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A B S T R A C T

In this paper, we examine the dynamical and statistical properties of a mean-field Hamiltonian with on-site
potentials, where particles interact via nonlinear global forces. The absence of linear dispersion triggers a
variety of interesting dynamical features associated with very strong energy localisation, weak chaos and slow
thermalisation processes. Particle excitations lead to energy packets that are mostly preserved over time.
We study the route to thermalisation through the computation of the probability density distributions of
the momenta of the system and their slow convergence into a Gaussian distribution in the context of non-
extensive statistical mechanics and Tsallis entropy, a process that is further prolonged as the number of particles
increases. In addition, we observe that the maximum Lyapunov exponent decays as a power–law with respect
to the system size, indicating ‘‘integrable-like’’ behaviour in the thermodynamic limit. Finally, we give an
analytic upper estimate for the growth of the maximum Lyapunov exponent in terms of the energy.
1. Introduction

Ergodicity-breaking and long-term stability are frequent phenomena
in many-body Hamiltonian systems. There are various forms of non-
equilibrium states that appear in such systems, such as the formation
of metastable states, energy localisation, synchronisation, etc. These
features are often accompanied by a weaker form of chaos, manifested
by very low or vanishing Lyapunov exponents. Within many-body
Hamiltonian systems, those involving long-range forces have an even
more perplexed and enigmatic behaviour in terms of out-of-equilibrium
long-lasting states.

In systems with long-range interactions (LRI), such as the Mean-
Field Hamiltonian (MFH) [1,2] and the Fermi-Pasta–Ulam-Tsingou
model with long-range interactions (FPUT-LRI) [3–6], chaoticity wanes
by increasing the number of particles 𝑁 , whilst the specific energy
𝜀 = 𝐸∕𝑁 is kept constant (𝐸 is the total energy of the Hamiltonian).
This property is intriguing and raises several questions about what
happens in the thermodynamic limit of the models. These two systems
share a common feature: they are translationally invariant.

There is a notable interest towards this direction in recent years;
various works study in-depth FPUT models with LRI and their dynam-
ical properties [7–11], as well as ‘‘realistic’’ versions of FPUT models,
such as the ionic-crystal model, also called ‘‘the modern form of the
FPU problem’’ [12,13]. Generally, it is understood that some models
with LRI are more perplexed, whilst less chaotic, compared to their
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nearest-neighbour counterparts. This is also reflected in the statistical
behaviour of the system. By examining the probability density functions
(PDF) of the momenta of such models, it has been observed that these
PDFs deviate from the classical Boltzmann–Gibbs (BG) thermostatistical
description [14–19]. For example, there have been numerous cases
where quasi-stationary states (QSS) form long-lived 𝑞-Gaussian mo-
menta PDFs [3,12,18], described by non-extensive statistical mechanics
and Tsallis entropy [16].

Recently, these studies were extended to Hamiltonian lattices with-
out translational invariance [20], such as the Klein–Gordon (KG) model
and its dispersionless variant, referred to by Gorbach and Flach as
‘‘a system with nonlinear and nonlocal dispersive terms’’ [21]. These
two models are 1D lattices with nearest-neighbour interactions and on-
site potentials that support the emergence of discrete breathers [22,
23], namely, spatially localised (usually exponential) and time-periodic
solutions. The main difference between these two models is that the
latter exhibits stronger and more persistent localisation properties due
to nonlinearity in dispersion. This difference leads to the formation of
compactons, i.e. discrete breathers with compact support in this type
of models [21,24–29].

When long-range interactions are introduced, the dynamics of the
KG and dispersionless KG models undergo significant changes: the
maximum Lyapunov exponent decreases with increasing 𝑁 [20]. This
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behaviour is similar to that observed in models with translational
nvariance, such as the MFH and FPUT-LRI systems. An open ques-
ion remains as to whether these systems exhibit integrable-like and
on-ergodic behaviour in the thermodynamic limit.

The paper is organised as follows: In the introduction 2 we discuss
he Hamiltonian formalism of a dispersionless mean-field model of 𝑁
lobally coupled particles and its strong localisation properties which
esult to a variety of special solutions. Section 3 is devoted to the study
f the Lyapunov exponent and its dependence on the energy 3.1, where

we provide an analytic upper estimate for the growth of the maximum
Lyapunov exponent as a function of the energy. Our study extends
to the maximum Lyapunov exponent’s dependence on the system size
3.2, which indicates organised behaviour in the thermodynamic limit.
n Section 4 we analyse the path to thermalisation by computing the

probability density distributions of the system’s momenta and exam-
ning their gradual convergence to a Gaussian distribution within the
ramework of non-extensive statistical mechanics and Tsallis entropy.
inally, the paper closes with the conclusions section in 5.

2. The model

In this context, we examine the dispersionless mean-field Hamilto-
ian of 𝑁 globally coupled particles, described by

𝐻 =
𝑁
∑

𝑛=1

[

1
2
𝑝2𝑛 + 𝑉 (𝑥𝑛) + 1

2𝑁̃

𝑁
∑

𝑚=1
𝑊 (𝑥𝑚 − 𝑥𝑛)

]

= 𝐸 , (1)

where 𝑥𝑛 is the displacement of the 𝑛th particle from its equilibrium
position, 𝑝𝑛 its conjugate momentum and 𝐸 the total (constant) energy
of the system. Within this framework, the expressions for the on-site
potential 𝑉 and the potential of all-to-all interactions 𝑊 are given by

𝑉 (𝑥𝑛) = 1
2
𝑥2𝑛 +

1
4
𝑥4𝑛, (2)

and

𝑊 (𝑥𝑚 − 𝑥𝑛) = 1
4
(𝑥𝑚 − 𝑥𝑛)4, (3)

respectively. Furthermore, periodic boundary conditions 𝑥𝑁+𝑛 = 𝑥𝑛 and
𝑝𝑁+𝑛 = 𝑝𝑛, 𝑛 = 1,… , 𝑁 have been considered. The divisor 𝑁̃ = 𝑁 − 1
in the Hamiltonian (1) is necessary to ensure that the Hamiltonian
𝐻 remains an extensive thermodynamic quantity. The corresponding
equations of motion are given by

𝑥̈𝑛 = −𝑥𝑛 − 𝑥3𝑛 −
1
𝑁̃

𝑁
∑

𝑚=1
(𝑥𝑛 − 𝑥𝑚)3, 𝑛 = 1,… , 𝑁 . (4)

This is a mean-field model with very strong energy localisation
properties due to the absence of linear coupling terms. Here, the
network of particle interactions is global and nonlinear. As we stated
in the introduction, the nearest neighbour version of this model, with
nonlinear dispersion terms

𝑊 (𝑥𝑛+1 − 𝑥𝑛) = 1
4
(𝑥𝑛+1 − 𝑥𝑛)4

and the presence of an on-site potential, contributes to the formation
f compactons [21,26,27]. In [21], it was shown that such solutions

do exist even when the interactions extend from nearest neighbours to
distance decaying forces. By extending the interactions of the model
globally, with each particle interacting with all others in the system, as
described in (1), the present paper aims to investigate the effect of non-
topological maximal-range interactions on the dynamical and statistical
characteristics of the mean field model.

Here, we numerically integrated the equations of motion of Hamil-
tonian (1) numerically, using the 4th order Yoshida’s symplectic inte-
grator [30]. In our simulations, we set the integration time step to 𝜏
= 0.02, a value chosen to maintain the relative energy error within an
acceptable range

𝐸𝑟 =
|

|

|

|

|

𝐸 − 𝐸𝑛𝑢𝑚
𝐸𝑛𝑢𝑚

|

|

|

|

|

≈ 10−6,

where 𝐸𝑛𝑢𝑚 denotes the energy of Hamiltonian (1), computed along the
numerical solution for all 𝑥 and 𝑝 .
𝑛 𝑛

2 
2.1. Special solutions and localisation

The uniform interactions among the oscillators, in the absence of
linear resonances, create suitable conditions for the emergence of vari-
us special low-dimensional solutions to the system (1). This interesting

characteristic appears when a single or a packet of particles are initially
excited, with their initial energy remaining localised on them at all
times.

In Fig. 1(a), we show that the dynamics of a single-site excitation
(𝑛 = 0 particle) is well-described by an undamped Duffing equation

𝑥̈0 = −𝑥0 − 𝑥30 − (𝑥0 − 𝑥𝑛)3 (5)

where 𝑥𝑛, 𝑛 ≠ 0, are negligible since they start by zero initial conditions
nd satisfy

𝑥̈𝑛 = −𝑥𝑛 − 𝑥3𝑛 −
1
𝑁̃

(𝑥𝑛 − 𝑥0)3

for a rather large 𝑁̃ (see also [20]).By using Poincaré–Lindstedt series,
we find that for 𝑥0(0) = 0, 𝑥̇0(0) = 𝐴0, 𝐴0 ≪ 1, Duffing Eq. (5) gives rise
to periodic solutions of the form

𝑥0(𝑡) = 𝑎 sin(𝜔𝑡), 𝑎 = 𝐴0
𝜔
, 𝜔 = 1 + 3𝑎2

4
. (6)

In Fig. 1(a), we show the numerical solution of the system (4) for 𝑁 ≫
1, when a single site is initially excited (𝑥0(0) = 0, 𝑥̇0(0) = 0.5), as well as
its agreement with the estimate (6) derived from the Poincaré-Lindstedt
series.

This property extends to multi-site excitations of 𝑠 ≪ 𝑁 particles,
where the entire system (4) can be effectively represented by a reduced
system of 𝑠 uncoupled Duffing oscillators (5). This phenomenon arises
from the uniform manner in which the oscillators interact. To test this
argument numerically, we consider the excitation of a packet of 𝑠 = 50
consecutive sites of the system (4) with 𝑁 = 1024. Fig. 1(b),(c) show
the solutions of 𝑛 = −5 and 𝑛 = 5 sites, as well as the approximated
solutions 𝑥−5(𝑡) = 0.318 sin (1.076𝑡) and 𝑥5(𝑡) = 0.259 sin (1.05𝑡) derived
y Poincaré-Lindstedt series with initial velocities 𝑥̇−5(0) = −0.343 and
̇ 5(0) = 0.272, respectively.

On the lack of energy spreading for these two solutions, we calculate
numerically the evolution of the normalised on-site energies
𝐸̃𝑛 =

𝐸𝑛
𝐸̃
, (7)

where

𝐸𝑛 =
1
2

(

𝑝2𝑛 + 𝑥
2
𝑛 +

1
2
𝑥4𝑛
)

and 𝐸̃ =
𝑁
∑

𝑛=1
𝐸𝑛. (8)

after (a) single and (b) multi-site excitations.
In Fig. 2(a),(b), we show the evolution of the normalised on-site

energies 𝐸̃𝑛 (7) for 𝑠 = 1 and 𝑠 = 50 initially excited particles,
respectively. Panels (a) and (b) show that the energy remains localised
only to the initially excited particles with a nearly complete absence of
diffusion to the rest sites. This means that the number of excited sites
𝑠 ≪ 𝑁 is practically the effective degrees of freedom of the system (4).

These strong localisation properties require further investigation
hen all particles are excited. We do not exclude the possibility of the

xistence of adiabatic invariants, as it occurs in other near-integrable
ystems like the FPUT model [31,32] and KG chain [33,34].

3. The maximal Lyapunov exponent

In this section, we analyse the chaotic behaviour of the mean-field
model (1) for generic initial data. Particularly, we study the dependence
of the maximal characteristic Lyapunov exponent 𝜆 on both system size
and total energy. We also discuss the properties of 𝜆 across a wide range
of energy values, as well as 𝜆’s asymptotic behaviour as the system

approaches the thermodynamic limit.
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Fig. 1. The numerical solution of the system (4) with 𝑁 = 1024 particles (a) for a single-site excitation and (b) for an excitation of a packet of 𝑠 = 50 consecutive sites around the
central site 𝑛 = 0. This panel shows the numerical solution of the particles 𝑛 = −5, 𝑛 = 5 (grey curve). In both panels the blue dots represent the approximated solution derived
from the Poincaré-Lindstedt series.
Fig. 2. The normalised on-site energies 𝐸𝑛 of system (4), where 𝑁 = 256 (a) for a single-site (𝑠 = 1) excitation at 𝑛 = 0 and (b) for an excitation of a packet of 𝑠 = 50 consecutive
sites around the central site 𝑛 = 0.
As is well known, the computation of the Lyapunov exponents
requires integrating the variational equations

𝝃̇ = [𝐽 ⋅𝐷2𝐻(𝐱(𝑡),𝐩(𝑡))] ⋅ 𝝃, (9)

where 𝝃 = (𝛿𝐱, 𝛿𝐩) is a vector in the tangent space of the phase space of
system (1), 𝐽 is the standard symplectic matrix and 𝐷2𝐻 is the Hessian
of the Hamiltonian 𝐻 , evaluated along the reference orbit (𝐱(𝑡),𝐩(𝑡)).
The vector 𝝃 measures the distance growth of two nearby orbits of
system (1). The system (9) yields from the time-dependent Hamiltonian
system

 =
∑

𝑛

[

1
2
(𝛿𝐩𝐧)2 +

𝜕2𝑉
𝜕 𝑥2𝑛

(𝛿𝐱𝐧)2 +
1
2𝑁̃

∑

𝑚

𝜕2 𝑊
𝜕 𝑥𝑛𝜕 𝑥𝑚

𝛿𝐱𝐧𝛿𝐱𝐦

]

. (10)

The numerical approximation of the maximal Lyapunov exponent 𝜆
entails the calculation of a finite-time Lyapunov exponent 𝜆(𝑇 ) =
1
𝑇 ln ‖𝝃(𝑇 )‖

‖𝝃(0)‖ , which is expected to stabilise at the asymptotic 𝜆 value

𝜆 = lim
𝑡→∞

1
𝑡
ln

‖𝝃(𝑡)‖
‖𝝃(0)‖

after a transient time.

3.1. Energy dependence

Evaluating analytically the maximal Lyapunov exponent is a noto-
riously difficult task. It is worth mentioning the pioneer works [35–37]
on approaching Hamiltonian chaos in the Fermi-Pasta–Ulam-Tsingou
model by geometric means, such as estimating the curvature fluctu-
ations along trajectories on a Riemannian manifold. This approach
shows that such equations lead to a stochastic Hill’s equation with a
linear coefficient described by a Gaussian random process, with mean
and variance related to Ricci’s curvature. This method can be used to
3 
Fig. 3. Plot of the maximal Lyapunov exponents 𝜆 versus the specific energy 𝜀 for
𝑁 = 16384 particles. Note that the scale in both axes is logarithmic and that, the black
dash lines are fittings to the numerical Lyapunov exponent data and the two energy
regimes correspond to different scaling laws: For small specific energies, 𝜆 ∝ 𝜀4∕5 and
for larger specific energies, 𝜆 ∝ 𝜀1∕4. The red dashed line corresponds to the upper
bound estimation 𝛬(𝜀).

accurately evaluate the maximal Lyapunov exponent 𝜆(𝜀) for the FPUT-
𝛽 model and its dependence on the specific energy 𝜀 = 𝐸∕𝑁 : 𝜆(𝜀) ∝ 𝜀2

for 𝜀 → 0 and 𝜆(𝜀) ∝ 𝜀1∕4 for 𝜀 → ∞. Many other papers emerged
afterwards, with one of the most recent ones by Benettin at al. [38],
who generalised it for FPUT type of models in the linear hierarchy.
In [38], it was shown that at small energies, 𝜆(𝜀) ∝ 𝜀3 when the
potential function 𝑉 (𝑟), with 𝑟 = 𝑥𝑛+1 − 𝑥𝑛, is of order 5 and 𝜆(𝜀) ∝ 𝜀4

when 𝑉 (𝑟) is of order 6.
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Building upon these findings, we investigate the tangent dynamics
9) for the mean field model (1), with more details given in Appendix.

The matrix 𝐴 = 𝐷2(𝑉 +𝑊 ) in the system of second order differential
equations

𝜹𝐱 = −𝐴(𝑡) ⋅ 𝜹𝐱, (11)

has two types of elements; 𝑎𝑛𝑚 = − 3
𝑁̃ (𝑥𝑛 − 𝑥𝑚)2 are all non-diagonal

entries and 𝑎𝑛𝑛 = 1 + 3𝑥2𝑛 + 3
𝑁̃

∑𝑁
𝑚=1(𝑥𝑛 − 𝑥𝑚)2 are the entries on the

diagonal. A diagonalisation of system (11) yields a set of stochastic
ill’s equations, where each one is of the form
𝑑2𝜓
𝑑 𝑡2 = −𝜅(𝑡)𝜓 , (12)

with 𝜅(𝑡) representing an eigenvalue of 𝐴 = 𝐷2(𝑉 + 𝑊 ) at time 𝑡.
ince each of 𝜅(𝑡) can represent a stochastic process, estimating the

size of 𝜓 or predicting the asymptotic behaviour of the length of 𝝃(𝑡)
oses considerable difficulty, hence a straight-forward evaluation of the
yapunov exponent is nearly impossible.

Our objective here is to gain insight into the spectrum of eigen-
values. To this end, we consider micro-canonical averages ⟨⋅⟩, which
implify 𝐴 = 𝐷2(𝑉 + 𝑊 ) to the symmetric matrix ⟨𝐴⟩ containing
nly two types of elements 𝑎 (off-diagonal) and 𝑏 (diagonal), where
𝑎 = ⟨𝑎𝑛𝑚⟩ = − 6

𝑁̃ ⟨𝑥2𝑛⟩ for all 𝑛, 𝑚 = 1,… , 𝑁 with 𝑛 ≠ 𝑚, and 𝑏 = ⟨𝑎𝑛𝑛⟩ =
1 + 9⟨𝑥2𝑛⟩. We note that all non-diagonal entries 𝑎 vanish as 𝑁 → ∞,
hence in the thermodynamic limit, this matrix becomes the diagonal
𝑏𝐼 . Instead, for a finite 𝑁 ≫ 1 the simplified matrix ⟨𝐴⟩ has two types
of eigenvalues

𝜅1 = 𝑏 − 𝑎 ≃ 1 + 9⟨𝑥2𝑛⟩ and 𝜅2 = 𝑏 + 𝑁̃ 𝑎 ≃ 1 + 3⟨𝑥2𝑛⟩.
Since both eigenvalue types are approximated by quantities of the same
orm, i.e. 1 + 𝑐⟨𝑥2𝑛⟩ for some constant 𝑐, a rough estimate for 𝜅 is that

it scales with the mean squared particle displacement like 𝜅 ∝ ⟨𝑥2𝑛⟩. On
he other hand, we know that as 𝜀→ 0, it is ⟨𝑥2𝑛⟩ ∝ 𝜀, while as 𝜀 → ∞, it
ields that ⟨𝑥2𝑛⟩ ∝ 𝜀1∕2. This can be easily derived from the Hamiltonian
1), where the cut-off energy is about 𝜀 ≃ 1. Hence, we conclude that
𝜅 scales with the specific energy as

𝜅(𝜀) ∝ 𝜀𝑝, (13)

where 𝑝 = 1 at low energies and 𝑝 = 1∕2 at higher. We also anticipate
a similar tendency for the maximal Lyapunov exponent, 𝜆 increasing
at varying rates in the low and high energy limits, with a distinct
transition occurring around 𝜀 ≃ 1.

Despite the power-law growth estimation (13) of the 𝜅 coefficient,
btaining an analytic approximation for the solution to Hill’s equation
emains challenging. This trend is anticipated not only due to the

presence of a dense web of resonances [39], but also because of
the complexity involved in evaluating the fluctuations of ⟨𝑥2𝑛⟩. These
luctuations are expected to offer a more precise estimation of how 𝜆
epends on 𝜅. Such a study is deferred to a future work. In this study,
e focus on a conjecture about dependence of the Lyapunov exponent
n 𝜅(𝜀), which naturally arises with the increase in specific energy 𝜀.

Let 𝛬(𝜀) be an upper bound for the maximal Lyapunov exponent
(𝜀). Considering Hill’s Eqs. (12), this upper bound is expected to vary

proportionally to the square root of the exponent of solution’s most
nstable direction, as if the solution of (12) were purely exponential

without periodicity. In other words,

𝜆(𝜀) ≤ 𝛬(𝜀), (14)

where

𝛬(𝜀) ∝
√

𝜅(𝜀), (15)

which imply 𝛬(𝜀) ∝ 𝜀1∕2 for 𝜀 ≪ 1 and 𝛬(𝜀) ∝ 𝜀1∕4 for 𝜀 ≫ 1.
We proceed to numerically investigate the dependence of the max-

imal Lyapunov exponent 𝜆(𝜀), for specific energies as low as 0.001 up
to values reaching 1000, and compare these findings with the upper
4 
bound estimate 𝜆(𝜀). Over the span of seven orders of magnitude, the
ehaviour of 𝜆 has been evaluated for a system with 𝑁 = 16384
articles. The initial conditions are of waterbag-type, i.e. the momenta
ave been randomly extracted from a uniform distribution and initial
ositions are all set to zero.

In Fig. 3, we observe that 𝜆 monotonically increases with respect
to the specific energy 𝜀, however at different speeds. In particular, the
initial steep rise of 𝜆 follows the power-law growth 𝜆(𝜀) ∝ 𝜀4∕5 in terms
of 𝜀, which slows down to 𝜆(𝜀) ∝ 𝜀1∕4 beyond the turning point 𝜀𝑐 ≈ 0.1
for 𝑁 = 16384. These results of Fig. 3 compare nicely with the upper
bound 𝛬(𝜀) in (14), providing a very good prediction for the growth of
the maximal Lyapunov exponent at high energies.

3.2. A declining chaos

In Hamiltonian models with long-range interactions it has been
ointed out that chaos declines with the system size [1–6]. This phe-
omenon is known to occur when the interacting forces have a suf-

ficiently long range, whereas models with nearest-neighbour interac-
tions, such as the FPUT model, do not exhibit noticeable dynamical
and statistical changes by increasing 𝑁 and keeping the energy density
𝜀 constant (𝜀 above a critical threshold).

In the case of the dispersionless mean-field model (1), we numer-
ically study the maximal Lyapunov exponent 𝜆 for increasing system
sizes 𝑁 = 64, 128,… , 16384. We perform four sets of experiments for
the energies 𝜀 = 0.01, 0.1, 1 and 10, corresponding to consecutive
orders of magnitude that spread from very low, intermediate to high.
Our findings presented in Fig. 4(a) suggest that 𝜆 decays as 𝑁−0.3 for
ach 𝜀 value and above a certain size threshold 𝑁 ≈ 100, indicating that
his power-law behaviour is independent of the energy level. Moreover,
he critical size inversely depends on the energy, meaning that smaller
ystem sizes follow this power-law by increasing the energy.

In Fig. 4(b), we rescale the parallel fitting lines of Fig. 4(a) into one
single line, given by

log 𝜆̃ = −0.3179 log𝑁 − 0.32. (16)

This scaling law is derived from Fig. 4(a) data by absorbing the energy
ependence reported in Section 3.1, where it was found that 𝜆(𝜀) ∝ 𝜀−𝑐

ith 𝑐 = 4∕5 for 𝜀 < 1 and 𝑐 = 1∕4 for 𝜀 > 1. Since

𝜆(𝜀, 𝑁) ∝ 𝜀𝑐𝑁−0.3, (17)

we considered
̃(𝑁) = 𝜆(𝜀, 𝑁)𝜀−𝑐

for the 𝑐 values as given above, which removes this energy dependence.
These data suggest a tendency towards organised dynamical be-

haviour in the thermodynamic limit. Our findings indicate that mean-
field type of interactions lead to an overall decline in the system’s
haotic (𝜆̃ ∝ 𝑁−0.3) as 𝑁 increases, occurring independently of the
nergy level. However, the mechanism by which this chaotic decline
merges from the variational Eqs. (9) remains an open question.

4. Statistical analysis

In Section 3.2, we have seen that for the Hamiltonian with long-
range interactions (1), chaoticity declines with the system size 𝑁 , in the
ense that the maximal Lyapunov exponent 𝜆 decreases as a function of
𝜀 and 𝑁 , but is still positive. This happens mostly when the interacting
orces are above a certain range.

Here, we complement our study in Section 3.2 and focus on the
statistical behaviour of Hamiltonian (1) for a large-enough specific
energy 𝜀 and increasing system-sizes 𝑁 , to see whether the system
moves towards equipartition of energy in the thermodynamic limit. We
do this by looking at the statistical properties of its trajectories in the
context of non-extensive Statistical Mechanics [16].
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Fig. 4. (a) The maximal Lyapunov exponents 𝜆 versus 𝑁 at various levels of the specific energy, i.e. 𝜀 = 0.01, 0.1, 1 and 10. (b) The rescaled values 𝜆̃ of the maximal Lyapunov
exponent 𝜆 in panel (a) according to 𝜆̃(𝜀, 𝑁) ≈ 0.48𝑁−0.3. Note that the scale in all axes is logarithmic.
Fig. 5. PDFs for different 𝑁 at time 𝑡 = 1.5 × 106: Plot of the PDF for (a) 𝑁 = 512, where 𝑞 ≈ 1.309, (b) 𝑁 = 1024, where 𝑞 ≈ 1.342, (c) 𝑁 = 2048, where 𝑞 ≈ 1.502 and (d)
= 4096, where 𝑞 = 1.775. In all cases, 𝜀 = 10. Note that all horizontal axes are in linear scale and all vertical axes in logarithmic scale. Note also that solid curves are the plots

f the numerical PDFs, dashed curves are the plots of the best-fits to the numerical PDFs and dotted curves are the plots of Gaussian PDFs for reference (𝑞 = 1).
Particularly, we look at the time evolution of the entropic index 𝑞
f Hamiltonian (1) for the specific energy 𝜀 = 10 and for increasing 𝑁
p to 𝑁 = 4096 particles. The entropic index 𝑞 is associated with the
𝑞-Gaussian probability density function (PDF) [16]

𝙿(𝑥) = 𝛼
(

1 + 𝛽(𝑞 − 1)𝑥2)
1

1−𝑞 , (18)

where 𝛼 is a normalisation constant and 𝛽 an arbitrary parameter.
Eq. (18) is a generalisation of the well-known Gaussian PDF, since in
he limit 𝑞 → 1, 𝙿(𝑥) becomes the Gaussian PDF [16]. Moreover, it has

been shown in [19] that the 𝑞-Gaussian distribution is normalised when

√

𝛽 = 𝛼
√

𝜋
𝛤
(

3−𝑞
2(𝑞−1)

)

1
2

(

1
)
,

(𝑞 − 1) 𝛤 𝑞−1

5 
where 𝛤 is the Euler 𝛤 function and 1 < 𝑞 < 3.
As we saw in Fig. 4(a), the maximal Lyapunov exponent 𝜆 decreases

to zero for increasing 𝑁 , following Eq. (17), where 𝑐 = 1∕4 as 𝜀 = 10 >
1,

𝜆(𝜀, 𝑁) ∝ 𝜀𝑐𝑁−0.3.

This means 𝜆 attains positive but very small values as 𝑁 increases.
We use the numerical solutions to the equations of motion of

Hamiltonian (1) to compute the PDF of the dynamics to estimate
the entropic index 𝑞 in time. The index 𝑞 in Eq. (18) is connected
with the Tsallis entropy [16]. Systems characterised by the Tsallis
entropy are said to lie at the ‘‘edge of chaos’’ and are significantly
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Fig. 6. Plot of the entropic index 𝑞 in time and 𝑇QSS versus 𝑁 . Panel (a): Plot of the entropic index 𝑞 in time for different 𝑁 (denoted by the subscripts). The black-dash curves
are given by Eq. (19) and are the best-fit curves to the data in colour for 𝑁 = 512, 1024, 2048 and 4096. Panel (b): Plot of 𝑇QSS versus 𝑁 , where the dash black line is the best
fit to the blue points (discussed in the text), using Eq. (20). Note that 𝜀 = 10 and that the scale in all axes is logarithmic.
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different from Boltzmann–Gibbs systems, in the sense that their entropy
is non-additive and generally, non-extensive [16].

We start by using as a probe for the computation of the PDFs, the 𝑝𝑖
omponents of the solutions to Hamiltonian (1) and define a range of
alues in the interval [−10, 10] on the horizontal axis of the PDF plot,
artitioning it in 1000 bins. We have made sure this interval contains
he whole PDF for 𝜀 = 10 and all integration times. We then count how

many 𝑝𝑖 fall into each bin at multiples of 𝜏 = 5 for 𝑡 ≥ 105 to avoid
introducing correlation effects in the computations. We compute the
resulting PDFs at multiples of 𝑡 = 105 by dividing the counts in each
in by the total number of counts over all bins (i.e., we compute the

probability 𝑝 of occurrences within the 𝑖th bin, where 𝑖 = 1,… , 1000).
We plot 𝑝𝑃 (0) on the horizontal axis of the PDF plot and 𝑃 (𝑝)∕𝑃 (0)
n the vertical axis, where 𝑃 (0) is the value of the PDF at 𝑝 = 0

(i.e., at the centre of the PDF). This results in a normalised PDF (18)
ith a maximum at 1 on the vertical axis (see for example the PDFs

in Fig. 5). The counts are reset after the computation of the PDFs at
multiples of 𝑡 = 105, which means we compute PDFs for times between
time intervals [105, 2 × 105], [2 × 105, 3 × 105], etc., so that we do not
carry over information from previous time windows. After computing
he numerical PDFs at the end of these time windows, we fit them

numerically with Eq. (18) to estimate the entropic index 𝑞, making sure
he area under them is equal to 1.

We plot examples of these numerical PDFs (solid black curves), 𝑞-
aussians (dashed black curves) and Gaussian (dotted black curves)
DFs in Fig. 5 (for details, see caption in Fig. 5) at 𝑡 = 1.5 × 106. Panel

(a) shows the output of this analysis for a numerical PDF computed for
𝑁 = 512 with 𝑞 ≈ 1.309, panel (b) for 𝑁 = 1024 and 𝑞 ≈ 1.342 and panel
(c) for 𝑁 = 2048 and 𝑞 ≈ 1.502. Finally, panel (d) shows the numerical
PDF that results from the system with 𝑁 = 4096, where 𝑞 ≈ 1.775. These
results show that at 𝑡 = 1.5 × 106, the dynamics become more weakly
chaotic as 𝑁 increases.

We extend the results of this analysis in Fig. 6, where we plot the
evolution of the entropic index 𝑞 for specific energy 𝜀 = 10 and 𝑁 = 512
(magenta), 1024 (blue), 2048 (green), 4096 (red) in panel (a). We see
that 𝑞 decreases in time towards 𝑞 = 1 of the Gaussian PDF, following
the power-law

𝑞𝑁 (𝑡) = 𝑎𝑁 +
𝑏𝑁
𝑡𝑐𝑁

, (19)

where the values of 𝑎𝑁 , 𝑏𝑁 and 𝑐𝑁 are reported in Table 1. Fig. 7 in
he Appendix shows the weighted sum of squares of residuals (WSSR)

resulting from the numerical fits of the coloured curves in panel (a)
ith function (19).

This power-law was obtained by fitting the curves with function
(19). These results indicate that as the time it takes for the system
o converge to 𝑞 = 1 increases as 𝑁 increases, the dynamics of

Hamiltonian (1) undergoes a quasi-stationary state (QSS) that lasts
for longer and longer as 𝑁 increases, characterised by weakly chaotic
6 
Table 1
Parameter values 𝑎𝑁 , 𝑏𝑁 and 𝑐𝑁 of Eq. (19) for a range of 𝑁 values.
𝑁 𝑎𝑁 𝑏𝑁 𝑐𝑁
512 1.033 1130.288 0.627
1024 1.069 956.450 0.580
2048 1.075 146.806 0.408
4096 1.062 129.681 0.372

dynamics. We looked into this more in panel (b) in Fig. 6. Particularly,
we estimated the time 𝑇QSS(𝑁) it takes for the dynamics of the system
or different 𝑁 to reach a 𝑞 value of 1% of 𝑎𝑁 , as 𝑞𝑁 (𝑡) in Eq. (19) is

monotonically decreasing and converges to 𝑎𝑁 as 𝑡 → ∞. In Fig. 6(b),
e plot the estimated time 𝑇QSS(𝑁) for 𝑞𝑁 (𝑡) to become 1.01𝑎𝑁 versus
, depicted by the blue points. These times are approximations of the

uration of the QSS (𝑇QSS), before the dynamics can be described by
close to 1. The plot confirms 𝑇QSS is increasing as a function of 𝑁 ,

ccording to
𝑇QSS(𝑁) = 𝑎𝑁𝑏, (20)

where 𝑎 ≈ 0.031 and 𝑏 ≈ 3.46, obtained by fitting the blue points in
panel (b) with Eq. (20).

While in this paper we included only the case of 𝜀 = 10, preliminary
simulations indicate that the value of 𝑞 increases at higher energies.
This phenomenon is attributed to the non-linear terms gathering most
of the energy, which enhances the occurrence of rare events and results
n more pronounced tails in the distributions. It is worth mentioning
hat this behaviour is consistent with the maximal Lyapunov exponent,

which decreases as 𝑁 increases.
These results, combined with the results in Section 3.2 about the

declining of the maximal Lyapunov exponents, show that as 𝑁 in-
creases, the length of the QSS increases and that chaoticity decreases.
This might be evidence that in the thermodynamic limit, the dynamics
of Hamiltonian (1) is weakly chaotic, and that equipartition of energy
s pushed further in time as 𝑁 increases, making it more difficult to
bserve.

5. Conclusions

The primary objective of this study was to explore the impact
of nonlinear long-range interactions on the dynamical and statistical
properties of many-body Hamiltonian models with on-site potentials.
In numerical simulations with a few particles excited, the solution of
the system remained constrained in lower-dimensional manifolds of the
phase space. Such systems with long-range interactions are promising
candidates for investigating diverse localised solutions and deserve a
further study.
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⎛
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⎜
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1 + 3𝑥21 +
3
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∑
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⎟

⎟

⎟

⎟

⎟

⎠

.

Box I.
W
f

For generic initial conditions, we estimated the maximal Lyapunov
xponent’s scaling laws, describing its increase with respect to the

system’s energy. This method works well at high energies and yields
𝜆(𝜀) ∝ 𝜀1∕4. We also observed a dynamical regularisation towards the
thermodynamic limit. This regularisation is characterised by a power-
law decay of 𝜆 𝑁−𝜇 , where 𝜇 ≃ 0.3, suggesting a milder form of chaos
as 𝑁 approaches infinity. These findings are further supported by the
non-trivial statistical patterns observed in the corresponding PDFs of
the momenta of the system. These PDFs are well-fitted by 𝑞-Gaussian
distributions and show that as 𝑁 increases, the time-length of the QSS
increases too. This combined with our results that chaoticity decreases
as 𝑁 increases, might suggest that in the thermodynamic limit, the
dynamics of Hamiltonian (1) is weakly chaotic, and that equipartition
of energy is pushed further in time as 𝑁 increases, making it difficult
to observe.

Such phenomena are encountered more often in models with long-
ange interactions, such as the Mean-Field model and FPUT with long-
ange forces. Hence further exploration and classification of differ-

ent systems that exhibit similar behaviours and their implications is
required but would be intriguing.
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Appendix

Variational equations and maximal Lyapunov exponent

The matrix 𝐴 = 𝐷2(𝑉 +𝑊 ) in the system of variational equations
̈𝐱 = −𝐴(𝑡) ⋅ 𝛿𝐱 (21)

of system (4) is given by (see the equation in Box I).
We use the system of variational Eqs. (21) (tangent system) to

alculate the maximal Lyapunov exponent [40], according to Benettin
t al. [41].
7 
Fig. 7. Plot of WSSR in time for different 𝑁 , resulting from best-fitting the data in
panel (a) in Fig. 6 with Eq. (19). Note that the scale in both axes is logarithmic.

Statistical analysis and goodness-of-fit

Fig. 7 shows the weighted sum of squares of residuals (WSSR) result-
ing from the numerical fits of the coloured curves in panel (a) in Fig. 6
with function (19). Even though these curves exhibit large fluctuations,

SSR is bounded between 10−1 and 10−2 for all 𝑁 considered, and the
ittings follow the trends of the coloured curves. Hence they were used

in the subsequent analysis.
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Data will be made available on request.
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