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A B S T R A C T

In this paper, a terrain-adaptive motion planner is developed specifically for articulated construction vehicles (ACVs) to address instability issues caused by 
elevation changes on unstructured construction sites—challenges that traditional 2D motion planners struggle to manage effectively. The proposed planner 
adopts a modular framework, incorporating a terrain elevation model, an articulated vehicle kinematic model, and a posture response model. These models 
collaboratively capture the dynamic interactions between the vehicle and the terrain. The planner utilizes a multi-objective evaluation function to enhance the 
vehicle's 3D motion stability, especially in challenging terrains. By considering real-time vehicle-terrain interactions, this function estimates and optimizes the 
vehicle's stability. The planner's effectiveness is validated through field tests with a scaled- down ACV prototype, demonstrating significant improvements in 
stability and confirming its potential for practical application on unstructured terrains.

1. Introduction

Articulated construction vehicles (ACVs) like loaders, dump trucks,
and graders are designed with highly manoeuvrable articulated chassis, 
enabling them to operate effectively in complex construction sites [1]. 
However, these vehicles often face disturbances from uneven terrain 
[2], necessitating advanced motion planners to manage the challenges 
of large-scale construction projects [3,4]. Existing motion planners for 
autonomous vehicles, like map-based [5,6], model-based [7,8], and 
sampling-based methods [9,10], primarily focus on ensuring smooth 
motion trajectories in 2D structured road scenarios. These planners are 
inadequate for addressing the instability risks ACVs encounter in 3D 
unstructured terrains [11,12]. For example, in rugged environments 
such as ravines and slopes, the uneven ground can cause the front and 
rear bodies of an ACV to twist due to the differential contact of the tires. 
During large-angle avoidance manoeuvres, this torsion can destabilize 
the vehicle's centre of gravity, leading to rollover and loss of control 
accidents, as shown in Fig. 1.

To enhance motion planning capabilities for vehicles in unstructured 
terrains, current research is progressing along two main paths: map- 
guided and rule-constrained approaches. Map-guided planners use 

detailed 3D terrain representations from high-definition maps [13], cost 
maps [14], or digital elevation maps (DEMs) [15] to devise efficient 
global search and sampling strategies [16]. Rule-constrained planning, 
meanwhile, parameterizes the relationship between 3D terrain variables 
(e.g., potential fields and slopes) and vehicle dynamic variables to create 
rule constraints for smooth 3D trajectories [17,18]. While both ap
proaches provide valuable insights for improving ACV stability in un
structured terrains, they have notable limitations. Map-guided planners, 
despite their detailed spatial representation, lack effective mechanisms 
to assess instability risks arising from vehicle-terrain interactions. 
Conversely, rule-constrained approaches, due to the complexity of their 
parameterized functions, often reduce vehicle representation to a single 
point, prioritizing smooth point-to-point movement over the stability of 
the vehicle's driving posture.

Motion planning methods based on the dynamic window approach 
(DWA) have shown notable advantages in representing the relationship 
between vehicles and their environment maps [19]. These methods 
successfully integrate vehicle parameters, kinematic constraints, and 
environmental data to sample feasible motion states, enabling the 
planner to account for vehicle heading and movement trends over time, 
thus improving responsiveness to dynamic environments [20]. 



However, DWA's inherent focus on 2D space limits its ability to manage 
the complexities of 3D motion dynamics, such as elevation changes, 
vehicle posture, and stability. To overcome these limitations, further 
research is needed to adapt DWA-based methods for 3D applications, 
allowing them to manage the complexity of unstructured terrains and 
dynamic vehicle-terrain interactions in 3D space.

Unlike conventional vehicles, ACVs utilize independent front sus
pensions and specialized swing-rod rear suspensions, allowing different 
pivoting within the vertical plane for uniform tire contact and enhanced 
drive performance [21,22]. Stable motion planning for ACVs must 
address complex challenges posed by unstructured terrain and variable 
vehicle structures [23]. These challenges are due to the complicated 
motion characteristics and spatial occupancy relationships caused by the 
variability of vehicle structures and terrain randomness, which current 
map-based 3D terrain features fail to effectively associate with ACV 
motion posture. Additionally, the discrete continuity in 3D space of 
articulated vehicle bodies demands high-dimensional stability solutions, 
which current planners with low-dimensional smooth constraints cannot 
adequately provide.

To address these challenges, we propose a motion planner that in
tegrates terrain excitation and vehicle posture response to ensure stable 
motion trajectories for ACVs on unstructured terrain. Building upon the 
dynamic planning framework of the DWA, the planner further extends a 
simultaneous solving mechanism that correlates vehicle posture with 
terrain excitation, addressing the complex motion characteristics and 
spatial representations that traditional ACV motion planning struggles 
to accommodate. Furthermore, we incorporate quantifiable 3D posture 
stability evaluations into the traditional evaluation function to 
strengthen the stability constraints for the discrete spatial representation 
of ACVs motion. By employing normalized weight allocation, we re- 
establish a dynamic balance across multiple objective functions, 
yielding a highly stable solution for ACV motion. The main contributions 
of this work can be summarized here: 

• A simplified ACV posture estimation method is proposed to stream
line the correlations between terrain elevation, vehicle posture, and 
motion retrieval, which is based on the geometric contact between 
tires and terrain.

• A multi-objective evaluation function has been redefined to
dynamically coordinate the reasonable proportion of constraints
across different dimensions, addressing the directional assessment of
ACV motion states.

• A systematic planner framework with vehicle-terrain responses is
designed to coordinate the orderly interaction of variables during
planning iterations for supporting high-dynamic updates in motion
planning.

• Extensive field experiments to verify the effectiveness of the pro
posed planner.

Overall, this paper proposes a systematic planner design approach by
resolving the complex relationship between ACVs and unstructured 
terrain, aiming to provide a promising solution for achieving more stable 
and safer operations of ACVs under challenging terrain conditions. The 

rest of the paper is structured as follows. Section 2 reviews related work 
on advanced planner. The methodology of the proposed planner is 
detailed in Section 3. Section 4 details the implementation of the field 
experiments. Section 5 presents a comprehensive analysis of the per
formance metrics and effectiveness of the proposed planner through 
experimental validation. Finally, a brief conclusion and future work are 
given in Section 6.

2. Related work

The primary objective of motion planning is to design trajectories
that meet predetermined goals within explicit constraints [24,25]. This 
is particularly challenging for ACVs, as they must maintain prominent 
levels of manoeuvrability and stability over unstructured terrains filled 
with uncertainties. Consequently, the motion planning of ACVs requires 
planners to accurately characterize the coupling between the vehicle 
and the terrain, as well as to implement trajectory inference within an 
expressible solution model. This section provides a detailed analysis of 
the related work in terms of three aspects.

2.1. Planning research for construction scenarios

The diversity of engineering tasks requires vehicle planners to 
possess high adaptability and flexibility, enabling them to consider 
environmental constraints thoroughly and design targeted execution 
plans. For instance, in indoor construction scenarios, Chen et al. devel
oped a global path planning (GPP) system based on building information 
model (BIM) and a physical engine to address the needs of indoor in
spections, effectively facilitating efficient planning in multi-obstacle 
environments [26,27]. Similarly, Zhu et al., guided by BIM, crafted 
planning strategies linked with robotic construction action nodes to 
optimize the execution of construction tasks [28]. Guided by the map 
information from BIM, these methods effectively integrated the inter
action between vehicles and the environment, significantly enhancing 
operational efficiency in construction scenarios.

In outdoor scenarios, Kim et al. considered the environmental con
straints and accessibility of excavators and dump trucks, developing a 
comprehensive coverage path planning algorithm to guide the autono
mous operations [29]. Wang et al., focusing on the dynamic character
istics of articulated loaders, designed a path planning method guided by 
precise coordinates of operational targets, significantly enhancing the 
accuracy of the execution paths [30]. These methods, leveraging mature 
2D navigation maps, have seen initial applications on flat terrains. 
However, in unstructured terrain with unclear road boundaries and 
complex terrain elevations, 2D maps struggle to provide the specific 3D 
navigation capabilities akin to BIM. Therefore, the foundation for 
autonomous planning in unstructured construction scenarios is the 
establishment of a 3D navigation map that can accurately represent 
terrain features.

2.2. 3D navigation map

As environmental perception technology advances, computer vision 

Fig. 1. Typical unstable driving accidents of ACVs.



researchers are enhancing the representational capabilities of terrain 
maps to better meet the demands of vehicle navigation. Lee et al. made 
substantial contributions by identifying uneven road areas within 3D 
images, which provides essential constraints for vehicle obstacle 
avoidance planning [31]. Xue et al. [32] and Waibel et al. [33] effec
tively segmented vehicle passable regions by applying local convexity 
criteria to terrain point clouds. This approach enables the identification 
of areas that are safe for vehicle passage based on the terrain's shape and 
form. Cai et al. improved the multi-dimensional representation of maps 
by integrating semantic, elevation, and occupancy grid data, creating a 
real-time navigation map. This integration significantly enhances the 
efficiency of planners in processing unstructured environments [34].

Although these approaches effectively utilize the 3D features of 
terrain, they often overlook the strain responses of vehicles as they 
navigate through varying terrains. Consequently, navigation maps 
currently lack effective indexing mechanisms that would help planners 
assess the risks associated with unstable driving conditions caused by 
changes in terrain elevation. Addressing this gap is crucial. Fully 
leveraging map information to predict and assess vehicle responses to 
different terrains would enable planners to better adapt to these varia
tions. Such advancements would ensure more stable and safer vehicle 
navigation, particularly in unstructured or unpredictable environments.

2.3. Planner solution for 3D map

Currently, motion planners capable of integrating 3D map informa
tion predominantly employ four foundational approaches: graph search- 
based, sampling-based, optimization-based, and model-based strategies, 
which are outlined below.

In graph search, Toscano-Moreno et al. introduced the DEM-AIA 
planning scheme, addressing constraints related to off-road vehicle tilt 
and terrain slope features [35]. Liu et al. developed the T-Hybrid A* 
search method to optimize motion trajectories on 2.5D maps [36]. These 
methods tend to design optimal trajectories at a regional global level, 
which results in overlooking immediate vehicle state constraints and 
fails to meet the demands of ACVs for stable driving postures in detail.

In sampling-based approaches, Ji et al. proposed an RRT solution 

based on OctoMap to improve adaptivity to 3D vehicle motion [37], and 
Endo et al. expanded the CL-RRT algorithm with the BenchNav method 
to enhance traversability in 3D terrains [38]. Although they focused on 
local map details as graph search-based methods did, their insensitivity 
to vehicle states makes it challenging for ACVs to overcome terrain 
disturbances.

Optimization-based methods focus on improving the smoothness of 
local trajectories. Hu et al. utilized nonlinear optimal control to define 
motion costs for differential steering vehicles, integrating these into an 
artificial potential field function (APF) that accounts for terrain and 
obstacles [39]. Chen et al. proposed the tracking error boundary (TEB) 
to enhance adaptability to terrain disturbances [40]. While these ap
proaches effectively optimize 3D trajectories by incorporating environ
mental parameters and vehicle dynamics, they often simplify vehicles to 
vector points to maintain solution efficiency. This simplification can 
prioritize smoothness over the stability of autonomous and connected 
vehicles' (ACVs) driving postures, potentially overlooking critical as
pects of vehicle stability in detailed scenarios.

Model-based methods effectively incorporate vehicle state predic
tion in representing driving posture details. Qi proposed a hierarchical 
planning framework based on this concept, integrating spline-based 
optimization and motion smoothness constraints deeply with the 
sensitivity of DWA to vehicle motion states [41]. Yao explored a state- 
energy graph based on motion primitives to constrain kinetic smooth
ness of motion trajectories [42]. Chen et al. linked 3D terrain semantic 
perception with DWA and designed RSPMP to achieve good results in 
local path planning [43]. Although these methods could effectively 
implement planning by combining vehicle status predictions in 2D map, 
their insensitivity to 3D space results in numerous limitations when 
applied to ACVs.

Overall, current motion planners have made some progress in man
aging smooth motion planning of vehicles on unstructured terrains, but 
further research and improvement are needed to simultaneously opti
mize trajectories while ensuring stable motion postures.

Fig. 2. Overall framework.



3. Methodology

3.1. Overall framework

Fig. 2 shows the overall framework for our proposed planner that 
comprises four main components: elevation map index model, articu
lated vehicle motion primitives, vehicle-terrain coupling posture solu
tion, and multi-objective evaluation. Initially, an integrated 2D grid 
navigation map and an elevation index model are developed based on a 
multi-layer digital map framework to address the standardization of 
discrete structures in 3D terrain point clouds. Concurrently, vehicle 
motion primitives that account for articulated steering characteristics 
are established, aimed at matching dynamic window sampling for tra
jectory derivation. Building on this foundation, a vehicle-terrain 
coupling module is established based on tire-ground contact relation
ships to solve for vehicle motion posture under terrain excitation. 
Finally, a multi-objective evaluation function is set up within the unified 
planner to achieve vehicle trajectory planning, which could balance goal 
orientation, obstacle avoidance, and steady-state safety.

3.2. Elevation map index model

Most maps used for autonomous vehicle planning are constructed 
using point cloud data gathered from sensors such as LiDAR or depth 
cameras, which accurately preserve 3D terrain information. However, 
due to the discrete and unordered nature of the 3D points, map retrieval 
is time-consuming. To address this, most autonomous systems employ a 
bird's eye view (BEV) [44], projecting 3D point clouds onto a 2D navi
gation map, MBEV , to delineate passable areas. MBEV can be represented 
as follows: 

MBEV =

⎡

⎣
m1,1 ⋯ m1,W

⋮ ⋱ ⋮
mH,1 ⋯ mH,W

⎤

⎦ (1) 

where mi,j represents the occupancy grid attribute. H and W denote the 
number of grids along the X and Y axis of the map, respectively.

Let vi,j denote the spatial grid at the position (i, j) on the map. Each 
grid corresponds to a point cloud data scale of size h×w. The 2D planar 
area corresponding to vi,j is defined as 

vi,j = {x ∈ [(i − 1)h , ih] , y ∈ [(i − 1)w , iw]|i ∈ N+, j ∈ N+} (2) 

and mi,j denote as: 

mi,j =

{
0 if vi,j is passable,

1 otherwis. (3) 

In our previous research [45], we proposed a method for safety se
mantic segmentation to assess the traversability of vi,j. This method 
simplifies the marking of passable areas on the grid map by binary 
obstacle segmentation of terrain features that affect vehicle movement. 
However, the 2D map format is insufficient to represent the 3D terrain 
structure. To bridge the gap between these dimensions, a map model is 
developed based on the BEV that indexes elevation details, as shown in 
Fig. 3.

This model builds upon existing BEV map localization by further 
calculating the mean elevation using a vowelised point cloud indexed by 
unit area. Suppose pk =

(
xk, yk, zk

)
represents the coordinates of the k-th 

point within a voxel. Mathematically, this model can be expressed as a 
discrete ordered set of a solution function, specifically: 

fp(xn, yn) =

∑NUM
k=1 zk

NUM
, zkϵ{p1, p2,⋯, pNUM} (4) 

where fp serves as an elevation indexing function on the BEV map at 
coordinates 

(
xn, yn

)
, with n ∈ N+. NUM represents the total number of 

neighbouring point clouds.
Assuming the neighborhood size is defined by a grid with side length 

d, the relationship between the point cloud sequence and the 2D domain 
is as follows: 

pkϵ
{

(xk, yk)||xk − xn| <
d
2
, |yk − yn| <

d
2

}

(5) 

where d is a constant value, empirically taken as half the width of a tire, 
approximating the contact surface between the tire and the terrain. pk 
represents the coordinates within the neighborhood point clouds, and 
the neighborhood size is defined by a grid with side length d, empirically 
set to half the tire width, approximating the contact surface between the 
tire and the terrain.

Fig. 3. Modelling process for multi-layer maps.

Fig. 4. Kinematic primitives of an articulated vehicle.



3.3. Articulated vehicle motion primitives

Fundamentally, vehicle motion planning involves dynamically 
evaluating future trajectories based on known motion states [46]. For 
instance, DWA utilizes a kinematics-based sampling window to calculate 
motion trajectories for traditional vehicles [47]. While this method is 
more suited for differential or omnidirectional moving vehicles, it also 
holds certain applicability for articulated vehicles that achieve differ
ential steering of the front and rear tires through steering rod thrust, 
provided certain steering constraints are met. Therefore, constructing a 
vehicle kinematics model that accurately reflects the constraints of ar
ticulated steering is crucial for calculating candidate trajectories.

As illustrated in Fig. 4, the articulated vehicle achieves steering by 
controlling its articulation angle γ between the front and rear bodies. We 
represent the positions of the front and rear bodies by the midpoints of 
the front and rear axles, Pf and Pr, respectively. θfand θr are the heading 
angles of the front and rear bodies relative to the coordinate system. The 
kinematic model can be established below: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋf = vcosθf

ẏf = vsinθf

θ̇f =
vsinγt + lr γ̇
lf cosγt + lr

(6) 

where v is the driving speed, 
(

ẋf , ẏf

)
are the velocity components of the

front body in the x and y directions, and γ̇ is the articulation angular 
velocity, with counterclockwise direction being positive.

Unlike traditional sampling spaces, the vehicle's sampling window 

here is [v, γ̇]. Notably, as construction vehicles may experience unpre
dictable loss of control at high speeds due to large inertia, they typically 
operate at a steady low speed. In this study, we aim to maintain speed at 
a controllable and regular value to mitigate the risk of loss of control.

To enhance the computational efficiency of the dynamic window 
function, driving trajectories derived from the kinematic model are 
typically represented in a discretized form. Assuming a time interval of 
Δt, in the global coordinate system, the future trajectory points and 
heading postures of the front body have the following relationship: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

xf(t+1) = xf(t) + vcosθf(t)Δt

yf(t+1) = yf(t) + vsinθf(t)Δt

θf(t+1) = θf(t) +
vsinγt + lr γ̇
lf cosγt + lr

Δt

γ(t+1) = γ(t) + γ̇Δt

(7) 

The vehicle moves in a straight line when γ(t) = 0 and γ̇ = 0. The 
vehicle performs a steering motion when γ(t) ∕= 0 or γ̇ ∕= 0. During 
steering, the motion of the rear body is influenced by the front body, 
with steering control achieved through the articulation angle. Therefore, 
based on the articulation structure between the front and rear bodies of 
the vehicle, at any given moment t, the heading angles between the front 
and rear bodies of the articulated vehicle satisfy: 

θr(t) = θf(t) + γ(t) (8) 

Based on this, the 2D trajectory points of the rear body can be 
derived from the coordinates of the front body: 
{

xr(t) = xf(t) − lrcosθf(t) − lrcosθr(t)
yr(t) = yf(t) − lf sinθf(t) − lrsinθr(t)

(9) 

3.4. Vehicle-terrain coupling posture solution

This section introduces a posture perception module for predicting 
3D vehicle motion trends. This module is critical for vehicle-terrain 
interaction, with two stages: 1) Standardizing the yaw, pitch, and roll 
by simplifying the multi-degree-of-freedom posture of articulated 
bodies; 2) Implementing the multi-models coupling association and bi
nary approximation to establish the solution relationship between the 
tire and ground. This module enables the planning algorithm to realize a 
transition from 2D to 3D space, quantifying vehicle posture changes 
effectively.

3.4.1. Simplified representation of ACV posture
To characterize the motion posture of ACVs, we simplify the repre

sentation of the front and rear body postures based on their rigid body 
characteristics. As shown in Fig. 5, this simplified linkage model in
volves the articulation point Pa, the front and rear axle support points Pf 

and Pr, and the vehicle's four-wheel contact points 
[
Plf , Prf ,Plr,Prr

]
. 

Additionally, to standardize posture calculations, we align the vehicle's 
yaw angle with the 2D heading angles θf and θr, using the actual IMU's 
north-east-sky (NES) coordinate system to match the map coordinates.

Assuming the radius of each tire is consistent and deformation is 
negligible, we define Ṕ a, Ṕ f and Ṕ r as the ground projections of Pa, Pf 

and Pr, respectively. Due to the rigid connection of the vehicle's inde
pendent front suspension, Ṕ a, Ṕ f and Ṕ r share a coplanar relationship 
with the ground contact points Plf and Prf . With the articulation angle γ 

known, the coordinates of Ṕ f and Ṕ r are 
(

xf , yf , zf

)
and (xr, yr, zr)

respectively. The vehicle's pitch angle α can be expressed as the angle 
between the plane formed by △Plf Prf Ṕ r and the xy-plane. 

α = arcsin

⎛

⎜
⎝

zf − zr
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

lf 2
+ lr2

+ 2lf lrcosγ
√

⎞

⎟
⎠ (10) 

Fig. 5. Simplified ACV geometric posture model.



Additionally, as shown in Fig. 5(b), the front and rear axles can be 
adjusted vertically within a certain angle due to the special articulated 
rear suspension. Based on the ground contact relationship, the roll 
anglesφf and φr can be characterized by the angles between the line 
segments Plf Prf and PlrPrr and the xy-plane, respectively. Assuming the 
elevations of the four ground contact points are

[
zlf , zrf , zlr, zrr

]
, φf and φr 

can be defined as follows: 
⎧
⎪⎪⎨

⎪⎪⎩

φf = arcsin
(zlf − zrf

2W

)

φr = arcsin
(zlr − zrr

2W

) (11) 

Since Ṕ f and Ṕ r are the midpoints of Plf Prf and PlrPrr respectively, 
then: 
⎧
⎪⎨

⎪⎩

zf =
zlf + zrf

2

zr =
zlr + zrr

2

(12) 

Substituting further into Eq. (10), the roll angle α can also be further 
expressed as: 

α = arcsin

⎛

⎜
⎝

zlf + zrf − zlr − zrr

2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

lf 2
+ lr2

+ 2lf lrcosγ
√

⎞

⎟
⎠ (13) 

Utilizing Eqs. (11) and (13), the roll and pitch angles of articulated 
vehicles are linked to the elevation indices of tire contact points, 
enabling further prediction of the vehicle's 3D posture changes along the 
predictive trajectory.

3.4.2. Approximate estimation of vehicle-terrain coupling
In this section, we construct a coupling solution module to predict 

the vehicle-terrain coupling posture by using the simplified structural 
model of ACV and the elevation index model. In this module, we 
introduce the posture constraints previously described, linking the four 
tire contact points 

[
Plf ,Prf ,Plr,Prr

]
with predictions of vehicle motion 

posture. Additionally, to improve the solving efficiency, we employ a 
binary approximation method to simplify the solution process.

To ensure consistency, we set the lookahead point as the vehicle's 
front axle pivot point for path planning, which is denoted as Pf . Using 
the kinematic equations outlined in Section 2.3, we determine the planar 
coordinates of Ṕ f and its heading θf along the future trajectory. Through 
projection relationships, we establish the symmetrical positioning of Plf 

and Prf relative to Ṕ f . Assuming a roll angle φf for the vehicle's front axle 
in 3D space, the 2D projection errors of the tire contact points on the 
ground are determined below: 
⎧
⎪⎪⎨

⎪⎪⎩

ΔDfx =
W
s

cosφf sinθf

ΔDfy =
W
s

cosφf cosθf

(14) 

where W denotes the half-wheelbase of the vehicle, a constant value, 

and s represents the scaling factor aimed at standardizing the di
mensions of the map and the vehicle parameters.

The 2D index coordinates of the tire contact points can further be 
determined below: 
⎧
⎨

⎩

(
xlf , ylf

)
=

(
xf − ΔDfx, yf + ΔDfy

)

(
xrf , yrf

)
=

(
xf + ΔDfx, yf − ΔDfy

) (15) 

By combining Eq. (4), the elevation values can be determined: 
⎧
⎨

⎩

zlf = f
(

xlf , ylf

)

zrf = f
(

xrf , yrf

) (16) 

Corresponding to Eq. (12), a correlation between map elevation 
indices and vehicle ground pose can be established. To address this 
correlation, we approximate φf within the range 

[
φfmin,φfmax

]
, allowing 

for error εr. The iteration termination constraint is defined as: 
⃒
⃒
⃒
⃒
⃒
⃒
arcsin

⎛

⎝
f
(

xlf , ylf

)
− f

(
xrf , yrf

)

2W

⎞

⎠ − φf(n)

⃒
⃒
⃒
⃒
⃒
⃒
< εr (17) 

where φf represents the near-optimal roll angle of the front vehicle body 
within the permissible error if the n-th iterated angle φf(n) satisfies the 
relationship.

Given the known articulation angle γ, the heading angle θr of the rear 
vehicle body can be similarly determined. However, due to the simul
taneous presence of pitch angle α and roll angle φr, the vehicle's rear 
wheel contact points, Plr and Prr, require calculation with the aid of the 
projection point of the rear axle pivot on the ground, denoted as Ṕ r. The 
coordinate relation between Ṕ r and Ṕ f is as follows: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xf − xr =

(
lf
s
cosθf +

lr
s
cosθr

)

cosα

yf − yr =

(
lf
s
sinθf +

lr
s
sinθr

)

cosα
(18) 

where the pitch angle range can be set as [0,αmax] due to the symmetry of 
the cosine function.

Simultaneously, with the rigid connection between the front and rear 
vehicle bodies, the rear wheel swing angle is based on the adjustment of 
φf(n) of the front vehicle body. Referring to Eqs. (13) and (14), the co
ordinates of Ṕ lr and Ṕ rr under 2D projection can also be determined. 
Consequently, the criterion for φr(n)) is as follows: 
⃒
⃒
⃒
⃒arcsin

(
f(xlr, ylr) − f(xrr, yrr)

2W

)

− φr(n)

⃒
⃒
⃒
⃒ < εr (19) 

The maximum limit angle of the rear axle, denoted as Δφ, is deter
mined through calibration experiments as described in Section 3.3 and is 
presented in Table 1. Therefore, the index range for the rear wheel roll 
angle can be defined as 

[
φf(n) − Δφ ,φf(n) + Δφ

]
. Based on the concept, 

the solution logic of the designed module is illustrated in Algorithm 1. 
To estimate the coupled posture, we employ a geometric bisection 
method to approximate the four-wheel contact points of an ACV, thus 
exploring the most probable ground poses of the vehicle relative to the 
terrain. We address algorithm efficiency and accuracy from three per
spectives below. 

• Firstly, roll and pitch angles are set to 0◦ as the starting point for
iteration at initialization.

• Secondly, permissible error is compensated by iterating m0 times
until the difference between the solution error and index error of 1/2
falls within the range of εr.

Parameters Unit Value

Distance from articulated point to front axle (lf) m 1.68
Distance from articulated point to rear axle (lr) m 1.87
Half-track width (W) m 0.29
Tire radius (R) m 0.23
Maximum steering angle (γ) rad 0.52
Maximum swing angle of rear body (Δφmax) rad 0.34
Maximum velocity (v) m•s− 1 5.00
Maximum angular velocity (ω) rad•s− 1 0.25

Table 1 
Detailed parameters of the scale prototype.



• Thirdly, a forward constraint function is devised for considering
historical pitch angle trends to maintain consistency between the
solved pose and the vehicle's forward motion pattern.

Al
gorithm 1Vehicle-Terrain coupling attitude solver

3.5. Multi-objective evaluation function

In this section, we enhance the assessment of proximity capability 

and obstacle avoidance capability by considering the motion charac
teristics of ACVs. Simultaneously, indicators of vehicle motion stability 
under coupled terrain stimuli are incorporated into the evaluation 
function, facilitating the selection of more stable motion paths by the 
algorithm. The specifics of each sub-function are as follows.

Proximity capability: For articulated vehicles, the angle difference 
between the future heading angle of the front vehicle body and the 
target orientation, along with the 2D straight-line distance from the 
predicted trajectory to the target position, collectively determine the 
vehicle's capability to approach the target. We improve the projection 
distance to quantify the vehicle's ability to approach the target within 
different predicted trajectories: 

Jheading(i) =
∑m

t=1

⃒
⃒PTP(t)

⃒
⃒sin

(
θT(t) − θf(t)

)
(20) 

where i denotes the trajectory number corresponding to different γ̇ 
values, m represents the prediction step size, PT denotes the 2D co
ordinates of the target point, and P(t) represents the 2D coordinates of 
the predicted position at time t. θT(t) and θf(t) respectively represent the 
azimuth angle from the predicted point to the target position and its own 
heading angle.

Obstacle avoidance capability: Due to the articulated structure of 
ACVs, we evaluate the obstacle avoidance capability of the predicted 
trajectory by defining the distance between the front and rear vehicle 
bodies and the nearest obstacle. Considering the simplified structure of 
the dual bodies, denoted as Pf and Pr, representing the 2D distances to 
obstacles, and setting the vehicle's safety avoidance threshold as dmin, 
the evaluation function is formulated as: 

Jdist(i) =
∑m

t=1

1
[
min

( ⃒
⃒PobstPf(t)

⃒
⃒ ,
⃒
⃒PobstPr(t)

⃒
⃒
)
− dmin

] (21) 

where Pobst represents the coordinates of the nearest obstacle, and the 
selection of dmin ensures that dmin > W + d/2 to guarantee an adequate 
safety distance.

Motion stability: The vehicle's motion stability can be intuitively 
designed using the variation in pitch and roll angles along the trajectory. 
In the solution, 

(
α,φf ,φr

)
at each trajectory point can be estimated based 

on the contact point. Therefore, the evaluation function is constructed 
by calculating the changes in pitch and roll angles of the predicted 
posture at time t, specifically: 

Jstable(i) =
∑m

t=1
c1
(
α(t) − α(t− 1)

)
+ c2

[(
φf(t) − φf(t− 1)

)
+
(
φr(t) − φr(t− 1)

) ]

(22) 

where c1 and c2 are weighting factors. Typically, α reflects the steepness 
of the terrain, while φf and φr reflect its ruggedness. The difference 
between the two can be balanced in the emphasis of the evaluation 
function by varying c1 and c2 (accordingly)

Furthermore, due to the disparate dimensions and wide ranges of 
these sub-functions, we normalize them to ensure that each sub-function 
contributes to the total objective function in the predetermined pro
portion. This prevents any single sub-function from exerting an undue 
influence on the total objective function due to its large numerical range. 
By incorporating these sub-functions into a unified planning function 
according to different weighting factors, the complete expression can be 
formed below: 

J(i) = μ Jheading(i)
∑R

i=1
Jheading(i)

+ λ

⎛

⎜
⎜
⎜
⎝

Jdist(i)
∑R

i=1
Jdist(i)

⎞

⎟
⎟
⎟
⎠

+ δ
Jstable(i)

∑R

i=1
Jstable(i)

(23) 

where R represents the total number of paths. The optimal trajectory is 

Fig. 6. Iterative planning process of the motion planner.



determined by accumulating comparisons until J(i) = Jmin. The 
weighting coefficients (μ, λ, δ) determine the relative importance of each 
objective in the total objective function.

This objective function is primarily designed for the effective 
determination of smooth trajectories in the vehicle-terrain coupling 
module. In practical applications, additional constraints such as accel
eration and turning radius can be supplemented. Moreover, the posi
tions of obstacles, target locations, and the vehicle's own state (such as 
velocity and angular velocity) are constantly changing in dynamic en
vironments. Therefore, different weighting combinations can be 
employed to adjust the trajectories based on specific application sce
narios and requirements. The experiments will be conducted to validate 
differences in trajectory solutions under various weighting combina
tions, suggesting more flexible strategies for adjusting planning expec
tations in practical applications.

3.6. Planner integration design

To ensure effective integration of the map model, motion primitives, 
coupled posture solver, and multi-objective evaluation within the mo
tion planner, a systematic framework was designed based on the itera
tive mechanism to coordinate the interaction of these modules, as 
illustrated in Fig. 6. According to the real-time vehicle states, the 
planner first generates 2D candidate trajectories through the sampled 
window based on motion primitives. Then, these 2D trajectories are 
expanded into continuous 3D motion states using the coupled vehicle- 
terrain posture solver. Finally, both the 2D and 3D states of the candi
date trajectories are evaluated using a multi-objective function to select 

the optimal trajectory for execution. This process is iteratively per
formed between the start and goal points, gradually accumulating short- 
term trajectories to form a complete motion path.

With this framework, the proposed motion planner can select the 
optimal motion primitives in real-time during vehicle movement, 
ensuring that ACVs smoothly reach the target location from the starting 
location through continuous trajectory connections. To align with this 
real-time dynamic planning mechanism, the planner algorithm is 
divided into four distinct functional components, as shown in Fig. 7. The 
functionality of these four components is described as follows:

Preparation preprocess: In this module, a priori terrain elevation 
models are imported to provide quantified environmental parameters 
for the planner. Concurrently, the kinematic model of articulated vehi
cles and a 3D structural model are established in advance to form the 
basis for computing vehicle motion trajectories.

Motion trajectory iterative computation: Serving as the planner's 
main function, this module iteratively computes, filters, and implements 
candidate vehicle trajectories based on a dynamic sampling window. 
The computation phase incorporates a vehicle-terrain coupling posture 
solution module to extend the representation of the vehicle's 3D posture 
along the driving trajectory. During the filtering phase, obstacle avoid
ance distances and travel distances are integrated under a normalized 
function designed for multi-objective evaluation to finalize trajectory 
scoring.

Vehicle-terrain coupling posture solution: This core functional 
module of the planner enables the perception of 3D motion trends, 
detailed in Section 3.4. It employs preloaded terrain elevation index 
models and vehicle 3D structural models to jointly calculate the 

Fig. 7. Logical framework diagram of the overall algorithm.



grounding points of all four tires, thereby deriving changes in pitch and 
roll of the articulated vehicle body along the continuous trajectory.

Normalize evaluation: This module is responsible for the final 
trajectory selection. It normalizes parameters of different dimensions 
based on varying weights and selects execution trajectories based on 
their rankings.

During the planning process, trajectory data and vehicle states are 
primarily transferred and iterated in the form of arrays and matrix 
blocks, with data scale determined by the dynamic sampling window, 
step size, and update timing. Detailed real-time testing data is available 
in Table 5 of Section 5.3. It can be said that when deployed in actual 
systems, this planner exhibits high real-time performance, meeting the 
unmanned needs of low-speed engineering vehicles.

4. Implementation and deployment

4.1. ACV prototype platform

To evaluate and validate the proposed planner, a scale-down pro
totype with articulated chassis was deployed, which is shown in Fig. 8. 
Detailed vehicle parameters are provided in Table 1. The prototype's 
posture measurement system includes rotary encoders and RTK/INS. 
Rotary encoders at articulation points measure the angle, while the 

Xsens MTi-680G RTK/INS measures heading and position. The Xsens 
MTi-300-AHRS, installed at the rear axle pivot point and front vehicle 
body, measures body posture. A Velodyne VLP-16 LiDAR on the support 
pole captures terrain point cloud data.

The master computer utilizes the Ubuntu 18.04 operating system and 
is configured with an Intel i7-13650HX processor featuring 14 cores and 
a clock speed of 4.9 GHz, along with 32 GB of memory. Additionally, it is 
equipped with a Nvidia RTX4050 graphics card, possessing 6 GB of 
VRAM. The proposed planner is developed on the ROS platform inte
grated within the master computer and controls the prototype's move
ment via CAN communication. The prototype operates based on a well- 
established set of PID control logic. Notably, during the operation of the 
planner, the GPU is not utilized for computations; the CPU alone suffices 
to achieve rapid processing speeds.

4.2. Experimental scene and point cloud map

Fig. 9(a) shows the scene used for actual testing, which are early 
construction sites at the Xiang'an campus of Xiamen University. Fig. 9(b) 
shows a 3D point cloud map (83.27 m × 95.14 m) created by using drone 
aerial photography [48]. Through point cloud classification and filtering 
algorithms, few objects such as trees and weeds were removed from the 
map, retaining only the clear basic structure of the ground. The collected 

Fig. 8. Deployment of experimental prototype and planner.

Fig. 9. Experimental scene and data.



point cloud contains a total of 9,367,717 points, averaging 1173 points 
per square meter. While ensuring accuracy for terrain settlement with 
tires, we down sampled appropriately to expedite solving the elevation 
index model [49].

4.3. Calibration of IMU mounted on vehicle

The IMUs installed on the front and rear vehicle bodies were cali
brated using a designated 6-degree-of-freedom Stewart platform [50], as 
shown in Fig. 10. Comparing platform-recorded data with IMU mea
surements, we saw the repeat measurement errors of 1.05◦ for pitch and 

0.86◦ for roll, which meet practical measurement needs. Additionally, 
validation was conducted for the maximum constraint angle for vehicle 
roll due to the limit block, confirmed at ±20◦. Exceeding this angle 
difference between front and rear roll angles could cause the front 
wheels to lift off the ground, leading to out of control. Thus, during the 
planning process, this angle could serve as a cutoff point, with trajectory 
costs set to infinity when the front and rear roll angles differ over 20◦.

4.4. Baseline of planner models

In terms of performance comparison of planners, we primarily 
investigated SOTA planning methods suitable for 3D unstructured en
vironments that have been developed in recent years. The baselines and 
parameters of these methods are detailed in Table 2, sourced from the 
open-source community on GitHub. In terms of map inputs, we adjusted 
the input formats of the collected terrain point cloud models to match 
their map model inputs, such as artificial potential fields, 3D model, etc. 
Concurrently, we also modified the preset parameters of certain algo
rithms, such as Octo-RRT, BenchNav, and DEM-AIA, to ensure execut
ability. The trajectories produced were analysed and compared through 
both simulation and actual vehicle operations.

5. Experimental results and analysis

In this section, the effectiveness of the proposed planner for ACVs
operating on unstructured terrain is comprehensively analysed. Firstly, 
the accuracy metrics of the elevation index model are quantitatively 
evaluated in Section 5.1. Next, the prediction accuracy of ground con
tact points and vehicle attitude is validated by comparing data with 
model calculations in Section 5.2. Building on these, Section 5.3 vali
dates the planner's overall performance under various weights and 
configuration parameters. Section 5.4 compares the planner's obstacle 

Fig. 10. Calibration experiment.

Table 2 
Details and parameters of the compared planners.

Method Category Map type Metrics Validation

DEM-AIA
Graph search- 
based

DEM
Distance, posture 
angle, run-time

Simulation

T-Hybrid 
A*

Graph search- 
based

Hybrid 
map 
(Point 
cloud- 
based)

Distance, 
avoidance, 
posture angle

Field testing 
(Wheeled 
Robot)

Octo-RRT
Sampling- 
based

Octo map 
(3D 
model- 
based)

Distance, 
avoidance, 
posture angle

Field testing 
(Off-road 
vehicles)

BenchNav
Sampling- 
based

DEM
Distance, 
avoidance, 
Success rate

Simulation

Modified 
APF

Optimization- 
based

APF Distance and 
Slope of waypoint

Field testing 
(Tracked 
robot)

Modified 
TEB

Optimization- 
based

3D model Smoothness and 
Run-time

Simulation

Fig. 11. Terrain mapping and measurement.



avoidance capabilities and details. Finally, Section 5.5 offers a 
comprehensive comparison of the planner's terrain adaptability in actual 
scenarios.

5.1. Elevation map accuracy assessment

Fig. 11 shows the process of terrain mapping and measurement we 
conducted. More specifically, Fig. 11(a) shows actual unstructured 
terrain, Fig. 11(b) presents a terrain point cloud model, and Fig. 11(c) 
depicts terrain elevation distribution. We used a laser rangefinder to 
sequentially measure the actual distance values between each surveyed 
validation point and the reference point Od, compared them with the 
point cloud map distance errors. Linear and elevation errors for each 
point were computed.

Table 3 shows the statistical results. As can be seen, the average 
linear distance error of three check point groups is 4.51 cm in both real- 
world environments and point cloud maps, meeting centimetre-level 
positioning accuracy standards. Moreover, in characterizing elevation 
discrepancies, the expected elevation error of the terrain index model for 
actual distance differences is 5.78 cm. The overall error distribution, as 
indicated by SE = 1.13 and RMSE = 6.50, shows a uniform distribution 
of errors, with higher error values primarily occurring in sparsely 
distributed point clouds. Considering prototype parameters, the 
maximum roll error caused by elevation errors is less than 5◦, and the 
maximum pitch angle error is less than 3◦, falling within an acceptable 
range for vehicle motion control errors.

5.2. Vehicle posture estimation accuracy

To evaluate the effectiveness of the vehicle-terrain coupling posture 
prediction method, we controlled our ACV moving at a speed of 1 m/s in 
the experimental terrain and recorded its motion trajectory that com
prises 2D position coordinates from onboard GNSS, vehicle posture 

information from IMU, and angular information from the articulation 
point encoder, as shown in Fig. 12(a). Using these trajectory data, the 
tire contact points were determined for this segment of trajectory by 
using vehicle-terrain coupling solving module. Results in Fig. 12(c) and 
(d) demonstrate that the inferred tire contact points accurately conform
to terrain changes, refining the actual motion trajectory of ACV 
prototype.

Furthermore, we compared ground attitudes with IMU-measured 
attitudes. Utilizing the vehicle attitude model from Section 3.4, we 
calculated pitch and front/rear roll angles. Fig. 13 shows a comparison 

Checkpoint group Linear distance error Elevation error

Mean SE RMSE Mean SE RMSE

1 3.86 0.71 2.23 5.53 2.33 7.39
2 5.72 0.96 2.90 6.08 2.26 7.16
3 3.95 1.27 4.03 5.72 1.44 7.17
Average 4.51 0.58 3.31 5.78 1.13 6.50

Fig. 12. Predicted results of wheel-ground contact points for motion trajectories.

Fig. 13. Comparison of predicted posture with IMU measurement results.

Table 3 
Quantitative evaluation of terrain measurement errors.



of predicted postures with IMU measurement results. As can be seen, 
predicted trends closely matched measured results. To quantify errors, 
we sampled IMU data for uniform frequency, resulting average quanti
zation errors of 5.53◦, 6.21◦, and 4.84◦. Due to potential temporal 
matching errors, measured results might slightly overestimate over 
actual prediction errors. However, this does not affect our assessment of 
vehicle-terrain coupling attitudes. Overall, calculated attitude changes 
closely match actual motion trends, providing reasonably accurate 
predictions of vehicle travel attitudes on unstructured terrain.

5.3. Planning performance evaluation

To validate the effectiveness of the proposed motion planning algo
rithm, we conducted planning tests in typical unstructured environ
ments with potholes, slopes, and obstacles. Fig. 14 shows a comparison 
of planning results under different stability weights. It reveals that 
planning trajectories without terrain influence considerations (δ = 0) 
reach the destination by the shortest distance but overlook terrain- 
induced travel risks, evident in the severe jitter and rough trajectories 
of δ = 0 as shown in Fig. 14(b) and Fig. 14(c). The proposed algorithm 
optimizes this local roughness phenomenon by setting different stability 
weights δ. For instance, trajectories with δ = 0.2 and δ = 0.4 sacrificed 

Fig. 14. Comparison of planning results under different stability weights.

Table 4 
Performance metrics of planned trajectories under different stability weights.

Planner Without 
terrain

With terrain

Stability weight δ=0 δ=0.2 δ=0.4 δ=0.6

Scene 
1

Distance (m) 17.15 17.57 18.30 18.63
Mean/max 
pitch (◦)

4.11/14.69 2.73/ 
6.86

1.98/ 
5.64

1.87/ 
6.69

Mean/max roll 
(◦)

11.54/29.94 7.17/ 
17.26

6.61/ 
15.56

5.72/ 
15.81

Scene 
2

Distance (m) 19.55 20.16 22.33 40.89
Mean/max 
pitch (◦) 5.76/15.98

3.84/ 
16.44

4.68/ 
13.71

3.95/ 
22.91

Mean/max roll 
(◦)

9.38/28.81
4.32/ 
13.02

4.05/ 
11.53

4.22/ 
13.51

Scene 
3

Distance (m) 21.56 21.99 23.87 25.58
Mean/max 
pitch (◦)

4.61/12.65 3.58/ 
12.29

2.65/ 
7.61

3.91/ 
20.12

Mean/max roll 
(◦) 8.89/24.68

5.15/ 
15.68

5.02/ 
15.14

3.95/ 
19.83

Table 5 
Planner real-time performance test results.

Sampling parameters Single motion deduction Iterative computation

Steering resolutions(◦) Step sizes(s) Predict range(s) Trajectory points Grounding points Compute 
Time(ms)

Total trajectories Total time(ms)

1 0.2 3 16 64 10.88 25 171.42
1 0.3 3 11 44 9.78 25 160.57
1 0.2 4 21 84 13.85 25 228.53
2 0.2 4 21 84 13.76 13 156.55



travel distance to enhance ground contact smoothness to varying de
grees. However, setting a higher smoothness weight did not always 
guarantee effectiveness. For instance, at δ = 0.6, the algorithm initially 
prioritized trajectory smoothness in some scenarios, but made choices 
closer to the goal as travel progresses.

Combining IMU measured data, we further quantified the perfor
mance metrics of planned trajectories under different weight settings. 
Fig. 14(b) depicts actual data results, reflecting stability in early attitude 
angles at δ = 0.6 but significant instability later. Hence, we prefer δ 
settings within [0.2, 0.4]. Table 4 shows the advantages of stabilizing 
vehicle roll angles at δ = 0.2 and δ = 0.4, with roll angle means mostly 
stable within 5◦ and maximum roll angles not exceeding 20◦, with 
almost no abrupt changes. Although vehicle pitch angle variations are 
primarily terrain-dependent, the algorithm can stabilize pitch angles 
amidst undefined terrain features. Table 4 also shows the reduced 
average/maximum pitch angles compared to the original planned tra
jectories. Overall, in three typical scenarios, our proposed algorithm has 
significantly enhanced vehicle smoothness by slightly extending travel 
trajectories when δ is within [0.2, 0.4].

Furthermore, we conducted real-time tests under various parameter 
configurations to validate the computational efficiency of the planner. 
Notably, since the current prototype utilizes PID control, constraining 
speed can lead to control instability. Therefore, under the condition of 
constant speed, our algorithm primarily samples various steering reso
lutions, step sizes, and predict range. The articulated steering angle is 
constrained between [− 27.5◦, 27.5◦], with angular acceleration and 
vehicle dynamic parameters available in Table 1. The planner's runtime 
on the ROS platform, as shown in Table 5, does not exceed 250 milli
seconds under pure CPU operations. Considering the overall vehicle 
system's response delay, it can support up to a 3 Hz state update rate for 
real-time motion planning. However, given the low-speed characteris
tics of engineering vehicles, the algorithm typically samples using a 1◦

Fig. 15. Comparison of obstacle avoidance performance across different planner.

Table 6 
Performance metrics of different obstacle avoidance trajectories.

Planner T-Hybrid 
A*

Octo- 
RRT

BenchNav Ours 
(No 
nodes)

Ours 
(Nodes 
guide)

Experiment 1 of Fig. 15(a)
Distance (m) 28.21 28.72 28.84 30.64 29.78
Min avoid 

distance (m)
0.44 0.52 0.63 0.45 0.80

Mean/max 
pitch (◦)

8.61/ 
41.83

13.81/ 
47.25

14.09/ 
40.54

5.97/ 
24.36

7.46/ 
21.42

Mean/max roll 
(◦)

20.13/ 
43.23

22.10/ 
41.13

21.23/ 
37.68

14.86/ 
33.63

16.49/ 
35.91

Experiment 2 of Fig. 15(b)
Distance (m) 25.90 26.19 26.30 27.68 26.50
Min avoid 

distance (m)
0.67 0.50 0.52 0.72 0.50

Mean/max 
pitch (◦)

5.28/ 
19.31

4.98/ 
15.14

5.04/ 
16.89

4.18/ 
11.20

5.03/ 
11.61

Mean/max roll 
(◦)

6.30/ 
18.55

7.46/ 
17.62

8.17/ 
18.82

4.38/ 
12.13

4.71/ 
14.07

Experiment 3 of Fig. 15(c)
Distance (m) 27.38 27.09 28.80 – 27.81
Min avoid 

distance (m)
0.61 0.65 0.55 0.76 0.65

Mean/max 
pitch (◦)

10.86/ 
26.12

9.11/ 
24.84

9.98/ 
32.41

6.65/ 
21.96

7.62/ 
22.98

Mean/max roll 
(◦)

10.35/ 
31.55

5.82/ 
24.84

5.35/ 
12.05

4.01/ 
14.41

4.49/ 
13.61



resolution, 0.2 s step size, and 3 s prediction range, and employs a state 
update interval of 0.5 Hz to 1 Hz to maintain the effective execution of 
planned trajectories.

5.4. Comparative evaluation of obstacle avoidance

To evaluate the obstacle avoidance capabilities of our planner across 
various rugged terrains, we conducted comparative experiments on a 
randomly generated obstacle map with algorithms suited for 3D ter
rains: T-Hybrid A*, Octo-RRT, BenchNav, and our planner (δ = 0.3). As 
depicted in Fig. 15, these algorithms, benefiting from the advantage of 
global traversal, all achieved distance-optimal obstacle avoidance tra
jectory planning. However, these methods focus solely on optimizing 
travel distance within a 3D space and do not adequately address the 
details of local travel stability, such as frequently navigating over slopes 
or pits with large posture angles. In contrast, our proposed planner 
prioritizes vehicle stability during local obstacle avoidance in terrains 
with multiple obstacles, which, in some instances, may lead to entrap
ment in dead zones, as shown in Fig. 15(c). Therefore, in complex 
obstacle environments, it is necessary to segment journeys under a 
global perspective, such as guiding the planner with key nodes from 
RRT. Results indicate that under the guidance of global nodes, our 
planner can also achieve a highly stable global trajectory by sacrificing 
some travel distance.

Table 6 displays the measurement indices for the trajectories. While 
T-Hybrid A*, Octo-RRT, BenchNav achieved globally optimal distances
for 3D trajectories, they compromised the stability of average posture

angles. In contrast, although our planner had a certain failure rate, its 
local trajectories were more stable. Moreover, according to the statistics 
in the table, under node guidance, our planner can afford an additional 
1–3 m of travel per 30 m to reduce the average change in attitude angle 
by 2◦ to 8◦. Additionally, integrating the data from Table 6 with trends 
from Fig. 16 reveals that in three obstacle avoidance scenarios, the 
highest pitch and roll angles occurred at locations with drastic terrain 
changes. Compared to other algorithms, our planner effectively reduced 
the maximum posture angles by increasing the obstacle clearance dis
tance, thereby enhancing safety.

Furthermore, we detailed the trajectory selection specifics of our 
algorithm under two local scenes in Fig. 16(a) and (b), and quantita
tively analysed the proportion of the posture scores relative to the total 
scores during the trajectory planning process in Fig. 16(c), thereby 
demonstrating the comprehensive assessment performance of the plan
ner's evaluation function in local trajectory planning. Overall, the pro
portion of posture scores dynamically fluctuated throughout the 
evaluation, averaging approximately 40.13 % and 42.93 %. The motion 
trends depicted in Fig. 16(a) and (b) reveal that reductions in the posture 
score proportion primarily occur during deviations in course or prox
imity to obstacles. This indicates that the established scoring function is 
capable of effectively coordinating the dynamic relationships among 
multiple objectives in local planning.

5.5. Comparative evaluation and practical testing

To evaluate trajectory performance under distinctive design rules, 

Fig. 16. Dynamic planning details in local scenarios.



our proposed algorithm was compared against three planning algo
rithms suitable for unstructured terrain. In steep slope environments 
depicted in Fig. 17(a), TEB, APF, and DEM-AIA adapted well to 3D 
terrain, maintaining trajectory smoothness in 3D space with fixed roll 
and pitch angles. However, this may pose risks in real-world scenarios as 
sudden loss of control in any attitude can lead risks to rollover. Our 

proposed algorithm adopted a strategy of gradual ascent to balance 
pitch and roll angles, effectively separating their high-value periods. It 
demonstrated advantages in slope traversal by not blindly avoiding 
obstacle weights but actively adjusting vehicle attitude through trajec
tory prediction based on motion models, as shown in Fig. 17(b).

Quantitative data in Table 7 highlights our algorithm's advantage in 
maintaining a dynamic balance between travel distance and attitude 
angles. Our proposed algorithm has demonstrated stable performance 
across different scenarios, particularly keeping the vehicle at gentle roll 
angles for most of the time (Mean Roll = 5.42◦ and 3.62◦). However, this 
trajectory derivation was heavily reliant on model computation 
compared to TEB and APF, exhibiting low sensitivity to distance. Unlike 
TEB and APF, our algorithm's computation time accumulated with travel 
progress, favouring local planning over global planning.

Furthermore, we conducted tracking tests on these four planned 
paths using actual vehicles to verify their executability. Figs. 18 and 19
show that the motion trajectories derived from the proposed method 
exhibited superior tracking accuracy and speed stability compared to 
other methods. Repeated experiments reveal that the tracking error of 
ACVs on unstructured terrain was caused by the instability of vehicle 
speed and body attitude during steering.

6. Conclusions

In this paper, a motion planner is proposed to address the stability
challenges of articulated construction vehicles (ACVs) operated on un
structured terrains. It can enhance the adaptability of ACVs to complex 

Fig. 17. Comparison of results from different planners.

Table 7 
Comparison of performance metrics across different planner.

Planner Modified 
TEB

Modified 
APF

DEM-AIA Ours 
(δ=0.3)

Experiment 1 of Fig. 17(a)
Distance (m) 23.62 25.81 25.43 24.86
Runtime (ms) 2294 2753 2301 5210
Explored nodes 187 364 251 473
Mean/max pitch 

(◦) 6.48/27.35 8.66/20.94 9.34/32.95 6.06/23.08

Mean/max roll (◦) 8.19/28.98 6.36/26.75 13.38/ 
18.71

5.42/ 
19.68

Experiment 2 of Fig. 17(b)

Distance (m) 43.68 59.29 47.25 37.25
Runtime (ms) 2423 2975 3865 6772
Explored nodes 215 481 363 589
Mean/max pitch 

(◦) 7.08/18.48 6.38/18.58 7.41/22.16 4.54/19.31

Mean/max roll (◦) 7.41/20.81 5.80/20.06 5.62/20.24 3.62/ 
12.32



real-world environments by quantitatively evaluating terrain-vehicle 
interactions. Field experiments validate three key outcomes: 

1) The planner's terrain excitation and vehicle response solver accu
rately forecasts the 3D motion postures of ACVs, providing the
planner with quantifiable state information.

2) The planner's modular framework, which ties together trajectory
sequences, posture representations, and evaluation functions, en
sures that the system remains responsive while maintaining a
streamlined workflow.

3) By normalizing weights across different evaluation objectives (travel
distance, obstacle avoidance, and motion stability), the planner can
dynamically balance competing priorities on a unified scale.

Despite its strengths, the planner has some limitations. Being based
on the dynamic window approach, it lacks global environmental 
awareness, which can lead to local dead ends in obstacle-rich environ-
ments. Future work will focus on incorporating global guidance to better 
coordinate local and global planning objectives. Additionally, the cur-
rent system is optimized for hard, unstructured surfaces and may 
struggle on muddy or soft terrain due to inaccuracies in posture pre-
diction. Future research will explore new measurement methods to 
assess ground firmness and slip rates, enabling better performance on 
challenging terrain and improving the handling of fully loaded vehicles 
with high inertia.

Fig. 18. Actual tracking errors in different scenarios.

Fig. 19. Execution speed variation curve.
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