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ABSTRACT

In this paper, a terrain-adaptive motion planner is developed specifically for articulated construction vehicles (ACVs) to address instability issues caused by
elevation changes on unstructured construction sites—challenges that traditional 2D motion planners struggle to manage effectively. The proposed planner
adopts a modular framework, incorporating a terrain elevation model, an articulated vehicle kinematic model, and a posture response model. These models
collaboratively capture the dynamic interactions between the vehicle and the terrain. The planner utilizes a multi-objective evaluation function to enhance the
vehicle's 3D motion stability, especially in challenging terrains. By considering real-time vehicle-terrain interactions, this function estimates and optimizes the
vehicle's stability. The planner's effectiveness is validated through field tests with a scaled- down ACV prototype, demonstrating significant improvements in
stability and confirming its potential for practical application on unstructured terrains.
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1. Introduction

Articulated construction vehicles (ACVs) like loaders, dump trucks,
and graders are designed with highly manoeuvrable articulated chassis,
enabling them to operate effectively in complex construction sites [1].
However, these vehicles often face disturbances from uneven terrain
[2], necessitating advanced motion planners to manage the challenges
of large-scale construction projects [3,4]. Existing motion planners for
autonomous vehicles, like map-based [5,6], model-based [7,8], and
sampling-based methods [9,10], primarily focus on ensuring smooth
motion trajectories in 2D structured road scenarios. These planners are
inadequate for addressing the instability risks ACVs encounter in 3D
unstructured terrains [11,12]. For example, in rugged environments
such as ravines and slopes, the uneven ground can cause the front and
rear bodies of an ACV to twist due to the differential contact of the tires.
During large-angle avoidance manoeuvres, this torsion can destabilize
the vehicle's centre of gravity, leading to rollover and loss of control
accidents, as shown in Fig. 1.

To enhance motion planning capabilities for vehicles in unstructured
terrains, current research is progressing along two main paths: map-
guided and rule-constrained approaches. Map-guided planners use

detailed 3D terrain representations from high-definition maps [13], cost
maps [14], or digital elevation maps (DEMs) [15] to devise efficient
global search and sampling strategies [16]. Rule-constrained planning,
meanwhile, parameterizes the relationship between 3D terrain variables
(e.g., potential fields and slopes) and vehicle dynamic variables to create
rule constraints for smooth 3D trajectories [17,18]. While both ap-
proaches provide valuable insights for improving ACV stability in un-
structured terrains, they have notable limitations. Map-guided planners,
despite their detailed spatial representation, lack effective mechanisms
to assess instability risks arising from vehicle-terrain interactions.
Conversely, rule-constrained approaches, due to the complexity of their
parameterized functions, often reduce vehicle representation to a single
point, prioritizing smooth point-to-point movement over the stability of
the vehicle's driving posture.

Motion planning methods based on the dynamic window approach
(DWA) have shown notable advantages in representing the relationship
between vehicles and their environment maps [19]. These methods
successfully integrate vehicle parameters, kinematic constraints, and
environmental data to sample feasible motion states, enabling the
planner to account for vehicle heading and movement trends over time,
thus improving responsiveness to dynamic environments [20].



Fig. 1. Typical unstable driving accidents of ACVs.

However, DWA's inherent focus on 2D space limits its ability to manage
the complexities of 3D motion dynamics, such as elevation changes,
vehicle posture, and stability. To overcome these limitations, further
research is needed to adapt DWA-based methods for 3D applications,
allowing them to manage the complexity of unstructured terrains and
dynamic vehicle-terrain interactions in 3D space.

Unlike conventional vehicles, ACVs utilize independent front sus-
pensions and specialized swing-rod rear suspensions, allowing different
pivoting within the vertical plane for uniform tire contact and enhanced
drive performance [21,22]. Stable motion planning for ACVs must
address complex challenges posed by unstructured terrain and variable
vehicle structures [23]. These challenges are due to the complicated
motion characteristics and spatial occupancy relationships caused by the
variability of vehicle structures and terrain randomness, which current
map-based 3D terrain features fail to effectively associate with ACV
motion posture. Additionally, the discrete continuity in 3D space of
articulated vehicle bodies demands high-dimensional stability solutions,
which current planners with low-dimensional smooth constraints cannot
adequately provide.

To address these challenges, we propose a motion planner that in-
tegrates terrain excitation and vehicle posture response to ensure stable
motion trajectories for ACVs on unstructured terrain. Building upon the
dynamic planning framework of the DWA, the planner further extends a
simultaneous solving mechanism that correlates vehicle posture with
terrain excitation, addressing the complex motion characteristics and
spatial representations that traditional ACV motion planning struggles
to accommodate. Furthermore, we incorporate quantifiable 3D posture
stability evaluations into the traditional evaluation function to
strengthen the stability constraints for the discrete spatial representation
of ACVs motion. By employing normalized weight allocation, we re-
establish a dynamic balance across multiple objective functions,
yielding a highly stable solution for ACV motion. The main contributions
of this work can be summarized here:

e A simplified ACV posture estimation method is proposed to stream-
line the correlations between terrain elevation, vehicle posture, and
motion retrieval, which is based on the geometric contact between
tires and terrain.

A multi-objective evaluation function has been redefined to
dynamically coordinate the reasonable proportion of constraints
across different dimensions, addressing the directional assessment of
ACV motion states.

A systematic planner framework with vehicle-terrain responses is
designed to coordinate the orderly interaction of variables during
planning iterations for supporting high-dynamic updates in motion
planning.

Extensive field experiments to verify the effectiveness of the pro-
posed planner.

Overall, this paper proposes a systematic planner design approach by
resolving the complex relationship between ACVs and unstructured
terrain, aiming to provide a promising solution for achieving more stable
and safer operations of ACVs under challenging terrain conditions. The

rest of the paper is structured as follows. Section 2 reviews related work
on advanced planner. The methodology of the proposed planner is
detailed in Section 3. Section 4 details the implementation of the field
experiments. Section 5 presents a comprehensive analysis of the per-
formance metrics and effectiveness of the proposed planner through
experimental validation. Finally, a brief conclusion and future work are
given in Section 6.

2. Related work

The primary objective of motion planning is to design trajectories
that meet predetermined goals within explicit constraints [24,25]. This
is particularly challenging for ACVs, as they must maintain prominent
levels of manoeuvrability and stability over unstructured terrains filled
with uncertainties. Consequently, the motion planning of ACVs requires
planners to accurately characterize the coupling between the vehicle
and the terrain, as well as to implement trajectory inference within an
expressible solution model. This section provides a detailed analysis of
the related work in terms of three aspects.

2.1. Planning research for construction scenarios

The diversity of engineering tasks requires vehicle planners to
possess high adaptability and flexibility, enabling them to consider
environmental constraints thoroughly and design targeted execution
plans. For instance, in indoor construction scenarios, Chen et al. devel-
oped a global path planning (GPP) system based on building information
model (BIM) and a physical engine to address the needs of indoor in-
spections, effectively facilitating efficient planning in multi-obstacle
environments [26,27]. Similarly, Zhu et al., guided by BIM, crafted
planning strategies linked with robotic construction action nodes to
optimize the execution of construction tasks [28]. Guided by the map
information from BIM, these methods effectively integrated the inter-
action between vehicles and the environment, significantly enhancing
operational efficiency in construction scenarios.

In outdoor scenarios, Kim et al. considered the environmental con-
straints and accessibility of excavators and dump trucks, developing a
comprehensive coverage path planning algorithm to guide the autono-
mous operations [29]. Wang et al., focusing on the dynamic character-
istics of articulated loaders, designed a path planning method guided by
precise coordinates of operational targets, significantly enhancing the
accuracy of the execution paths [30]. These methods, leveraging mature
2D navigation maps, have seen initial applications on flat terrains.
However, in unstructured terrain with unclear road boundaries and
complex terrain elevations, 2D maps struggle to provide the specific 3D
navigation capabilities akin to BIM. Therefore, the foundation for
autonomous planning in unstructured construction scenarios is the
establishment of a 3D navigation map that can accurately represent
terrain features.

2.2. 3D navigation map

As environmental perception technology advances, computer vision
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Fig. 2. Overall framework.

researchers are enhancing the representational capabilities of terrain
maps to better meet the demands of vehicle navigation. Lee et al. made
substantial contributions by identifying uneven road areas within 3D
images, which provides essential constraints for vehicle obstacle
avoidance planning [31]. Xue et al. [32] and Waibel et al. [33] effec-
tively segmented vehicle passable regions by applying local convexity
criteria to terrain point clouds. This approach enables the identification
of areas that are safe for vehicle passage based on the terrain's shape and
form. Cai et al. improved the multi-dimensional representation of maps
by integrating semantic, elevation, and occupancy grid data, creating a
real-time navigation map. This integration significantly enhances the
efficiency of planners in processing unstructured environments [34].
Although these approaches effectively utilize the 3D features of
terrain, they often overlook the strain responses of vehicles as they
navigate through varying terrains. Consequently, navigation maps
currently lack effective indexing mechanisms that would help planners
assess the risks associated with unstable driving conditions caused by
changes in terrain elevation. Addressing this gap is crucial. Fully
leveraging map information to predict and assess vehicle responses to
different terrains would enable planners to better adapt to these varia-
tions. Such advancements would ensure more stable and safer vehicle
navigation, particularly in unstructured or unpredictable environments.

2.3. Planner solution for 3D map

Currently, motion planners capable of integrating 3D map informa-
tion predominantly employ four foundational approaches: graph search-
based, sampling-based, optimization-based, and model-based strategies,
which are outlined below.

In graph search, Toscano-Moreno et al. introduced the DEM-AIA
planning scheme, addressing constraints related to off-road vehicle tilt
and terrain slope features [35]. Liu et al. developed the T-Hybrid A*
search method to optimize motion trajectories on 2.5D maps [36]. These
methods tend to design optimal trajectories at a regional global level,
which results in overlooking immediate vehicle state constraints and
fails to meet the demands of ACVs for stable driving postures in detail.

In sampling-based approaches, Ji et al. proposed an RRT solution

based on OctoMap to improve adaptivity to 3D vehicle motion [37], and
Endo et al. expanded the CL-RRT algorithm with the BenchNav method
to enhance traversability in 3D terrains [38]. Although they focused on
local map details as graph search-based methods did, their insensitivity
to vehicle states makes it challenging for ACVs to overcome terrain
disturbances.

Optimization-based methods focus on improving the smoothness of
local trajectories. Hu et al. utilized nonlinear optimal control to define
motion costs for differential steering vehicles, integrating these into an
artificial potential field function (APF) that accounts for terrain and
obstacles [39]. Chen et al. proposed the tracking error boundary (TEB)
to enhance adaptability to terrain disturbances [40]. While these ap-
proaches effectively optimize 3D trajectories by incorporating environ-
mental parameters and vehicle dynamics, they often simplify vehicles to
vector points to maintain solution efficiency. This simplification can
prioritize smoothness over the stability of autonomous and connected
vehicles' (ACVs) driving postures, potentially overlooking critical as-
pects of vehicle stability in detailed scenarios.

Model-based methods effectively incorporate vehicle state predic-
tion in representing driving posture details. Qi proposed a hierarchical
planning framework based on this concept, integrating spline-based
optimization and motion smoothness constraints deeply with the
sensitivity of DWA to vehicle motion states [41]. Yao explored a state-
energy graph based on motion primitives to constrain kinetic smooth-
ness of motion trajectories [42]. Chen et al. linked 3D terrain semantic
perception with DWA and designed RSPMP to achieve good results in
local path planning [43]. Although these methods could effectively
implement planning by combining vehicle status predictions in 2D map,
their insensitivity to 3D space results in numerous limitations when
applied to ACVs.

Overall, current motion planners have made some progress in man-
aging smooth motion planning of vehicles on unstructured terrains, but
further research and improvement are needed to simultaneously opti-
mize trajectories while ensuring stable motion postures.
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Fig. 4. Kinematic primitives of an articulated vehicle.
3. Methodology
3.1. Overall framework

Fig. 2 shows the overall framework for our proposed planner that
comprises four main components: elevation map index model, articu-
lated vehicle motion primitives, vehicle-terrain coupling posture solu-
tion, and multi-objective evaluation. Initially, an integrated 2D grid
navigation map and an elevation index model are developed based on a
multi-layer digital map framework to address the standardization of
discrete structures in 3D terrain point clouds. Concurrently, vehicle
motion primitives that account for articulated steering characteristics
are established, aimed at matching dynamic window sampling for tra-
jectory derivation. Building on this foundation, a vehicle-terrain
coupling module is established based on tire-ground contact relation-
ships to solve for vehicle motion posture under terrain excitation.
Finally, a multi-objective evaluation function is set up within the unified
planner to achieve vehicle trajectory planning, which could balance goal
orientation, obstacle avoidance, and steady-state safety.

3.2. Elevation map index model

Most maps used for autonomous vehicle planning are constructed
using point cloud data gathered from sensors such as LiDAR or depth
cameras, which accurately preserve 3D terrain information. However,
due to the discrete and unordered nature of the 3D points, map retrieval
is time-consuming. To address this, most autonomous systems employ a
bird's eye view (BEV) [44], projecting 3D point clouds onto a 2D navi-
gation map, Mpgy, to delineate passable areas. Mpgy can be represented
as follows:

mp; -+ Mw
Mgy = | ¢ : €y
Mgy - Mpw

where m;; represents the occupancy grid attribute. H and W denote the
number of grids along the X and Y axis of the map, respectively.

Let v;; denote the spatial grid at the position (i,j) on the map. Each
grid corresponds to a point cloud data scale of size hxw. The 2D planar
area corresponding to v;; is defined as

vij={xe€[(i-1)h,ih],y € [i—-1)w,iw]lie N",je N"} (2)

and m;; denote as:

mU:{

In our previous research [45], we proposed a method for safety se-
mantic segmentation to assess the traversability of v;;. This method
simplifies the marking of passable areas on the grid map by binary
obstacle segmentation of terrain features that affect vehicle movement.
However, the 2D map format is insufficient to represent the 3D terrain
structure. To bridge the gap between these dimensions, a map model is
developed based on the BEV that indexes elevation details, as shown in
Fig. 3.

This model builds upon existing BEV map localization by further
calculating the mean elevation using a vowelised point cloud indexed by
unit area. Suppose py = (xk, yk,zk) represents the coordinates of the k-th
point within a voxel. Mathematically, this model can be expressed as a
discrete ordered set of a solution function, specifically:

0 if v, is passable,
1 otherwis.

3

NUM,

Jo(n, Yn) = Al;Ule , Zk€{P1,D2; ***s DNum } ()]
where f, serves as an elevation indexing function on the BEV map at
coordinates (xn, yn), withn € N*. NUM represents the total number of
neighbouring point clouds.

Assuming the neighborhood size is defined by a grid with side length
d, the relationship between the point cloud sequence and the 2D domain
is as follows:

d d
pee{ Gyl =l < 5. ba il < 5 | )

where d is a constant value, empirically taken as half the width of a tire,
approximating the contact surface between the tire and the terrain. py
represents the coordinates within the neighborhood point clouds, and
the neighborhood size is defined by a grid with side length d, empirically
set to half the tire width, approximating the contact surface between the
tire and the terrain.
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3.3. Articulated vehicle motion primitives

Fundamentally, vehicle motion planning involves dynamically
evaluating future trajectories based on known motion states [46]. For
instance, DWA utilizes a kinematics-based sampling window to calculate
motion trajectories for traditional vehicles [47]. While this method is
more suited for differential or omnidirectional moving vehicles, it also
holds certain applicability for articulated vehicles that achieve differ-
ential steering of the front and rear tires through steering rod thrust,
provided certain steering constraints are met. Therefore, constructing a
vehicle kinematics model that accurately reflects the constraints of ar-
ticulated steering is crucial for calculating candidate trajectories.

As illustrated in Fig. 4, the articulated vehicle achieves steering by
controlling its articulation angle y between the front and rear bodies. We
represent the positions of the front and rear bodies by the midpoints of
the front and rear axles, Py and P,, respectively. 6rand 6, are the heading
angles of the front and rear bodies relative to the coordinate system. The
kinematic model can be established below:

X¢ = vcosty

Yp = vsinds )
o vsiny, + Ly
= lycosy, + 1

where v is the driving speed, (x'f, _y'f> are the velocity components of the
front body in the x and y directions, and 7 is the articulation angular
velocity, with counterclockwise direction being positive.

Unlike traditional sampling spaces, the vehicle's sampling window

here is [v,7]. Notably, as construction vehicles may experience unpre-
dictable loss of control at high speeds due to large inertia, they typically
operate at a steady low speed. In this study, we aim to maintain speed at
a controllable and regular value to mitigate the risk of loss of control.
To enhance the computational efficiency of the dynamic window
function, driving trajectories derived from the kinematic model are
typically represented in a discretized form. Assuming a time interval of
At, in the global coordinate system, the future trajectory points and
heading postures of the front body have the following relationship:

Xf(e+1) = Xf(r) + veosOy At

Yeer1) = Yo + vsinbe At
vsiny, + Ly A (7)

Orern) = s lycosy, + 1,
t T

Y1) = Y T VAL

The vehicle moves in a straight line when y,, = 0 and 7 = 0. The
vehicle performs a steering motion when y, # 0 or j# 0. During
steering, the motion of the rear body is influenced by the front body,
with steering control achieved through the articulation angle. Therefore,
based on the articulation structure between the front and rear bodies of
the vehicle, at any given moment ¢, the heading angles between the front
and rear bodies of the articulated vehicle satisfy:

Oy = 5y + 79 ®

Based on this, the 2D trajectory points of the rear body can be
derived from the coordinates of the front body:

)]

Xr(e) = Xg(e) — 1,€08Op(r) — 1,080y )
Yrioy = Ys) — sinbf — Lsinbrq

3.4. Vehicle-terrain coupling posture solution

This section introduces a posture perception module for predicting
3D vehicle motion trends. This module is critical for vehicle-terrain
interaction, with two stages: 1) Standardizing the yaw, pitch, and roll
by simplifying the multi-degree-of-freedom posture of articulated
bodies; 2) Implementing the multi-models coupling association and bi-
nary approximation to establish the solution relationship between the
tire and ground. This module enables the planning algorithm to realize a
transition from 2D to 3D space, quantifying vehicle posture changes
effectively.

3.4.1. Simplified representation of ACV posture

To characterize the motion posture of ACVs, we simplify the repre-
sentation of the front and rear body postures based on their rigid body
characteristics. As shown in Fig. 5, this simplified linkage model in-
volves the articulation point P, the front and rear axle support points Py
and P,, and the vehicle's four-wheel contact points [Py, Py, Py, Pr].
Additionally, to standardize posture calculations, we align the vehicle's
yaw angle with the 2D heading angles 6 and 6;, using the actual IMU's
north-east-sky (NES) coordinate system to match the map coordinates.

Assuming the radius of each tire is consistent and deformation is
negligible, we define P/;, Py and P’ as the ground projections of P, Py
and P,, respectively. Due to the rigid connection of the vehicle's inde-
pendent front suspension, Py, Py and P, share a coplanar relationship
with the ground contact points Py and P,s. With the articulation angle y

known, the coordinates of Py and P, are (xf7 yf,zf) and (Xr,Yr,2r)

respectively. The vehicle's pitch angle o can be expressed as the angle
between the plane formed by APyP,P, and the xy-plane.

Zf — 2r

VI + 1 + 2l cosy

a = arcsin (10)



Table 1
Detailed parameters of the scale prototype.

Parameters Unit Value
Distance from articulated point to front axle (Ip) m 1.68
Distance from articulated point to rear axle (I,) m 1.87
Half-track width (W) m 0.29
Tire radius (R) m 0.23
Maximum steering angle (y) rad 0.52
Maximum swing angle of rear body (A@max) rad 0.34
Maximum velocity (v) mes ™! 5.00

Maximum angular velocity (o) rades! 0.25

Additionally, as shown in Fig. 5(b), the front and rear axles can be
adjusted vertically within a certain angle due to the special articulated
rear suspension. Based on the ground contact relationship, the roll
anglesp; and ¢, can be characterized by the angles between the line

segments PyP,; and P,P, and the xy-plane, respectively. Assuming the
elevations of the four ground contact points are [z, 2, Zir, % |, @y and @,
can be defined as follows:

@y = arcsin (z'fz;vz'f) an
@, = arcsin (erz_wz")

Since P; and P, are the midpoints of PP, and P, P, respectively,
then:

2if + Zf
F=Tg
12
7er+zﬂ ( )
)

Substituting further into Eq. (10), the roll angle « can also be further
expressed as:

Zl'f‘FZ,f*er*er

2,/1f2 +1% + 2l¢l.cosy

Utilizing Egs. (11) and (13), the roll and pitch angles of articulated
vehicles are linked to the elevation indices of tire contact points,
enabling further prediction of the vehicle's 3D posture changes along the
predictive trajectory.

o = arcsin (13)

3.4.2. Approximate estimation of vehicle-terrain coupling

In this section, we construct a coupling solution module to predict
the vehicle-terrain coupling posture by using the simplified structural
model of ACV and the elevation index model. In this module, we
introduce the posture constraints previously described, linking the four
tire contact points [Py, Py, Py, Pr] with predictions of vehicle motion
posture. Additionally, to improve the solving efficiency, we employ a
binary approximation method to simplify the solution process.

To ensure consistency, we set the lookahead point as the vehicle's
front axle pivot point for path planning, which is denoted as Py. Using
the kinematic equations outlined in Section 2.3, we determine the planar
coordinates of Py and its heading ¢; along the future trajectory. Through
projection relationships, we establish the symmetrical positioning of Py
and Py relative to P. Assuming a roll angle ¢, for the vehicle's front axle
in 3D space, the 2D projection errors of the tire contact points on the
ground are determined below:

w .
ADy, = —cos@;sindy

W a4
ADy = ?cowfcosﬁf

where W denotes the half-wheelbase of the vehicle, a constant value,

and s represents the scaling factor aimed at standardizing the di-
mensions of the map and the vehicle parameters.

The 2D index coordinates of the tire contact points can further be
determined below:

(xlf,ylf) = <xf — ADpy, y5 + Any>

15)
(x'fv}’rf> = (Xf + ADpe, Yy — Any)
By combining Eq. (4), the elevation values can be determined:
2 = f x5, ¥y
If ( if» JIf ) (16)

Zy =f (xrﬁyrf)

Corresponding to Eq. (12), a correlation between map elevation
indices and vehicle ground pose can be established. To address this
correlation, we approximate ¢; within the range [@pn, @ |» allowing
for error ¢,. The iteration termination constraint is defined as:

f<xlfvylf> *f<xrf7yrf>

arcsin
2W

— Py | < & a7)

where ¢y represents the near-optimal roll angle of the front vehicle body
within the permissible error if the n-th iterated angle ¢y, satisfies the
relationship.

Given the known articulation angle y, the heading angle 6, of the rear
vehicle body can be similarly determined. However, due to the simul-
taneous presence of pitch angle o and roll angle ¢,, the vehicle's rear
wheel contact points, P, and P,,, require calculation with the aid of the
projection point of the rear axle pivot on the ground, denoted as P’,. The
coordinate relation between P/, and P is as follows:

L I
Xp— X = (;fCOSHf + E’coser) cosa
18)
R
Yi—Yr= ;smef + Esmﬁ, cosa

where the pitch angle range can be set as [0, amax] due to the symmetry of
the cosine function.

Simultaneously, with the rigid connection between the front and rear
vehicle bodies, the rear wheel swing angle is based on the adjustment of
Pf(n) of the front vehicle body. Referring to Egs. (13) and (14), the co-
ordinates of P and P/, under 2D projection can also be determined.
Consequently, the criterion for ¢, ) is as follows:

arcsin (f—(xlr’ylr) — .Y ) = Prm)

W <ég (19)

The maximum limit angle of the rear axle, denoted as Ag, is deter-
mined through calibration experiments as described in Section 3.3 and is
presented in Table 1. Therefore, the index range for the rear wheel roll
angle can be defined as [¢f,) — Ag, ¢, + Ag |. Based on the concept,
the solution logic of the designed module is illustrated in Algorithm 1.
To estimate the coupled posture, we employ a geometric bisection
method to approximate the four-wheel contact points of an ACV, thus
exploring the most probable ground poses of the vehicle relative to the
terrain. We address algorithm efficiency and accuracy from three per-
spectives below.

e Firstly, roll and pitch angles are set to 0° as the starting point for
iteration at initialization.

e Secondly, permissible error is compensated by iterating my times
until the difference between the solution error and index error of 1/2
falls within the range of ¢,.
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e Thirdly, a forward constraint function is devised for considering
historical pitch angle trends to maintain consistency between the
solved pose and the vehicle's forward motion pattern.

Al-
gorithm 1Vehicle-Terrain coupling attitude solver

Function (q, o ¢,)=VTC-AS (DEM, P’f, 05, 7):
> Initialization:

g(x,y) — DEM

Tolerance « &, Iteration «— my

> Establish vehicle 2D structure model:

Set constants: lf, L, W

O, — s +y

[P'q, P',] < JointCalculation(P'y, 6,7, Iz, 1)
[Pyf, Pyg, Pis, Prg] < TireCalculation(P's, P'., 05, 6, W)
> Calculation of ground point elevation:

7 | Set initial value: {a(o), @50y, Pr(0)) < (0,0, 0)
8 | Whilen<m, do

9 for each [x;, y¢] in [Py, Pry, Py, Pry] do

[ I

AN s W

10 Set range: Peerrain < {IXpem — %¢| < d, |ypem — el < d}

n for (x;, yi) € Prerrain do

12 Getevation < Mean [¥ g(x;, )]

13 [PTire(n)---] = Update3DP0int([PTire(n—l)---]ﬂ gelevation)

14| ({&(ny, Pr(ny Pr(n)) < DeclinationEstimation([Prire .. ), L, Ly W)
15| |if @pmy € conditionl{@sn-1), &) then
16 L(pf(n) « Bisection{®y ), O n-1))

17| | lim < ForwardConstraint(P'y., &(n_1y)
18| |if (C((n), (Pr(n)> ¢ condition2(lim, A(n-1)r PR(n-1), &) then

19 o« Bisection{(n), A(n—1))
20 [Py, Prf] < Recalculate(P' ., o)
21 @y < DeclinationEstimation&Bisection{[Pis, Py£), @), P (n-1))

22| return (&, @5, @)

3.5. Multi-objective evaluation function

In this section, we enhance the assessment of proximity capability

and obstacle avoidance capability by considering the motion charac-
teristics of ACVs. Simultaneously, indicators of vehicle motion stability
under coupled terrain stimuli are incorporated into the evaluation
function, facilitating the selection of more stable motion paths by the
algorithm. The specifics of each sub-function are as follows.

Proximity capability: For articulated vehicles, the angle difference
between the future heading angle of the front vehicle body and the
target orientation, along with the 2D straight-line distance from the
predicted trajectory to the target position, collectively determine the
vehicle's capability to approach the target. We improve the projection
distance to quantify the vehicle's ability to approach the target within
different predicted trajectories:

m

Theading (i) = Y _ [PrPo [sin(6re) — 650 ) 20

t=1

where i denotes the trajectory number corresponding to different y
values, m represents the prediction step size, Pr denotes the 2D co-
ordinates of the target point, and P, represents the 2D coordinates of
the predicted position at time t. 07, and 6y respectively represent the
azimuth angle from the predicted point to the target position and its own
heading angle.

Obstacle avoidance capability: Due to the articulated structure of
ACVs, we evaluate the obstacle avoidance capability of the predicted
trajectory by defining the distance between the front and rear vehicle
bodies and the nearest obstacle. Considering the simplified structure of
the dual bodies, denoted as Py and P;, representing the 2D distances to
obstacles, and setting the vehicle's safety avoidance threshold as dpy;n,
the evaluation function is formulated as:

m
1
. I S @D
ais (1) 21:1 [min(|[PosscPre) |, [PosstPree) | ) — inin |

where P, represents the coordinates of the nearest obstacle, and the
selection of dp, ensures that dyn > W + d/2 to guarantee an adequate
safety distance.

Motion stability: The vehicle's motion stability can be intuitively
designed using the variation in pitch and roll angles along the trajectory.
In the solution, (o, @ ,) at each trajectory point can be estimated based
on the contact point. Therefore, the evaluation function is constructed
by calculating the changes in pitch and roll angles of the predicted
posture at time ¢, specifically:

m
Jstavte (1) = ch (@ — 1)) +¢2 [((ﬂfm - (pf(t—l)) + ((pr(t) = Pr(e-1) )]
=1
(22)

where c; and c; are weighting factors. Typically, o reflects the steepness
of the terrain, while ¢; and ¢, reflect its ruggedness. The difference
between the two can be balanced in the emphasis of the evaluation
function by varying c¢; and ¢, (accordingly)

Furthermore, due to the disparate dimensions and wide ranges of
these sub-functions, we normalize them to ensure that each sub-function
contributes to the total objective function in the predetermined pro-
portion. This prevents any single sub-function from exerting an undue
influence on the total objective function due to its large numerical range.
By incorporating these sub-functions into a unified planning function
according to different weighting factors, the complete expression can be
formed below:

J(i) —u RJheading(l) ) RJdi.st(l) +5 RJstuble(l) (23)
E Jheading(i) Z Jdlst(l) E Jstable(i)
i=1 i=1 i=1

where R represents the total number of paths. The optimal trajectory is
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Fig. 7. Logical framework diagram of the overall algorithm.

determined by accumulating comparisons until J(i) = Jpuin. The
weighting coefficients (u, A, §) determine the relative importance of each
objective in the total objective function.

This objective function is primarily designed for the effective
determination of smooth trajectories in the vehicle-terrain coupling
module. In practical applications, additional constraints such as accel-
eration and turning radius can be supplemented. Moreover, the posi-
tions of obstacles, target locations, and the vehicle's own state (such as
velocity and angular velocity) are constantly changing in dynamic en-
vironments. Therefore, different weighting combinations can be
employed to adjust the trajectories based on specific application sce-
narios and requirements. The experiments will be conducted to validate
differences in trajectory solutions under various weighting combina-
tions, suggesting more flexible strategies for adjusting planning expec-
tations in practical applications.

3.6. Planner integration design

To ensure effective integration of the map model, motion primitives,
coupled posture solver, and multi-objective evaluation within the mo-
tion planner, a systematic framework was designed based on the itera-
tive mechanism to coordinate the interaction of these modules, as
illustrated in Fig. 6. According to the real-time vehicle states, the
planner first generates 2D candidate trajectories through the sampled
window based on motion primitives. Then, these 2D trajectories are
expanded into continuous 3D motion states using the coupled vehicle-
terrain posture solver. Finally, both the 2D and 3D states of the candi-
date trajectories are evaluated using a multi-objective function to select

the optimal trajectory for execution. This process is iteratively per-
formed between the start and goal points, gradually accumulating short-
term trajectories to form a complete motion path.

With this framework, the proposed motion planner can select the
optimal motion primitives in real-time during vehicle movement,
ensuring that ACVs smoothly reach the target location from the starting
location through continuous trajectory connections. To align with this
real-time dynamic planning mechanism, the planner algorithm is
divided into four distinct functional components, as shown in Fig. 7. The
functionality of these four components is described as follows:

Preparation preprocess: In this module, a priori terrain elevation
models are imported to provide quantified environmental parameters
for the planner. Concurrently, the kinematic model of articulated vehi-
cles and a 3D structural model are established in advance to form the
basis for computing vehicle motion trajectories.

Motion trajectory iterative computation: Serving as the planner's
main function, this module iteratively computes, filters, and implements
candidate vehicle trajectories based on a dynamic sampling window.
The computation phase incorporates a vehicle-terrain coupling posture
solution module to extend the representation of the vehicle's 3D posture
along the driving trajectory. During the filtering phase, obstacle avoid-
ance distances and travel distances are integrated under a normalized
function designed for multi-objective evaluation to finalize trajectory
scoring.

Vehicle-terrain coupling posture solution: This core functional
module of the planner enables the perception of 3D motion trends,
detailed in Section 3.4. It employs preloaded terrain elevation index
models and vehicle 3D structural models to jointly calculate the
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Fig. 9. Experimental scene and data.

grounding points of all four tires, thereby deriving changes in pitch and
roll of the articulated vehicle body along the continuous trajectory.

Normalize evaluation: This module is responsible for the final
trajectory selection. It normalizes parameters of different dimensions
based on varying weights and selects execution trajectories based on
their rankings.

During the planning process, trajectory data and vehicle states are
primarily transferred and iterated in the form of arrays and matrix
blocks, with data scale determined by the dynamic sampling window,
step size, and update timing. Detailed real-time testing data is available
in Table 5 of Section 5.3. It can be said that when deployed in actual
systems, this planner exhibits high real-time performance, meeting the
unmanned needs of low-speed engineering vehicles.

4. Implementation and deployment
4.1. ACV prototype platform

To evaluate and validate the proposed planner, a scale-down pro-
totype with articulated chassis was deployed, which is shown in Fig. 8.
Detailed vehicle parameters are provided in Table 1. The prototype's
posture measurement system includes rotary encoders and RTK/INS.
Rotary encoders at articulation points measure the angle, while the

Xsens MTi-680G RTK/INS measures heading and position. The Xsens
MTi-300-AHRS, installed at the rear axle pivot point and front vehicle
body, measures body posture. A Velodyne VLP-16 LiDAR on the support
pole captures terrain point cloud data.

The master computer utilizes the Ubuntu 18.04 operating system and
is configured with an Intel i7-13650HX processor featuring 14 cores and
a clock speed of 4.9 GHz, along with 32 GB of memory. Additionally, it is
equipped with a Nvidia RTX4050 graphics card, possessing 6 GB of
VRAM. The proposed planner is developed on the ROS platform inte-
grated within the master computer and controls the prototype's move-
ment via CAN communication. The prototype operates based on a well-
established set of PID control logic. Notably, during the operation of the
planner, the GPU is not utilized for computations; the CPU alone suffices
to achieve rapid processing speeds.

4.2. Experimental scene and point cloud map

Fig. 9(a) shows the scene used for actual testing, which are early
construction sites at the Xiang'an campus of Xiamen University. Fig. 9(b)
shows a 3D point cloud map (83.27 m x 95.14 m) created by using drone
aerial photography [48]. Through point cloud classification and filtering
algorithms, few objects such as trees and weeds were removed from the
map, retaining only the clear basic structure of the ground. The collected



Fig. 10. Calibration experiment.

Table 2
Details and parameters of the compared planners.
Method Category Map type Metrics Validation
DEM-AIA Graph search- DEM Distance, po.sture Simulation
based angle, run-time
Hybrid
. map Distance, Field testing
T-Hybrid Graph search (Point avoidance, (Wheeled
A* based
cloud- posture angle Robot)
based)
Sampling- 2;;0 map Distance, Field testing
Octo-RRT pling avoidance, (Off-road
based model- osture angle vehicles)
based) P 3
Sampling- Distance,
BenchNav plng DEM avoidance, Simulation
based
Success rate
Modified Optimization- Distance and Field testing
APF based APF Slope of waypoint (Tracked
P P robot)
Modified Optimization- Smoothness and . .
TEB based 3D model Run-time Simulation

point cloud contains a total of 9,367,717 points, averaging 1173 points
per square meter. While ensuring accuracy for terrain settlement with
tires, we down sampled appropriately to expedite solving the elevation
index model [49].

4.3. Calibration of IMU mounted on vehicle

The IMUs installed on the front and rear vehicle bodies were cali-
brated using a designated 6-degree-of-freedom Stewart platform [50], as
shown in Fig. 10. Comparing platform-recorded data with IMU mea-
surements, we saw the repeat measurement errors of 1.05° for pitch and

0.86° for roll, which meet practical measurement needs. Additionally,
validation was conducted for the maximum constraint angle for vehicle
roll due to the limit block, confirmed at +20°. Exceeding this angle
difference between front and rear roll angles could cause the front
wheels to lift off the ground, leading to out of control. Thus, during the
planning process, this angle could serve as a cutoff point, with trajectory
costs set to infinity when the front and rear roll angles differ over 20°.

4.4. Baseline of planner models

In terms of performance comparison of planners, we primarily
investigated SOTA planning methods suitable for 3D unstructured en-
vironments that have been developed in recent years. The baselines and
parameters of these methods are detailed in Table 2, sourced from the
open-source community on GitHub. In terms of map inputs, we adjusted
the input formats of the collected terrain point cloud models to match
their map model inputs, such as artificial potential fields, 3D model, etc.
Concurrently, we also modified the preset parameters of certain algo-
rithms, such as Octo-RRT, BenchNav, and DEM-AIA, to ensure execut-
ability. The trajectories produced were analysed and compared through
both simulation and actual vehicle operations.

5. Experimental results and analysis

In this section, the effectiveness of the proposed planner for ACVs
operating on unstructured terrain is comprehensively analysed. Firstly,
the accuracy metrics of the elevation index model are quantitatively
evaluated in Section 5.1. Next, the prediction accuracy of ground con-
tact points and vehicle attitude is validated by comparing data with
model calculations in Section 5.2. Building on these, Section 5.3 vali-
dates the planner's overall performance under various weights and
configuration parameters. Section 5.4 compares the planner's obstacle
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Fig. 11. Terrain mapping and measurement.



Table 3
Quantitative evaluation of terrain measurement errors.

Checkpoint group Linear distance error Elevation error

Mean SE RMSE Mean SE RMSE
1 3.86 0.71 2.23 5.53 2.33 7.39
2 5.72 0.96 2.90 6.08 2.26 7.16
3 3.95 1.27 4.03 5.72 1.44 7.17
Average 4.51 0.58 3.31 5.78 1.13 6.50

avoidance capabilities and details. Finally, Section 5.5 offers a
comprehensive comparison of the planner's terrain adaptability in actual
scenarios.

5.1. Elevation map accuracy assessment

Fig. 11 shows the process of terrain mapping and measurement we
conducted. More specifically, Fig. 11(a) shows actual unstructured
terrain, Fig. 11(b) presents a terrain point cloud model, and Fig. 11(c)
depicts terrain elevation distribution. We used a laser rangefinder to
sequentially measure the actual distance values between each surveyed
validation point and the reference point Oy, compared them with the
point cloud map distance errors. Linear and elevation errors for each
point were computed.

Table 3 shows the statistical results. As can be seen, the average
linear distance error of three check point groups is 4.51 c¢m in both real-
world environments and point cloud maps, meeting centimetre-level
positioning accuracy standards. Moreover, in characterizing elevation
discrepancies, the expected elevation error of the terrain index model for
actual distance differences is 5.78 cm. The overall error distribution, as
indicated by SE = 1.13 and RMSE = 6.50, shows a uniform distribution
of errors, with higher error values primarily occurring in sparsely
distributed point clouds. Considering prototype parameters, the
maximum roll error caused by elevation errors is less than 5°, and the
maximum pitch angle error is less than 3°, falling within an acceptable
range for vehicle motion control errors.

5.2. Vehicle posture estimation accuracy

To evaluate the effectiveness of the vehicle-terrain coupling posture
prediction method, we controlled our ACV moving at a speed of 1 m/s in
the experimental terrain and recorded its motion trajectory that com-
prises 2D position coordinates from onboard GNSS, vehicle posture

information from IMU, and angular information from the articulation
point encoder, as shown in Fig. 12(a). Using these trajectory data, the
tire contact points were determined for this segment of trajectory by
using vehicle-terrain coupling solving module. Results in Fig. 12(c) and
(d) demonstrate that the inferred tire contact points accurately conform
to terrain changes, refining the actual motion trajectory of ACV
prototype.

Furthermore, we compared ground attitudes with IMU-measured
attitudes. Utilizing the vehicle attitude model from Section 3.4, we
calculated pitch and front/rear roll angles. Fig. 13 shows a comparison
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Table 4
Performance metrics of planned trajectories

Fig. 14. Comparison of planning results under different stability weights.

under different stability weights.

Planner Without With terrain
terrain

Stability weight 6=0 6=0.2 5=0.4 5=0.6
Distance (m) 17.15 17.57 18.30 18.63
Mean/max 2.73/ 1.98/ 1.87/

Scf“e pitch (°) 41/14.69  (og 5.64 6.69
Mean/max roll 717/ 6.61/ 5.72/
(@) 11.54/29.94 17.26 15.56 15.81
Distance (m) 19.55 20.16 22.33 40.89
Mean/max 3.84/ 4.68/ 3.95/

SCZ"C pitch () 576/15.98 16 44 13.71 22.91
Mean/max roll 4.32/ 4.05/ 4.22/
(@] 9.38/28.81 13.02 11.53 13.51
Distance (m) 21.56 21.99 23.87 25.58
Mean/max 3.58/ 2.65/ 3.91/

SC;"e pitch () 46171265 1509 7.61 20.12
Mean/max roll 5.15/ 5.02/ 3.95/
(@) 8.89/24.68 15.68 15.14 19.83

Table 5

Planner real-time performance test results.

of predicted postures with IMU measurement results. As can be seen,
predicted trends closely matched measured results. To quantify errors,
we sampled IMU data for uniform frequency, resulting average quanti-
zation errors of 5.53°, 6.21°, and 4.84°. Due to potential temporal
matching errors, measured results might slightly overestimate over
actual prediction errors. However, this does not affect our assessment of
vehicle-terrain coupling attitudes. Overall, calculated attitude changes
closely match actual motion trends, providing reasonably accurate
predictions of vehicle travel attitudes on unstructured terrain.

5.3. Planning performance evaluation

To validate the effectiveness of the proposed motion planning algo-
rithm, we conducted planning tests in typical unstructured environ-
ments with potholes, slopes, and obstacles. Fig. 14 shows a comparison
of planning results under different stability weights. It reveals that
planning trajectories without terrain influence considerations (§ = 0)
reach the destination by the shortest distance but overlook terrain-
induced travel risks, evident in the severe jitter and rough trajectories
of § = 0 as shown in Fig. 14(b) and Fig. 14(c). The proposed algorithm
optimizes this local roughness phenomenon by setting different stability
weights §. For instance, trajectories with § = 0.2 and § = 0.4 sacrificed

Sampling parameters

Single motion deduction

Iterative computation

Steering resolutions(®) Step sizes(s) Predict range(s) Trajectory points Grounding points Compute Total trajectories Total time(ms)
Time(ms)

1 0.2 3 16 64 10.88 25 171.42

1 0.3 3 11 44 9.78 25 160.57

1 0.2 4 21 84 13.85 25 228.53

2 0.2 4 21 84 13.76 13 156.55
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Fig. 15. Comparison of obstacle avoidance performance across different planner.
travel distance to enhance ground contact smoothness to varying de-
Table 6 grees. However, setting a higher smoothness weight did not always
Performance metrics of different obstacle avoidance trajectories. guarantee effectiveness. For instance, at & = 0.6, the algorithm initially
Planner T-Hybrid  Octo- BenchNav  Ours Ours prioritized trajectory smoothness in some scenarios, but made choices
A* RRT (No (Nodes closer to the goal as travel progresses.
nodes) guide) Combining IMU measured data, we further quantified the perfor-
Experiment 1 of Fig. 15(a) mance metrics of planned trajectories under different weight settings.
Distance (m) 28.21 2872 28.84 30.64 29.78 Fig. 14(b) depicts actual data results, reflecting stability in early attitude
M‘d"i;z:ﬁ‘i m O 0.52 0.63 0.45 0.80 angles at 6 = 0.6 but significant instability later. Hence, we prefer §
Mean/max 8.61/ 13.81/ 14.09/ 5.97/ 7.46/ settings within [0.2, 0.4]. Table 4 shows the advantages of stabilizing
pitch (°) 41.83 47.25 40.54 24.36 21.42 vehicle roll angles at § = 0.2 and § = 0.4, with roll angle means mostly
Mean/max roll  20.13/ 22.10/ 21.23/ 14.86/ 16.49/ stable within 5° and maximum roll angles not exceeding 20°, with
O 43.23 4113 37.68 33.63 35.91 almost no abrupt changes. Although vehicle pitch angle variations are
primarily terrain-dependent, the algorithm can stabilize pitch angles
Experiment 2 of Fig. 15(b) amidst undefined terrain features. Table 4 also shows the reduced
E;:;ax:iém) 25.90 26.19 26.30 27.68 26.50 average/maximum pitch angles compared to the original planned tra-
distance (m) %7 0.50 0.52 0.72 0.50 jectories. Overall, in three typical scenarios, our proposed algorithm has
Mean,/max 5.28/ 4.98/ 5.04/ 4.18/ 5.03/ significantly enhanced vehicle smoothness by slightly extending travel
pitch (°) 19.31 15.14 16.89 11.20 11.61 trajectories when & is within [0.2, 0.4].
Mean/max roll  6.30/ 7.46/ 8.17/ 4.38/ 4.71/ Furthermore, we conducted real-time tests under various parameter
©) 18.55 17.62 18.82 12.13 14.07 . . - . .
configurations to validate the computational efficiency of the planner.
Notably, since the current prototype utilizes PID control, constraining
Experiment 3 of Fig. 15(c) speed can lead to control instability. Therefore, under the condition of
Distance (m) 27.38 27.09 28.80 - 27.81 . . . . .
Min avoid constant speed, our algorithm primarily samples various steering reso-
distance m) 07 0.65 0.55 0.76 0.65 lutions, step sizes, and predict range. The articulated steering angle is
Mean/max 10.86/ 9.11/ 9.98/ 6.65/ 7.62/ constrained between [—27.5°, 27.5°], with angular acceleration and
pitch () 26.12 24.84 32.41 21.96 22.98 vehicle dynamic parameters available in Table 1. The planner's runtime
M?f; /max roll ;(1)22/ Zf_;g ?2335/; ‘11;1(.):1/ ‘11;96/1 on the ROS platform, as shown in Table 5, does not exceed 250 milli-

seconds under pure CPU operations. Considering the overall vehicle
system's response delay, it can support up to a 3 Hz state update rate for
real-time motion planning. However, given the low-speed characteris-
tics of engineering vehicles, the algorithm typically samples using a 1°
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Fig. 16. Dynamic planning details in local scenarios.

resolution, 0.2 s step size, and 3 s prediction range, and employs a state
update interval of 0.5 Hz to 1 Hz to maintain the effective execution of
planned trajectories.

5.4. Comparative evaluation of obstacle avoidance

To evaluate the obstacle avoidance capabilities of our planner across
various rugged terrains, we conducted comparative experiments on a
randomly generated obstacle map with algorithms suited for 3D ter-
rains: T-Hybrid A*, Octo-RRT, BenchNav, and our planner (§ = 0.3). As
depicted in Fig. 15, these algorithms, benefiting from the advantage of
global traversal, all achieved distance-optimal obstacle avoidance tra-
jectory planning. However, these methods focus solely on optimizing
travel distance within a 3D space and do not adequately address the
details of local travel stability, such as frequently navigating over slopes
or pits with large posture angles. In contrast, our proposed planner
prioritizes vehicle stability during local obstacle avoidance in terrains
with multiple obstacles, which, in some instances, may lead to entrap-
ment in dead zones, as shown in Fig. 15(c). Therefore, in complex
obstacle environments, it is necessary to segment journeys under a
global perspective, such as guiding the planner with key nodes from
RRT. Results indicate that under the guidance of global nodes, our
planner can also achieve a highly stable global trajectory by sacrificing
some travel distance.

Table 6 displays the measurement indices for the trajectories. While
T-Hybrid A%, Octo-RRT, BenchNav achieved globally optimal distances
for 3D trajectories, they compromised the stability of average posture

angles. In contrast, although our planner had a certain failure rate, its
local trajectories were more stable. Moreover, according to the statistics
in the table, under node guidance, our planner can afford an additional
1-3 m of travel per 30 m to reduce the average change in attitude angle
by 2° to 8°. Additionally, integrating the data from Table 6 with trends
from Fig. 16 reveals that in three obstacle avoidance scenarios, the
highest pitch and roll angles occurred at locations with drastic terrain
changes. Compared to other algorithms, our planner effectively reduced
the maximum posture angles by increasing the obstacle clearance dis-
tance, thereby enhancing safety.

Furthermore, we detailed the trajectory selection specifics of our
algorithm under two local scenes in Fig. 16(a) and (b), and quantita-
tively analysed the proportion of the posture scores relative to the total
scores during the trajectory planning process in Fig. 16(c), thereby
demonstrating the comprehensive assessment performance of the plan-
ner's evaluation function in local trajectory planning. Overall, the pro-
portion of posture scores dynamically fluctuated throughout the
evaluation, averaging approximately 40.13 % and 42.93 %. The motion
trends depicted in Fig. 16(a) and (b) reveal that reductions in the posture
score proportion primarily occur during deviations in course or prox-
imity to obstacles. This indicates that the established scoring function is
capable of effectively coordinating the dynamic relationships among
multiple objectives in local planning.

5.5. Comparative evaluation and practical testing

To evaluate trajectory performance under distinctive design rules,
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Fig. 17. Comparison of results from different planners.

Table 7
Comparison of performance metrics across different planner.
Planner Modified Modified DEM-AIA Ours
TEB APF (6=0.3)
Experiment 1 of Fig. 17(a)
Distance (m) 23.62 25.81 25.43 24.86
Runtime (ms) 2294 2753 2301 5210
Explored nodes 187 364 251 473
Mif)n/ maxpith ¢ 50735  8.66/20.94  9.34/32.95  6.06/23.08
i 13.38/ 5.42/
Mean/max roll (°) 8.19/28.98 6.36/26.75 18.71 19.68
Experiment 2 of Fig. 17(b)
Distance (m) 43.68 59.29 47.25 37.25
Runtime (ms) 2423 2975 3865 6772
Explored nodes 215 481 363 589
Mif)n/ maxpitch ;051848  6.38/1858  7.41/2216  4.54/19.31
3.62/
Mean/max roll (°) 7.41/20.81 5.80/20.06 5.62/20.24 12.32

our proposed algorithm was compared against three planning algo-
rithms suitable for unstructured terrain. In steep slope environments
depicted in Fig. 17(a), TEB, APF, and DEM-AIA adapted well to 3D
terrain, maintaining trajectory smoothness in 3D space with fixed roll
and pitch angles. However, this may pose risks in real-world scenarios as
sudden loss of control in any attitude can lead risks to rollover. Our

proposed algorithm adopted a strategy of gradual ascent to balance
pitch and roll angles, effectively separating their high-value periods. It
demonstrated advantages in slope traversal by not blindly avoiding
obstacle weights but actively adjusting vehicle attitude through trajec-
tory prediction based on motion models, as shown in Fig. 17(b).

Quantitative data in Table 7 highlights our algorithm's advantage in
maintaining a dynamic balance between travel distance and attitude
angles. Our proposed algorithm has demonstrated stable performance
across different scenarios, particularly keeping the vehicle at gentle roll
angles for most of the time (Mean Roll = 5.42° and 3.62°). However, this
trajectory derivation was heavily reliant on model computation
compared to TEB and APF, exhibiting low sensitivity to distance. Unlike
TEB and APF, our algorithm's computation time accumulated with travel
progress, favouring local planning over global planning.

Furthermore, we conducted tracking tests on these four planned
paths using actual vehicles to verify their executability. Figs. 18 and 19
show that the motion trajectories derived from the proposed method
exhibited superior tracking accuracy and speed stability compared to
other methods. Repeated experiments reveal that the tracking error of
ACVs on unstructured terrain was caused by the instability of vehicle
speed and body attitude during steering.

6. Conclusions
In this paper, a motion planner is proposed to address the stability

challenges of articulated construction vehicles (ACVs) operated on un-
structured terrains. It can enhance the adaptability of ACVs to complex
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Fig. 19. Execution speed variation curve.

real-world environments by quantitatively evaluating terrain-vehicle
interactions. Field experiments validate three key outcomes:

1) The planner's terrain excitation and vehicle response solver accu-
rately forecasts the 3D motion postures of ACVs, providing the
planner with quantifiable state information.

2) The planner's modular framework, which ties together trajectory
sequences, posture representations, and evaluation functions, en-
sures that the system remains responsive while maintaining a
streamlined workflow.

3) By normalizing weights across different evaluation objectives (travel
distance, obstacle avoidance, and motion stability), the planner can
dynamically balance competing priorities on a unified scale.

Despite its strengths, the planner has some limitations. Being based
on the dynamic window approach, it lacks global environmental
awareness, which can lead to local dead ends in obstacle-rich environ-
ments. Future work will focus on incorporating global guidance to better
coordinate local and global planning objectives. Additionally, the cur-
rent system is optimized for hard, unstructured surfaces and may
struggle on muddy or soft terrain due to inaccuracies in posture pre-
diction. Future research will explore new measurement methods to
assess ground firmness and slip rates, enabling better performance on
challenging terrain and improving the handling of fully loaded vehicles
with high inertia.
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