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A Computer Search of New OBZCPs of Lengths up
to 49

Peter Kazakov and Zilong Liu

Abstract—This paper aims to search for new optimal and
sub-optimal Odd Binary Z-Complimentary Pairs (OBZCPs) for
lengths up to 49. As an alternative to the celebrated binary Golay
complementary pairs, optimal OBZCPs are the best almost-
complementary sequence pairs having odd lengths. We introduce
a computer search algorithm with time complexity O(2N ), where
N denotes the sequence length and then show optimal results
for all 27 ≤ N ≤ 33 and N = 37, 41, 49. For those sequence
lengths (i.e., N = 35, 39, 43, 45, 47) with no optimal pairs, we
show OBZCPs with largest zero-correlation zone (ZCZ) widths
(i.e., Z-optimal). Finally, based on the Pursley–Sarwate criterion
(PSC), we present a table of OBZCPs with smallest combined
auto-correlation and cross-correlation.

Index Terms—Aperiodic correlation, Golay complementary
pair (GCP), zero-correlation zone (ZCZ), Z-complementary pair
(ZCP), odd-length binary ZCP (OBZCP), Pursley-Sarwate crite-
rion.

I. INTRODUCTION

A. Background

Complementary pairs of sequences are useful in coding
theory, wireless communication, radar sensing, and signal
processing. The general design objective is to find two equal-
length sequences whose maximum aperiodic auto-correlation
function (AACF) sums are as small as possible (ideally zero).
Pioneered by Marcel J. E. Golay [1] in 1951, binary com-
plementary pairs were first studied in his design of infrared
multislit spectrometry, a detector which isolates the desired
radiation with a fixed single wavelength from background
radiation with many different wavelengths. Formally, a pair
of sequences is called a Golay complementary pair (GCP)
[2] if their AACF sums are zero for all the non-zero time-
shifts. Since it is generally difficult to find a single unimodular
sequence with zero AACF sidelobes1, GCP provides a solution
by allowing two sequences to work in a collaborative way.
Some representative applications of the GCPs (and their ex-
tensions/variants) include: peak-to-mean envelope power ratio
(PMEPR) reduction of multicarrier signals [3]–[6], Doppler
resilient radar waveforms [7]–[9], channel estimation [10]–
[13], inter-cell interference rejection [14], multicarrier code-
division multiple access [15], [16], etc.

Despite their wide applications, however, binary GCPs are
limited to even-lengths only. More specifically, the existing
binary GCPs are only known to have sequence lengths of
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1Although a Huffman sequence has zero AACF sidelobes except for the
end time-shift, its sequence elements may have different magnitudes.

2α10β26γ (where α, β, γ are non-negative integers). For the
odd-length case, optimal binary almost–complementary pairs
are studied in [17]. Their optimization criteria is to maxi-
mize the zero-correlation zone (ZCZ) width of an odd-length
binary pair, whilst minimizing its out-of-zone AACF sums.
Such optimal binary pairs exhibit the correlation properties
closest to GCPs and are called optimal odd-length binary Z-
complementary pairs (OBZCPs). It is found that each optimal
OBZCP has maximum ZCZ width of (N+1)/2, and minimum
out-of-zone AACF sum magnitude of 2, where N denotes the
sequence length (odd) [17].

By applying insertion to certain binary Golay-Davis-Jedwab
(GDJ) complementary pairs [4], optimal OBZCPs2 of lengths
2m + 1, where m is a positive integer, are constructed
in [17]. Subsequently, optimal OBZCPs of generic lengths
2α10β26γ + 1 (where α, β, γ are non-negative integers and
α ≥ 1) are obtained in [18], thanks to certain structural
properties of binary GCPs obtained from Turyn’s method [19].

B. Contributions

Searching for optimal OBZCPs is of interest for under-
standing their deeper structural properties and for providing
higher level of flexibility in practical applications. Besides the
aforementioned systematic constructions, it is equally impor-
tant to look for short OBZCPs because they may be used to
generate longer OBZCPs through certain recursive operations.
For example, in 2003, Borwein and Ferguson carried out an
exhaustive computer search to search new GCPs of lengths
up to 100 [21]. Although some OBZCPs are reported in [17],
their lengths are capped to 25 only.

The main objective of this paper is thus to look for new op-
timal (or sub-optimal) OBZCPs of lengths 27 ≤ N ≤ 49. By
leveraging the High Performance Computing (HPC) facility3 at
the University of Essex, a number of new OBZCPs are found
by a fine-grained computer search algorithm involving map-
ping, grouping, and Gray code counting. Besides the OBZCP
optimality criteria on maximum ZCZ width and minimum
out-of-zone AACF sums, we also use the Pursley–Sarwate
criterion [22], [23] for selection of the best binary odd-
length pairs with lowest combined auto-correlation and cross-
correlation. For reproducibility of these results, our source
code can be found at https://github.com/peterkazakov/obzcp.

2In this paper, without any specific announcement, we are only interested
in Type-I OBZCPs each having ZCZ around the in-phase time-shift. There
are also Type-II OBZCPs where the ZCZs are centered around the end-shift
positions, leading to zero correlation sidelobes away from the in-phase time-
shift, but these are not our focus.

3https://www.essex.ac.uk/staff/it-services/hpc.
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This paper is organized as follows. In Section II, we give
some preliminaries and important equations/facts on OBZCPs.
In Section III, we introduce the general considerations and pro-
gramming techniques of the proposed algorithm. In Section IV,
new OBZCPs found by computer search are presented. A list
of OBZCPs with smallest smallest combined auto-correlation
and cross-correlation are given in Section V. Finally, this paper
is concluded in Section VI.

II. PRELIMINARIES

Throughout this paper, we are interested in binary sequence
pairs whose elements are drawn from the set of Z2 = {0, 1}.
A length-N vector is called a binary sequence if it is over ZN2 .
For convenience, whenever necessary, binary sequences may
also be shown over {1,−1}N . For a = (a0, a1, · · · , aN−1)
over ZN2 , let a(z) be the associated polynomial of z as follows,

a(z) =

N−1∑
τ=0

(−1)aτ zτ . (1)

For two binary sequences a and b over ZN2 , define

ρa,b(τ) =


N−1−τ∑
i=0

(−1)ai+bi+τ , 0 ≤ τ ≤ N − 1;

N−1−τ∑
i=0

(−1)ai+τ+bi , − (N − 1) ≤ τ ≤ −1;

0, |τ | ≥ N.
(2)

When a 6= b, ρa,b(τ) is called the aperiodic cross-correlation
function of a and b; otherwise, it is called the AACF. For
simplicity, the AACF of a will be sometimes written as ρa(τ).

A. Binary Z-complementary pairs (ZCPs)

Definition 1. Let a and b be over ZN2 . (a,b) is said to be a
binary ZCP with ZCZ width of Z if and only if [20]

ρa(τ) + ρb(τ) = 0, for any 1 ≤ τ ≤ Z − 1. (3)

In this case, ρa(τ) + ρb(τ) for Z ≤ τ ≤ N − 1, is called
the out-of-zone aperiodic auto-correlation sum of a and b
at time-shift τ . When Z = N , a ZCP reduces to a Golay
complementary pair (GCP) [2]. An OBZCP refers to a binary
ZCP with odd-length.

Fact 1. Each OBZCP (a,b) has the maximum ZCZ of width
(N + 1)/2 [24], i.e., Z ≤ (N + 1)/2, where N denotes the
sequence length. An OBZCP is said to be Z-optimal if Z =
(N + 1)/2.

Fact 2. The magnitude of each out-of-zone aperiodic auto-
correlation sum for a Z-optimal OBZCP (a,b) is lower
bounded by 2 [17], i.e.,∣∣∣ρa(τ) + ρb(τ)

∣∣∣≥ 2, for any (N + 1)/2 ≤ τ ≤ N − 1.

A Z-optimal OBZCP is said to be optimal if
∣∣∣ρa(τ)+ρb(τ)∣∣∣=

2 holds for all (N + 1)/2 ≤ τ ≤ N − 1.

Fact 3. For an optimal (or a Z-optimal) OBZCP (a,b), the
following equations are satisfied [17]{

a0 + aN−1 + b0 + bN−1 ≡ 0 (mod 2),
ar + aN−1−r + br + bN−1−r ≡ 1 (mod 2),

(4)

where 1 ≤ r ≤ (N − 3)/2.

B. Pursley–Sarwate Criterion [22], [23]

For a binary sequence pair (a,b) of length N , the cross-
correlation demerit factor between a and b is defined by

CDF(a,b) =

N−1∑
τ=1−N

|ρa,b(τ)|2

N2
. (5)

For a binary sequence a, the auto-correlation demerit factor
of a is defined by

ADF(a) = −1 + CDF(a,a). (6)

Furthermore, let us define the Pursley–Sarwate criterion of
binary pair (a,b) as follows:

PSC(a,b) =
√

ADF(a) · ADF(b) + CDF(a,b). (7)

According to Pursley and Sarwate [22], we have PSC(a,b) ≥
1. Katz and Moore pointed out in [23] that binary GCPs of
lengths 2α10β26γ (where α, β, γ are non-negative integers)
satisfy the Pursley–Sarwate lower bound with equality, i.e.,
PSC(a,b) = 1.

In this paper, we also use Pursley–Sarwate criterion as a
sieve to select OBZCPs. Specifically, we look for optimal
OBZCPs or Z-optimal OBZCPs with PSC values closest to
1.

III. PROPOSED ALGORITHM

A. General Considerations

In this section we describe our main considerations for
our proposed algorithm with the time complexity of O(2N ).
Exhaustive computer search of all pairs is infeasible due to
the high complexity of O(22N ). We present a novel algorithm
based on a two-step approach using the algebraic constructions
and software data structures within a reasonable memory
constraint.

In order to limit duplicated calculations, the first consider-
ation is to exclude equivalent pairs. Similar to the definition
in [20], two pairs (a = (a0, . . . , aN−1),b = (b0, . . . , bN−1))
are said to be equivalent, if one can be obtained by the other
with one of the following operations:

• Interchange: if (a,b) is a solution, then so is (b,a);
• Negation: if (a,b) is a solution, then so is (neg(a),b),

where neg(a) = (1− a0, 1− a1, . . . , 1− aN−1);
• Reversal: if (a,b) is a solution, then so is (rvr(a),b),

where rvr(a) = (aN−1, . . . , a1, a0).
Naturally, a series of these operations above lead to an
equivalent solution. For instance (neg(b), rvr(neg(a))) is also
equivalent to (a,b).

To proceed, without loss of generality, we assume that
aN−1 = bN−1 = 1. We then run as separate cases for the all
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possible combinations of the middle bits a(N−1)/2, b(N−1)/2

and a0 = b0 due to (4).
To visualize, we consider the following OBZCP structure

in our search algorithm:[
a0 a1 . . . a(N−3)/2 a(N−1)/2 a(N+1)/2 . . . aN−2 1
a0 b1 . . . b(N−3)/2 b(N−1)/2 b(N+1)/2 . . . bN−2 1

]
.

Next, we leverage the following three important data pro-
cessing strategies in our proposed algorithm:

• Mapping;
• Grouping;
• Gray counting and updates.

B. Mapping

The purpose of mapping is to link each sequence b with a
proper sequence a such that the ZCZ can be achieved. Based
on (3), we have

ρb(τ) = −ρa(τ) (8)

for each τ = 1, 2, . . . , (N − 3)/2. Suppose that there are k
sequences of a which satisfy the above equation. We store all
the ρ values and their corresponding sequences a in a map
{ρa → [a1, . . . ,ak]} where

ρa = (ρa(1), ρa(2), . . . , ρa((N − 3)/2))

for all a ∈ {a1, . . . ,ak} that generate the same ρ. We will
denote by map[ρa] for the whole list of {a1, . . . ,ak}.

Example 1. For N = 11, ρa = (2,−1, 2, 1), we have

map[ρa] ={(1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1),
(1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1),

(1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1),

(1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1)}.

For each sequence b, proper software implementation of
such map will permit us to find all possible corresponding
sequences a in constant O(1) time.

Theoretically, with this approach we can attack the whole
problem. However, this may require us to put maximally all
2N sequences of a and their corresponding ρ values in the
memory. This is quite significant considering the physical
memory limitations. Next, we introduce grouping in order to
overcome this limitation.

C. Grouping

In the first step, we group the sequence elements by using
the property below:

ar + aN−1−r + br + bN−1−r ≡ 1 (mod 2). (9)

For ease of presentation, denote by Na the integer associated
to the binary sequence a and vice versa.

For any binary vector c = (c1, c2, . . . , c(N−3)/2)), define a
set C comprising of all the possible length-N binary sequences
a, each satisfying

ci = ai ⊕ aN−1−i, i = 1, 2, . . . , (N − 3)/2 (10)

where ⊕ is the binary xor operation. By noting that
a0, a(N−1)/2, aN−1 are fixed, each set C contains 2(N−3)/2

sequences of a and we have 2(N−3)/2 sets for all possible
combinations of c.

Example 2. Consider N = 7, Z = (N+1)/2 = 4, c = (1, 0).
One can generate the following C(c):

{(a0, 0, 0, a3, 0, 1, 1), (a0, 1, 0, a3, 0, 0, 1),
(a0, 0, 1, a3, 1, 1, 1), (a0, 1, 1, a3, 1, 0, 1)}.

D. Gray code counting

For every sequence b, note that bN−1 = 1, b(N−1)/2

is fixed and b0 = a0 as shown in (4). To proceed,
(b1, b2, . . . , b(N−3)/2) is said to be the lower part of sequence
b and (b(N+1)/2, b(N+3)/2, . . . , b(N−2)) its upper part. Our
key idea is to use a Gray code to represent the lower part,
whereby the upper part is recalculated based on (4).

In the sequel, “codeword” and “sequence” may be used
interchangeably. The weight of each codeword is equal to its
number of 1’s. Comparison between codewords (sequences),
e.g., a ≥ b, is performed by comparing their associated
integers, i.e., Na ≥ Nb. A Gray code is characterized by
having the next codeword with only one bit changed. This
gives us two advantages:

• We can update only one corresponding bit in b’s upper
part, i.e. if bi is changed, then bN−1−i is changed.

• For such a change, the weight of sequence b is either
increased or decreased by 2 or stays unchanged. Hence,
we can track the weight of sequence b without recalcu-
lating it for each modification. By pre-calculating all the
admissible weight pairs associated to (a,b) (see Property
3 of [17]), we can directly exclude all the non-matching
combinations.

E. Sketch of the Proposed Algorithm

Fig. 1: Structure of sequence a of length 7.

In the proposed algorithm, rvr(g, c) is defined as rvr(g ⊕
c), which is obtained by binary xor operation of g and c,
followed by reversing the resulting binary vector. Sequence
a is constructed by (lsb,g,mida, rvr(g, c), 1), where lsb and
mida are single binary elements and g, rvr(g, c) are binary
vectors of length (N−3)/2. For illustration purpose, we show
in Figure 1 a length-7 a which belongs to C for g = (1, 1)
and c = (1, 0). In the algorithm, b upper and b lower, two
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Algorithm 1 OBZCPs

Require: N ≥ 5, N is odd
Require: MAX ACC ≥ 1, maximum correlation
Require: mida, predefined value for a(N−1)/2

Require: midb, predefined value for b(N−1)/2

Require: lsb, least significant bit of a and b
1: for Nc ← 0 to 2(N−3)/2 − 1 do
2: for Ng ← 0 to 2(N−3)/2 − 1 do . Add a ∈ C to the

map
3: a← (lsb,g,mida, rvr(g, c), 1)
4: Add a to map[ρa]
5: end for
6: b lower← (1, 0, 0, . . . , 0) . Construct initial b
7: Calculate b upper such that Eq.(4) holds for

b = (lsb,b lower,midb,b upper, 1) and given
c. a’s bits are already aggregated with an xor in C.

8: for j ← 1 to 2(N−3)/2 do . Iterate over possible b
candidates via Gray code

9: ρa(τ)← −ρb(τ), τ = 1, . . . , (N − 3)/2
10: for a ∈ map[ρa] do
11: if Na > Nb then . Skip duplication
12: Print (a,b) if out-of-zone correlation ≤

MAX ACC
13: end if
14: end for
15: Generate next Gray code for b lower

part by changing single bit bx
16: Update b upper part by reverting single bit
17: bN−1−x
18: end for
19: end for
20: Filter out the equivalent pairs

binary vectors of length (N − 3)/2, are used for construction
of b.

The proposed algorithm is based on one outer loop to iterate
over all the sets and two consecutive inner loops for 1) loading
data in the memory map and 2) iterating over the Gray code
by changing a single bit on each step and retrieving matching
values from the map such that equation (4) holds.

It is noted that the time complexity of the outer loops equals
to the number of sets that we iterate on, i.e., O(2(N−3)/2).
The time complexity of the two consecutive inner loops is
determined by the maximum of:

• The complexity of the first inner loop which equals
to the number of all constructed a’s in each set, i.e.,
O(2(N−3)/2);

• The complexity of the second inner loop which equals to
the number of all the b upper values that we iterate on
via Gray code, i.e., O(2(N−3)/2). During the second inner
loop, we construct all the possible b matching to the set
C(c). It is also noted that the corresponding search in the
table between a and b has lookup complexity of O(1).
Additionally, the most inner loop on line 10 is usually of
size 0, 1, 2, and rarely up to 4 and hence does not impact
the overall complexity.

Thus, the total time complexity of the inner loops is
O(2(N−3)/2).

Based on the above analysis, the overall algorithm has a
complexity of O(2N ) since it is executed 8 times with all
possible combinations of a(N−1)/2, b(N−1)/2, a0.

IV. COMPUTER SEARCH RESULTS

In this section, we present optimal OBZCPs from computer
search, and in case they do not exist, Z-optimal OBZCPs for
27 ≤ N ≤ 49, in Tables I to XII.

Optimal OBZCPs up to N = 25 are reported in [17] and
some optimal pairs for N = 33, 41 can be obtained via the
constructions in [18]. During this computer search, we have
found only two non-equivalent optimal pairs for N = 37. We
have also found optimal pairs of length N = 49, but the search
is non-exhaustive as we reached the limit of our computational
resources.

Our computer search shows that there are no optimal
OBZCPs for N = 35, 39, 43, 45, 47 and this motivates us
to search Z-optimal pairs with the maximum out-of-zone
aperiodic autocorrelation sum having magnitude of 6. In this
work, we only present a few Z-optimal pairs in the tables
below for N = 35, 39, 43, 45, 47.

It is noted that all the OBZCPs are presented in hexadecimal
notation. This allows us to map every hexadecimal digit to four
binary digits, i.e. (0→ 0000, 1→ 0001, . . . , F → 1111) and
by stripping initial zeros if necessary. For instance 159FE24
represents 1010110011111111000100100.

Since N = 35 is the first odd length that does not
have optimal pairs, we present on the left-hand-side of Fig.
1 on the magnitude plot of the AACF sums of the pair
(7905A9444, 710C1A3B2). On the right-hand-side of
Fig. 1, we show the magnitude plot of the optimal pair
(15BCD1FAF3340,10599EA0E984A) with length 49.

Our algorithm is implemented using the software language
“Rust” known as blazingly fast and memory-efficient [25]
and includes optimizations such as Rayon parallel computing
library, usage of native CPU instructions via compilation
flags, such as SIMD, loops unwinding, etc. Our source code
can be found at https://github.com/peterkazakov/obzcp. The
OBZCP search for lengths up to 41 was carried out over a
2.9 GHz 6-Core Intel i9 computer. The execution time over
for N = 31 and N = 33 are 3 and 14 minutes, respectively.
Each subsequent length requires approximately 4 times more
minutes, for instance N = 39 requires a day of computations.

The other results for N = 43, 45, 47, 49 are found through
Essex HPC.

V. OBZCPS WITH SMALLEST PSC VALUES

Finally, we leverage the Pursley–Sarwate criterion and
present OBZCPs with smallest PSC values for sequence
lengths up to 49 in Table XIII.

One can see that the PSC value of each pair is close to
1, indicating that each pair is almost complementary. We
also notice a trend that the PSC values for optimal OBZCPs
generally decrease for larger sequence lengths with just one
exception for N = 13.

https://github.com/peterkazakov/obzcp
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TABLE I: Optimal OBZCPs for N = 27

Column 1 Column 2 Column 3 Column 4

(6AC2984, 42265F0) (419B094, 4038DAA) (72C2320, 6581DAA) (5CB287E, 409159C)
(6A92700, 41D3994) (77724F1, 71B4ABF) (623AFC9, 4C14A0D) (668A84F, 4F0B77B)

TABLE II: Optimal OBZCPs for N = 29

Column 1 Column 2 Column 3

(144E4E10, 114693FA) (17CA7B3A, 14640A7C) (1FCADB38, 1C64AA7E)
(1835D190, 17CA5190) (1A9FDB38, 15605B38) (1F6CC570, 11D1AD20)
(1AEF4E13, 16F06EEB)

TABLE III: Optimal OBZCPs for N = 31

Column 1 Column 2 Column 3

(4ED3AE80, 43856426) (6C7FC945, 5EB32F1D) (64AFE6B9, 640ACBC7)

TABLE IV: Optimal OBZCPs for N = 33

Column 1 Column 2 Column 3

(1EA6D8C0A, 1EA6C73F4) (180CBE6AC, 180CA1952) (1F8B39ED4, 1F8B2612A)
(1E72A06CA, 1A6C05630)

TABLE V: Z-optimal OBZCPs for N = 35

Column 1 Column 2 Column 3

(7905A9444, 710C1A3B2) (72E2F6394, 5DE937410) (4AC870914, 40DDE22C2)
(54C870928, 40DDE22C2) (793B3EE96, 5C6F5043A) (44EA20C2D, 42D04DDE3)

TABLE VI: Optimal OBZCPs for N = 37

Column 1 Column 2

(1D29F4D110, 11273940E8) (17B506C9C4, 144430A7C2)

TABLE VII: Z-optimal OBZCPs for N = 39

Column 1 Column 2 Column 3

(69B1294470, 5AEF8C06E8) (6CC43E1164, 4A75EC2828) (70122A279C, 5B235A9E08)
(72577E7298, 6E0592287A) (59F26A2072, 44AF3882D0) (78C84D1254, 77E235C7D2)

TABLE VIII: Optimal OBZCPs for N = 41

Column 1 Column 2 Column 3

(1A2903A133C, 15D6FCA133C) (18215995906, 1821586A6F8) (18A5F99F9AE, 175A069F9AE)
(1945F99F9D6, 16BA069F9D6) (1F5EC9C62FA, 10A136C62FA) (195DC396EFC, 16A23C96EFC)
(1F51C9C6DFA, 10AE36C6DFA) (1A2903C337A, 15D6FCC337A) (1E14DDB4188, 11EB22B4188)
(1C9EF59CBA0, 13610A9CBA0) (1A774FA7BB0, 1588B0A7BB0) (19FA296B9F9, 1605D66B9F9)

TABLE IX: Z-optimal OBZCPs for N = 43

Column 1 Column 2 Column 3

(668D847F75A,62EEF0F6BB4), (74BF732EE12,43637D50C1A), (7121C0324F5,4AB9D90D7E5)

TABLE X: Z-optimal OBZCPs for N = 45

Column 1 Column 2 Column 3

(1C3009533530,15C8AF20693C) (1ADB163A02A9,118C8F16C00D) (13589BC02838,11EF69162A6E)

VI. CONCLUSIONS

This paper has introduced a number of new primitive
optimal and Z-optimal OBZCPs for 27 ≤ N ≤ 49 which
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TABLE XI: Z-optimal OBZCPs for N = 47

Column 1 Column 2 Column 3

(5D9F943CC229,4BBA9D0B6FE3) (5375CCE48E1E,4752A49003F4) (7815ACEB273E,579B7779603A)

TABLE XII: Optimal OBZCPs for N = 49

Column 1 Column 2

(15BCD1FAF3340,10599EA0E984A) (1FB67150F994A,1A533E0AE3240)
(1564E7FF86694,152CC3E031B2A) (156CC7FF8E494,1524E3E03992A)
(15BCD1FFA6614,150CCBE0E984A) (1FB67155ACC1E,1F066B4AE3240)
(1564E7FAD33C0,107996A031B2A) (156CC7FADB1C0,1071B6A03992A)
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Fig. 2: Plots of AACF sums for OBZCPs, i.e., (7905A9444, 710C1A3B2) and (15BCD1FAF3340,10599EA0E984A),
of lengths 35 and 49, respectively.

TABLE XIII: OBZCPs with smallest PSC values

N PSC(g1,g2) ADF(g1) ADF(g2) CDF(g1,g2) g1 g2
3 1.4444 1.1111 1.1111 0.33333 7 5
5 1.2997 0.48 0.8 0.68 1E 16
7 1.185 0.77551 0.28571 0.71429 5D 4F
9 1.1636 0.79012 0.39506 0.60494 1E8 14C
11 1.149 0.41322 0.67769 0.61983 7C6 5DA
13 1.1005 0.07100 0.30769 0.95266 1F35 1709
15 1.1107 0.38222 0.20444 0.83111 612E 4C0A
17 1.0983 0.38754 0.609 0.61246 1FCA9 1A6E3
19 1.0931 0.40443 0.27147 0.76177 7A284 78CDA
21 1.0819 0.29932 0.46259 0.70975 1B6A87 109883
23 1.0762 0.41966 0.58601 0.58034 78B519 76D1DF
25 1.0740 0.4224 0.5248 0.6032 159FB70 11DA0CA
27 1.0664 0.36488 0.25514 0.76132 5CB287E 409159C
29 1.0608 0.27111 0.39477 0.73365 144E4E10 114693FA
31 1.0571 0.4308 0.30593 0.69407 64AFE6B9 640ACBC7
33 1.0554 0.33792 0.24977 0.76492 1E72A06CA 1A6C05630
35 1.0792 0.19102 0.25633 0.85796 44EA20C2D 42D04DDE3
37 1.0515 0.30095 0.35354 0.72535 1D29F4D110 11273940E8
39 1.0874 0.27745 0.3879 0.75937 78C84D1254 77E235C7D2
41 1.0460 0.38548 0.31886 0.69542 19FA296B9F9 1605D66B9F9
43 1.0964 0.38615 0.33423 0.73716 668D847F75A 62EEF0F6BB4
45 1.0748 0.37728 0.34963 0.7116 1ADB163A02A9 118C8F16C00D
47 1.0972 0.32866 0.41195 0.72929 5D9F943CC229 4BBA9D0B6FE3
49 1.0388 0.33986 0.39983 0.67014 156CC7FF8E494 1524E3E03992A

are obtained through a computer search. By using selected
algebraic properties of OBZCPs and with certain programming
techniques, we have presented an algorithm with time com-

plexity of O(2N ). Next to the known OBZCP constructions
for N = 33 and N = 41, we have found optimal sequence
pairs for N = 37 and N = 49. Additionally, a list of OBZCPs
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with smallest PSC values have been reported.
An interesting future work of this research is to develop

systematic optimal (or sub-optimal) OBZCP constructions by
exploiting the obtained short sequence pairs. Another ambi-
tious future direction is to carry out an exhaustive computer
search for OBZCPs up to length 100 and analyze their deeper
structural properties.
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