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Revolutionizing Bitcoin price forecasts: a comparative study of 1 

advanced hybrid deep learning architectures 2 

Abstract 3 

This paper employs a deep learning network with a comprehensive architecture to forecast Bitcoin prices, 4 

enhancing accuracy by integrating two meta-heuristic optimization algorithms, INFO and NRBO. 5 

Empirical results demonstrate that the hybrid model significantly outperforms the LSTM in both fit and 6 

predictive accuracy across in-sample and out-of-sample data. Notably, the NRBO-CNN-BiLSTM-7 

Attention model substantially improves accuracy in 5-day and 15-day forecasts, reducing the MAPE by 8 

over 50% compared to the LSTM model, thereby significantly enhancing overall predictive performance. 9 

The robustness of our results is supported by the MCS tests. Furthermore, strategically modifying time 10 

steps in data analysis optimizes model performance. 11 

Keywords: Bitcoin price; Price forecast; Meta-heuristic optimization algorithms; Hybrid models  12 

1. Introduction 13 

Bitcoin, a decentralized digital currency based on blockchain technology, has been a prominent 14 

topic in financial technology since its introduction in 2008. The significant price volatility of 15 

cryptocurrencies is a defining characteristic of the cryptocurrency market (Risius and Spohrer, 2017; 16 

Brauneis and Mestel, 2018). As an essential asset class in global finance, Bitcoin has revolutionized 17 

various investment and trading strategies. However, the recent severe volatility in Bitcoin prices has 18 

posed significant challenges to the market, drawing the attention of both academic researchers and market 19 

participants (Ahmed, 2021; Zeng et al., 2020). Since Bitcoin's volatility is strongly correlated with 20 

traditional financial markets, movements in the price of Bitcoin not only affect the decisions of investors 21 

and hedgers (Li and Wang, 2017; Patel et al., 2023) but can also lead to pricing errors in Bitcoin 22 

derivatives, potentially triggering a financial crisis (Liu et al., 2022). Consequently, a deep understanding, 23 

modeling, and prediction of Bitcoin's price are crucial for portfolio optimization, risk management and 24 

the minimization of potential financial losses (Li et al., 2022). 25 

In current academic research, scholars have employed empirical asset pricing theory to analyze the 26 

various factors affecting Bitcoin prices. Several factors contribute to Bitcoin's price trends and volatility, 27 

including supply-demand dynamics (Buchholz et al., 2012), trading volume (Feng et al., 2018), daily 28 

price fluctuations (Baek and Elbeck, 2015), trade adoption (Hakim das Neves, 2020), the Economic 29 

Policy Uncertainty Index (Wang et al., 2019), and technical, scale, and momentum effects (Bâra and 30 
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Oprea, 2024). These factors, intrinsic to Bitcoin's unique nature, significantly shape its market behavior. 31 

Forecasting Bitcoin prices requires the utilization of a variety of analytical techniques, each offering 32 

distinct insights. The traditional econometric models, such as ARIMA and GARCH, predict future values 33 

by examining historical trends, seasonality and volatility (Aras, 2021; Malladi and Dheeriya, 2021; Xia 34 

et al., 2023). Recently, advances in machine learning and artificial intelligence have profoundly 35 

influenced academic research. Advanced algorithms such as ANN, Fb-Prophet, and LSTM have been 36 

widely employed to analyze large datasets, revealing intricate nonlinear relationships to enhance 37 

prediction accuracy (Cheng et al., 2024; Ahmad et al., 2018; Wang et al., 2022; Chen et al., 2017). For 38 

instance, Mallqui and Fernandes (2019) employed ANN and SVM, demonstrating a 10% improvement 39 

in predictive accuracy through machine learning models. Ortu et al. (2022) utilized four deep learning 40 

algorithms—MLP, CNN, LSTM, and attention LSTM— to assess and forecast price fluctuations, 41 

significantly enhancing the predictive precision of all algorithms by integrating various trading and 42 

technical indicators. Comparative analyses have shown that nonlinear deep learning methods outperform 43 

traditional ARIMA models (McNally et al., 2018; Phaladisailoed and Numnonda, 2018). 44 

 However, current academic models for Bitcoin price prediction remain relatively simplistic. Given 45 

that Bitcoin prices are influenced by a variety of complex factors and are highly volatile, simple 46 

prediction models often struggle to accurately capture their price movements. While deep learning can 47 

capture non-linear features, few academics have proposed models to predict the price of bitcoin using 48 

deep learning methods. An effective solution is the use of deep learning architectures capable of multi-49 

level nonlinear operations. Based on prior research, this paper utilizes the LSTM as the foundational 50 

prediction model and further explores the use of CNN-BiLSTM and CNN-BiLSTM-Attention as 51 

composite machine learning methods for predicting Bitcoin prices. Given the sensitivity of deep learning 52 

models to parameter selection, this study introduces the INFO optimization algorithm (Ahmadianfar et 53 

al., 2022) to optimize the CNN-BiLSTM model and employs the Newton-Raphson Backpropagation 54 

Optimizer (NRBO) (Sowmya et al., 2024) to optimize the CNN-BiLSTM-Attention model. Through this 55 

process, we have developed optimized INFO-CNN-BiLSTM and NRBO-CNN-BiLSTM-Attention 56 

models for Bitcoin price prediction. Validation through multiple loss functions demonstrates that these 57 

composite machine learning approaches significantly outperform the standalone LSTM model. Notably, 58 

the CNN-BiLSTM-Attention model optimized with the NRBO algorithm shows a well-balanced 59 

performance in both in-sample and out-of-sample predictions, exhibiting the best out-of-sample 60 
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prediction capability among all models. 61 

2. Data and Variables 62 

2.1. Data 63 

We collected Bitcoin data spanning 120 months from April 1, 2014, to April 1, 2024, including daily 64 

closing (Clsprc) and opening prices (Opnprc), highest (High) and lowest prices (Low), and trading 65 

volume (Vol). These data were obtained from investing.com. In this study, these Bitcoin data serve as the 66 

primary transaction variables. Moreover, according to research by Bâra and Oprea (2024), incorporating 67 

technical indicators can significantly enhance the accuracy of Bitcoin price predictions. Nouir and 68 

Hamida (2023) examined the impact of the Economic Policy Uncertainty Index (EPU) and the 69 

Geopolitical Risk Index (GPRD) on Bitcoin volatility, finding that the U.S. EPU and GPRD have a short-70 

term impact, while China's EPU and GPRD have a long-term effect. Xia et al. (2023) also demonstrated 71 

that including the EPU in the prediction model significantly improves forecasts of Bitcoin volatility. 72 

Research by Jareño et al. (2020) revealed a positive and statistically significant correlation between 73 

Bitcoin and gold prices. Consequently, this paper incorporates the GPRD, EPU, and gold spot prices 74 

(Goldprc) into the model to enhance its predictive performance. Precise definitions of the variables used 75 

in this paper can be found in Table A1 of the online appendix. 76 

Table 1  77 
Descriptive statistics.  78 
variable Obs. Mean Median S.D. Min Max 
Opnprc 2923 18521 10340 17337 415.6 73067 
Clsprc 2923 18544 10342 17360 415.6 73066 
High 2923 18979 10614 17772 416.9 73741 
Low 2923 18032 10071 16872 412.4 71338 
Vol 2923 204678 106600 228347 260 999530 
Pct_change 2923 0 0 0.0400 -0.390 0.260 
MA 2923 18207 10236 16916 414.0 68115 
EMA 2923 18217 10327 16867 415.1 66342 
OBV 2923 1.430e+07 1.660e+07 6.247e+06 3.487e+06 2.510e+07 
MACD 2923 155.8 18.36 1114 -5068 5501 
signal 2923 147.1 16.72 973.8 -3675 4382 
PSAR 2923 17553 9435 15860 392.1 53750 
GRPD 2923 104.0 95.46 55.06 3.570 540.8 
EPU 2923 138.6 109.6 104.0 4.050 1026 
Goldprc 2923 1739 1779 236.9 1174 2250 

 79 

2.2. Technical indicators 80 

The price trends of Bitcoin are analyzed using technical indicators commonly applied in the stock 81 
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market. This paper incorporates several technical indicators based on the study by Bâra and Oprea (2024) 82 

into our model. These indicators include the Moving Average (MA), Exponential Moving Average 83 

(EMA), On-Balance Volume (OBV), Moving Average Convergence Divergence (MACD), and Parabolic 84 

Stop and Reverse (PSAR). The calculations for these technical indicators are detailed in Appendix B 85 

online. 86 

2.3. Descriptive statistics  87 

As illustrated in Table 1, our sample encompasses 2923 observations for all three groups of variables. 88 

The closing prices exhibited a range of 415.6 to 73066, with an average of 18544. And the standard 89 

deviation of the closing price is 17,360, which reflects the high volatility of the bitcoin price. 90 

2.4. Models  91 

We use the first 70% of the dataset for training and the remaining 30% for testing, allowing us to 92 

evaluate the models' prediction performance under varying conditions. These models examined include 93 

a basic LSTM model, hybrid neural network models (comprising CNN-BiLSTM and CNN-BiLSTM-94 

Attention), and optimized hybrid neural network models (including INFO-CNN-BiLSTM and NRBO-95 

CNN-BiLSTM-Attention). All these models use Bitcoin's closing price (Clsprc) as the predictive target, 96 

with the other variables serving as inputs. Specially, the basic LSTM model consists of two layers: the 97 

first layer with 64 neurons and the second layer with 32 neurons, incorporating a dropout rate of 0.2 to 98 

mitigate overfitting. The parameters for the hybrid neural network models are detailed in Tables 2 and 3. 99 

Table 4 provides the initial ranges for three key hyperparameters adjusted by the optimization 100 

algorithms—initial learning rate, regularization coefficient, and the number of nodes in the BiLSTM 101 

hidden layers. These optimized parameter settings, consistent with those in Tables 2 and 3, are used for 102 

further predictive analysis. Moreover, to explore the impact of different forecasting step lengths on the 103 

results, we tested the predictive performance with both 5-day and 15-day step lengths. 104 

Table 2  105 
Hyperparameters of CNN-BiLSTM. 106 

Hyperparameter Value Hyperparameter Value 
num-filters 32 filter-size 10×1 
num-bilstm-layer 2 input-lstm-dim 100 
output-lstm-dim 64 L2Regularization 0.001 
decay-rate 0.8 optimizer Adam 
learning-rate 0.01 dropout 0.25 
miniBatchSize 256 maxEpochs 500 

Note: "num-filters" refers to the number of convolutional kernels, "filter-sizes" denotes the various kernel scales 107 
used in convolution, "num-bilstm-layer" indicates the number of BiLSTM layers, "lstm1-dim" and "lstm2-dim" 108 
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represent the dimensions of the first and second unidirectional LSTM layers, respectively. "learning-rate" and 109 
"decoration-rate" are optimizer parameters, with the initial learning rate set to 0.01. "miniBatchSize" denotes the 110 
batch size, set to 256. Finally, "maxEpochs" specifies the maximum number of iterations, set to 500. 111 
 112 

Table 3  113 
Hyperparameters of CNN-BiLSTM-Attention. 114 

Hyperparameter Value Hyperparameter Value 
num-convolutional-layers 2 filter-size 3×1; 3×1 
num-fiters 96 num-bilstm-layers 2 
num-lstm-dim 6×2=12 num-attention-head 3 
attention-dim 64 L2Regularization 0.001 
activation-function ReLu optimizer Adam 
initial-learning-rate 0.01 LearnRateDropFactor 0.1 
LearnRateDropPeriod 400 maxEpochs 525 

Note: The model comprises 2 convolutional layers, each with a 3x1 kernel size and a total of 96 kernels. "num-115 
bilstm-layers" is set to 1 layer with 6 neurons, resulting in a unidirectional LSTM dimension of 12. The global 116 
attention mechanism includes 3 layers with an attention dimension of 64. L2 regularization coefficient is 0.001. 117 
ReLU is the chosen activation function, and Adam is the optimizer. The initial learning rate, "learning-rate," is 0.01. 118 
Learning rate drop factor, "LearnRateDropFactor," is 0.1; learning rate drop period, "LearnRateDropPeriod," is 400; 119 
and the maximum number of iterations, "maxEpochs," is 525. 120 
 121 
Table4 Hyperparameter optimization range setting for hybrid neural network models. 122 

Model Params Search Scope 

INFO-CNN-BiLSTM 
Initial Learning Rate [10−4,10−1] 
L2Regularization [10−6,10−1] 
Neurons in hidden layer [6 ,100] 

NRBO-CNN-BiLSTM-Attention 
Initial Learning Rate [10−3,10−2] 
L2Regularization [10−4,10−1] 
Neurons in hidden layer [10, 30] 

 123 

2.4. Performance evaluation metrics 124 

In the predictive analysis of time series data using machine learning and deep learning approaches, 125 

various loss functions are employed to evaluate the accuracy of the predictive models. This research 126 

selects five globally recognized loss functions: Mean Absolute Error (MAE), Root Mean Squared Error 127 

(RMSE), Mean Absolute Percentage Error (MAPE), Predictive Residual Error (PRD) and the Coefficient 128 

of Determination (R²). The formulae for these functions are outlined below. 129 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
�  
𝑛𝑛

𝑖𝑖=1

�𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖� (1) 130 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑛𝑛
�  
𝑛𝑛

𝑖𝑖=1

�𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖�
2 (2) 131 
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𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
�  
𝑛𝑛

𝑖𝑖=1

�
𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖
𝑌𝑌𝑖𝑖

� × 100% (3) 132 

𝑅𝑅𝑅𝑅𝑅𝑅 =
𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

(4) 133 

𝑅𝑅2 = 1 −
∑  𝑛𝑛
𝑖𝑖=1 �𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖�

2

∑  𝑛𝑛
𝑖𝑖=1 (𝑌𝑌𝑖𝑖 − 𝑌𝑌�)2

(5) 134 

Within this formula, 𝑌𝑌𝑖𝑖 refers to the actual observed value, 𝑌𝑌�𝑖𝑖 to the value predicted by the model, and 135 

n is the number of samples.  𝑌𝑌� refers to the average of the true observations. In addition, 𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is 136 

the standard deviation of observed values. 137 

3. Empirical results 138 

To enhance the accuracy and reliability of hybrid neural network models in financial time series 139 

forecasting, this study adopted two advanced optimization algorithms, INFO and NRBO, to tune the 140 

hyperparameters of the CNN-BiLSTM and CNN-BiLSTM-Attention models. To assess the quality of 141 

solutions during continuous iterations, an effective fitness function was employed to select solutions for 142 

the optimization objective function. For this time series forecasting problem, this study used the Root 143 

Mean Squared Error (RMSE) as the fitness function (f(s)) to evaluate the performance of solutions 144 

selected by the optimization algorithms throughout the iterative process. 145 

 

Fig. 1. Iterative curves of the fitness function and their performance in fitting in-sample linearity 

 (5-day step). 
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Fig. 2. Iterative curves of the fitness function and their performance in fitting in-sample linearity 

(15-day step). 

 146 

3.1. Determination of optimal parameter combination 147 

Based on the optimal value ranges of three hyperparameters identified in Table 4, we employed an 148 

optimization algorithm to determine the best hyperparameter configurations for the hybrid neural 149 

network model. Fig. 1 and 2 illustrate the parameter optimization process for the 5-day and 15-day step 150 

lengths, respectively. Each row presents the results for one model, showing that the fitting functions of 151 

the three models gradually stabilize over the course of iterations. The predictive outputs of all models 152 

align closely with the actual observations. Tables 5 and 6 summarize the optimal hyperparameter settings 153 

for the two optimized hybrid neural network models under the 5-day and 15-day step length conditions, 154 

respectively. 155 

Table 5  156 
The best value of 5-day step forecast parameters. 157 

Model Name of parameter Best value 

INFO-CNN-BiLSTM 

Neurons in hidden layer 100 
L2Regularization 1.0000 × 10−6 
Initial Learning Rate 3.6834 × 10−4 

NRBO-CNN-BiLSTM-Attention 

Neurons in hidden layer 10 
L2Regularization 1.0000 × 10−4 
Initial Learning Rate 0.01 

 158 

 159 
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Table 6  160 
The best value of 15-day step forecast parameters. 161 

Model Name of parameter Best value 

INFO-CNN-BiLSTM 

Neurons in hidden layer 91 
L2Regularization 1.1056 × 10−5 
Initial Learning Rate 3.4918 × 10−4 

NRBO-CNN-BiLSTM-Attention 

Neurons in hidden layer 10 
L2Regularization 1.0000 × 10−4 
Initial Learning Rate 0.0053 

 162 

3.2. Forecast results analysis 163 

3.2.1. In-sample forecasting 164 

The predictive performance evaluation results of each model at 5-day and 15-day step lengths are 165 

presented in Tables 7 and 8, respectively. These results primarily reflect the models' ability to fit the 166 

known data in the training set. By comparing the prediction outcomes across different step lengths, we 167 

observed that both the CNN-BiLSTM model and the CNN-BiLSTM-Attention model significantly 168 

outperformed the basic LSTM model across all metrics. This finding aligns with the prevailing view in 169 

academia that, although artificial neural networks and their variants can enhance the ability to predict 170 

nonlinear features, single artificial intelligence methods may still risk falling into local optima 171 

(Movagharnejad et al., 2011; Huang and Wang, 2018). Furthermore, our analysis revealed that the hybrid 172 

neural network models exhibited superior in-sample fitting performance after optimizing the parameter 173 

combinations. 174 

Further analysis of the data in Tables 7 and 8, comparing the effect of different step lengths on the 175 

models' in-sample prediction results, shows that each model fits the actual values more accurately when 176 

the prediction window is set to 15 days. In this setting, the INFO-CNN-BiLSTM model exhibits the best 177 

fitting capability. Specifically, this model achieves a MAE of 182.999, a RMSE of 249.128, and a MAPE 178 

of 0.039 on the training set, while also showing the highest RPD of 63.543 and a 𝑅𝑅2 of 0.999. Following 179 

closely, the NRBO-CNN-BiLSTM-Attention model shows a MAE of 472.106, an RMSE of 641.286, 180 

and a MAPE of 0.109, with an RPD of 30.087 and an 𝑅𝑅2of 0.998. These results indicate that with a 181 

longer prediction window, these optimized hybrid neural network models provide a more precise fitting 182 

effect. 183 

 184 

 185 
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Table 7 186 
Results of the in-sample forecast with a step size of 5 days. This table shows the fitting performance of 187 
LSTM, CNN-BiLSTM, CNN-BiLSTM-Attention, INFO-CNN-BiLSTM and NRBO-CNN-BiLSTM-188 
Attention on the training set. The table includes MAE, RMSE, MAPE, PRD and 𝑅𝑅2 on the training set. 189 

Model  MAE RMSE MAPE RPD 𝑅𝑅2 

LSTM 1047.993 2433.358 0.180 6.398 0.975 

CNN-BiLSTM 993.345 1524.866 0.176 10.222 0.990 

CNN-BiLSTM-Attention 492.856 751.737 0.111 23.817 0.997 

INFO-CNN-BiLSTM 182.999 249.128 0.039 63.543 0.999 

NRBO-CNN-BiLSTM-Attention 472.106 641.286 0.109 30.087 0.998 

 190 

Table 8 191 
Results of the in-sample forecast with a step size of 15 days. This table shows the fitting performance of 192 
LSTM, CNN-BiLSTM, CNN-BiLSTM-Attention, INFO-CNN-BiLSTM, and NRBO-CNN-BiLSTM-193 
Attention on the training set. The table includes MAE, RMSE, MAPE, PRD, and 𝑅𝑅2 on the training set. 194 

Model  MAE RMSE MAPE RPD 𝑅𝑅2 

LSTM 1051.091 2686.904 0.133 5.954 0.969 

CNN-BiLSTM 1263.375 1852.818 0.096 8.602 0.986 

CNN-BiLSTM-Attention 385.120 554.693 0.074 31.7418 0.998 

INFO-CNN-BiLSTM 220.325 307.361 0.038 51.847 0.999 

NRBO-CNN-BiLSTM-Attention 285.517 521.227 0.048 30.314 0.998 

 195 

3.2.2. Out-of-sample results 196 

Tables 9 and 10 present the out-of-sample prediction performance results for each model at 5-day 197 

and 15-day steps, respectively. Fig. 3 and 4 illustrate the prediction performance on the test set. These 198 

results enable us to evaluate whether the models can effectively apply patterns learned from the training 199 

data to unseen data, thus assessing their generalization capabilities. In both the 5-day and 15-day step 200 

length predictions, we find that the hybrid models significantly outperform the standalone LSTM model. 201 

Specifically, the NRBO-CNN-BiLSTM-Attention model exhibits the lowest MAE, RMSE, and MAPE 202 

on the test set, with 5-day step length results of 786.277, 995.032, and 0.025 respectively; and 15-day 203 

step length results of 524.576, 791.831, and 0.015. Additionally, this model also shows the highest RPD 204 

and 𝑅𝑅2, with 5-day step length results of 16.507 and 0.993 respectively; and 15-day step length results 205 

of 16.038 and 0.996. Integrating these metrics, the NRBO-CNN-BiLSTM-Attention model demonstrates 206 

the strongest out-of-sample predictive capability, effectively addressing the limitations of time series. 207 
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Following closely are the CNN-BiLSTM-Attention model (MAPE=0.026) and the CNN-BiLSTM model 208 

(MAPE=0.044). The INFO-CNN-BiLSTM model, while having a test set MAPE of 0.070, still performs 209 

better than the CNN-BiLSTM, suggesting potential overfitting issues with the INFO algorithm. 210 

Furthermore, a comprehensive assessment of out-of-sample prediction indicators shows that the 15-day 211 

step length predictions generally outperform the 5-day step length predictions in terms of accuracy. This 212 

suggests that a longer prediction window allows for better capture of the underlying patterns, leading to 213 

more precise forecasts. 214 

Table 9 215 
Results of the out-of-sample forecast with a step size of 5 days. This table shows the prediction 216 
performance of LSTM, CNN-BiLSTM, CNN-BiLSTM-Attention, INFO-CNN-BiLSTM, and NRBO-217 
CNN-BiLSTM-Attention on the testing set. The table includes MAE, RMSE, MAPE, PRD, and 𝑅𝑅2 on 218 
the testing set. 219 

Model  MAE RMSE MAPE RPD 𝑅𝑅2 

LSTM 3815.341 4948.784 0.109 3.209 0.845 

CNN-BiLSTM 2098.0857 2552.8682 0.065 5.903 0.958 

CNN-BiLSTM-Attention 879.058 1137.193 0.026 13.742 0.991 

INFO-CNN-BiLSTM 1987.536 2458.171 0.070 5.560 0.962 

NRBO-CNN-BiLSTM-Attention 786.277 995.032 0.025 16.507 0.993 

 220 
Table 10 221 
Results of the out-of-sample forecast with a step size of 15 days. This table shows the prediction 222 
performance of LSTM, CNN-BiLSTM, CNN-BiLSTM-Attention, INFO-CNN-BiLSTM, and NRBO-223 
CNN-BiLSTM-Attention on the testing set. The table includes MAE, RMSE, MAPE, PRD, and 𝑅𝑅2 on 224 
the testing set. 225 

Model  MAE RMSE MAPE RPD 𝑅𝑅2 

LSTM 3816.414 5035.762 0.126 3.216 0.831 

CNN-BiLSTM 1559.070 2433.800 0.044 5.191 0.960 

CNN-BiLSTM-Attention 770.665 1014.012 0.026 13.183 0.993 

INFO-CNN-BiLSTM 3154.474 3744.785 0.112 3.455 0.907 

NRBO-CNN-BiLSTM-Attention 524.576 791.831 0.015 16.038 0.996 

 226 

Furthermore, we employed the Model Confidence Set (MCS) test proposed by Hansen et al. (2005) 227 

with a confidence level set at 0.05, as detailed in our Appendix D online. The MCS tests results reveal 228 

that under the loss functions of MAE, MSE, and MAPE, the NRBO-CNN-BiLSTM-Attention model 229 
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exhibits the highest p-values, all equating to 1. This indicates that the NRBO-CNN-BiLSTM-Attention 230 

model achieves the highest accuracy in predicting Bitcoin prices. Beyond the deep architecture's 231 

proficient feature extraction capability, which captures long-term dependencies and global patterns (Chen 232 

et al., 2023), another contributing factor is the NRBO algorithm's utilization of the Newton-Raphson 233 

Search Rule (NRSR) and Trap Avoidance Operator (TAO). By integrating the concepts of gradient-based 234 

methods with the advantages of population-based optimization approaches, the NRBO algorithm 235 

overcomes the limitations of both gradient and non-gradient-based algorithms. This hybrid approach 236 

allows it to swiftly refine its search upon identifying promising regions, thereby optimizing model 237 

parameters more effectively and enhancing overall model performance. 238 

To verify the robustness of our conclusions, we utilized 5-fold time series cross-validation to 239 

evaluate each model's performance on both training and test sets. By comparing the loss functions MAE, 240 

RMSE, and MAPE across these sets, we found consistent results with our empirical findings, thereby 241 

confirming their robustness. Detailed cross-validation results and a discussion on the causes of overfitting 242 

in the INFO-CNN-BiLSTM models are provided in the Appendix D online. 243 

 244 

4. Conclusion 245 

This paper employs hybrid deep learning models and their optimized versions to predict Bitcoin 246 

prices, comparing the results with the basic LSTM model and exploring the application of complex model 247 

architectures in Bitcoin price prediction. Empirical results demonstrate that, for both in-sample and out-248 

of-sample prediction, the fitting and predictive abilities of the hybrid deep learning networks significantly 249 

surpass those of the standalone LSTM model. Notably, the NRBO-CNN-BiLSTM-Attention model 250 

exhibits a well-balanced performance across all evaluation metrics and shows exceptional predictive 251 

capabilities on the test sets for both 5-day and 15-day step lengths. Compared to the LSTM model, the 252 

MAPE value decreased by over 50%, markedly enhancing the prediction accuracy. However, despite the 253 

excellent fitting capability of the INFO-CNN-BiLSTM model, its performance on the test set was subpar, 254 

likely due to overfitting during the parameter optimization process. This raises questions the 255 

effectiveness of the INFO algorithm in optimizing deep learning parameters. Moreover, by comparing 256 

the prediction results between 5-day and 15-day step lengths, we suggest that restructuring the dataset 257 

by increasing the time step length could be an effective method to improve model prediction performance. 258 

In summary, our research finds that the hybrid deep learning model optimized with the NRBO algorithm, 259 
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NRBO-CNN-BiLSTM-Attention, demonstrates strong potential in Bitcoin price prediction, showing its 260 

superiority across various model and parameter configurations. 261 

 262 

 

Fig. 3. Out-of-sample predicted performance (5-day step). 
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Fig.4. Out-of-sample predicted performance (15-day step). 
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