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Abstract

Here, we propose, prove mathematically and discuss maximum and minimum measures of maximum parsimony evolution
across 12 discrete phylogenetic character types, classified across 4467 morphological and molecular datasets. Covered character
types are: constant, binary symmetric, multistate unordered (non-additive) symmetric, multistate linear ordered symmetric, multi-
state non-linear ordered symmetric, binary irreversible, multistate irreversible, binary Dollo, multistate Dollo, multistate custom
symmetric, binary custom asymmetric and multistate custom asymmetric characters. We summarize published solutions and pro-
vide and prove a range of new formulae for the algebraic calculation of minimum (m), maximum (g) and maximum possible
(gmax) character cost for applicable character types. Algorithms for exhaustive calculation of m, g and gmax applicable to all clas-
sified character types (within computational limits on the numbers of taxa and states) are also provided. The general algorithmic
solution for minimum steps (m) is identical to a minimum spanning tree on the state graph or minimum weight spanning arbo-
rescence on the state digraph. Algorithmic solutions for character g and gmax are based on matrix mathematics equivalent to
optimization on the star tree, respectively for given state frequencies and all possible state frequencies meeting specified numbers
of taxa and states. We show that maximizing possible cost (gmax) with given transition costs can be equivalent to maximizing,
across all possible state frequency combinations, the lowest implied cost of state transitions if any one state is ancestral on the
star tree, via the solution of systems of linear equations. The methods we present, implemented in the Claddis R package, extend
to a comprehensive range, the fundamental character types for which homoplasy may be measured under parsimony using m, g
and gmax, including extra cost (h), consistency index (ci), retention index (ri) or indices based thereon.
© 2024 The Authors. Cladistics published by John Wiley & Sons Ltd on behalf of Willi Hennig Society.

Introduction

Homoplasy includes the phylogenetic manifestation
of an evolutionary phenomenon of major interest, the
repeated evolution of similar biological traits. This has
been a central topic in evolutionary biology and
throughout its history has been discussed using a col-
lection of interrelated terms including evolutionary
convergence and parallelism (Haas and Simpson, 1946;
Hall, 2003). Evolutionary convergence has often been

linked to repeated adaptation, while related concepts
of evolutionary parallelism have often been linked to
genetic, developmental and structural constraints on
evolutionary possibilities (Donoghue and Ree, 2000;
Conway Morris, 2003; Wake et al., 2011; Powell and
Mariscal, 2015; Hoyal Cuthill, 2015a). The measure-
ment of homoplasy therefore underpins efforts to
understand the nature and potential outcomes of evo-
lutionary processes.
Quantifying homoplasy is important for several rea-

sons. Homoplasy is known to have severe impacts on the
accuracy of phylogenetic reconstruction under parsimony
where it can be the cause of statistical inconsistency
owing to long branch attraction (Felsenstein, 1978).
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Homoplasy can also impact model-based phylogenetic
reconstruction using maximum likelihood or Bayesian
methods. For example, if the model of character change
is violated because it underestimates homoplasy or does
not take into account differences in homoplasy levels
between data partitions, maximum likelihood and Bayes-
ian methods can also return biased, inaccurate and incor-
rectly supported phylogenies (Brandley et al., 2009 and
references therein). In the extreme, where homoplasy
levels are so high that characters are saturated (Wag-
ner, 2000; Hoyal Cuthill, 2015b; Brocklehurst and Ben-
son, 2021), they may not retain sufficient phylogenetic
information for phylogenetic reconstruction by any
method. It is also notable that, while homoplasy is often
viewed primarily as an impediment to phylogenetic
reconstruction (as described above), potentially homo-
plastic characters can still provide valuable information
for phylogenetic analysis. In particular, character data
with homoplasy can be decisive, providing information
for the evaluation of possible phylogenetic trees (Golob-
off, 1991), and homoplastic character states may still act
as local synapomorphies providing strong support for
parts of a tree (Kälersjö et al., 1999).
Measures of homoplasy can, therefore, give indica-

tions of tree quality and are widely used as tree or
clade support metrics. Homoplasy measures are also
used to compare, as sources of phylogenetic informa-
tion, different data types or partitions such as mor-
phology and molecules, or cranial and postcranial
characters (Sánchez-Villagra and Williams, 1998;
Mounce et al., 2016). Some phylogenetic methods also
use measures of homoplasy to directly improve phylo-
genetic reconstruction, for example by the consider-
ation of homoplasy during the tree inference process
(Goloboff et al., 2008a and references therein).
Almost all parsimony-based homoplasy metrics

depend (implicitly or explicitly) on first establishing
the minimum (m) and/or maximum (g) possible cost a
given character could have under maximum parsimony
optimization. These bounds then provide a context for
the number of steps (s) that character is inferred to
have taken on a preferred topology. The value of s
may be calculated either where the same set of charac-
ters are used to infer the phylogeny and homoplasy
levels (where s is the length of the most parsimonious
trees) or where separate character partitions are used,
for example if homoplasy is reconstructed among mor-
phological characters on a molecular tree (e.g.
Callender-Crowe and Sansom, 2022). Even where tree
reconstruction is performed using other methods,
parsimony-based measures can therefore be useful for
the quantification of homoplasy, across a range of
character types for example morphology, behaviour,
recurrent DNA or RNA mutation (e.g. in SARS-CoV-
2, van Dorp et al., 2020), gene function (Mendler
et al., 2019) or gene regulation.

The simplest measure of homoplasy is the number
of extra steps (h = s�m), over the minimum possible
(Camin and Sokal, 1965), something Fisher (1992)
termed “parsimony debt” in a stratocladistic context.
Perhaps the most commonly used homoplasy measure,
the consistency index (Kluge and Farris, 1969), CI
(character ci =m/s), also depends on first establishing
the minimal value, and both the retention index, RI
(character ri= (g� s)/(g�m)) and rescaled consistency
index, RCI (Farris, 1989), require knowing both the
minimal and maximal values. When maximum and
minimum steps are known, a further use is the identifi-
cation of parsimony uninformative characters, for
which m= g (Farris, 1989).
However, even for parsimony analysis of discrete phy-

logenetic characters, where the greatest research effort
has been applied, we show, in relation to a survey of
character types from the literature (Appendix A), that
there remain some character types for which minimum
(m) and maximum (g) bounds on parsimony steps (given
a number of taxa t, number of states n and implicit or
explicit transition cost matrix), and hence their measur-
able homoplasy, have not previously been implemented
in common software such as PAUP* (Swofford, 2003)
and TNT (Goloboff et al., 2008b; Goloboff and Cata-
lano, 2016; Goloboff and Morales, 2023), or their effects
explored. Furthermore, to our knowledge, maximum
possible bounds (gmax) have only previously been deter-
mined for the simplest characters (specifically characters
in which all transitions between different states have
cost 1 (Mickevich, 1978; Steel and Penny, 2006; Hoyal
Cuthill et al., 2010)) and we are not aware of any
pre-existing software implementation for calculating
gmax. Explicit mathematical proofs for maximum steps,
in particular, have previously been explored mainly
among the simplest character types, such as unordered
characters where all costs of transition between different
states are equal to 1 (Hoyal Cuthill et al., 2010).
The maximum possible cost and minimum cost

determine the maximum homoplasy that can be shown
by common homoplasy measures (Hoyal Cuthill
et al., 2010), including extra steps and the consistency
index (maximum extra steps hmax= gmax�m, mini-
mum consistency index cimin=m=gmax). Comparisons
with gmax and g could also be applied to the retention
index of Farris (1989) (ri = (g� s)/(g�m)) for example
via its complement, the distortion coefficient (d =
(s�m)/(g�m)), to give a minimum baseline of dmin =
(s�m)/(gmax�m).
Custom transition cost matrices, in which state transi-

tion costs are explicitly defined for a given character,
enable the incorporation of models, hypotheses or prior
information about the process of evolution in the esti-
mation of tree length and quantification of homoplasy
within the context of parsimony. Such concepts have a
long history within phylogenetics, including the
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formalization of early evolutionary hypotheses such as
Dollo’s law, sometimes defined today as irreversibility
of trait loss (Wiens, 2011) but, in cladistic software,
often treated as a ban on repeated state gains, i.e. “con-
vergent transitions” (Semple and Steel, 2003, p. 68),
introduced below (e.g. Swofford and Olsen, 1990; Swof-
ford, 2003). As new molecular, developmental and
structural information emerges, this adds to the wide
range of evidence for variable probabilities of different
evolutionary transitions, showing for example that evo-
lutionary losses may sometimes be more probable than
gains (Wake et al., 2011), as has been argued for com-
plex traits such as phasmid wings (Trueman et al., 2004)
and in cases of conserved genetic regulatory mecha-
nisms (for example in Drosophila pigmentation; Hughes
et al., 2020).
Here we provide methods for the measurement of

minimum steps (m), maximum steps (g) and the maxi-
mum possible steps (gmax) any character could show
given its specified numbers of taxa and states, and its
transition costs. These are provided for a full range of
cost matrix character types (listed in full in the
“Appendix A”) including character types for which
some implemented or described bounds on homoplasy
were previously unavailable (with a full list of new and
previously available implementations provided in the
“Appendix A”).
We provide parsimony measures defined for discrete

characters (which have formed the basis for the major-
ity of fundamental theory in the definition and mea-
surement of homoplasy). We note, also, that such
concepts and measures of homoplasy among discrete
characters are also of potential interest for consider-
ations of continuous characters, to which they have in
some cases been extended (for example, see Maddi-
son, 1991; Stayton, 2006; Klingenberg and Gidas-
zewski, 2010; Arbuckle et al., 2014, Lloyd, 2018,
Hoyal Cuthill et al., 2019). In discussion of applica-
tions to real data, we primarily consider cost matrices
with integer values (or sometimes also infinity), which
have also been referred to as step matrices (Swofford
and Maddison, 1992). All 4,467 morphological and
molecular character matrices surveyed have integer (or
infinite) costs, although our algebraic approach
(described below), for example, could also be applied
to non-integer costs. Surveyed character matrices are
listed at graemetlloyd.com, and represent an expanded
version of the database used by Wright et al. (2016)
and Wright and Lloyd (2020).
Below, we define parsimony measures of minimal

and maximal evolution (m, g and gmax), and hence
homoplasy, across the considered discrete character
types and provide details for their implementation,
either where documented in PAUP*, TNT, or in novel
implementation in the R package Claddis (Lloyd, 2016,
2018; github.com/graemetlloyd/Claddis). We achieve

this aim by: (i) constructing a comprehensive classifica-
tion of discrete character types; (ii) providing empirical
examples for each type; (iii) describing how minimal
and maximal values may be calculated in theory
(including novel solutions) for each type; and (iv)
showing how these can be calculated in practice using
PAUP*, TNT or Claddis. We also note cases where
previously existing software could not calculate these
values for every character type. In this paper we make
the following assumptions: (i) topologies are consid-
ered rooted; (ii) polytomies are considered hard; (iii)
reversals and convergent transitions are as defined in
Semple and Steel (2003); (iv) every state defined in the
cost matrix is actually present in at least one tip; (v)
for some characters, gains and losses are defined by a
numbered sequence (i.e. 0 to 1 is a gain, 2 to 1 is
a loss); (vi) state graph representations are those that
minimize total length; (vii) no characters are missing
or inapplicable (e.g. see Maddison, 1993); (viii) no
characters are uncertain or polymorphic (e.g. see Swof-
ford and Maddison, 1992); and (ix) unless otherwise
stated for a given character type (e.g. Dollo and irre-
versible characters), we assume that there are no
pre-existing constraints on which state may be ances-
tral, such that all states are available for consideration
as a potentially optimal ancestral state (see also discus-
sion below).

Cost matrices and graph representations

Cost matrices are square matrices with rows (i) and
columns (j) that represent the cost (ci,j) of transition
between those states. Formally such costs are often mea-
sured in “steps”, but as this refers strictly to integer
values we follow Swofford and Maddison (1992) in pre-
ferring the general term “cost” as this is inclusive of any
off-diagonal positive value. By convention, rows are
considered the “from” state in the transition and col-
umns the “to” state: ci,j is the cost of going from state i
to state j. Explicit cost matrix representations are rarely
used in cladistic datasets. However, all common charac-
ter types can be represented using a cost matrix, includ-
ing binary, linear ordered multistate (Wagner, 1961;
Farris, 1970) or unordered multistate character types
(Fitch, 1971). Indeed, cost matrices are inclusive of all
types of cladistic character (Swofford and Maddi-
son, 1992) with limited exceptions, such as Dollo char-
acters, where additional information is typically
required (Swofford and Olsen, 1990).
Any cost matrix can also be represented as a

directed graph (a “digraph”), see Fig. 1. However, we
must first consider two key differences between a cost
matrix and a graph representation. First, for any
cost matrix where all transition costs are symmetric,
the digraph can be replaced with a simpler, undirected
graph. This does not change the information content
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itself, but can be important when considering graph
theory solutions or proofs for bounds. Second, a cost
matrix may include transitions that would logically be
missing or pruned from a digraph. For example, any
transition cost of infinity may be described graphically
by the lack of an edge, as it would never be traversed
by a parsimony algorithm (as any finite cost is lower
than infinity). Indeed, the purpose of an infinite cost
in a cost matrix is to preclude a specific transition
(Swofford and Maddison, 1992). Any direct edge that
is of equal cost to an indirect transition, e.g. the 0–2
transition in Fig. 1, is effectively redundant and can
also be pruned, producing the minimal graph represen-
tation (Fig. 1). NB: Direct costs that are larger than
an indirect cost are not permitted (by the triangle
inequality, see Rule 7, below, and Maddison and Mad-
dison (1992), Maddison (1993) and Wheeler (1993)).

Rules defining a valid cost matrix for a cladistic

character under maximum parsimony

To the best of our knowledge nobody has formally
defined what restrictions can be placed on a discrete

cost matrix for a cladistic character for it to be consid-
ered valid. By valid here we mean only the mathemati-
cal limits of validity, not what a systematist may
practically consider, which may be more restrictive.
Aside from the description above, we identify the fol-
lowing seven rules a cost matrix—and hence a discrete
character—must meet to be considered valid:

1. The cost matrix representation must be complete
(i.e. a cost must be assigned to every possible
transition).

2. The diagonal must always be 0 (i.e. there must be
no cost for remaining in the same state)—loops in
state graphs are not permitted.

3. The off-diagonal must always be positive (i.e. there
must always be some cost for transitioning to a dif-
ferent state).

4. The state graph representation of the cost matrix
must be (at least weakly) connected.

5. A maximum of one column can contain all infinite
transition costs (excluding the diagonal), i.e. a max-
imum of one state can be restricted to only appear
as a “from” state as by necessity this will be the
forced root state and there can only be at most one

Fig. 1. Cost matrices and corresponding graph representations. The cost matrix (at left) represents a three-state standard linear ordered charac-
ter—a Type IV character, see Fig. A1 and “Appendix A”. A “complete” digraph (at top right) shows every possible arc (excluding loops) that
could be interpreted from the cost matrix. Because, in this case, all costs are symmetric, a digraph representation is not necessary. Middle right
shows a “complete” graph representation instead, with a single edge (replacing the two arcs of the digraph) connecting each vertex. However, in
practice, the correct graph representation (at bottom right) is the one that also removes any edges with a direct cost that is equal to some indi-
rect transition (i.e. 0–2, here). This means in practice a direct path between states 0 and 2 is not permitted (i.e. the character is considered
ordered sensu Slowinski, 1993, but not additive sensu Goloboff, 2022a).
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forced root—the state digraph (such a character
must have asymmetric costs and hence a digraph
representation) must have single-source
reachability.

6. Similarly, one row must contain no infinite transition
costs if all other rows are assigned all infinite costs
(excluding the diagonal) (i.e. a maximum of n� 1
states can be restricted to only appear as a “to” state
as by necessity there must be a root state and this
must have access to each of these “to” states).

7. There must be no lower cost indirect state-to-state
route than the direct transition cost (i.e. all transi-
tion costs must be self-consistent) (Maddison and
Maddison, 1992; Maddison, 1993; Wheeler, 1993).

We consider rules 1–3 to be relatively straightfor-
ward and in essence mean that the diagonal of a cost
matrix has no degrees of freedom, whereas the
off-diagonal has n2� n degrees of freedom, albeit with
some other limits dictated by the other rules. Rules 4–
6 can be generalized such that the (directed) state
graph must be both connected and mappable. By con-
nected we mean that no character state (or subgraph
of character states) are isolated from the other state(s).
Mappable means mappable to a valid phylogenetic
tree (see, e.g. Semple and Steel, 2003 for graph theo-
retic definitions of phylogenetic trees). For example, a
digraph with two “roots” would not be mappable to
a phylogenetic tree. Rule 7 was independently sug-
gested by Maddison and Maddison (1992) and
Wheeler (1993). Both PAUP* and TNT already auto-
matically correct cost matrices that break Rule 7 by
using a triangle inequality check. Examples of valid
and invalid cases for Rules 1–7 are shown in Fig. 2.
In practice, we do not expect many empirically

applied cost matrices to actually break any of these
rules, but consider them here both to explicitly state
the problem and facilitate formal mathematical proofs.

Character types and their minimal and maximal costs

under maximum parsimony

Classification of character types

In this paper we identify 12 different character
types, classified in relation to calculating m, g and
gmax, with specific considerations and solutions listed
in the “Appendix A”. First, we provide an overview of
general solutions and specifics for the most common
(or otherwise important) character types.

Minimum cost

The minimum cost (m) which can be achieved for a
character with a given number of taxa (t), states (n) and

a specified cost matrix (giving the costs of transition
between each pair of states) is the minimum possible
cost (also called length or steps) of that character on a
most parsimonious tree. Previously Maddison (1989)
proposed two algorithms that can be adopted to find a
fully resolved tree of length m under maximum parsi-
mony for both Fitch (1971; unordered, or Type III char-
acters, see “Appendix A”) and Wagner (1961; linear
ordered, or Type IV characters, see “Appendix A”) par-
simony. Either algorithm could also be used to find min-
imum length trees for symmetric binary characters
(Type II characters, see “Appendix A”). However, these
algorithms are not extensible (generalizable) to the other
characters we consider here and instead we propose
below a more general approach that can be used to cal-
culate m directly.

General algorithm 1: minimum cost, m for cost matrix
characters

Any character represented as a cost matrix meeting
Rules 1–7 (above) can also be represented as a single
minimal (di)graph representation (Fig. 1). For example,
the linear ordered character in Fig. 1 has no edge con-
necting states 0 and 2. This assumption is implicit in cla-
distic practice but we make it explicit here for the
purpose of interpreting cost matrices as state (di)graphs.
For any such state (di)graph there must be a minimum

spanning tree (for a graph) or minimum-weight spanning
arborescence (for a digraph) that connects all sampled
states and the length of this tree is the minimum cost, m.
We prove this proposition below (Proof 1).

Proof 1. Any valid state graph must be (weakly) connected (Rule 4)
and have at least one vertex that may be a root (Rule 6) and no
more than one vertex that must be a root (Rule 5). In graph theory
terms, this means the state (di)graph must have single-source,
multiple-target reachability—at least one vertex (the root) can reach
all other vertices (the tips). As such, the state (di)graph has a
minimum spanning tree or minimum-weight spanning arborescence,
and this can be found using established algorithms (Kruskal, 1956;
Edmonds, 1967) as specified below.

It only remains to be shown that this connected graph may also
be considered as a valid rooted phylogenetic tree. This can be done
by following four steps:

For a symmetric character:

1. Find a minimum spanning tree connecting all distinct states pre-
sent among the tips using Kruskal’s algorithm (Kruskal, 1956)
and root this tree on any vertex represented among the tips. As
costs are symmetric this rooting cannot change the length (total
cost) of the tree. The upper bound on the runtime (i.e. algorith-
mic complexity) of Kruskal’s algorithm is known to be, in big-O
notation, O(E log n), where E is the number of graph edges and
n is the number or nodes (vertices) (Kruskal Jr., 2021). In our
case, n is given by the number of states of a character. For a
symmetric character, the appropriate maximum number of edges
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is that of a complete undirected graph. This is given by E= n
(n� 1)/2. Expressed in terms of n, the algorithmic complexity of
the Kruskal algorithm is then O(n2 log n).

For an asymmetric character:

1. Find a minimum-weight spanning arborescence connecting all
distinct states present among the tips using Edmonds’

algorithm (Edmonds, 1967). An arborescence is rooted by defi-
nition and so the root and hence the directionality of change
are already determined. The time complexity of Edmonds’
algorithm is O(nE ) (Böther et al., 2023). For a symmetric
character, the maximum number of directed edges (arcs) is that
of a complete directed graph. This is E= n(n� 1). This gives
an algorithmic complexity for the Edmonds algorithm of O
(n3).

Fig. 2. Rules defining a valid cost matrix and associated state (di)graph with examples of valid and invalid cost matrices. For Rule 7 the invalid
cost is the direct transition between states 0 and 2 (cost= 3) as a lower cost indirect route is possible via state 1 (cost= 2).

6 J. F. Hoyal Cuthill and G. T. Lloyd / Cladistics 0 (2024) 1–27
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Regardless of whether the character is symmetric or asymmetric,
after step 1 a rooted digraph is generated and now the same next
three steps can be used:

1. For each distinct state present among the tips, create a star graph,
Sk, where k is the frequency (count) of that state among the tips.
Root the graph on its single internal node, creating a digraph, and
assign the distinct state to both the single root and every tip. These
digraphs represent rooted subtrees and under Rule 2 their lengths
must be 0.

2. Next attach each subtree generated in step 2 to the minimum
spanning digraph created in step 1 by joining each subtree root
to its corresponding minimum spanning digraph vertex with a
single arc (i.e. state 0 to state 0, state 1 to state 1 etc.). As this
edge will have the same state at both ends under Rule 2 this will
not add to the length of the resulting digraph.

3. Finally, check for vertices where in-degree= out-degree= 1.
These are redundant and should be removed to create a valid
phylogenetic tree. Such removals cannot affect the length of the
tree as either:

a. the removed vertex, its source vertex and its target vertex
are all assigned the same state, meaning two arcs of
weight 0 are replaced by a single arc of weight 0 for zero
net change in length; or

b. the source vertex and target vertex are only connected
by an unsampled intermediate vertex (the removed ver-
tex). The sum of these two arcs must be equal to the sin-
gle replacement arc under Rule 7, resulting in zero net
change in length.

The resulting digraph is thus both a valid rooted phylogenetic tree
and of minimum length. We can further show that any minimum
length rooted phylogenetic tree is minimal, as by collapsing all
branches (arcs) of weight 0 what remains will be a minimum-weight
spanning arborescence.

This completes the proof, but if desired, a fully bifurcating mini-
mum length tree can also be generated by adding a fifth step:

1. Check for any polytomous vertices, i.e. those with an out-degree
>2. For each such vertex, prune this vertex from the tree and
create a new vertex in its place. Randomly choose one arc emerg-
ing from the original vertex and attach this to the new vertex
instead. Then add a new arc connecting the new vertex to the
original vertex. As the new vertex will always be assigned the
same state as the old vertex no arcs from the original tree change
weight. Additionally, as the new arc connects two vertices of the
same state this will have weight 0 (under Rule 2). Repeat this
process until no polytomous vertices remain.

The minimum cost for a general cost matrix charac-
ter may be calculated this way, including ordered,
unordered, irreversible and all other non-Dollo (Type
VIII and IX) characters (“Appendix A”). This algo-
rithm is implemented in Claddis as the find_state-
graph_minimum_span function. Furthermore, we
provide equivalent formulae for analytic calculation of
minimum steps for several specific character types (I–
X), including Dollo characters (Type VIII and IX)
(Table 1; “Appendix A”). In the “Appendix A” we
provide proofs of the applicability of these formulae
to these specific character types. It can be seen that
the formulae covering these character types are essen-
tially equivalent to the formula w(n� 1), where w is a

representative, allowed transition cost from the cost
matrix (as specified in Table 1). The characters to
which this applies share cost matrix properties of equal
direct allowed transition costs and representability by
an undirected graph, such that the Kruskal algorithm
is applicable for determination of m via the length of
the minimum spanning tree. Since the minimum span-
ning tree is of length n� 1 (Kruskal, 1956), these
properties mean that m can be calculated by w(n� 1).

Applicability of star tree optimization as an upper
bound on evolution

In the following sections, our aim will be to spec-
ify bounds on maximum cost under maximum parsi-
mony. To this end, in common with other references
(e.g. Maddison and Maddison, 2003; Swofford, 2003),
we make use of optimization on the star tree, or
conceptually related algorithms and formulae. The
length of the star tree (g) is not exceeded by the
most parsimonious character cost (s) on any possible
more resolved phylogenetic tree for the same charac-
ter (for proofs see discussion in Farris, 1989;
Goloboff, 2022b). Our methods for calculation of
evolutionary limits are therefore applicable to cases
in which star tree optimization is appropriate. A star
tree, for a given number of taxa, consists of a single
internal, ancestral node, connected by branches
(edges) to the external, tip nodes. We note, there-
fore, that on a star tree all transitions have the same
starting point so that, if this state is considered
ancestral, reversals are not possible on the star tree
itself (although it remains possible that there may, in
specific cases, be bifurcating trees of the same length
where reversal is implied).

Maximum cost

Maximum cost g is the maximum cost for a given
character (i.e. for a given character state frequency dis-
tribution, meaning the counts of each character state)
under maximum parsimony optimization on the star
tree. Maximum possible cost gmax (following notation
of Hoyal Cuthill et al., 2010) is the maximum cost a
character with t taxa and n states could possibly
exhibit when reconstructed most parsimoniously on
the star tree. In other words, gmax is the maximum
value of g across all possible distributions of n states
among t taxa (Hoyal Cuthill et al., 2010 and references
therein). Here, for comparability with the majority of
real cladistic characters, we specify additionally that
gmax should be a cost value that is (i) achievable with
integer character state frequencies, and that for a spec-
ified number of taxa and character states (ii) the mini-
mum frequency of each state is 1 and (iii) the
frequencies of the n states sum to the number of taxa

J. F. Hoyal Cuthill and G. T. Lloyd / Cladistics 0 (2024) 1–27 7
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t, with conditions (i) and (iii) together implying condi-
tion (iv) that the maximum frequency of each state is
the specified number of taxa minus one fewer than the
number of character states. We apply these conditions
because, as will be shown below, treating the search

for maximum possible steps as an algebraic maximiza-
tion problem can show that one or more of the state
frequencies that correspond to the unconstrained max-
imum cost is a non-integer real number, 0 or a nega-
tive integer. In contrast, a real cladistic character for t

Table 1
Summary of methods of calculation for minimum and maximum parsimony steps among the 12 classified character types

Type Description

Minimum steps (m) Maximum character steps (g) Maximum possible steps (gmax)

General
algorithm Specific formula

General
algorithm Specific formula

General
algorithm Specific formula

I Constant 1 m=0 2 g=0 3 gmax= 0
II Binary symmetric 1 If c0,1 = c1,0 = w,

m= w(n� 1)
= w(2–1)= w

2 If c0,1 = c1,0 = w,
g=w(t� F )

3 If c0,1 = c1,0 = w,
gmax= w(t� ⌈t/2⌉);
(eq. (26), above)

III Multistate
unordered
symmetric

1 If c0,1 = c1,0 = w
m= w(n� 1)

2 If c0,1 = c1,0 = w,
g=w(t� F )

3 If c0,1 = c1,0 = w,
gmax=w(t� ⌈t/n⌉)

IV Multistate linear
ordered
symmetric

1 m= c0,1 + c1,2 +⋯
+ cn�3,n�2+ cn�2,n�1

= (n� 1)(c0,1)
= w(n� 1)
(eq. (A1)

2 No 3 gmax= w b n�3ð Þ þ t� n�2ð Þð Þð
� n�1ð Þ=2Þcð Þ

(eq. (A2))

V Multistate
non-linear
ordered
symmetric

1 m= w(n� 1)
(eq. (A1))

2 No 3 No

VI Binary irreversible 1 m ¼ c0,1
= (n� 1)(c0,1)
= w(n� 1)
(eq. (A3))

2 g ¼ yc0,1
(eq. (A4))

3 gmax ¼ c0,1 t�1ð Þ
(eq. (A5))

VII Multistate
irreversible

1 m= c0,1 + c1,2 +⋯
+ cn�3,n�2+ cn�2,n�1

= (n� 1)(c0,1)
= w(n� 1)
(eq. (A1))

2 g= yc0,1 + zc0,2 +,
. . ., fn�1c0,n�1

(eq. (A13))

3 gmax ¼ t�nþ 1ð Þc0,n�1

þc0,n�2, . . . , c0,1
(eq. (A23))

VIII Binary Dollo 1 If c1,0 = 1,
m=1

If c1,0 = 1, y=1,
g ¼ 1
(eq. (A29))
If c1,0 = 1, y> 1,
g ¼ x
(eq. (A30)),
D marginally < x

If t= n,
gmax ¼ c1,0 t�1ð Þ
If t> n,
gmax ¼ c1,0 t�2ð Þ
(eq. (A31)),

IX Multistate Dollo 1 If c1,0 = 1,
m= n� 1

g= ca,0 f0+ ca,1 f1
+, . . ., ca,n�1 fn�1

(eq. (A49))
With D marginally
< t�fn�1

(see eq. (A48))

If t< n+1,
gmax= (n� 2)(t� n+1)
+ 1

2(n� 2)(n� 3)+ 1
(eq. (A53))
If t>= n+1,
gmax= (n� 1)(t� n) +
1
2
(n� 1)(n� 2)
(eq. (A54))

X Multistate custom
symmetric

1 No 2 No 3 No

XI Binary custom
asymmetric

1 No 2 No 3 (eq. (26))

XII Multistate custom
asymmetric

1 No 2 No 3 No

The general algorithms, outlined above, are: 1, calculation of minimum costm by minimum spanning tree optimization on the cost matrix graph; 2,
calculation of maximum character steps g by matrix mathematics equivalent to parsimony optimization on the star tree; and 3, guaranteed calculation
of maximum possible character steps gmax (meeting conditions (i)–(iii), of integer state frequencies meeting n and t) by exhaustive search across possible
character state frequencies. n denotes the number of represented character states, t denotes number of taxa with coded states (not including missing or
inapplicable), w denotes a specified representative cost, F denotes the number of taxa with the most frequent state, x denotes the frequency (number of
copies among the taxa) of the first state, y denotes the frequency of the second state, z denotes the frequency of the third state, fn�1 is the frequency of
the n� 1th state, costs are denoted in the form c0,1 for example indicating the cost of transition from state 0 to state 1, D denotes a Dollo penalty and
subscript a denotes the optimally ancestral state under the Dollo cost penalty. For further details including definitions, proofs and references see the list
of individual character type treatments below (Appendix A). R implementations of these formulae are available at github.com/graemetlloyd/Claddis.
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taxa and n existing states, with each taxon holding one
state, would have a maximum parsimony cost
restricted to values achievable under conditions (i)–(iii)
(although we note this assumes t≥ n which might not
always be applicable, for example for gap-weighted
characters; Thiele, 1993). We present below, and
implemented in the Claddis R package, both an
exhaustive search algorithm (general algorithm 3) and
rapidly calculable formulae for several specific charac-
ter types (Table 1; “Appendix A”) to find such values
of gmax, which meet conditions (i)–(iv).

Maximum possible cost among unordered characters. For
unordered characters (but not necessarily general cost
matrix characters, including ordered characters, see
below), maximum possible cost (gmax) will occur in the
maximally balanced distribution of n states among t
taxa (Mickevich, 1978; Steel and Penny, 2006; Hoyal
Cuthill et al., 2010). Specifically, for t taxa and n states
(that are actually represented among those taxa), the
most balanced distribution of those states possible for
an unordered character gives gmax(t,n)= t� ⌈t/n⌉,
where ⌈t/n⌉ = the smallest integer ≥ t/n, and is equal
to the lowest possible number of taxa with any one
most frequent state (Fmin) (Hoyal Cuthill et al., 2010).
Any given character might have a less balanced
distribution than the maximal one (even with the same
number of taxa and states), in which case that character
would show a capacity for homoplasy lower than the
maximal one (such that g will be less than gmax). g (and
gmax) are usually described as maximum steps but, for
unordered characters, with transition costs each equal
to 1, we can also think of them as the maximum
numbers of homoplastic transitions or the maximum
numbers of states that could be derived by homoplasy
on a tree.

General algorithm 2: maximum cost (g) among general
cost matrix characters

Algorithmic calculation of maximum cost (g). Values
of g can be computed by maximum parsimony
optimization of character evolution on a star tree
(Maddison and Maddison, 2003; Swofford, 2003). We
describe here an algorithm which gives an equivalent
value of g to that on the star tree but is based more
directly on the cost matrix.

Pseudocode description of the algorithmic calculation
of g. Take a given cost matrix and make a corresp-
onding row of observed frequencies of the states for
a given character. For convenience of further
calculation, this row can optionally be vertically
duplicated to make a matrix of the same size as the
cost matrix.

1. Multiply the frequency of each other state by the
cost of transition from the evaluated state to each
other state. This takes the product for each row of
the cost matrix. Where the frequencies have been
duplicated to a matrix of the same size as the cost
matrix, these two matrices can simply be multiplied
together elementwise.

2. Sum each row in the product matrix, giving the
sum cost of evolving each state other than that cor-
responding to the given row.

3. The minimum row sum is g, giving the lowest pos-
sible transition cost of evolving all states other than
the most parsimoniously reconstructed ancestral
state (the one with lowest cost).

The above algorithm (worked example, Fig. 3a) is
conceptually equivalent to taking each state in turn to
evaluate as potentially ancestral on the star tree and
then selecting as optimally ancestral the state which
gives the lowest total cost of deriving each of the
observed character states at their observed frequencies.
Since the algorithm operates over n vectors, each of
which scales in size by n, the algorithmic complexity is
bounded by O(n2), where n is the number of character
states. Across 1,000 runtime comparisons, where 50 tip
states were randomly generated for a six-state ordered
character, this was found to result in a fivefold speed
increase in the calculation of g relative to explicit,
tree-based optimization using generalized parsimony
sensu Swofford and Maddison (1992) on the star tree.

Maximum possible cost (gmax) among general cost
matrix characters

General algorithm 3: exhaustive calculation of maximum
possible cost (gmax). In general, exhaustive calculation
of gmax can be performed by combinatorial generation
of all possible integer frequencies of n states among t
taxa, with restrictions (i)–(iii) above (such that t and n
are met). This is implemented in Claddis by the
permute_restricted_compositions function, which in turn
uses the multicool (Curran et al., 2021) and partitions
(Hankin, 2006) R packages. Algorithm 2 for the
calculation of g, described above, can then be applied to
all possible state frequency distributions, and the costs
compared. The highest returned value of g for any
possible state frequency distribution is equal to gmax (e.g.
Fig. 3c). As this is an exhaustive search, this algorithm
is guaranteed to find the maximal cost, gmax. The
problem size for this algorithm is given by the
k-dimensional extension of the triangular number (e.g.
Baumann, 2019), which in our case (i.e. meeting

conditions (i)–(iii)) is the binomial coefficient
t�1

n�1

� �
.

Expressed in big-O notation, the complexity of general
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algorithm 3, for gmax, is then given by the complexity
order for this binomial, multiplied by the complexity of
algorithm 2 for g (above), giving an upper bound on

complexity of order O(t(t�1)n2)=O(t(n�1)n2).

Algebra-based calculation of maximum possible cost

In general for a cost matrix character (see
Appendix A for a full list of applicable character types,
and simplifications and modifications where relevant),
with t taxa, n states and given transition costs, mathe-
matical models of the most costly state frequencies and
corresponding maximum parsimony cost can be con-
structed that make use of linear equations, specified in
terms of the number of taxa and costs in the specified
cost matrix, as follows. The initial algebraic argument
below is not constrained to meet conditions (i)–(iii) (i.e.
state frequencies may be theoretically any real number).
In the following section (methods of calculating maxi-
mum parsimony cost: comparisons and interpretation),
we then show how this algebraic argument can be devel-
oped to apply conditions (i)–(iii) and calculate gmax (as
defined, above, to meet conditions (i)–(iii)).

Algebraic derivation of maximum possible cost in binary
characters. The derivation of algebraic models for
state frequencies, and correspondingly maximum cost,
is based on the solution of simultaneous linear
equations for the implied cost if each state is the
ancestral state for all state transitions (i.e. if a state is
ancestral on the star tree). In general, finding
maximum cost on the star tree can be considered as
an optimization problem in which the aim is to
maximize, across all possible state frequency
combinations, the minimum cost if any one of the n
given states for t taxa is ancestral. This type of
optimization problem, in which maximization of

minima is considered, is sometimes called a maximin
problem in linear programming.

Proof 2. Here we propose, and provide an algebraic proof of, a
general formula for maximum cost for binary characters. For binary
characters (subject to the rules defining a valid cladistic character
above), where the implied ancestral costs for both states are equal, the
frequency of one state could not be increased without making the
other state more parsimoniously ancestral. Therefore, at this point,
cost is maximized.

For a binary character with two states (here numbered states 0
and 1, according to increasing order in their specified cost matrix),
given a frequency of state 0 (denoted x), the frequency of state 1
(denoted y) is automatically.

y ¼ t–x (1)

Correspondingly,

x ¼ t–y (2)

If state 0 is the only ancestral state (on a star tree or conceptual
equivalent), the implied total transition cost (denoted u0) will be
equal to the frequency of the other state, state 1, times the cost of a
transition from state 0 to 1 (c0,1).

Therefore,

u0 ¼ c0,1 t�xð Þ (3)

Conversely, if state 1 is the only ancestral state the implied total transi-
tion cost (denoted u1) will be equal to the frequency of the other state,
state 0, times the cost of a transition fromstate 1 to 0 (c1,0).

Therefore,

u1 ¼ c1,0 t�yð Þ (4)

If these costs are equal,

u0 ¼ u1 (5)

and the left-hand sides of eqs (3) and (4) are equal; therefore the
right-hand sides are also equal.

Fig. 3. Examples illustrating the algorithmic calculation of maximum homoplasy, g. Examples of state frequency distributions for this combina-
tion of t (number of taxa) and n (number of states) (a) balanced, (b) least costly given t and n and (c) most costly. This example uses a binary
asymmetric cost matrix with two states for six taxa.
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Consequently,

c0,1 t�xð Þ ¼ c1,0 t�yð Þ (6)

Equation (6) can then be rearranged to give the following for-
mula for y (the frequency of state 1), when the costs of either state
being ancestral are equal.

y ¼ c0,1x�c0,1t

c1,0
þ t (7)

The right-hand side of eq. (1) can be substituted for the left-hand
side of eq. (7) to eliminate y as a variable.

t�x ¼ c0,1x�c0,1t

c1,0
þ t (8)

Equation (8) can then be solved for x to give the following for-
mula for the frequency of state 0, when the costs of either state
being ancestral are equal.

x ¼ t
c0,1

c0,1 þ c1,0
(9)

Where the implied transition costs are equal if either of two states
is ancestral, the corresponding cost can be calculated by considering
either of the two possible ancestral states (as consideration of either
will necessarily give the same result). Considering state 1 as ances-
tral, cost will be given by the frequency of state 0 (x) times the cost
of transition from state 1 to state 0. Substituting in the right-hand
side of eq. (9) for x and rearranging gives the following formula for
maximum cost under maximum parsimony, where the costs if either
state is ancestral are equal:

u0 ¼ u1 ¼ t
c0,1c1,0

c0,1 þ c1,0
(10)

where t is the number of taxa, c0,1 is the cost of transition from state
0 to state 1, and c1,0 is the transition cost from state 1 to state 0.
This completes the proof.

Special case: binary characters with transition cost 1
between different states. For unordered characters,
with transition cost 1 for either forward transitions
(i.e. gains e.g. transitions from state 0 to state 1) or
backward transitions (i.e. losses e.g. transitions from
state 1 to state 0), it has been proved graph
theoretically (Hoyal Cuthill et al., 2010), by
connection to Erdös–Székely path systems (Erdös and
Székely, 1992; Semple and Steel, 2003), that maximum
character steps are given by the maximum frequency
of a least frequent state, which can be calculated as
gmax(t, n)= t� ⌈t/n⌉, as introduced above. So, for
binary unordered characters, gmax(t, 2)= t� ⌈t/2⌉.
For integer values of t, this is equivalent to gmax(t, 2)
= ⌊t� t/2⌋ = ⌊t/2⌋, where the floor operation returns
the largest integer less than or equal to t/2.
If transition costs between states are 1, then the alge-

braic formula above for maximum cost in binary cost
matrix characters (eq. (10)) also simplifies to t=2. Equa-
tion (10) above is applicable to both general binary cost
matrix characters and binary characters with costs for

transition between different states restricted to 1. There-
fore, calculation of gmax in the latter case (Hoyal Cuthill
et al., 2010) is a special case of the general formula for
maximum parsimony cost in binary cost matrix charac-
ters presented here (eq. (10)).(eq. (10)).

Algebraic derivation of formulae for cost in multistate
characters.

Proof 3. Here we propose and give an algebraic proof of a general
formula for cost when all ancestral state costs are equal for
multistate characters.

A similar approach to that outlined above for binary characters
can be applied to multistate cost matrix characters to derive alge-
braic models of state frequencies, and the corresponding cost, by
solution of simultaneous equations for the implied cost if each state
is ancestral for all transitions.

For instance, for a three-state character, the frequency (x) of the
first state (denoted state 0) in a specified cost matrix is given by the
number of taxa minus the sum of the frequency (y) of the second
(state 1) and the frequency (z) of the third state (state 2):

x ¼ t�y�z (11)

Similarly,

y ¼ t�x�z (12)

z ¼ t�x�y (13)

If state 0 is the only ancestral state, the implied total transition
cost (u0) will be given by the frequencies of the other two states
(states 1 and 2) times their production costs, the respective costs of a
transition from state 0 to 1 (c0,1) or from 0 to 2 (c0,2).

Therefore,

u0 ¼ c0,1 t�x�zð Þ þ c0,2 t�x�yð Þ (14)

Similarly, the implied cost (u1) if state 1 is ancestral is

u1 ¼ c1,0 t�y�zð Þ þ c1,2 t�x�yð Þ (15)

and the implied cost (u2) if state 2 is ancestral is

u2 ¼ c2,0 t�y�zð Þ þ c2,1 t�x�zð Þ (16)

If these costs are equal, then

u0 ¼ u1 ¼ u2 (17)

The equations above then provide the following system of linear
equations:

x ¼ t�y�z (11)

y ¼ t�x�z (12)

z ¼ t�x�y (13)

c0,1 t�x�zð Þ þ c0,2 t�x�yð Þ ¼ c1,0 t�y�zð Þ þ c1,2 t�x�yð Þ (18)

c0,1 t�x�zð Þ þ c0,2 t�x�yð Þ ¼ c2,0 t�y�zð Þ þ c2,1 t�x�zð Þ (19)

J. F. Hoyal Cuthill and G. T. Lloyd / Cladistics 0 (2024) 1–27 11
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c1,0 t�y�zð Þ þ c1,2 t�x�yð Þ ¼ c2,0 t�y�zð Þ þ c2,1 t�x�zð Þ (20)

The above system of equations can then be solved to give the fol-
lowing algebraic models for the frequencies (x, y, z) of the states
(respectively states 0, 1, 2) when all ancestral costs are equal, in
terms of the number of taxa (t) and specified transition costs. Each
formula is in the form of the number of taxa multiplied by a fraction
that relates the different transition costs in the cost matrix to each
other.

If state 2, for instance, is considered as ancestral (any state can be
considered with equal cost), maximum cost under maximum parsi-

mony will be given by the frequencies of the other two states times
their respective production costs:

u0 ¼ u1 ¼ u2 ¼ xc2,0 þ yc2,1 (24)

Equation (24) above can then be grouped with formulae (21) and
(22), for x and y respectively, giving a system of equations that can be
solved to give an algebraic model for cost, when all ancestral costs are
equal, in terms of the number of taxa and specified transition costs:

This completes the proof.

Algebraic equation systems and resultant formulae
for costs, when all ancestral costs are equal, and corre-
sponding state frequencies for four-state characters,
such as DNA and RNA, are provided as Supplemen-
tary Information (owing to the length of the formu-
lae). The equation systems and solutions described
above for binary and three-state characters are also
provided in the Supplementary Information with single
character variable names (e.g. for ease of use in com-
puter code), in addition to their statement in the text
above.

Special case: unordered three-state characters. Similarly
to binary characters with off-diagonal costs equal to 1,
above, among unordered characters which have all
transition costs between different states equal to 1, the
formula gmax(t, n) = t� ⌈t/n⌉ (Hoyal Cuthill
et al., 2010) gives for characters with three states gmax(t,

3)= t� ⌈t/3⌉. With integer values of t, this is equivalent
to gmax(t, 3)= ⌊t� t/3⌋, which simplifies to gmax ¼ 2

3 t
� �

(Steel and Charleston, 1995; Goloboff and
Wilkinson, 2018). Likewise, if all transitions between
different states have cost 1, the formula for cost when
all ancestral costs are equal in three-state cost matrix
characters above (eq. (25)) simplifies, when n=3, to
u0 ¼ u1 ¼ u2 ¼ 2

3 t. Therefore, the measurement of
maximum possible cost among unordered three-state

characters is again shown to be a special case of the cost
where all ancestral costs are equal for general cost
matrix characters.

General algorithm 4: algorithm for linear algebraic
calculation of equal ancestral costs for general cost
matrix characters

Pseudocode description. The algorithm finds the
character state frequencies where the implied costs
are equal if any given state is ancestral (e.g. eq. (5)
and eq. (17), above) and returns the corresponding
cost, using programmatic construction and solution
of appropriate matrices representing systems of
linear equations. A system of n linear equations can
be represented as a matrix of coefficients of the n
unknowns, with one row for the coefficients of each
equation and one column for each unknown (here
representing the frequency x, y, z, . . . of each state
0, 1, 2, . . ., n� 1), accompanied by a column matrix
of the n constants to which the left-hand sides of
each equation (giving the sum of unknowns times
their coefficients) are equal. When such matrices

x ¼ t
c0,2c2,1�c1,2 c2,1�c0,1ð Þ

c1,0c0,2 þ c2,1 c1,0 þ c0,2ð Þ�c0,1c1,0�c1,2 c2,1�c2,0�c0,1ð Þ�c2,0 c0,2�c0,1ð Þ (21)

y ¼ t
c0,2c1,0 þ c1,2c2,0�c0,2c2,0

c1,0c0,2 þ c2,1 c1,0 þ c0,2ð Þ�c0,1c1,0�c1,2 c2,1�c2,0�c0,1ð Þ�c2,0 c0,2�c0,1ð Þ (22)

z ¼ t
c0,1c2,0 þ c1,0c2,1�c0,1c1,0

c1,0c0,2 þ c2,1 c1,0 þ c0,2ð Þ�c0,1c1,0�c1,2 c2,1�c2,0�c0,1ð Þ�c2,0 c0,2�c0,1ð Þ (23)

u0 ¼ u1 ¼ u2

¼ t
c0,1c1,2c2,0 þ c0,2c1,0c2,1

c1,0c0,2 þ c2,1 c1,0 þ c0,2ð Þ�c0,1c1,0�c1,2 c2,1�c2,0�c0,1ð Þ�c2,0 c0,2�c0,1ð Þ
(25)
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have been constructed, automated linear algebra can
then be used to return the values of the unknowns
which satisfy the system of equations, for any
number of states (within computational limits). We
construct the required matrices as follows:

1. The first row in the coefficient matrix is filled with
ones and the first row in the constant matrix is
filled with the number of taxa t. By this, the first
rows of the coefficient and constant matrices repre-
sent the fact that the frequencies of the states (each
with coefficient 1) sum to the number of taxa (e.g.
see eqs (1) and (11) above for 2 and 3 states,
respectively). For example, for three states, the fol-
lowing equation:

1xþ 1yþ 1z ¼ t

is represented in matrix form as

1 1 1ð Þ
x

y

z

0
B@

1
CA ¼ tð Þ

where the left matrix is the coefficient matrix and
the right matrix is the constant matrix.

2. The remaining n� 1 rows of the coefficient and
constant matrices are filled as follows. For each
character state i=2, . . ., n, take the ith row in the
cost matrix and subtract this from the first row in
the cost matrix. Enter the resultant difference as
the ith row of the coefficient matrix. Enter 0 in the
ith row of the constant matrix. The ith row of the
coefficient and cost matrix together represent an
equation equating the implied cost if the first state
is ancestral to the implied cost if the ith state is
ancestral (e.g. eqs (6) and (18)). For example, we
can take the following three-state cost matrix:

c0,0 c0,1 c0,2

c1,0 c1,1 c1,2

c2,0 c2,1 c2,2

0
B@

1
CA

If the cost u0, if state 0 is ancestral, is equal to the
cost u1, if state 1 is ancestral, then u0 ¼ u1, so

c0,0xþ c0,1yþ c0,2z ¼ c1,0xþ c1,1yþ c1,2z

by eq. (18) above. This equation can be rewritten
by subtracting the right-hand-side from the left-
hand-side and writing the left-hand-side of the
result, in matrix form, into the second row of
the coefficient matrix, and the right-hand-side of
the result into the second row of the constant
matrix. A similar process conducted for the first
and third states is used to fill the third rows of the

coefficient and constant matrices. This produces the
following rewriting of the system of equations in
matrix form:

1 1 1

c0,0�c1,0 c0,1�c1,1 c0,2�c1,2

c0,0�c2,0 c0,1�c2,1 c0,2�c2,2

0
B@

1
CA

x

y

z

0
B@

1
CA

¼
t

0

0

0
B@

1
CA

When the cost if each state i=2, . . ., n is ancestral
has been equated to the cost if the first state (i=1)
is ancestral, the costs if any given state is ancestral
have been equated by transitivity. Therefore, the
system of n linear equations represented by the
coefficient and constant matrices can then be solved
to return the coefficients of the n state frequencies
that satisfy these equations.

3. The implied number of parsimony steps if the last
state, number n, is ancestral is then calculated
(although the algorithm could be adjusted to use
any state with equivalent result, as described
above). The last row of the cost matrix, represent-
ing the costs of generating one of each other state
in the cost matrix from the last state, is multiplied
by the state frequencies returned in step 2. These
values are then summed to give the total cost of
generating all states, at their calculated frequen-
cies, if the last state is ancestral (e.g. eqs (9) and
(25), above).

The algorithmic complexity of solving a system of n
linear equations is at most O(n3) (Pan, 1991).

Methods of calculating maximum parsimony cost:
comparisons and interpretation

Algebraic and algorithmic maximization of most
parsimonious cost on the star tree (as outlined
above) provides an explanation of when and why
maximum parsimony cost, and therefore maxima of
many measures of homoplasy (as introduced above),
are maximized among cladistic characters in general
(across general cost matrix characters, including, for
example, ordered and unordered characters). The
potential for homoplasy is maximized by distribu-
tions of character state frequencies among taxa that
imply the highest possible real-number cost that
could be achieved, where no other ancestral state
gives lower cost with the same state frequencies. The
application of further constraints ((i)–(iii) above) to
model the majority of cladistic characters, with state

J. F. Hoyal Cuthill and G. T. Lloyd / Cladistics 0 (2024) 1–27 13
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frequencies meeting specified natural numbers of taxa
and states, requires the further determination of the
maximum cost (where there is no cheaper ancestral

state) that is achievable given these conditions. As
described above, it is this maximal cost value which
we here denote gmax, for comparability with real cla-
distic characters.
For binary characters, the most costly real-number

state frequencies are achieved when state frequencies
among t taxa are maximized given their relative pro-
duction costs such that ancestral costs are equal for
both states (e.g. Fig. 3c).

Proof 4. Proof of the proposition that cost is maximized for general
binary characters when ancestral state costs are equal. It can be seen
this is the case for general two-state characters, as follows. Since
negative transition costs are prohibited (Rule 3) and the frequencies of
the states sum to the number of taxa, an increase in the frequency of
one state must lead to increase in the implied ancestral cost if the
other state is ancestral. Consequently, the slopes relating ancestral cost
and first state frequency must have opposite sign (e.g. Fig. 4), with the
ancestral cost for the first state negatively linearly related to the
frequency of the first state (by eq. (3)) and the ancestral cost for the
second state positively linearly related to the frequency of the first
state (by eq. (4)). Consequently, cost is maximized at the point of
equal ancestral costs where a further increase in the frequency of a
state would make the ancestral cost of that state cheaper and the
ancestral cost of the other state more expensive (such that the cheaper
state would be most parsimoniously ancestral). This completes the
proof.

Proof 5. Proof 4 now permits the proposition and proof, for general
binary characters, of a function (eq. (26)) for the maximal cost gmax

achievable with integer state frequencies that meet t and n (meeting
conditions (i)–(iii)), as follows. Where ancestral costs are equal
(eq. (5)), eq. (9), derived above, gives the corresponding frequency x
of the first state. This frequency x can then be subtracted from the
number of taxa, t, to give the corresponding frequency y of
the second state (eq. (1)). Given an integer value of t, if frequency x is
an integer, frequency y must also be integer. Given Proof 4, above,
for a binary character, the cost where both ancestral costs are equal
must either be achievable with an integer frequency x of the first state,
in which case it is gmax (e.g. Fig. 4a) or the value of x corresponding
to equal costs must lie between two possible integer values of x (e.g.
Fig. 4b,c). In either case, condition (i) is met. The maximum integer
achievable cost, gmax, where no state can be ancestral with cheaper
cost, is then given by the maximum, for these two possible integer
values of frequency x, of the minimum cost if either state is ancestral.
For binary general cost matrix characters, therefore:

Fig. 4. Binary cost matrix examples comparing the exhaustively cal-
culated value of gmax for simulated integer state frequencies, where t
is met and n is met (grey filled circles) with the algebraic value where
ancestral costs are equal (from eq. (10)) (black open circles). The
grid indicates integer values meeting t and n. (a) Example where
equal costs are achieved by integer state frequencies and equal gmax.
Cost matrix (top left to bottom right): (0, 1; 2, 0). Number of taxa
t= 12. (b) Example where equal costs and corresponding state fre-
quencies are non-integer and gmax is the closest implied cost that can
be achieved by integer state frequencies. Cost matrix: (0, 2; 3, 0),
t= 12. (c) Example where there are two combinations of integer state
frequencies which are as close as possible to the equal cost. Cost
matrix: (0, 2; 3, 0), t= 6.

14 J. F. Hoyal Cuthill and G. T. Lloyd / Cladistics 0 (2024) 1–27
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gmax ¼ max

min

t� t
c0,1

c0,1 þ c1,0

� �� �
c0,1,

t
c0,1

c0,1 þ c1,0

� �
c1,0

0
BBB@

1
CCCA,

min

t� t
c0,1

c0,1 þ c1,0

� 	� �
c0,1,

t
c0,1

c0,1 þ c1,0

� 	
c1,0

0
BBB@

1
CCCA

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

(26)

It can be seen that the value of gmax returned by eq. (26) meets
conditions (i)–(iii), as follows. By Rule 3 for a valid cost matrix
(Fig. 2), off-diagonal costs must be positive (c0,1≥ 1, c1,0≥ 1). If nei-
ther c0,1 nor c1,0 is negative or 0, by eq. (9) the frequency x of state
0 cannot be negative or 0. Therefore, x is greater than zero and the

ceiling of x (eq. (26)) is at least 1. If the ceiling of x is 1, the mini-
mum ancestral cost given ceiling x will be greater than that given
floor x, which implies a disallowed zero x, and the disallowed ances-
tral cost will not be the maximum returned as gmax. Similarly, by
eq. (9), given c0,1≥ 1, c1,0≥ 1, x must be less than t. If the ceiling on
x is equal to t, which (by eq. 26) implies a disallowed frequency y of
zero, the floor of x will be t� 1, the corresponding value of y will be
at least 1 and the corresponding value of gmax will be selected over
the disallowed cost. Consequently, the value of gmax returned by
eq. (26) meets the required conditions (i)–(iii), completing the proof.

Since costs if each state is ancestral are linearly
related to the frequency x of the first state, and the
cost where costs are equal is maximal (Proof 4), for
binary general cost matrix characters, gmax must,

Fig. 5. Three-state cost matrix examples comparing the exhaustively calculated value of gmax across simulated integer state frequencies between 1
and t� (n� 1) (meeting conditions (i)–(iii); grey filled circles) with the algebraic maximal cost when all ancestral costs are equal (eq. (25)) (black
open circles). Each of the three planes shows the implied cost (vertical axis) if that state is ancestral (non-italic key), for each possible combina-
tion of state frequencies that sums to give the number of taxa (t). Grids indicate the integer values where t and n are met. (a) Example where
equal costs are achievable with these integer state frequencies and equal the exhaustive value (labelled integer gmax). Cost matrix (top left to bot-
tom right): (0, 1, 4; 2, 0, 3; 4, 5, 0), t= 12. (b) Example where the exhaustive value of gmax that can be achieved with state values meeting condi-
tions (i)–(iii) is as close as possible to, but not equal to, algebraic equal costs. Cost matrix: (0, 3, 4; 3, 0, 2; 3, 4, 0), t= 12. (c) Example where the
planes representing implied costs intersect outside the allowed state space, because the equal cost frequency of state 2 is negative, and gmax is at
the boundary (u0 ¼ u1 ¼ u2 ¼ 22:2: t= x+ y+ z = 12, x= 7.8, y= 4.8, z =�0.6; gmax= 20: x= 6, y = 5, z= 1). Cost matrix: (0, 5, 3; 3, 0, 2; 1, 3,
0). (d) Example where the planes representing implied costs intersect inside the allowed state space but gmax is higher than equal ancestral costs
and is at the boundary of the state space (u0 ¼ u1 ¼ u2 ¼ 22: t= x+ y+ z= 12, x= 6, y= 2, z= 4; gmax= 25: x= 1, y = 5, z = 6). Cost matrix: (0,
3, 4; 1, 0, 4; 2, 5, 0).
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therefore, be the highest cost, achievable with integer
state frequencies between 1 and t� 1, that is less than
or equal to equal ancestral costs.
Interestingly, where off-diagonal transition costs dif-

fer (e.g. in a binary asymmetric character, Fig. 3c) the
most costly state frequency distributions are not neces-
sarily the most balanced possible distribution of states
among taxa (as in unordered characters, Hoyal Cuthill
et al., 2010) but are rather distributions of taxa among
states which reflect relative state production costs and
may therefore show unequal state frequencies (e.g.
Figs 3c and 4).
For unordered multistate characters (with n≥ 2

and off-diagonal costs of 1) it can be proved that
the cost when ancestral costs are equal for all states
is equal to the maximal real number cost, with the
closest integer value previously proved to be a maxi-
mum bound on most parsimonious steps s for unor-
dered characters (Hoyal Cuthill et al., 2010), as
follows.

Proof 6. Here we prove this proposition that, for general unordered
characters, t� t=n is equivalent to the cost when ancestral costs are
equal (calculated by general algorithm 4), by showing that both are
the costs where state frequencies are equal. Maximal parsimony cost
t� t=n is equal to the cost t�F, where F is the frequency of a most
frequent character state (Hoyal Cuthill et al., 2010) that is not
constrained by conditions (i)–(iii) to be necessarily an integer
between 1 and t� (n� 1). t�F is maximized when character state
frequencies are equal (Mickevich, 1978; Steel and Penny, 2006;
Hoyal Cuthill et al., 2010). When ancestral costs on the star tree are
equal for all states for an unordered character (as determined by
general algorithm 4), the sum of costs of producing all states
multiplied by the frequencies of the states is equal, whichever state is
considered as ancestral. Since, for an unordered character where
diagonal costs are zero and all other costs are 1, the cost of
producing all other states from any ancestral state is given by their
respective frequencies (which are all multiplied by the cost of 1).
Therefore, since ancestral costs are equal for all states, state
frequencies must also be equal. Therefore, for unordered characters,
t� t=n is also the cost when ancestral costs are equal for all states,
completing the proof.

For general cost matrix characters (where costs of
transitions between different states can deviate from
1) that have more than two states, however, we
demonstrate by example (Fig. 5d) that there are
cases in which maximal cost (an ancestral cost where
no alternative state can be selected as the ancestor
with cheaper cost) does not occur at the point of
equal ancestral costs for all states. In examples, for
some custom cost matrices permitted by the rules
outlined here (e.g. Fig. 5d), the maximal
integer-achievable cost meeting conditions (i)–(iii) is
instead achieved in the region of a boundary of the
allowed state space.
With some specific modifications, in particular, for

irreversible and Dollo characters (see Appendix A),

the general framework (above) permits (with the provi-
sos detailed) the calculation of potential evolutionary
ranges (m to gmax) under maximum parsimony across
all discrete character types observed among 4,467
character matrices (as specified in Appendix A). The
exhaustive algorithms for m (1), g (2) and gmax (3) out-
lined above provide general solutions. However, the
algorithmic complexity of the exhaustive search for
gmax, which searches across all allowed character state
frequency combinations, is particularly notable as
dependent on both the number of taxa (t) and charac-
ter states (n) (O(t(n�1)n2), above). Consequently, stan-
dard computational limits are likely to make
exhaustive calculation of gmax infeasible for high num-
bers of taxa and/or states. This makes applicable for-
mulae for the calculation of m, g or gmax with reduced
(particularly constant) run-time requirements with
respect to problem size (particularly t or n) valuable
wherever possible. In Table 1 and Appendix A we
summarize the known and new formulae for each
character type, where available. Character types cov-
ered by specific formulae include the most commonly
used types of binary symmetric (used in 100% of sur-
veyed datasets), multistate unordered symmetric
(89.8%) and multistate linear ordered (47.6%), as well
as a range of more rarely used (but still biologically
important) characters, including Dollo (<0.1%) and
irreversible characters (binary 0.6%, multistate 0.5%).
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Data S1. Supporting Information.

Appendix A

A classification of cladistic characters and specification

of methods of calculation of minimum (m), maximum

(g) and maximum possible (gmax) costs under

maximum parsimony

Cladistic characters come in a wide variety of forms. Here we
classify these into 12 distinct types (Fig. A1) and provide defini-
tions for each, as both cost matrices and state (di)graphs. Below,
we provide further details on how m, g and gmax may be calculated
for each type and specify relevant published or provided proof(s)
for each case. Calculation of m, g and gmax can be performed for
many distinguishable types using the general solutions outlined
above for general cost matrix characters. For character subtypes
for which these general solutions require specific modifications, or
where specific simplifications are of interest, we describe or provide
individual solutions. A general algorithm (Sankoff, 1975; Sankoff
and Rousseau, 1975; Sankoff and Cedergren, 1983) for calculating
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s for Types I–VII and X–XII was already described in Swofford
and Maddison (1992) and a specific algorithm for Types VIII and
IX by Swofford and Olsen (1990); s is not discussed further here.
We state whether a character type can be coded using the NEXUS
format (Maddison et al., 1997), used by PAUP* and Claddis, or
TNT format and whether implementations for m, g and gmax are
available in Claddis and the maximum parsimony software PAUP*
and TNT. We also note the frequency of each character type in

the literature (based on 4,467 cladistic datasets representing an
updated version of the database of Wright et al., 2016 and Wright
and Lloyd, 2020). A single example for each type is shown in
Fig. A1. Claddis can automatically treat character types based on
an input cost matrix specified in NEXUS format (using the classi-
fy_costmatrix function).

As introduced above, unless otherwise stated for a given character
type, we assume that any state may be potentially ancestral and

Fig. A1. A classification of cladistic characters into 12 types with an empirical example for each shown as both a cost matrix and state (di)graph.
For Type VIII and Type IX Dollo characters, the D term is a finite number that penalizes particular transitions (shown as dashed arcs in the
state digraph) such that they will only be traversed once (Swofford and Olsen, 1990). In Table 1 and Appendix A we provide and prove specific
values for D as described in Appendix A.
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values such as m and gmax are then optimized accordingly given the
cost matrix and number of taxa. However, we note that it may be
possible to modify a number of the algorithms and formulae we pro-
vide for cases in which additional constraints are specified, for exam-
ple where an outgroup state may be forced to be the ancestral root
state (as in the TNT and PAUP* ancstates commands).

Type I—constant characters

Definition: an invariant or constant character, where all coded
(i.e. not missing and not inapplicable) states are identical. There is
only a single transition cost, c0,0= 0.

State graph: a single vertex with no loops, equivalent to both the
complete graph k1 or the path graph P1.

NEXUS/TNT coding: various codings (see Type II–XII characters
below) could be used for constant characters as no transitions can occur.

Empirical frequency: although such characters are parsimony
uninformative they occur commonly in empirical data, with at least
one such character found in 1,351 of 4,467 (30.2%) datasets. For an
example of usage see character 18 in Sterli et al. (2013).

Calculating m: under character Rule 2 any transition cost ci,j, where
i= j, must be zero, therefore m= 0 (as it is not possible to infer any
changes). This character type is also covered by the general solution for
m based on the length of the minimum spanning tree (see “General algo-
rithm 1: minimum cost,m for cost matrix characters”, above).

Calculating g: as no changes are permitted under parsimony for a
constant character, it follows that g= 0. This character type is also
covered by the general cost matrix character solution for the algo-
rithmic calculation of g (see “General algorithm 2: maximum cost
(g) among general cost matrix characters”, above).

Calculating gmax: as all tips can only be assigned to a single state,
it follows that gmax= 0.

Proof: for m see Proof 1, above. For g and gmax: as there is only one
state the cost matrix must be of dimension one-by-one, and hence there
is no off-diagonal and so Rule 3 does not apply (there are no positive
transition costs). Thus, under Rule 2 all transitions must be cost zero
and by extension so must the length of any most parsimonious tree.
This character type is also covered by “General algorithm 3: exhaus-
tive calculation of maximum possible cost (gmax)”, above.

Practical implementation(s): cladistic packages PAUP*, TNT and
Claddis infer m= g = 0 for constant characters. Claddis additionally
returns gmax= 0.

Type II—binary symmetric characters

Definition: any binary (two state) character where c0,1= c1,0. If
c0,1= c1,0= 1 then we call this the “standard” binary symmetric
character.

State graph: two vertices connected by a single edge and equiva-
lent to both the complete graph k2 and the path graph P2. The single
edge must have finite positive weight.

NEXUS/TNT coding: in practice a binary symmetric character
may be defined as ordered (ord in NEXUS format, ccode + in TNT
format) or unordered (unord in NEXUS format, ccode - in
TNT format). If c0,1= c1,0≠ 1, then the user can define either a char-
acter state tree (usertype cstree in NEXUS format, cstree in TNT
format) or cost matrix (usertype stepmatrix in NEXUS format, sma-
trix in TNT format) instead.

Empirical frequency: extremely common, with at least one such
character found in 4,465 of 4,467 (100.0%) datasets. For example,
see character 1 of Sterli et al. (2013).

Calculating m: m =w(n� 1)=w(2–1)=w, where w is the edge
weight (i.e. the single unique non-zero cost in the cost matrix). If the
transition cost between states is 1 (c0,1= c1,0=w= 1), m= n� 1,
where n is the number of states. Where both states of a binary char-
acter are represented (i.e. the character is not constant) n= 2 and
m= 2–1= 1. This character type is also covered by the general char-
acter state graph solution for the algorithmic calculation of m (gen-
eral algorithm 1).

Calculating g: if c0,1= c1,0= 1, g= t� F, where F is the number of
taxa with a most frequent state (Steel and Penny, 2006). If
w= c0,1= c1,0≠ 1, it is useful to apply g=w(t� F ). This character
type is also covered by general algorithm 2.

Calculating gmax: if c0,1= c1,0= 1, gmax= t� ⌈t/n⌉, for general
unordered multistate characters (Hoyal Cuthill et al., 2010), with
n= 2, giving gmax= t� ⌈t/2⌉. If w= c0,1= c1,0≠ 1, we apply gmax= w
(t� ⌈t/2⌉). This character type is also covered by the general cost
matrix character solutions for the algorithmic calculation of gmax

with integer state frequencies (general algorithm 3, above).

Proof: for m see Proof 1, above, for g see Goloboff (2022b), for
gmax see proof for general unordered multistate characters of Hoyal
Cuthill et al. (2010), special case of the general algebraic solution
(Proof 2: “Special case: binary characters with transition costs 1
between different states”), and Proofs 4 and 5, above.

Practical implementation(s): both standard and non-standard m
and g can be found using either the describe n/diag function of
PAUP* or the minmax function of TNT, although TNT requires
costs to be integers. Binary symmetric characters are covered by the
general solutions described here and implemented in Claddis func-
tions for m (find_costmatrix_minimum_span), g
(calculate_g) and gmax (calculate_gmax).

Type III—multistate unordered (symmetric) characters

Definition: a character with three or more states, where every
transition is direct, symmetric and of equal cost, i.e. ci,j= cj,i=w,
where w is a positive finite value and i≠ j. If w= 1 we call this the
standard multistate unordered symmetric character.

State graph: the complete graph kn where n is ≥3 and every edge
is of equal weight (w).

NEXUS/TNT coding: the standard multistate unordered symmet-
ric character (w= 1) is representable using unord in NEXUS format
or ccode - in TNT format. If w≠ 1, then the user can define either a
character state tree (usertype cstree in NEXUS format, cstree in
TNT format) or cost matrix (usertype stepmatrix in NEXUS format,
smatrix in TNT format) instead.

Empirical frequency: very common, with at least one such charac-
ter found in 4,012 of 4,467 (89.8%) datasets. For example, see char-
acter 53 of Sterli et al. (2013).

Calculating m: m=w(n� 1), as for Type II with n> 2. This char-
acter type is also covered by general algorithm 1.

Calculating g: g=w(t� F ), as for Type II with n> 2. This charac-
ter type is also covered by general algorithm 2.

Calculating gmax: gmax=w(t� ⌈t/n⌉) (Hoyal Cuthill et al., 2010)
(see Type II) with n> 2. This character type is also covered by gen-
eral algorithm 3.

Proof(s): for m see Proof 1, for g see Goloboff (2022b), and for
gmax see Hoyal Cuthill et al., 2010, Proof 3: “Special case: unordered
three-state characters”, and Proof 6 above.

Practical implementation(s): both standard and non-standard m
and g can be found using either the describe n/diag function of
PAUP* or the minmax function of TNT, although TNT requires
costs to be integers. Type III characters are covered by the general
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solutions for m, g and gmax described here and implemented in
Claddis.

Type IV—multistate linear ordered (symmetric)

characters

Definition: a character with three or more states where direct
transitions are of equal cost and symmetric but a maximum of two
direct transitions are permitted per state.

State graph: the path graph (Pn) where n≥ 3 and every edge is of
equal weight, w.

NEXUS/TNT coding: the standard multistate linear ordered sym-
metric character (w= 1) is representable using ord in NEXUS format
or ccode+ in TNT format. If w≠ 1, then the user can define either a
character state tree (usertype cstree in NEXUS format, cstree in
TNT format) or cost matrix (usertype stepmatrix in NEXUS format,
smatrix in TNT format) instead.

Empirical frequency: common, with at least one such character
found in 2,127 of 4,467 (47.6%) datasets. For example, see Charac-
ter 7 of Sterli et al. (2013).

Calculating m:

m ¼ c0,1 þ c1,2 þ⋯þ cn�3,n�2 þ cn�2,n�1 ¼ n�1ð Þ c0,1ð Þ (A1)

As above, minimum steps, m, is equal to the length of the directed
minimum spanning tree of the character state graph (general algo-
rithm 1). Many problems in which an edge weight matrix, which is
equivalently representable by a graph, must be traversed with
minimum cost can be also solved using dynamic programming algo-
rithms, which evaluate step by step the increase in cost of successive
transitions through the graph or equivalent edge weight matrix
(Sniedovich, 2006). For instance, Dijkstra’s shortest path algorithm,
which can be used to find an undirected minimum weight spanning
tree through a graph, has been described both as a type of “greedy”
algorithm because it selects the best choice available at each step
and (without incompatibility) by a simple dynamic programming
approach (Sniedovich, 2006). Dynamic programming methods have
also been applied to some more complicated minimum spanning tree
problems with further constraints (e.g. Nägele and Zenklusen, 2023).
As introduced above, a parsimony cost matrix can be viewed equiva-
lently as an edge weight matrix for the character state graph. Mak-
ing these connections between Dijkstra’s graph theoretic algorithm
for the undirected minimum spanning tree, dynamic programming
approaches on an edge weight matrix (Sniedovich, 2006) and a parsi-
mony cost matrix is helpful here in the construction and proof of
applicability of the formula above (eq. (A1)) for minimum steps (m).
Dijkstra’s algorithm for the undirected minimum spanning tree is
applicable to symmetric cost matrices, since the length of an
unrooted phylogenetic tree on such a cost matrix will not be altered
by rooting because all forward and backward state transition costs
are symmetric. Where Dijkstra’s undirected minimum spanning tree
is applicable we can consider, without loss of generality, the shortest
path from a starting position of the first numbered node in an edge
weight matrix and a destination of the last numbered node (Sniedo-
vich, 2006). It follows from the above definition of a linear ordered
(symmetric) character that costs in the upper off-diagonal are each
equal to c0,1 and increase by c0,1 in each successive position along
each row (Fig. A1). Then, taking state 0 as the starting position,
there must (given the stated costs) be a series of transitions, moving
through the states successively, in order of state number, that adds
c0,1 at each transition (this is the path through the cost matrix along
an off-diagonal). The minimum cost m of traversing the n states in
such a cost matrix will then be equal to the sum of these costs, i.e.
the sum of an off-diagonal (eq. (A1)). Since, c0,1 is the lowest

transition cost present in the cost matrix, there cannot be a path
through all existing states which gives a shorter total path length
than n�1ð Þc0,1.

A rooted bifurcating phylogenetic tree for t taxa with these n
states could be constructed from this shortest path between the
states, without increase in length, by a process analogous to that
outlined above for Edmond’s algorithm, by attaching bifurcating
subtrees each containing taxa with the same state to a node repre-
senting that state in the shortest path between states and then root-
ing the whole tree to any one state.

Calculating g: this character type is covered by general
algorithm 2.

Calculating gmax: this character type is covered by general algo-
rithm 3. For a given number of character states, the constraint of
symmetrical transition costs also allows corresponding simplification
of the general formula for equal ancestral costs (determined by gen-
eral algorithm 4). For example, for a standard three-state linear
ordered symmetric character where c0,1 ¼ c1,0 ¼ c1,2 ¼ c2,1 ¼ 1 and
c0,2 ¼ c2,0 ¼ 2 (e.g. Fig. A1 Type IV) substitution of these costs into
eq. (25) and simplification gives cost equal to t, with an uncon-
strained optimal frequency of the second state of zero (eq. (22)) and
optimal frequencies of the first and third state equal to the number
of taxa divided by two. Here, therefore, there is an optimal fre-
quency of zero for the central state in the state graph (which has the
lowest row sum in the cost matrix) and equal, maximal frequencies
for the remaining two states. Similarly, for a four-state character,
substitution of costs for a Type IV character, into the equations for
equal ancestral costs gives a cost of 3/2 t, with an unconstrained
optimal frequency of the second and third states of zero and optimal
frequencies of the first and third state equal to the number of taxa
divided by 2. It can be seen that costs determined in this manner
cannot be exceeded on the star tree, and are therefore an upper
bound on maximal parsimony cost gmax, because all resulting transi-
tions must be between the existing states, which have equal, maximal
inter-state transition costs in the cost matrix and equal,
maximal frequencies.

Generalizing this procedure, for an n-state linear ordered, sym-
metric character gives a formula for maximum cost, meeting con-
straints (i)–(iii):

gmax ¼ w n�3ð Þ þ t� n�2ð Þð Þ � n�1ð Þ=2ð Þb cð Þ (A2)

Proof(s): see argument immediately above.

Practical implementation(s): both standard and non-standard m
and g can be found using either the describe n/diag function of
PAUP* or the minmax function of TNT, although TNT requires
costs to be integers. Claddis calculates m, g and gmax.

Type V—multistate non-linear ordered (symmetric)

characters

Definition: a character with four or more states where direct tran-
sition costs are equal and symmetric and either at least one state has
three or more direct transitions or every state has at least two direct
transitions, without every state having a direct transition to every
other state. This second feature makes a Type V character distinct
from a Type IV character, and the latter makes it distinct from a
Type III character.

State graph: a non-complete connected graph of four or more ver-
tices where either at least one vertex has degree ≥3 or every vertex
has degree ≥2 (distinguishing it from a Type IV character) and all
edges are of equal weight. Cycles are permitted.

NEXUS/TNT coding: the user can define a Type V character
using either a character state tree (usertype cstree in NEXUS format,
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cstree in TNT format) or cost matrix (usertype stepmatrix in
NEXUS format, smatrix in TNT format).

Empirical frequency: rare, with at least one such character found
in 36 of 4,467 (0.8%) datasets. For example, see Character 71 of
Hooker (2014).

Calculating m: as above, minimum steps, m, is equal to the length
of the directed minimum spanning tree of the character state graph
(general algorithm 1). Given this applicability of the Kruskal algo-
rithm and equal costs of transition between different states, this
character type is also covered by eq. (A1): m=w(n� 1).

Calculating g: this character type is covered by the general cost
matrix character solution for the algorithmic calculation of g (gen-
eral algorithm 2).

Calculating gmax: this character type is covered by general
algorithm 3.

Proof(s): see exhaustive algorithms 1–3 above.

Practical implementation(s): both standard and non-standard m
and g can be found using either the describe n/diag function of
PAUP* or the minmax function of TNT, although TNT requires
costs to be integers. Claddis calculates m, g and gmax.

Type VI—binary irreversible characters

Definition: a character with two states where costs are asymmetric
with one cost infinite and the other finite. By convention the infinite
cost is placed in the lower left triangle, but if they are placed in the
upper right triangle instead the character still meets the definition of
a Type VI character (see also discussion of Dollo characters below).
Note: Type VI characters force both a single root state and that any
homoplasy be in the form of convergent transitions. This definition
is compatible with existing definitions of irreversible characters (e.g.
Swofford, 2003).

State graph: a simple two-vertex, one-arc acyclic digraph represent-
ing a single Eulerian trail.

NEXUS/TNT coding: in NEXUS format a Type VI character
can be coded as either irrev or using a stepmatrix where the lower
triangle is assigned the value i (for infinite). In TNT Type VI charac-
ters can only be produced using the smatrix command with costs of
i (for infinite) in the lower triangle.

Empirical frequency: rare, with at least one such character found
in 27 of 4,467 (0.6%) datasets. For example, see character 119 of
Gunnell et al. (2018).

Calculating m: we first designate the state labels such that the
transition from state 1 to state 0 has infinite cost. As outlined in
Proof 7 below, for an irreversible binary character, it will always be
cheaper for the state which is of infinite cost to produce (here desig-
nated state 0) to be the ancestral state, so that it need not be derived
within the tree. If we set the constraint that each state must be repre-
sented at least once, the minimum possible cost is then achieved if
the frequency of state 1 is the minimum possible min yð Þ, here set to
be 1 (all other taxa then have state 0) and m is then given by the
cost of producing this one instance of state 1:

m ¼ c0,1 (A3)

This character is additionally covered by general algorithm 1.

Calculating g: extending from the argument for m above,

g ¼ yc0,1 (A4)

where y is the frequency of state 1 (designating the state labels
such that the transition from state 1 to state 0 has infinite cost) and

the frequency x of state 0 is at least 1 (i.e. the character is genuinely
binary). This character is also covered by general algorithm 2.

Calculating gmax : gmax ¼ c0,1 t�1ð Þ (A5)

This character is also covered by general algorithm 3.

Proof(s): for m and g see above, and for gmax see Proof 7.

Proof

7. Proof for the formula for gmax (proposed in eq. (A5), above) for binary
irreversible characters. We will designate the state labels such that the
transition from state 1 to state 0 has infinite cost: c1,0 ¼ ∞.

By eq. (9) and Proofs 4–5, above, the cost maximizing frequency
of state 0 for a binary character is:

x ¼ t
c0,1

c0,1 þ c1,0
9ð Þ

Denoting the cost c0,1 ¼ w, substituting the infinite cost of reverse
transition into eq. (9) gives.

x ¼ tw
1

wþ∞
(A6)

Since one divided by a number approaches zero as that number
approaches infinity, the limit on the frequency x of state 0 for an
irreversible character, as c1,0 approaches ∞, is then 0:

lim
c1,0!∞

x ¼ t
c0,1

c0,1 þ c1,0
¼ 0 (A7)

Since the frequency of the states sums to the number of taxa t
(eq. (1), above), the frequency y of state 1 approaches t as c1,0
approaches ∞:

lim
c1,0!∞

y ¼ t�x ¼ t (A8)

If we set a constraint that, in practice, each state must be repre-
sented at least once, then x for an irreversible binary character will
therefore equal 1 and y will equal t�1, meeting conditions (i)–(iii).
Under this constraint gmax is then given by the minimum of the cost
if state 0 is ancestral (u0) and the cost if state 1 is ancestral u1.

Substituting into eqs (3) and (4) from above gives.

u0 ¼ c0,1 t�xð Þ 3ð Þ
u0 ¼ c0,1 t�1ð Þ (A9)

u1 ¼ c1,0 t�yð Þ 4ð Þ
u1 ¼ ∞ t� t�1ð Þð Þ (A10)

u1 ¼ ∞ (A11)

Since the minimum of a non-infinite number and infinity will
always be the alternative to infinity, giving eq. (A12), above:

gmax ¼ min u0, u1ð Þ ¼ u0 ¼ c0,1 t�1ð Þ (A12)

This completes the proof.

Practical implementation(s): both standard and non-standard g
can be found using either the describe n/diag function of PAUP* or
the minmax function of TNT, although TNT requires costs to be
integers. TNT implements m, with the same integer cost restriction.
Claddis calculates m, g and gmax.
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Type VII—multistate irreversible (asymmetric)

characters

Definition: a character with three or more states where one trian-
gle of the cost matrix is composed of infinite costs and the other tri-
angle matches the definition of a Type IV character. By convention
the infinite costs are placed in the lower left triangle, but if they are
placed in the upper right triangle instead this would still meet the
definition of a Type VII character. Note: Type VII characters force
both a single root state and that any homoplasy be in the form of
convergent transitions. This definition is compatible with existing
definitions of irreversible characters (e.g. Swofford, 2003).

State graph: a simple n-vertex digraph with n� 1 equally weighted
arcs, where n≥ 3 and all vertices are connected by a single Eulerian
trail.

NEXUS/TNT coding: in NEXUS format a Type VII character
can be coded as either irrev or using a stepmatrix where the lower
triangle is assigned the value i (for infinite). In TNT Type VII char-
acters can only be produced using the smatrix command with costs
of i (for infinite) in the lower triangle.

Empirical frequency: rare, with at least one such character found
in 21 of 4,467 (0.5%) datasets. For example, see character 120 of
Gunnell et al. (2018). Irreversible characters also have a direct equiv-
alent in stratigraphic congruence measures (see Bell and Lloyd 2015
and references therein).

Calculating m: where the upper cost matrix is of the specific form
described for Type IV (eq. (A1)), above, this formula can be applied
to calculate minimum steps by the sum of the upper off-diagonal in
the cost matrix (eq. (A1)). This character type is also covered by
general algorithm 1.

Calculating g: if one state of a multistate character is the ancestral
state on a star tree (or conceptual equivalent), then the total cost is
given by the sum across all other states of the frequency of each
state multiplied by the cost of transition from the ancestral state to
the given state (e.g. for a three-state character, eqs (14)–(16), above).
We will designate state labels for a theoretical multistate irreversible
character with n states such that states are labelled 0, 1, 2, . . ., n� 1
in order of cost matrix row indices and all infinite cost, reverse tran-
sitions are in the lower left of the matrix. We will also consider con-
straint (ii) that all n states are represented at least once among the
taxa and constraint (iii) that the state frequencies sum to t. For such
a character, no state other than state zero can be the ancestral state
without requiring at least one infinite cost transition on the star tree.
For example, if state 1 is ancestral, at least one instance of state 0
must be derived; however, this would imply a reverse transition from
1 to 0, which by definition for this character type has infinite cost.
Therefore, as for a binary irreversible character described above
(Proof 7), it will always be most parsimonious to have 0 as the
ancestral state on the star tree.

Therefore, given the above, cost for a given character state distri-
bution for an n-state irreversible character will be the sum for all
non-zero states of the frequency of that state multiplied by the cost
of transition to that state from 0:

g ¼ yc0,1 þ zc0,2 þ , . . . , fn�1c0,n�1 (A13)

where fn�1 is the frequency (number of copies among the taxa) of
the n� 1th state.

Calculating gmax: for a three-state irreversible character, substitut-
ing a reverse cost denoted i into eq. (21) for the frequency x of state
0 and simplifying gives

x ¼ t
� c1,2i�c1,2c0,1�c0,2ið Þ
c0,1c1,2 þ ic0,2 þ i2

(A14)

Taking the limit of this eq. (A14),

lim
i!∞

x ¼ 0 (A15)

For the frequency y of state 1, substituting i into eq. (22) and sim-
plifying gives:

y ¼ t
ic1,2

c0,1c1,2 þ ic0,2 þ i2
(A16)

Taking the limit,

lim
i!∞

y ¼ 0 (A17)

For the frequency z of state two, substituting i into eq. (23) and
simplifying gives:

z ¼ t
i2

c0,1c1,2 þ ic0,2 þ i2
(A18)

Taking the limit,

lim
i!∞

z ¼ t (A19)

For gmax, substituting i into eq. (25) and simplifying gives:

u0 ¼ u1 ¼ u2 ¼ t
i c0,1c1,2 þ ic0,2ð Þ
c0,1c1,2 þ ic0,2 þ i2

(A20)

Taking the limit,

lim
i!∞

u0 ¼ u1 ¼ u2 ¼ tc0,2 (A21)

If we set the constraint that each of the n= 3 character states
must be represented at least once, then we have

gmax ¼ t�nþ 1ð Þc0,2 þ c0,1 (A22)

Generalizing this to an n-state character gives

gmax ¼ t�nþ 1ð Þc0,n�1 þ c0,n�2, . . . , c0,1 (A23)

For example, for a four-state character with state 0,1,2,3 we have

gmax ¼ t�3ð Þc0,3 þ c0,2 þ c0,1 (A24)

Proof(s): for m see Proof 1, for g and gmax, see immediately above
and also proof for Type VI binary irreversible characters.

Practical implementation(s): both standard and non-standard g
can be found using either the describe n/diag function of PAUP* or
the minmax function of TNT, although TNT requires costs to be
integers. TNT implements m, with the same integer cost restriction.
Claddis calculates m, g and gmax.

Type VIII—binary “Dollo” (asymmetric) characters

Definition: so-called “Dollo” characters in cladistic practice often
deviate from ideas, attributed to Dollo, of a complex structure never
being reacquired once lost, rather encapsulating the related idea that
a derived state can only be acquired once (Farris, 1977) or, as consid-
ered further below, at most once. A Dollo character has been pre-
sented as a cost matrix in which the forward transitions or gains (e.g.
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state 0 to 1) in the upper cost matrix have an “arbitrarily large” cost
“guaranteeing that only one transformation to each derived state will
be permitted” (Fig. A1 Type VIII; redrawn from Swofford and
Olsen, 1990, their fig. 11). This cost was denoted M by Swofford and
Olsen (1990) but here we denote it D, for Dollo penalty, to avoid pos-
sible confusion with the ensemble minimum steps (which is often
denoted M ). Swofford and Olsen (1990) state that the use of a cost
matrix of this type is equivalent to the Dollo parsimony algorithm (of
Farris, 1977 cited by Swofford and Olsen, 1990). However, we note
that a cost matrix definition alone is arguably insufficient to capture
some concepts of a Dollo character. Below we use the general alge-
braic framework for maximum steps, outlined above, to give further
mathematical insights into behaviour on the star tree, for a Type VIII
Dollo cost matrix, of maximal parsimony steps with different values
for this Dollo cost penalty for forward transitions (i.e. gains),
denoted D.

If the forward transition cost is infinity, a Dollo cost matrix of
this type would be the transpose of a standard irreversible character
cost matrix and could therefore be considered a type of irreversible
character (see Type VI, above). In this case, the mathematical argu-
ments outlined above for a comparable irreversible character would
apply to Dollo characters of this definition, with minor alteration of
state labelling. For binary Dollo characters we may first designate
the state labels such that the transition from state 0 to the “derived”
state, 1 has a cost approaching infinity. As in Proof 7 for irreversible
characters, on a star tree (or conceptual equivalent), it will then
always be cheaper for a state which is of infinite cost to produce
(here state 1) to be the ancestral state, so that it need not be derived
within the tree. All transitions within the tree must then be back-
ward transitions (i.e. losses) e.g. from state 1 to state 0. This is relat-
able to the idea of Dollo evolution in some, but not all, uses, in that
the derived state (here labelled 1) is not derived within the tree and
so a condition that it be derived at most once is not violated. We
note that application of a cost matrix containing a weight for for-
ward transitions (e.g. Fig. A1 Type VIII) tends, as that weight
approaches infinity, to optimize the root state for the sampled tree
to the derived state, or for multistate characters the most derived
state.

State graph: as with cost matrices, a state graph representation of
a Dollo character is not strictly possible, although an
approximation is shown in Fig. A1. This is because there is no
means of denoting an arc that is only permitted to be traversed at
most once.

NEXUS/TNT coding: standard binary Dollo characters are repre-
sentable using dollo in NEXUS format. It is not straightforward to
code non-standard Dollo characters in NEXUS format or any Dollo
character in TNT format, at least under some definitions. However,
interested readers should consult Goloboff (1998) for a practical
approach to Dollo-like characters with TNT.

Empirical frequency: extremely rare, with at least one such char-
acter found in 1 of 4,467 (<0.1%) datasets. For example, see charac-
ter 10 of Paterson et al. (2014).

Calculating m: the minimum cost for a standard binary Dollo
character, i.e. with transitions from state 1 to state 0 equal to 1
(Swofford and Olsen, 1990, their fig. 11) is m = 1 (see multistate
Dollo characters, Type IX below). This character type is also cov-
ered by general algorithm 1.

Calculating g: considering the stated aim of Swofford and
Olsen (1990) that “only one transformation to each derived state will
be permitted”, we outline below an algebraic method to meet this
aim, first, in the binary case, by specifically aiming for a value of D
such that state 1 (the derived state) will be necessarily ancestral on
the star tree if its frequency (y) is greater than 1. This will guarantee
that, on a star tree, no more than one transition can be made to the
derived state.

For a frequency of state 1 greater than 1, let the cost of state 0
being ancestral on the star tree be less than that of state 1 being
ancestral. So,

if y> 1, then u1 < u0.

For a binary cost matrix of Type VIII, the transition costs are
c0,1 ¼ D and c1,0 ¼ 1.

Therefore, u0 ¼ c0,1y ¼ Dy and u1 ¼ c1,0x ¼ x.

If u1 ¼ u0, x ¼ Dy and so x
y ¼ D.

If y ¼ 1, we have x ¼ D. Therefore, if D ¼ x, u0 ¼ u1.

In implementation, if the Dollo penalty D for a binary cost matrix
of Type VIII is set to x, either state 0 or 1 may be ancestral if the
frequency of state 1 is 1 and state 1 will be ancestral otherwise. To
match the behaviour of PAUP*, on the star tree, D can be set mar-
ginally less than x (e.g. x� 0:999) so that if the frequency of state 1
is 1 then state 0 will be ancestral and state 1 will be ancestral
otherwise:

If y ¼ 1 and D< x, then u0 < x and u1 ¼ x, therefore u0 < u1.

In PAUP*, after optimization of ancestral states, the final tree
length is calculated using costs equivalent to those from a symmetric
matrix transposing the lower Dollo cost matrix, i.e. the Dollo cost
penalty is secondarily removed for final cost calculation
(Swofford, 2003).

For a binary Dollo Type VIII cost matrix, maximum cost is

g ¼ min u0, u1ð Þ ¼ min c0,1y, c1,0xð Þ ¼ min Dy, xð Þ (A25)

If y ¼ 1, and we have set D= x, as discussed above, then for the
original Dollo cost matrix including the Dollo penalty D,

g ¼ min x,xð Þ ¼ x (A26)

Here, u0 ¼ u1 (as outlined above).

If y> 1, and we have set D= x, as discussed above, we then also
have

g ¼ min Dy,xð Þ ¼ min xy,xð Þ ¼ x (A27)

and u1 < u0 (as outlined above).

If D is set marginally less than x (as discussed above) we have,
where y= 1

g ¼ min D,xð Þ ¼ D (A28)

and u0 < u1 (as outlined above).

If final costs are then calculated using a symmetric matrix formed
from the lower Dollo cost matrix (or equivalent, as discussed above)
where y ¼ 1 and c1,0 ¼ 1 then we will have

g ¼ min y,xð Þ ¼ min 1,xð Þ ¼ 1 (A29)

If, D is set marginally less than x and y> 1, we have

g ¼ min Dy, xð Þ ¼ x (A30)

and u1 < u0 (as outlined above).

Calculating gmax: for a Type VIII cost matrix, gmax is equal to the
highest possible value of g (eq. (A29), where y = 1 and eq. A30
where y> 1) for a given value of t with n= 2. By eq. (A29), when
y= 1, g= 1. By condition (ii) y>= 1. If t= n= 2, therefore, y= 1.
Otherwise, if y> 1, by eq. (A30), g= x. By eq. (1), if y= 1, x= t� 1.
Therefore, the highest possible value of x where eq. (A30) and condi-
tions (i)–(iii) apply is the highest possible integer, between 1 and t,
that is less than t� 1. The highest integer value less than t� 1 is
given by t� 2. Therefore, we have

24 J. F. Hoyal Cuthill and G. T. Lloyd / Cladistics 0 (2024) 1–27

 10960031, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cla.12582 by T

est, W
iley O

nline L
ibrary on [07/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



If t= n,

gmax ¼ c1,0 t�1ð Þ

If t> n,

gmax ¼ c1,0 t�2ð Þ (A31)

Proof(s): for m, this reduces to the same situation as a Type IV
character and the cost matrix with D removed means Proof 1
applies. For proofs for g and gmax see algebraic argument above.

Practical implementation(s): standard m and g can be found using
the describe n/diag function of PAUP*. Non-standard m and g are
not implemented in PAUP* and Dollo characters are not explicitly
supported in TNT but see Goloboff (1998). Claddis calculates m, g
and gmax.

Type IX—multistate Dollo (asymmetric) characters

Definition: by extension of the argument above for binary Dollo
characters, we may apply the mathematical arguments of irreversible
multistate characters to multistate Type IX Dollo cost matrices, in
which the forward transitions (i.e. state gains) in the upper cost matrix
have costs approaching infinity. As the Dollo penalty D approaches
infinity, this will tend to force the root state of the star tree to the most
derived state because this is the only state which can produce all the
others without multiplication by costD. We can also determine algebra-
ically the value of D that achieves, for a multistate Dollo character, the
stated aims of Swofford and Olsen (1990), by extension of the algebraic
arguments outlined above for binaryDollo characters, as follows.

For a three-state Dollo character, we interpret the aim that “only
one transformation to each derived state will be permitted” (Swof-
ford and Olsen, 1990) by application of the following constraints to
optimization on a star tree (or conceptual equivalent). We aim
to choose D such that state 0 cannot be optimally ancestral if the
frequency y of state 1 is greater than 1, and neither state 0 nor state
1 can be optimally ancestral (i.e. state 2 must be optimally ancestral)
if the frequency z of state 2 is greater than 1:

Ify> 1, thenu2 < u0andu1 < u0 (A32)

Ifz> 1, thenu2 < u0andu2 < u1 (A33)

Where these constraints are met, no more than one transition to a
derived state could be optimal on the star tree.

For a standard three-state Dollo cost matrix of Type IX,
c0,1 ¼ D, c0,2 ¼ 2D, c1,0 ¼ 1, c1,2 ¼ D, c2,0 ¼ 2 and c2,1 ¼ 1. If the fre-
quencies of states 1 and 2 are 1, y ¼ z ¼ 1.

If u1 ¼ u0, then:

c1,0xþ c1,2z ¼ c0,1yþ c0,2z (A34)

So, substituting in the specified state frequencies and transition
costs,

xþD ¼ Dþ 2D (A35)

Therefore,

x

2
¼ D (A36)

If u2 ¼ u1, and z ¼ 1 then:

c2,0xþ c2,1y ¼ c1,0xþ c1,2z (A37)

Then, by substitution and rearrangement,

xþ y ¼ D (A38)

Therefore, if D ¼ xþ y, then u2 ¼ u1. Since, xþ y (from
eq. (A38)) is necessarily greater than x=2 (from eq. (A36), then if
D ¼ xþ y it is also true that u1 < u0. Therefore, if D ¼ xþ y, then
u2 ¼ u1 < u0.

In practice, setting D ¼ xþ y for a three-state Type IX Dollo cost
matrix permits where z ¼ 1 that either state 1 or state 2 may be
ancestral on the star tree:

u0 ¼ c0,1yþ c0,2z ¼ Dyþ 2D ¼ 2xþ xyþ 2yþ y2 (A39)

u1 ¼ c1,0xþ c1,2z ¼ xþD ¼ 2xþ y (A40)

u2 ¼ c2,0xþ c2,1y ¼ 2xþ y (A41)

So, here u2 ¼ u1 < u0

Setting D marginally lower than xþ y (e.g. xþ yð Þ � 0:999) per-
mits only that state 1 may be ancestral when z ¼ 1: u2 < u1 < u0,
meeting the specified constraints (from eq. (A32) and eq. (A33)).

Proof

4. To propose and prove a generally applicable formula (equi-valently,
eqs (A47) and (A48)) for the Dollo cost penalty D for a general n-state
Dollo cost matrix (of Type IX), we will therefore extend the algebraic
arguments above (which considered binary and three-state characters). We
aim to apply the constraint that where the frequency of the most derived
state (f n�1) exceeds 1, that most derived state will be optimally ancestral
on the star tree, relative to the penultimately derived state:

If f n�1 > 1, then un�1 < un�2 (A42)

Here, we prove the proposition that, in general, a value of the
Dollo cost penalty D which acts as a tipping point to permit no
more than one derivation of a derived state on the star tree is given
by the sum of frequencies of all states other than the most derived
state.

In general, the implied cost if a most derived state is ancestral on
the star tree is given by the sum of costs of transition from that most
derived state to each other state multiplied by their frequencies:

un�1 ¼ cn�1,0f0 þ cn�1,1f1 þ :, , , :cn�1,n�2fn�2 (A43)

Similarly, the implied cost if the next-most derived state is ances-
tral is

un�2 ¼ cn�2,0f0 þ cn�2,1f1:, , , :þ cn�2,n�1fn�1 (A44)

For a general Type IX Dollo cost matrix the costs of transition
between states i and j (numbered from 0 in increasing order of deri-
vation) in the upper matrix are given by

ci,j ¼ j�ið ÞDwherej> i (A45)

The costs in the lower matrix are given by

ci,j ¼ i�jwherei> j (A46)

We could then substitute these transition costs (on the left-hand
sides of eqs (A45) and (A46)) into the right-hand sides of the formu-
lae for the implied cost if a given state is ancestral (eqs (A43) and
(A44)). It can be seen that the transition costs if the most derived
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state is ancestral (for which all i> j and ci,j ¼ i�j) start at
cn�1,0 ¼ n�1 and decrease by 1 for each successive term in the
expression for implied cost (in eq. (A43)). The accompanying state
frequencies start at the frequency of the least derived state and
increase by 1 in each successive term. The transition costs if the pen-
ultimately derived state is ancestral start at cn�2,0 ¼ n�2 and
decrease by 1 for each successive term up to and including the penul-
timate term. Accompanying state frequencies also start at the fre-
quency of the least derived state and increase by 1, up to the
penultimate term, in each successive term. The ultimate term in
the expression for implied cost if the penultimate state is ancestral is
distinctive in that it will be the only transition cost for that state in
the upper part of the cost matrix and therefore including the Dollo
cost penalty D (by eq. (A45)). Given all this, if we were to perform
these substitutions into the equality un�1 ¼ un�2 (eq. (A42)) and then
rearrange this equality, it can be seen that subtraction of the right-
hand terms up to the penultimate term from the terms on the left-
hand side will leave on the left-hand side single instances of each
state frequency up to and including the penultimate state and leave
on the right-hand side the Dollo cost penalty D multiplied by the
frequency of the ultimate state. If the frequency of the ultimate state
is 1, we then have

f0 þ f1 þ , . . . , þ fn�2 ¼ D (A47)

This is equivalent to

t�fn�1 ¼ D (A48)

where fn�1 is the frequency of the most derived state and t is the
number of taxa. This completes the proof.

D should be set marginally lower than t�fn�1 to match the behav-
iour of PAUP* (e.g. t�fn�1ð Þ � 0:999).

State graph: this character type cannot be easily specified by a sin-
gle graph. A possible approximation is a digraph with n vertices and
2n arcs with the special condition that “forward” arcs may only be
traversed once each.

NEXUS/TNT coding: standard multistate Dollo characters are
representable using dollo in NEXUS format. It is not possible to
code non-standard Dollo characters in NEXUS format or any Dollo
character in TNT format. However, interested readers should consult
Goloboff (1998) for a practical approach to Dollo-like characters
with TNT.

Empirical frequency: extremely rare, with at least one such char-
acter found in 1 of 4,467 (<0.1%) datasets. For example, see charac-
ter 15 of Paterson et al. (2014).

Calculating m: the minimum cost for a standard Dollo character,
i.e. with transitions between adjacent states equal to 1 (Swofford and
Olsen, 1990, their fig. 11) is given by the number of states minus 1,
m= n� 1, i.e. the same as for a linear ordered symmetric character
with w= 1 (see Type IV, above) using a transposition of the lower
Dollo cost matrix. This character type is also covered by general
algorithm 1.

Calculating g: maximum cost for a Type IX Dollo cost matrix
can be calculated by first calculating the optimal root for the star
tree by the procedure outlined above in which the Dollo cost penalty
D is set marginally lower that the number of taxa minus the fre-
quency of the most derived state (eq. (A48)). We will denote this
optimally ancestral state with subscript a. Maximum steps is then
given by the sum of the transition cost from this ancestral state to
each other state, multiplied by the frequency of that state observed
for the character considered. We note, as above, that in practice,
these transition costs are calculated using a symmetrical matrix made

by transposition of the lower Dollo matrix (such that the Dollo cost
penalty is used only in optimization of the star tree root and not in
calculation of the value of g).

g ¼ ca,0f0 þ ca,1f1 þ :, , , :ca,n�1fn�1 (A49)

Calculating gmax: from eq. (A21) for irreversible characters, as the
Dollo cost penalty D for a Type IX Dollo cost matrix approaches
infinity, maximum steps approaches

lim
i!∞

gmax ¼ tcn�1,0 (A50)

From eq. (A23), where each character state must be represented
at least once, for a Type IX Dollo cost matrix, maximum steps tends
towards

gmax ¼ t�nþ 1ð Þcn�1,0 þ cn�1,1, . . . , cn�1,n�2 (A51)

which is the case when the frequency of the least derived state is
maximized and all other states have a frequency of 1.

However, if the Dollo cost penalty D is set marginally lower than
t�fn�1 (eq. (A48) above) then in the case where both the most
derived and penultimately derived states have a frequency of 1, we
root optimally to the penultimately derived state (as outlined above).
In this case maximum steps can be calculated, first, using the costs
of transition in a symmetric cost matrix made by transposition of
the lower Dollo matrix from the penultimately derived state to each
other state, when the frequency of the least derived state is
maximized:

If un�2 < un�1

gmax ¼ t�nþ 1ð Þcn�2,0 þ cn�2,1, . . . , cn�2,n�1 (A52)

Applying to eq. (A52) the pattern of costs in a Type IX Dollo
cost matrix (outlined above) and formulae for standard sums of
finite arithmetic series then gives:

gmax ¼ n�2ð Þ t�nþ 1ð Þ þ 1

2
n�2ð Þ n�3ð Þ þ 1 (A53)

where un�2 < un�1.

If, however, the frequency of the most derived state is greater
than 1, this state must be optimally ancestral on the star tree (as out-
lined above). In that case

gmax ¼ n�1ð Þ t�nð Þ þ 1

2
n�1ð Þ n�2ð Þ (A54)

where un�2 > un�1.

Comparing eqs (A53) and (A54) shows that if they are equal, then
t= n + 1. Where t>= n+ 1 (expected in the majority of cases) the
maximum steps calculated by eq. (A54) exceeds that from eq. (A53).
Therefore, where t> n+ 1 for a Type IX Dollo character with D set
as outlined above (and for which all n states must appear at least
once among the t taxa) it can be calculated using eq. (A54) (and by
eq. (A53) where t< n+ 1).

Proof(s): for m see Type IV. For proofs for g and gmax see multi-
state irreversible characters, and extended Dollo character, proof,
above.

Practical implementation(s): standard m and g can be found using
the describe n/diag function of PAUP*. Non-standard m and g are
not directly implemented in PAUP* and Dollo characters are not
explicitly supported in TNT but see Goloboff (1998). Claddis calcu-
lates m, g and gmax.
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Type X—multistate custom cost matrix (symmetric)

characters

Definition: a character with three or more states where all costs
are symmetric, i.e. ci,j = cj,i, but direct transitions are variable in cost.
(If direct transitions are all equal this would by default be a Type
III, IV or V character.)

State graph: a connected graph with three or more vertices and
variable edge weights. (If all weights were equal this would by
default be a Type III, IV or V character.) Cycles are permitted.

NEXUS/TNT coding: the user can define either a character state
tree (usertype cstree in NEXUS format, cstree in TNT format) or
cost matrix (usertype stepmatrix in NEXUS format, smatrix in TNT
format).

Empirical frequency: very rare, with at least one such character
found in nine of 4,467 (0.2%) datasets. For example, see
character eight of Sumrall and Brett (2002).

Calculating m: this character type is covered by general
algorithm 1.

Calculating g: covered by general algorithm 2.

Calculating gmax: covered by general algorithm 3.

Proof(s): see exhaustive algorithms 1–3 above.

Practical implementation(s): both standard and non-standard m
and g can be found using either the describe n/diag function of
PAUP* or the minmax function of TNT, although TNT requires
costs to be integers. Claddis calculates m, g and gmax.

Type XI—binary custom cost matrix (asymmetric)

characters

Definition: a character with exactly two states where transition
costs are asymmetric, i.e. c0,1≠ c1,0 and neither cost is infinite. (Both
costs cannot be infinite under Rules 4 and 6, and if one cost is infi-
nite then the character is by default a Type VI character.)

State graph: a complete simple two-vertex digraph with arcs of
unequal weight. (Equal arc weights define a Type II character and if
one arc were missing it would be a Type VI character.)

NEXUS/TNT coding: the user must define a cost matrix (usertype
stepmatrix in NEXUS format, smatrix in TNT format).

Empirical frequency: extremely rare, with at least one such char-
acter found in 1 of 4,467 (<0.1%) datasets. For example, see charac-
ter 3 of Gheerbrant et al. (2014).

Calculating m: this character type is covered by general algorithm 1.

Calculating g: covered by general algorithm 2.

Calculating gmax: covered by eq. (26) and general algorithm 3.

Proof(s): see exhaustive algorithms 1–3 and Proofs 4 and 5,
above.

Practical implementation(s): both standard and non-standard g
can be found using either the describe n/diag function of PAUP* or
the minmax function of TNT, although TNT requires costs to be
integers. Only TNT implements m, with the same integer cost restric-
tion. Claddis calculates m, g and gmax.

Type XII—multistate custom cost matrix (asymmetric)

characters

Definition: a character with three or more states where at least
one transition is asymmetric, i.e. ci,j≠ cj,i, the costs fulfil Rules 1–7
but do not meet the definition of a Type VII character. If the smal-
lest cost is 1, i.e. min(ci,j)= 1, then this is the standard multistate cus-
tom asymmetric character.

State graph: a connected simple digraph composed of n vertices
and at least n� 1 arcs where n is ≥3 and the digraph is distinct from
a Type VII character digraph. Cycles are permitted.

NEXUS/TNT coding: the user must define a cost matrix with
usertype stepmatrix in NEXUS (PAUP*) format or smatrix in TNT
format.

Empirical frequency: extremely rare, with at least one such char-
acter found in 1 of 4,467 (<0.1%) datasets. For example, see charac-
ter 7 of Gheerbrant et al. (2014).

Calculating m: this character type is covered by general
algorithm 1.

Calculating g: covered by general algorithm 2.

Calculating gmax: covered by general algorithm 3.

Proof(s): see exhaustive algorithms 1–3 above.

Practical implementation(s): both standard and non-standard g
can be found using either the describe n/diag function of PAUP* or
the minmax function of TNT, although TNT requires costs to be
integers. Only TNT implements m, with the same integer cost restric-
tion. Claddis calculates m, g and gmax.
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