previous cases, we examine
the performance of the competing models during high (HLIQ) and low (LLIQ) liquidity periods, based on the median value of the
index.

Our results in Table A.12 in the Appendix indicate that the impact of liquidity periods tends to affect differently the methods
applied on different currencies. For instance, we observe a boost in the performance of the predictors during LLIQ when considering

ZD, NOK, CHF, GBP and CAD. On the other hand, AUD and YEN demonstrate relatively different behaviour. In brief, YEN
emonstrates balanced behaviour during the two liquidity periods, whereas, the predictors for AUD benefit slightly during high
iquidity periods.

Overall, the results in Panel C suggest that the performance between HLIQ and LLIQ is amplified. Moreover, the candidate
predictors benefit from the recommended approach. In addition, there is strong evidence in favour of using wavelet decomposition
in the forecasting framework, since the results in both Panel B and C improve the forecasting performance compared to Panel A.
These results suggest that the decomposition results could protect the forecaster from fluctuations in the liquidity of the market.

6.5. Performance during alternative OOS periods

Investigating further the effect of timing in the performance of our methodologies, we check the robustness of results during
ifferent out-of-sample periods (1993:1-2006:12 and 2007:1-2019:12). The effect of the sub-prime mortgage crisis on exchange rates
as been well-documented by the literature. Moreover, the impact of major events on exchange rate volatility has been documented
n several studies, mainly linked to changes in the uncertainty around fundamentals. Despite the fact that a large strand of the
iterature is using the Economic Policy Uncertainty Index to capture these effects, Bartsch (2019) argues that the EPU is mainly
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based on daily information updates. Hence, the effects of one month may be driven by one sole observation that has occurred from
one up to thirty days ago. Thus, we split our sample into two different time periods, the last of which includes the crisis and its
impact on RV forecasting.

The forecasts are mainly benefited by the last part of the period (as shown in the results in Table A.13 in the Appendix). The
xcess uncertainty in the financial markets and the depth of the crisis is not only reflected in the performance of the models, but also
n the case of NZD and NOK, the benchmark beats the rival models. For the remaining currencies, the amalgamation approaches
how superior predictive ability. Hence, the forecaster is relatively disentangled from the effect of ‘‘bad timing’’.

6.6. Discount MSFE

In order to see the payoff of estimating model weights at the amalgamation stage, we generate an additional ensemble
methodology which allows the models to receive varying weights at each time 𝑡, based on the discount MSFE (DMSFE) combination
orecast methodology (see Stock and Watson, 2004).14 The weights are generated based on the past performance over a rolling

holdout out-of-sample period, we set this period to 24 months.15

The results remain qualitatively the same, without demonstrating any major wins or losses (see Table A.14 in the Appendix).
ence, there is evidence that more elaborate ensemble methodologies can sporadically benefit the forecasting experiment. Apart

rom scattered spikes in the weights, the latter tend to equally weight the forecasts over the entire out-of-sample period.

7. Conclusions

There is a growing body of literature focusing on forecasting volatility and addressing the disconnect puzzle of RV with
acroeconomic and financial variables (Schwert, 1989). Despite the progress of academic literature, there has not been a unanimous

conclusion. In this study, we contribute to the growing academic dialogue by employing several financial and macroeconomic
variables on exchange rate volatility forecasting.

To our knowledge, we are among the first to examine the impact of this group of predictors on exchange rate volatility forecasting.
Our second contribution is related to the fact that the investor has at her disposal numerous methods and predictors in order to
aggregate information. Thus, she needs an ensemble technique to take advantage of the properties of each model. Hence, we apply
a variety of machine learning, dimensionality reduction and forecast combination approaches in order to aggregate all available
nformation from the predictors at hand. Moreover in order to avoid uncertainty associated with the employment of a specific

predictor/ model, we propose an amalgam of forecasts by simply averaging forecasts generated by the aforementioned approaches.
inally, our third contribution is to show that information contained at different frequencies can enhance the forecasting performance

of the model significantly, by employing the wavelet decomposition methodology.
We test our methodology in seven widely traded currencies; NZD, NOK, YEN, GBP, CAD, AUD and CHF, and calculate monthly

volatility from daily exchange rate returns, from February 1986 to December 2019. We use 33 candidate predictors that enjoy
theoretical merit in terms of being related with exchange rates. With respect to the frequency decomposition, we use the maximal
verlap discrete wavelet transform and the Haar wavelet filter. The predictors and methodologies proposed are evaluated both in
ample and out of sample. As a benchmark, we use a simple AR(𝑝) model, the toughest benchmark reported in the literature. Last,
e measure the performance in different timing periods associated with (a) the business cycle, (b) sentiment periods, (c) liquidity
nd (d) major financial crisis.

Our in-sample findings suggest that equity market and a few macroeconomic variables are able to predict volatility in a number
of currencies. However, the in-sample results are not consistent across currencies and predictors belonging in the same group.
The out-of-sample results demonstrate promising forecasting behaviour, especially the amalgamation approach. The latter seems
to achieve superior forecasting ability in, almost, every currency, as well as to demonstrate a stable performance over time. More
specifically, amalgam forecasts provide positive and statistically significant 𝑅2

𝑂 𝑂 𝑆 for all currencies, due to the fact that extreme
opposite forecasts are cancelled out. They also have the highest 𝑅2

𝑂 𝑂 𝑆 for NZD, NOK, YEN and AUD and among the highest ones
for CAD and CHF.

We also focus on the relationship of the frequency components of volatility and the candidate predictors. First, we find that
acroeconomic variables demonstrate good performance when it comes to the long frequency component, as intuitively expected.

econd, our findings suggest aggregating the forecasts after aligning the frequencies of the predictor with those of volatility can
ualitatively improve the forecasts. With respect to timing effects of the forecasting performance, we see that the business cycle and
he crisis periods have the main impact on the forecasts, as well as the low liquidity and low sentiment periods. Remarkably, the
malgamation forecasts is able to amplify major differences in the performance during different periods. Hence, the investor is less
oncerned on the timing effect of investment.

14 For an alternative combination rules, see among other Taylor (2020) and Amendola et al. (2020)
15 Instead of naively averaging the forecasts, we allocate the respective weights such as: 𝜔𝑖,𝑡 = 𝜙−1

𝑖,𝑡 ∕
∑𝐾
𝑘=1 𝜙

−1
𝑘,𝑡 , where 𝜙𝑖,𝑡 =

∑𝑡−1
𝑠=𝑅 𝜃

𝑡−1−𝑠(𝑟𝑠+1 − �̂�𝑖,𝑠+1)2. We denote
as 𝑅 + 1 the beginning of the out-of-sample (and consequently, that of the holdout period), 𝜃 is the discount factor; following Rapach and Zhou (2013) we set
𝜃 = 0.75
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