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A B S T R A C T

An entropic version of Liouville’s Theorem is defined in terms of the conjugate variables (“hyperbolic position”
and “entropic momentum”) of an entropic Hamiltonian. It is used to derive the Holographic Principle as applied to
holomorphic structures that represent maximum entropy configurations. The Bekenstein-Hawking expression for
black hole entropy is a consequence. Based on the entropic commutator derived from Liouville’s Theorem and the
same entropic conjugate variables, an entropic Uncertainty Principle (in units of Boltzmann’s constant) isomor-
phic to the kinematic Uncertainty Principle (in units of Planck’s constant) is also derived. These formal de-
velopments underpin the previous treatment of Quantitative Geometrical Thermodynamics (QGT) which has
established (entirely on geometric entropy grounds) the stability of the double-helix, the double logarithmic
spiral, and the sphere. Since in the QGT formalism the Boltzmann and Planck constants are quanta of quantities
orthogonal to each other in Minkowski spacetime, a solution of the Schr€odinger Equation is demonstrated
isomorphic to a probability term of an entropic Partition Function, where both are defined by path integrals
obeying the stationary principle: this isomorphism represents an important symmetry of the formalism. The ge-
ometry of a holomorphic structure must also exhibit at least C2 symmetry.
1. Introduction

The Holographic Principle has attracted considerable interest since it
was first explicitly defined by ‘t Hooft [1] and Susskind [2] in the 1990s,
having emerged from the quantum gravity and black hole physics de-
velopments of the 1970s. It was reviewed authoritatively by Bousso in
2002 [3] and also summarised more accessibly by Bekenstein [4]: “the
holographic principle holds that … a fully three-dimensional [image of the
Universe] could be [written] on a … surface”. That is, the properties of a
volume can be represented entirely by the properties of a surface. We
show here how such a holographic theory emerges when considered from
the viewpoint of Quantitative Geometrical Thermodynamics (QGT), as
derived by Parker & Jeynes [5] (which for convenience we will refer to
here as “PJ2019”).

PJ2019 construct the QGT formalism from a rigorous restatement (in
their Appendix A) of Parker & Walker (2010) [6], who use the standard
definition of entropy as differential information (following standard liter-
ature and Parker & Walker, 2004 [7]) to build a geometric entropy
theoretical framework. Integrating the differential information in a
contour integral across 4-space (that is, Minkowski spacetime) such that
s).

December 2020; Accepted 29 M

is an open access article under t
the line integral consistently follows a path in the positive time direction
ensures that that the geometric structures frequently observed in nature
(such as the double-helix of DNA) explicitly obey the Second Law of
Thermodynamics, even though the result of the integration is a static
geometrical structure (independent of time).

It is necessary to appreciate that not one but two conceptual steps are
made in this move. The first step is to show that the information emerges
from a contour integral over time in 4-space, which therefore reduces the
dimensionality of the structures under consideration to three and is the
basis for the static description required for Maximum Entropy objects.
The second step is then to explicitly derive expressions for the entropy of
certain holomorphic geometries, which must have C2 symmetry in phys-
ical systems. This step privileges one of the three spatial axes (designated
x3 in the following analysis; its properties have been demonstrated by
PJ2019). The key degrees of freedom of the system are therefore to be
found on only the other two spatial axes: perhaps this informally explains
how our approach yields holomorphic structures obeying the holo-
graphic principle with its reduced dimensionality.

Our QGT formalism employs a rigorously geometric entropy descrip-
tion for thermodynamic objects that (as quantitatively described in
arch 2021
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PJ2019) exhibit physical properties conforming to experimental obser-
vations over a very wide dynamic range, obtained analytically without
any free parameters. It must be recognized that QGT is complementary to
conventional thermodynamic and kinematic treatments, forming a
different aspect of an overall unified thermodynamic theory that en-
compasses properties deriving from the geometry of a system as well as
its statistical mechanical behaviour. PJ2019 is built on the Second Law in
the usual way: QGT represents standard thermodynamics even though it
is cast in an unfamiliar way.

PJ2019 establish an entropic version of the Hamiltonian equations of
state, and show how there exists an entropic version of the Principle of
Least Action (where the quantum of action is the reduced Planck’s con-
stant ħ): this is called the Principle of Least Exertion (where the quantum of
exertion is Boltzmann’s constant kB). PJ2019 show that these two Prin-
ciples are mathematically isomorphic, and specifically that the Planck
and Boltzmann constants are quanta of quantities that can be considered
to be mutually orthogonal in Minkowski spacetime. Conventionally,
Liouville’s Theorem is applied to the phase space description of the
temporal (kinematic) dynamics of a system (to which the Principle of Least
Action must apply): we will show here that the same Theorem is also
valid in an entropic version that applies to the entropic phase space
description of the spatial (entropic) geometry of a system (to which the
Principle of Least Exertion must apply). Any system has both de-
scriptions, which must therefore also be mutually consistent. Note that
action and exertion are well-defined quantities referring, respectively, to
energy and entropy. This work makes a sharp (and novel) distinction be-
tween these two sorts of description.

For example, conventional (kinematic or energy-based) descriptions
of the thermodynamic potential invoke quantities such as the Gibbs free
energy, which PJ2019 also employ to calculate the conformational en-
ergy difference between P-DNA and B-DNA. However, the free entropy is
also a thermodynamic potential that Onsager [8] used to generate his
reciprocal relations. Such an entropic potential (also known as the
Massieu-Planck potential) was used recently in a discussion of the ther-
modynamics of field theories (Hongo, 2017 [9]). QGT employs an
equivalent potential in the definition of the entropic Hamiltonian HS,
which is given by the sum of the ‘kinetic entropy’ TS and the ‘potential
entropy’ VS, as also seen in the table of isomorphisms between kinematic
and entropic quantities (PJ2019 Table 1).

We emphasise the distinction between the conventional (kinematic)
Hamiltonian H of statistical mechanics, and our entropic Hamiltonian HS
as applied within QGT. In particular, our concept of an “entropic
Hamiltonian” does not mean that we are applying the conventional ki-
nematic Hamiltonian in an entropic context. Rather, whereas the kine-
matic Hamiltonian is of dimensionality energy [J] and is a conserved
system quantity, our “entropic Hamiltonian” is of dimensionality
“entropic momentum” [JK-1m-1] and is a conserved quantity (according
to N€other’s theorem, see ref. [5]) in the hyperbolic space of QGT. Thus
our entropic Hamiltonian HS is functionally different to and incommen-
surate with the conventional kinematic Hamiltonian H.

This must have fundamental implications. For the first time we now
apply here the entropic Hamiltonian formalism within an entropic
Liouville Theorem to derive the general form of the entropy of a ther-
modynamically stable (that is, Maximum Entropy or “MaxEnt”) system,
and go on to show that the entropy of such a MaxEnt system must be
holographic in nature, being proportional to the 2D surface surrounding
the 3D system in question. Thus, we prove that the Holographic Principle
is a real physical Principle with general (and very wide) application.

We then use this fundamental result to derive the specific case of the
Bekenstein-Hawking entropy of a black hole (BH). Originally, the BH
entropy was derived from heuristic argumentation (subsequently quan-
tum field theory or string theory derivations were discovered). But we
obtain this important result axiomatically from the entropic Liouville
Theorem and its consequent general Holographic Principle as applied to
MaxEnt structures.

It is interesting that Verlinde [10] employs both entropic and
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holographic principles to argue for emergent kinematic effects (that is, the
law of gravitation) in a treatment that recognises their comparative
properties, although we cannot digress here to engage with him. It is also
interesting that Keppens [11] develops Verlinde’s thought in certain
ways, independently deriving the Bekenstein-Hawking equation.

Liouville’s Theorem naturally employs the Poisson bracket, which is
also the route to a description of a quantum commutator. Thus, we use
our entropic Liouville Theorem to define the appropriate quantum
commutator applicable in the entropic domain (with the conjugate var-
iables of entropic momentum and hyperbolic position). This in effect
describes an entropic system quantised through Boltzmann’s constant;
from this an entropic Uncertainty Principle is derived within an explicitly
Hamiltonian/Lagrangian mathematical framework. This enables us to
prove explicitly the major result that amplitude components of the
entropic Partition Function are isomorphic to solutions of the Schr€odinger
equation, offering an entirely new slant on statistical mechanics. We
should mention that Baldiotti et al. [12] also cover much of this ground
but employing a fundamentally kinematic approach, so that their
resulting thermodynamic (entropic) conclusions remain somewhat
tentative.

As an entropic system, QGT operates in hyperbolic space; but such
hyperbolic “velocities” (that is, spatial gradients calculated by taking the
differential along a spatial axis) have the peculiar property of being
dimensionless. In other words, there is no dimensional difference be-
tween a hyperbolic velocity and its inverse (that is, its reciprocal): they
are not incommensurate as are the kinematical velocity and its inverse.
PJ2019 simply used these properties without comment, but here we
show some far-reaching implications. The product of the (entropic) hy-
perbolic velocity and its inverse, and the maximum ratio of the (kine-
matical) velocity of an object to the speed of light, are both necessarily
unity: this intriguing relation is not accidental (being rooted in the hy-
perbolic and relativistic properties of 3þ1 Minkowski spacetime), and
enables a generalisation of the interpretation of phase and group velocities
in wave mechanics.

It should be emphasised that in the present treatment we only
consider static geometric structures in equilibrium; that is, structures that
are in a stable, non-time-varying configuration (as discussed previously
[13]) for which issues such as the kinematic velocity of the structures are
not relevant, and relativistic issues play no direct part. However, QGT
being defined within 4-space (Minkowski spacetime, as described in
PJ2019) means that such geometric structures correctly obey the hy-
perbolic rotations prescribed by relativity. The issue of non-equilibrium
structures that are evolving in time towards stability, whether near to or
far from equilibrium (see Ilya Prigogine’s concepts of minimum and
maximum entropy production [14]), is not the subject of this paper. Note
added in proof: QGT has also been used to determine the "entropy pro-
duction of [idealised] galaxies" [15].

The ground-breaking non-equilibrium thermodynamics work of Pri-
gogine’s Brussels-Austin group has been helpfully reviewed by Robert
Bishop (2004) [16]: in contrast to this group, our work concentrates on
the properties of static, MaxEnt (equilibrium) geometries. Of course, this
is a very severe restriction which, if unavoidable, would imply that the
formalism could hardly apply to any real systems of interest. However,
we here are only outlining elementary consequences of the formalism in
the most symmetrical cases. We already know that the formalism is
naturally extensible to non-equilibrium cases since spiral galaxies, ide-
alised by the (holomorphic) double logarithmic spiral, are certainly
highly dynamic systems in which we already have an expression for the
entropic force (see PJ2019 Eq. (23)). But at this stage we are concerned
not with motion in or evolution of systems, but with the entropy asso-
ciated with certain static system geometries. We expect that the under-
lying hyperbolic (Minkowski spacetime) framework of QGT will easily
extend to dynamic (relativistic) analyses (such as galaxies [15]).

PJ2019 rigorously established what has long been suspected, that
there exists a thermodynamic isomorph of the Heisenberg uncertainty
principle; in the present paper we show how the entropic Uncertainty
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Principle is actually a consequence of the entropic Liouville Theorem.We
have come to this understanding by considering the deep implications of
analytical continuation in hyperbolic spacetime, whose mathematical
consequences generate both holomorphic functions and an entropic
Hamiltonian/Lagrangian framework based on spatial gradients. A
fundamental feature of MaxEnt structures is holomorphic pairing (as
already discussed in PJ2019), which creates complex-vector quantities in
hyperbolic spacetime. The underlying fundamental applicability of
Liouville’s Theorem offers new insights into the complementary rela-
tionship between kinematic and entropic descriptions of any stable sys-
tem. For example, we conjecture that the special axiom of analyticity
required by Chru�sciel & Costa [17] to rigorously establish the “no-hair”
Theorem will actually be provided by QGT.

PJ2019 have proved the applicability of the QGT formalism to the
double helix (evidenced by DNA), and the logarithmic double spiral (the
spirae mirabilis of Bernoulli; evidenced by spiral galaxies); and Parker &
Jeynes [13] have also proved its applicability to spheres (evidenced by
Buckminster-fullerene). Other entropic geometries of relevance in the
universe include the large-scale filamental (dendritic) structure of galaxy
groups and clusters with self-similar scaling relations investigated by
Paul et al. (2017) [18]. The interaction of these structures with the
high-entropy cosmic microwave background radiation is currently the
object of intense investigation, for example by Hurier & Lacasa (2017)
[19]. Structures such as neural networks (used for deep learning and
artificial intelligence applications and frequently featuring intermediate
‘hidden’ layers) also have a strongly dendritic organisational structure
(with feedforward and feedback elements), allowing complex and
adaptable interconnections between the input and output planes (syn-
apses) of the system. Such non-linear systems are important areas of
current research, and entropic considerations are already being used to
render them tractable to analysis [20], since branching topologies can
also be studied using conservation of entropic momentum (that is,
applying N€other’s Theorem). We would expect these and other de-
velopments (such as calculations by the computational chemists of
fullerene stability) to be accelerated by systematic use of the QGT
formalism amplified by the fundamental relations made explicit here.

In section x2 we show how Liouville’s Theorem can be expressed in
entropic terms, using the QGT formalism. Section x3 puts this in the
context of a discussion of the Partition Function, maximum entropy
systems and unitary objects. Then an expression for the entropy of a
general system is obtained from the entropic Liouville Theorem (x4) with
the entropy of specific systems as a consequence, including the
Bekenstein-Hawking expression for the entropy of a black hole (x5). The
holographic properties of Eqs. (11) and (12) emerge as a result of the
holomorphism of the objects considered. The entropic Uncertainty
Principle follows (x6) from the canonical commutation relation obtained
from consideration of the Partition Function in terms of the Poisson
bracket (which in quantum mechanics is given as an operator). Some
rather technical, but useful and far-reaching, results (x7) are given for the
hyperbolic velocity, and we finish (xx8,9) with Discussion and
Conclusions.

This whole subject is intricately involved with the symmetry of the
objects since holomorphic entities must have at least C2 symmetry: this
was previously discussed at some length in the context of fullerene
molecules [13]. Moreover, and more fundamentally, the whole
formalism articulates the symmetry (isomorphism) between the com-
plementary kinematic and entropic expressions: see previously Table 1 of
PJ2019, with the centrally important isomorphism between solutions of
the Schr€odinger Equation and the probability amplitude of an entropic
Partition Function shown here in Eq. (15).

2. The entropic Liouville Theorem

Consider a density of states distribution ρ (x1, x2, …xN, p1, p2, …pN, t) of
a system in 2N-dimensional (p, x)N phase space, where p and x respec-
tively are the conventional (kinematic) conjugate momentum and
3

position variables of a system with 2N degrees of freedom. Then this
density distribution ρ is the number of states per incremental volume
(ΔpΔx)N, and Liouville’s Theorem can be written in terms of the kine-
matic Hamiltonian H (following Wannier’s standard treatment [21]):

dρ
dt

¼ ∂ρ
∂t þ

 XN
n¼1

_pn
∂ρ
∂pn

þ _xn
∂ρ
∂xn

!
¼ ∂ρ

∂t �
XN
n¼1

�
∂H
∂xn

∂
∂pn

� ∂H
∂pn

∂
∂xn

�
ρ ¼ 0

(1a)

where the dot indicates the time derivative as usual. The quantity in the
brackets on the RHS is known as the Liouville operator (“Liouvillian”) �
ibL, and for the nth instance is given by:-

�ibLn ¼ ∂H
∂xn

∂
∂pn

� ∂H
∂pn

∂
∂xn

(1b)

It is well-known that the kinematic equations of state are given by the
identities:-

_xn ¼ ∂H
∂pn

and _pn ¼ �∂H
∂xn

(1c)

In the entropic domain the phase space now involves the entropic
momentum (p) and the hyperbolic space (q) co-ordinates with the corre-
sponding entropic Hamiltonian (HS), all as derived by PJ2019. To avoid
ambiguity, here (as in PJ2019) we use the symbol “x” for Euclidean space
(as conventionally employed in kinematics, see Eqs. (1)) in contrast to
the symbol “q” which we use to indicate hyperbolic space (needed for
QGT). We also employ the subscript “S” that serves to remind us that a
labelled quantity is entropic. The interpretation of the momentum “p” as
entropic or kinematic is to be inferred, as appropriate, from context.

Parker & Jeynes considered the geometric thermodynamics of the
double logarithmic spiral (of which the double helix is a special case) [5],
and of the sphere (which can be represented by a linear combination of
two identical double-helices; that is, thereby conforming to the stable
holomorphic-pair description) [13]. These are demonstrated to be
maximum entropy (MaxEnt) structures since the appropriate
Euler-Lagrange equations are satisfied (PJ2019 Eq.13b), instanced in
nature by (respectively) spiral galaxies, DNA, and Buckminster-fullerene
(C60). Note also that such MaxEnt structures conforming to the QGT
formalism are necessarily holomorphic.

We can see that in these three cases (spiral galaxies, DNA, and C60)
there exist axes of symmetry, to which we assign the (spatial) x3 co-
ordinate. In these cases the condition for maximum entropy is given by
the stationary behaviour not of the (conventional) integral of the kine-
matic Hamiltonian H along the special (temporal, t) axis:-

δ

Z
Hdt ¼ 0 (2a)

but of the integral of the entropic Hamiltonian HS along the special
(spatial, x3) axis:-

δ

Z
Hsdx3 ¼ 0 (2b)

Clearly, the key controlling variable of Eq. (2b) is spatial (x3) in
contrast to Eq. (2a) where it is temporal (t). This isomorphism is explicit
in the final row of the summary Table 1 of PJ2019, and can be under-
stood in detail by considering the geometric (Clifford) algebra (including
the quaternion subalgebra and resulting spinor isomorphism) of the QGT
representation. This spinor representation sees a natural pairing of the
four space-time variables (co-ordinates) into conjugate pairs, such that x0
(i.e. time t) is conjugate to x3 (see Eq.A.5 of Appendix A in PJ2019).

PJ2019 also showed the close quantitative relation of information and
entropy, such that an info-entropy field can be defined. This field is ob-
tained in general by an integral over time in complex (that is, Minkowski)
4-space. They also showed that the info-entropy expressions for
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Maximum Entropy structures (that is, those structures such as double
helices and logarithmic spirals that are frequently encountered in nature)
are holomorphic functions where the key controlling variable (x3) and its
derivative (dx3) are space-like; this is in contrast to the conventional
dynamics of a system where the key variable (t) and its derivative (dt)
determining the kinematics are time-like.

Then the entropic Liouville equation equivalent to Eq. (1a), with the
appropriate entropic density of states ρS (q1, q2, …qN, p1, p2, …pN, x3), is
given by:

dρS
dx3

¼ ∂ρS
∂x3

þ
XN
n¼1

�
p
0
n

∂ρS
∂pn

þ q
0
n

∂ρS
∂qn

�
¼ ∂ρS
∂x3

�
XN
n¼1

�
∂HS

∂qn
∂
∂pn

� ∂HS

∂pn
∂
∂qn

�
ρS ¼ 0

(3)

where (p, q)n are the conjugate variables for the nth pair of degrees of
freedom of the holomorphic structure, and x3 is the coordinate along the
symmetry axis of the structure. The appropriate entropic (hyperbolic
space) equations of state corresponding to Eq. (1c) are now given by the
identities proved by PJ2019 (Appendix B Eq.B17)

q
0
n ¼

∂HS

∂pn
and p

0
n ¼ �∂HS

∂qn
(4a)

noting that the prime symbol indicates differentiation with respect to the
x3 co-ordinate:

q
0 � ∂q

∂x3
and p

0 � ∂p
∂x3

(4b)

and where the appropriate entropic Hamiltonians will depend on the
maximum entropy (MaxEnt) structures considered. So the fundamental
structure is the logarithmic double-spiral, whose entropic Hamiltonian is
given by PJ2019 (Appendix B Eq.B40b). The double helix is a special case
of the logarithmic double-spiral: its entropic Hamiltonian is given by
PJ2019 (Appendix B Eq.B19b). The sphere is a combination of double-
helices, with an entropic Hamiltonian given by Parker & Jeynes 2020
[13] Eq. (8a).

3. Entropic granularity, MaxEnt, and unitary objects

An elemental 2N-volume within the density of states ρS along the
trajectory is given by dΩS ¼ Πn(dpn⋅dqn), n2{1…N}; however in the
special case of simple MaxEnt systems which are specified by a single pair
of entropic conjugate variables (N ¼ 1), it is given by:

dΩs¼ dp ⋅ dq (5a)

Only unitary objects are specified by a single pair of conjugate vari-
ables since unitary objects have no choice about their specification: they
have no additional degrees of freedom. The fact that the double-helix is
an eigenvector of the entropic Hamiltonian in the QGT formalism of
PJ2019 means that as an entropic structure it is specified by a single pair
(p,q) of the entropic conjugate variables; that is, it is a unitary object. This
looks odd, since DNA (the exemplar of the double-helix) encodes huge
quantities of information, and therefore cannot be unitary! However,
entropy is a scale-less quantity, whose hierarchical scale must be care-
fully chosen for any system so as to correctly represent that system at the
appropriate scale. The granularity of the system (that is, precisely how the
Partition Function is calculated) is a matter of choice: for a very general
discussion of this issue of granularity see Penrose (2004 [22] x27;
2010 [23] x1.3). The basic backbone structure of DNA (the double-helix)
is indeed unitary (holomorphic) in QGT, and Parker & Walker, 2004 [7]
have proved that holomorphic functions cannot encode information. As a
unitary object the double-helix of DNA cannot itself encode information:
the encoded genetic information is at a different granularity.

The fact that a structure is MaxEnt means that it is a most likely ge-
ometry, that is, it has maximum stability. A MaxEnt structure cannot
evolve any further (there are no more degrees of freedom available) at
4

that level of granularity. Note that a MaxEnt structure may not be in
thermodynamic equilibrium: for example, spiral galaxies may approxi-
mate the double logarithmic spiral geometry (also a unitary structure in
hyperbolic space) but galaxies are manifestly evolving since the central
supermassive BH must accrete material. Such a system will be described
by a succession of local MaxEnt states, tending eventually (after cosmic
times!) to the global MaxEnt state when all the mass resides in the BH.

Thus, a MaxEnt structure has minimised its currently available de-
grees of freedom (DoFs). Also, a MaxEnt structure requires the least
possible additional information to fully specify it; a MaxEnt object has
attained the simplest possible configuration (at that granularity) and is
therefore unitary. Black holes (BHs) are the prime example of objects that
have maximised their entropy in 3-space: it is already known that no
object of that volume can have more entropy. But we can also note that a
BH must be a MaxEnt unitary object since it can be fully specified by 4
parameters (conventionally: mass, charge and angular momentum; and a
fourth parameter to specify the scale of the system, which for BHs is fixed
as the Planck length).

In the general (not MaxEnt) case the entropic Liouville Theorem re-
quires a multiplicity of degrees of freedom (2N) as indicated in
Eq. (3). However, as a system evolves towards a MaxEnt state, then the
available number of degrees of freedom reduces. Absolutely maximum
entropy occurs when the system can no longer evolve or simplify, and the
available number of degrees of freedom is minimised. The limiting case
for such a MaxEnt configuration is N ¼ 1, corresponding to the funda-
mental double-helix eigenvector of QGT which we will explicitly
consider (in x5 below).

We mention the so-called no-hair theorem [24,25], which guarantees
that 3 parameters of a black hole (mass, electric charge, and angular
momentum) are sufficient to completely determine the relevant solutions
to Einstein’s equations of general relativity. It also guarantees that a
black hole geometry must be MaxEnt: this is equivalently expressed by
asserting the uniqueness of the solutions of the Liouville equation (Eq.
(3)) as a partial differential equation (PDE) for N ¼ 1. It is no accident
that the same is true for Maxwell’s equations for electromagnetism,
which also describe a double-helical geometry for the holomorphic-pair
description of the electric and magnetic fields (the simplest case is a
circularly-polarised EM field) implied by the Riemann-Silberstein com-
plex vector representation [26]. Courant & Hilbert [27] (Vol.II, ch.6 x6
passim) explicitly demonstrate in detail the existence and uniqueness of
solutions of hyperbolic PDEs (such as Maxwell’s equations) with partic-
ular regard to their kinematic properties.

In kinematics the time dimension is not considered a degree of
freedom (DoF), so also in the entropic geometry the x3 axis (conjugate to
time t) does not represent a DoF of the system. Thus in QGT a double-
helix (as a unitary object) is categorised only by its radius R and pitch
λ (with N¼ 1) and not additionally by the number of turns along the axis
of the helix.

The entropic Hamiltonian HS is constant along the x3 axis, as was
proved by PJ2019 (Appendix B Eq.B.40b). Therefore the sum of the ki-
netic entropy TS and the potential entropy VS is also constant:
HS ¼ TS þ VS. But since the kinetic entropy (KEnt) TS is dependent on the
hyperbolic velocity q’, and the potential entropy (PEnt) VS is dependent
on the actual geometry of the system, it is clear that the available DoFs
are given by the PEnt (not the KEnt) terms. Therefore QGT requires that
as a system evolves and the number of DoFs decreases, VS must also
decrease (with a consequent rise in TS). PJ2019 have proved (Appendix
B, Eqs.B18,B42) that the PEnt of the double-helix vanishes but the PEnt of
the double logarithmic spiral does not vanish. Therefore the double-helix
cannot evolve to any higher entropy state (it must have the minimum
possible DoFs), but the double logarithmic spiral when considered in a
wider context must have extra DoFs available due to the non-zero PEnt
remaining. Galaxies are geometrically stable structures (the double log-
arithmic spiral is a holomorphic or unitary object) but they must evolve
over time such that their total entropy increases (their central black holes
must grow).



M.C. Parker, C. Jeynes Physics Open 7 (2021) 100068
Clearly, for a system which is still evolving towards a MaxEnt state,
additional data (in the form of relevant boundary conditions) are
required to specify a solution for the entropic Liouville PDE (Eq. (3) with
N>1). Fortunately, exploiting the comprehensive isomorphism between
the kinematic (energy) and entropic quantities outlined in PJ2019 and
discussed further here, we can see that many of the PDE solutions directly
applicable in this entropic context are explicitly treated by Courant &
Hilbert [27]. The details remain outside our present scope, but we
conjecture that an appropriate QGT treatment of the entropic Liouville
Theorem will lead to an alternative proof of the no-hair theorem. We
suspect that such a proof would be related to the result proved by Bir-
mingham et al. [28] using “a theorem of hyperbolic geometry.”

4. The general entropy of systems from Liouville

Standard results in conventional dynamics for the invariance prop-
erties of phase space (see for example Wannier’s treatment of Liouville’s
Theorem [21], Eq.3.07) show that the logarithmic derivative of the phase
space element dΩ at any point along the t (time) co-ordinate trajectory is
zero. All that is required for this to carry over into the entropic domain is
for the phase space trajectory to be spatial rather than temporal, and to be
properly expressed in an entropic Hamiltonian-Lagrangian representa-
tion: these were demonstrated by PJ2019. The entropic phase space
element dΩS is therefore also constant along the entropic x3 trajectory:

1
dΩs

d
dx3

ðdΩsÞ ¼ d
dx3

ðln dx3Þ ¼ 0 (5b)

This is an alternative expression of Liouville’s Theorem, that is, Eq. (5b)
is equivalent to Eq. (3). In Eq. (5b) wemake the subtle distinction between
the operator “d” and the infinitesimal “d” notation,which is also seen in the
progression of equations Eqs. (6), such that Eq. (6b) is in terms of the
infinitesimal “dΩS” whereas Eq. (6c) uses the operator notation of the in-
tegral (“dΩS”).

It should be noted that in contrast to the conventional kinematic
phase space description, here we employ for the first time a phase space
ΩS that describes the geometric entropy aspects of a system. In addition,
our approach can be seen to have the additional novelty of applying the
entropic Liouville Theorem in the context of the Principle of Least
Exertion where the quantum of exertion is given by Boltzmann’s
constant.

The microcanonical ensemble of the system can be assumed to have
uniformprobability P in the entropic phase space (i.e. thereby conforming
to Liouville’s Theorem) subject to the overall system entropy S and the
system’s number of degrees of freedom 2N, such that

R
PdΩS ¼ 1,

formally noting
R
dΩS ¼ΩS, with P¼ 1/ΩS being constant. However, at a

MaxEnt equilibrium the systemhas ahigher (but still constant) probability
distribution (i.e. density of states distribution ρS) along the trajectory in
the entropic phase space. In defining the local density ρS we divide the
phase space volume ΩS into cells of macroscopic volume (ΔpΔq)N, where
Δp, Δq must physically be regarded as quanta (rather than the mathe-
matically convenient infinitesimals dp, dq); a convenient scale size for Δp
and Δq being chosen such that each macroscopic volume (ΔpΔq)N is ex-
pected to contain an averageMΔ states.

This may appear curious since conventionally one might expect Δp
and Δq to be chosen such that there is an expectation for a cell to contain
only a single state. However, entropy is scale-less (in the same sense that
the Partition Function can assume any granularity), and these quanta
(Δp, Δq) can be taken at any scale (although there must be a physical
scale minimum which we will treat as the expression of the appropriate
Uncertainty Principle, see x6 below). Rather, we take here the general
case (as enabled by the intrinsic scale-lessness of entropy) to allow a cell
to contain an average MΔ states; this allows us to associate a subsystem
entropy SΔ with each trajectory.

Using the (appropriately modified) formalism of Swendsen & Wang
(2015) [29], the local density ρS in the vicinity of the subsystem
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trajectory in the entropic phase-space is then approximately given by:

ρS ¼
MΔ

N!ðΔpΔqÞN (6a)

The factor N! arises from the fact that identical eigenvectors (as
associated with each DoF) occupying the same cell location in phase
space are indistinguishable, and also ensures entropic extensivity. We
note here Jaynes’ [30] careful analysis of whether entropy is extensive,
where (in the context of a deep discussion of the Gibbs ‘paradox’) he
writes that “entropy is just as much, and just as little, extensive in classical
statistics as in quantum statistics,” and indeed (in the context of examples of
processes in which the energy does not increase whereas the entropy
does) that “entropy stands strongly contrasted to energy”. Thus, entropy is
not intrinsically an extensive quantity (although for many simple systems
it is approximately extensive): in any case it is obvious that the holo-
graphic principle cannot of itself be extensive!

The overall number of available macroscopic states conforming to a
subsystem entropy SΔ is then found by integrating the density ρS over the
complete entropic phase space ΩS. Note that ΩS is not a function of ΔpΔq.
The number of states available within an elemental volume dΩS along the
phase space trajectory for the subsystem is then given by dMΔ ¼ ρS dΩS,
such that:

dMΔ ¼ ρSdΩS ¼ MΔ

N!ðΔpΔqÞN dΩS (6b)

We rearrange and integrate both sides:Z
dMΔ

MΔ
¼
Z

dΩS

N!ðΔpΔqÞN (6c)

where the integration is performed across the entire entropic phase-space
(ΩS), and where for simplicity (and without loss of generality) we will
ignore the constant of integration. For completeness we note paren-
thetically that Jaynes insists (see [30] Eq. (9)) that this is “not an arbitrary
constant but an arbitrary function”. Again, we do not have to go into this
further here. Then:

ln MΔ ¼ ΩS

N!ðΔpΔqÞN (6d)

where MΔ represents the total number of states across the entire phase
space ΩS for a trajectory conforming to a subsystem entropy SΔ.

Note here that Liouville’s Theorem, being fundamental, is also rather
subtle: the formalism aids a correct manipulation. Even though ρS (as per
Eq. (6a)) is constant along the trajectory, 1/MΔ (being a function of
ΔpΔq, that is, considered variable in the formalism) integrates in Eq. (6c)
to ln MΔ, whereas the RHS of Eq. (6c) integrates simply to ΩS, since the
magnitude of ΩS is not a function of ΔpΔq.

Moreover, although ΩS is defined over 2N phase space, for a given
system with 2N degrees of freedom (DoFs) these DoFs are not a variable
of the system when it has attained a MaxEnt state and cannot further
evolve at that level of granularity. Rather, the 2N DoFs are a given
(constant) parameter of that MaxEnt system, making ΩS essentially in-
dependent of them: varying N is equivalent to configuring a qualitatively
different geometric system which also exhibits a quantitatively different
entropy requiring a separate treatment.

The entropy SΔ of the subsystem is then as usual simply given by:

SΔ ¼ kB ln MΔ ¼ ΩS

N!ðΔpΔqÞNkB (7a)

Subsequently, the overall probability distribution M for the system is
given by the product of the factors associated with each jth subsystem:

M¼ 1
MT

Y
j

MΔ;j (7b)



Fig. 1. Length of one period of an unwrapped helix showing its geo-
metric properties.
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with an appropriate normalizing factor MT, which looks like a “constant
offset” in the overall entropy. Because entropy is not an absolute quantity
(due to its scale-less character, with the entropic scale defined by the
adopted granularity) MT also includes the constant of integration (from
Eq. (6c)) that represents the background contribution to the overall en-
tropy. Note also that Eq. (7b) is entirely comparable to Swendsen &
Wang’s [29] Eq. (7).

Then the general entropy for a geometric system featuring 2N degrees
of freedom with a quantised cell size whose scale is undetermined, is
given by:

S¼ kB ln M ¼ kB

 X
j

ln MΔ;j � ln MT

!
¼
X
j

SΔ;j � kB ln MT (7c)

However, we are interested in MaxEnt cases where the degrees of
freedom are minimised; in particular, the “maximal MaxEnt” case
occurring for N ¼ 1. Such a system will have no subsystems at the
entropic granularity of interest (that is, it is unitary), and will have an
entropy simply given by:

S¼ kB ln M ¼ ΩS

ΔpΔq
kB (7d)

That is, the entropy of such a unitary system is the number of ways the
incremental area of phase space sub-volume Δp∙Δq divides the total
system phase space volume ΩS, quantised through the Boltzmann con-
stant. This novel result clearly depends a) on p and q being properly
conjugate quantities, which is established by them satisfying the ca-
nonical relations (Eq. (4a)), and b) Liouville’s Theorem (Eq. (3)) guar-
anteeing that the phase space volume is given by the product of conjugate
variables (Eq. (5a)).

Wewill use Eq. (7d) to determine a general expression for the entropy of
the double-helix (togetherwith its property ofMaximumEntropy, Eq. (11))
and thence immediately to derive the Bekenstein-Hawking expression for
the entropy of a black hole (Eq. (12a)), and consequently to derive an
explicit expression for the entropic uncertainty relation (x6).

5. Holographic double-spiral entropy

The double-helix, characterised by its radius R and pitch λ (both
defined in Euclidean space) was discussed at length by PJ2019. It is
the fundamental eigenvector of an entropic system, and it is hol-
omorphic. They show that the entropic momentum for the double helix
is given by p ¼ kB/R, and then the smallest change Δp in entropic
momentum (found using ∂p=∂R ¼ � kB=R2) is given by:

Δp¼ �kB �R2
�
ΔR (8a)

We do the same for the hyperbolic position, defined as q � R ln(x/R)
(see PJ2019 Eq. (9a), where x is the associated Euclidean space co-
ordinate, with x3 being in the axial direction of the double helix). In
particular, using

q0 � ∂q/∂x3 ¼ Rx0/x ¼ iRκ (8b)

where for a double helix described as a complex-vector (isomorphic to
the Riemann-Silberstein vector description of an electromagnetic wave)
we can assume x¼ R exp(iκx3). We see that the smallest changeΔq in the
hyperbolic position (q) is:

Δq¼RκΔx (8c)

where the coupling parameter is given by κ � 2π/λ. Alternatively, noting
the fact that q0 is an imaginary quantity (as indicated by Eq. (8b)), we can
also express the smallest change in Δq as:

Δq¼ jq0 jΔx (8d)

To obtain an expression for the maximum entropy of this system (the
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double-helix) we need the volume ΩS spanned by the maximum allow-
able ranges of p and q in the entropic phase-space. Considering the spatial
co-ordinate (that is, the hyperbolic position q) it is clear that the
maximum value qmax (that is, the maximal extent of q) is of the order of
the helix radius R: qmax ~ R. To obtain the corresponding value of pmax for
the double-helix we consider the entropic momentum p defined in terms
of the entropic mass mS (given by mS � iκkB) and the hyperbolic “ve-
locity” q0 (see Eq. (8b) and PJ2019 Eq. (9b)):

p � mS=q
0

(9a)

Due to the stable and non-time varying nature of the systems under
discussion in this paper, a scalar description of the QGT geometry is
sufficient (in contrast to the fully general analysis including temporal
behaviour which requires a vectorial analysis). This means that consid-
eration of only one of the single helices of the double-helix is adequate.
For the unwrapped single helical geometry as shown in Fig. 1, and
exploiting Eq. (8b) we have

tan α¼ 2πR=λ ¼ κR ¼ jq0 j ¼ constant (9b)

We assume that the acute angle α in Fig. 1 has a minimum value given
by α � 17:7�, which corresponds to a minimum hyperbolic velocity for a
helical geometry given by |q0|min� 1/π. This means that from Eq. (9a) we
have pmax ¼ πκkB, giving the overall phase-space volume for the double-
helix spanning the maximum allowable ranges of p and q as:

Ωs ¼ pmaxqmax ¼ πκRkB (10)

Exploiting the geometry of Fig. 1 and substituting these expressions
into Eq. (7d) allows us to write the entropy of the fundamental double-
helical system as:

S ¼ Ωs

ΔpΔq
kB ¼ πκRkB

ðkB=R2ÞΔR ⋅ RκΔx
kB ¼ 1

4
4πR2

ΔRΔx
kB ¼ 1

4
A

ΔRΔx
kB (11)

where A � 4πR2.
We immediately see here that the geometric entropy of the double-

helix is holographic in the sense that the entropy S depends on the sur-
face area A of a sphere of radius R, and the number of small tiles of area
ΔRΔx (defining the granularity of the system) covering the spherical
surface. We have therefore demonstrated for the first time that a holo-
graphic system, described by a lower number of degrees of freedom
(associated with a 2D surface) compared to the number as given by the
associated (3-space) volume one might anticipate, therefore also con-
forms to the MaxEnt interpretation of the entropic Liouville Theorem.
Thus we see that the RHS of Eq. (11) (as derived from the entropic
Liouville Theorem) now offers a geometric interpretation for the QGT
eigenvector (a double-helix) entropy that is based upon the properties of
a sphere.

If we define the smallest possible increment of spatial granularity as
being the Planck length lP, such that ΔR ¼ Δx ¼ lP, with the radius R set
as the Schwarzschild radius rS, then we recover the celebrated
Bekenstein-Hawking entropy of a black hole (note that this is therefore
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also a consequence of the novel application of Liouville’s Theorem in the
entropic domain):

SBH ¼ 1
4
4πr2s
l2p

kB (12a)

However, Eq. (11) has actually been derived assuming the geometry
of a double-helix; whereas the geometry of a (vacuum) black hole must
be that of a sphere. Fortunately, Parker & Jeynes [13] have shown that
the complex-vector geometry of a sphere is equivalent to the sum of two
identical double-helices. That is, for the radius of the sphere rS, the radii of
the two double-helices composing it are therefore both given by R� rS/2.
Had we set Δx ¼ ΔR ¼ 1=k this would be equivalent to an entropy S for
each double-helix of S ¼ 2πκ2R2kB (PJ2019 Appendix D Eq.D6b). In
which case the black hole entropy is also correctly given by SBH � 2S.

The geometric entropy of both the sphere and the double-helix are
clearly holographic in nature, since they are proportional to the surface
areas of enclosed volumes. We note that spiral galaxies usually have at
least two pairs of spirals: this may be a consequence of a sphere being
composed of two double-helices in geometric entropy terms.

So the entropy of the DNA molecule is given (PJ2019 Eq.D5) by the
surface area A ¼ 2πRL of the cylinder surrounding the double helix of
radius R and length L (again taking Δx ¼ ΔR ¼ 1=k with the pitch of the
DNAmolecule λ0 given by κ ¼ 2π/λ0). In this case, the factor (¼ in Eq. (11))
is now determined by the helical angle, 1/(2sinα):

SDNA ¼ 1
2 sin α

A

ðλ0=2πÞ2
kB (12b)

The holographic principle can be seen again in the expression for the
entropy of the entire galaxy (see PJ2019 Eq.25):

SGalaxy ¼ 2� 1
4

A

ðλG=2πÞ2
kB (12c)

In this case, the surface area of an ellipsoid (radii L/2 and RG) sur-
rounding the galaxy is given by A�2πRGL, the factor two arises due to the
overall geometry being composed of two double-helical eigenvectors,
and the granularity of the galactic entropy is defined by the galactic
wavelength λG.

It is clear that consideration of the geometric entropy of systems
ranging in scale from the molecular (DNA), to the macroscopic
(Schwarzschild black hole), through to the cosmic (galaxy) scales yields a
common holographic interpretation of the resulting entropy. There ap-
pears to be an ambiguity as to the correct dimensionless factor to use in
the holographic expression: we believe that, from a fundamental
perspective, ¼ is correct. The use of 1/(2sinα) in Eq. (12b) arises as a
result of different assumptions on the most appropriate system granu-
larity. We know that the Planck length lP and the physics of a black hole
represent together a physical extreme with the system granularity
therefore intrinsically defined. However, the other examples used here
(DNA and a galaxy) each represent more intermediate-scale systems,
where the intrinsic granularity is less self-evident; hence the slight
variation in holographic factor. But the holographic principle itself re-
mains clear, and is a consequence of the holomorphism (and MaxEnt
state) of the objects considered.

6. Entropic uncertainty principle

Consideration in a Fourier or harmonic analysis of functions that are
finite in the spatial domain and that are also causal (therefore also being
finite in the temporal domain) implies consideration of the limits in ac-
curacy for derived quantities. In particular, Fourier analysis requires the
conjugate variables (of space and time, and their inverse counterparts) to
be reciprocally related, such that a greater level of accuracy in the
measurement of a quantity in the one domain necessitates a reduction in
the accuracy available for the conjugate quantity. This is the
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mathematical viewpoint of the uncertainty principle: the best-known
physical example is the Heisenberg uncertainty principle.

It is clear that the entropic conjugate variables p and qmust also obey
such an uncertainty principle. PJ2019 demonstrate a comprehensive
isomorphism between the entropic geometry (based upon Boltzmann’s
constant kB) and conventional kinematics (in which Heisenberg’s un-
certainty relation states that the uncertainty between the conjugate
momentum and position variables is limited by the Planck constant:
ΔpΔx � ħ/2); that is, the energy quantum is Planck’s constant, and the
entropy quantum is Boltzmann’s constant.

This isomorphism between kB and ħ was discussed at length by
PJ2019 (see their Table 1), and is Discussed further below. We merely
observe here that their close relationship has been long suspected,
including by Heisenberg and Bohr: see a brief review and an illuminating
discussion of the issues by Velazquez & Curilef (2009) [31]; Frieden
(1992) [32] has also obtained a similar result in an entirely different and
highly suggestive treatment. Beretta (2019) [33] has explicitly derived
complementary expressions for the time/energy and time/entropy un-
certainty relations involving kB and ħ. We are concerned here with the
geometric entropy in a treatment that does not involve time (that is, we
do not consider the temporal evolution of the systems that are under
consideration).

We therefore state the equivalent entropicUncertainty Principle which
we establish by the following argument that culminates in Eq. (18a):

ΔpΔq � kB (13)

We note here that this is certainly plausible since the entropic mo-
mentum Δp and hyperbolic position Δq of Eq. (13) have already been
proved by PJ2019 to be conjugate variables, obeying the canonical
Hamiltonian (as well as the Lagrangian) relations.

There have been various previous attempts to define an equivalent set
of entropic uncertainty relations based on the dimensionality of Eq. (13)
(as discussed in Velazquez, 2012 [34]); however these have been
empirical and dimensional best-guesses, without an underpinning
Hamiltonian-Lagrangian theoretical framework. So Acosta et al. (2011)
[35] consider the uncertainty in the entropy itself ΔS and the uncertainty
in the number of particles composing the system under considerationΔN;
while Ruuge (2013) [36] assumes it is the uncertainty of the energy ΔU
and the uncertainty of the inverse temperature Δβ that form the conju-
gate variables. But neither of these alternative representations form the
basis of a consistent Hamiltonian-Lagrangian framework for the equa-
tions of state.

However, we justify the proposed entropic uncertainty principle of
Eq. (13) by consideration of the Liouville Theorem. In particular,
considering the MaxEnt geometry of unitary objects (such as the double-
helix) whereN¼ 1, we can re-write Eq. (3) (dropping the subscripts n) as:

dρS
dx3

¼ ∂ρS
∂x3

þ p
0∂ρS
∂p þ q

0∂ρS
∂q ¼ ∂ρS

∂x3
�
�
∂HS

∂q
∂
∂p�

∂HS

∂p
∂
∂q

�
ρS ¼ 0 (14a)

It is clear that Eq. (14a) represents a Poisson bracket operation in the
entropic p,q phase-space,

dρs
dx3

¼
�

∂
∂x3

� fHs; �g
�
ρs ¼ 0 (14b)

so that the entropic Liouvillian bLS is given by:-

bLS ¼ fHS; �g ¼ ∂HS

∂q
∂
∂p�

∂HS

∂p
∂
∂q (14c)

This is also consistent with Eq. (4a) so that we can write
q0 ¼ ∂Hs=∂p ¼ fq;Hsg and p0 ¼ � ∂Hs=∂q ¼ fp;Hsg. A classical canonical
Hamiltonian system as described here can be transformed into a quantum
system by replacing the Poisson brackets with the commutation opera-
tion (denoted by square brackets [ ]) and re-interpreting variables as
quantum operators (denoted by the hats in Eq. (18)): then given
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dρS/dx3 ¼ 0, we write a quantum version of Eq. (14b) (noting that the
dimensionality is correct):

∂ρS
∂x3

¼�1
2kB

½HS; ρS	 (14d)

where of course the equivalent quantum Liouville equation for kine-
matics is ∂ρ/∂t ¼ (1/iħ)[H,ρ] and the kinematical iħ is isomorphic to the
entropic �2kB (as also seen below in Eq. (15)). The novel use of Boltz-
mann’s constant in Eq. (14d) is the key difference from conventional
quantum (kinematic) formalisms based upon Planck’s constant. In other
words, according to the Minkowski spacetime formalism, kB (associated
with space-like quantities) and ħ (identified with time-like quantities) are
orthogonal to each other, that is, they transform to each other by a π/2
rotation in the complex plane (hence the imaginary factor i) as already
noted previously by multiple authors (Acosta et al. [35], C�ordoba et al.
[37]; Baez & Pollard [38]; Velazquez [34]). Thus in Eq. (14d) kB appears
without the imaginary factor, and for the same reason, in Eq. (14c) the
entropic Liouvillian bLS (being fundamentally based on Boltzmann’s
constant kB) also appears without the imaginary factor, in contrast to the
conventional kinematic Liouvillian of Eq. (1b).

In PJ2019 (Appendix A, Eq.A.4), we found that mutually orthogonal
quantities such as the electric and magnetic fields, as well as the infor-
mation h and entropy s vectors, are Hodge duals of each other. It is
equally clear that the (reduced) Planck constant ħ (being time-like) and
the Boltzmann constant kB (space-like) are mutually orthogonal to each
other in 4-space: we conjecture that in some sense ħ (representing ki-
nematic quantities) and kB (representing entropic quantities) also
represent a Hodge duality.

The factor 2 that appears in Eq. (14d) is also a reflection of an
explicitly entropic version of the Partition Function being composed of
probabilities that are analogous to the modulus-squared of the
Schr€odinger Equation, as described by C�ordoba et al. (2013) [37] (their
Eqs.29,30); that is, we now observe for the first time the following
isomorphism, distinguished by its precise line-integral expression:ffiffiffiffiffiffiffiffiffi

jΨ j2
q

exp
��i
ℏ

Z
Hdt

�
↔

1ffiffiffiffiffi
ZS

p exp
��1
2kB

Z
HSdx3

�
(15)

For convenience we will refer to this isomorphism as “Eq. (15)”. The
left-hand side of Eq. (15) is a solution to the Schr€odinger Equation, and
the right-hand side is its isomorph representing an amplitude component
of the entropic Partition Function (see Eq. (16a), below). The
Schr€odinger Equation is normalised as is conventional by the probability
factor |Ψ|2; similarly, the entropic Partition Function defines the nor-
malisation factor ZS (see below, Eqs. (16) and (17)). The negative sign is
also consistent with the entropic Partition Function itself being in a
maximum entropy configuration described by a negative exponential
distribution.

It is noteworthy that the RHS of Eq. (15) contains within it the
entropic Hamiltonian HS, in contrast to the conventional Partition
Function of statistical mechanics which contains the kinematic Hamil-
tonian H. We will show that the RHS of Eq. (15) provides a consistent
measure of the system entropy, alternative (and complementary) to the
conventional one.

As in Eq. (2) above, both sides of Eq. (15) have a path integral. The
Schr€odinger Equation entails the principle of stationary phase (Eq. (2a)),
since its stable solutions are characterised by the integral φ ¼ R Hdt being
stationary. Similarly, each amplitude component of the entropic Partition
Function entails the MaxEnt principle (Eq. (2b)), since stable solutions
are characterised by the integral S ¼ R HSdx3 being stationary.

The conventional functional operations on the series of amplitude
components (Eq. (15)) forming the entropic Partition Function ZS
(Eq. (16a)) yield the appropriate analogous quantities. For a general, overall
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geometric structure composed ofmultiple subsystems each representing an
entropy component (that is, the overall geometry is composed of N unitary
sub-structures, eachrepresenting twoDoFsof theoverall structure, andeach
with a sub-system (component) entropy Sn according to Eq. (7a)), then we
can arrange each subsysteminascendingorderof entropy,whereweuse the
subscript n to denote the position of the nth subsystem in the ordered array.
In which case we form the following entropic Partition Function, based on
the geometric entropy properties of the overall structure:

ZS ¼
X
n

e�Sn=kB �
X
n

e�βSSn (16a)

Pn ¼ e�Sn=kB

ZS
� e�βSSn

ZS
(16b)

whereweassume the entropic parameter βS� 1/kB (the entropic equivalent
to the conventional inverse temperature parameter β � 1/kBT), and the
associated probability term Pn of Eq. (16b). Note that in this representation
βS is treated as a functional (which happens to be a constant). We then
immediately write:

〈S〉¼ � ∂ln ZS

∂βS
(17a)

S¼ 〈S〉þ kB ln ZS (17b)

in analogy to the conventional statistical mechanical quantities for the
expected energy <E> and the entropy S, where 〈E〉 � �∂ln Z=∂β and
S � kBðβ〈E〉 þ ln ZÞ, respectively, for the conventional partition function
Z.

It is clear that the entropic Partition Function of Eq. (16a) can be used
to generate alternative, yet physically consistent and valid expressions for
thermodynamic quantities such as the expected entropy<S> of Eq. (17a),
which represents the average entropy over the available eigenstate en-
tropies Sn, and the overall entropy S of Eq. (17b) which represents the
expected entropy <S> plus the entropy determined by the granularity of
the entropic Partition Function, with the MaxEnt condition ∂S=∂βS ¼ 0
applying. Note that the summation in Eq. (16a) is over the N subsystems
(corresponding to the 2N degrees of freedom) of the system; that is, the
“canonical ensemble” in view here is the appropriate entropic one.

For entropic systems (based on the conjugate variables p and q)
quantised using the Boltzmann constant, it is immediately apparent that
the following entropic commutator result therefore also holds:�bqS; bpS

	
¼ � 2kB (18a)

showing that this representation is consistent since Eq. (18a) is the ca-
nonical commutation relation from which the entropic uncertainty prin-
ciple of Eq. (13) immediately follows.

It is also clear that in progressing from the classical Poisson brackets
to the quantum entropic commutator, the entropic conjugate variable p
can be identified for the first time with the following entropic quantum
operator:

bpS � 2kB
∂
∂q (18b)

Likewise, it is clear that the entropic Hamiltonian HS also represents
the appropriate operator in our QGT formalism with the double-helix
acting as its associated eigenvector. Note that Eq. (18b) is based in hy-
perbolic space q, whereas the conventional kinematic momentum oper-
ator is based on Euclidean space x ðbp� �iℏ∂ =∂xÞ as is the conventional
Heisenberg uncertainty principle. However, the entropic uncertainty
principle in Euclidean space is also obtained by substituting Eq. (8d) into
Eq. (13):
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Δp ⋅ jq0 jΔx � kB (19)
From Eq. (8a) we substitute for Δp as follows:

ΔR
R2

kB ⋅ jq0 jΔx � kB (20a)

so that we can also write the entropic uncertainty principle in terms of
the hyperbolic “velocity” q0 (Eq. (4b)):

jq0 j � R2

ΔRΔx
(20b)

7. Hyperbolic “velocity”

Eq. (20b) makes it clear that the entropic uncertainty principle is
naturally dimensionless only in hyperbolic space. Given that
Δx ¼ ΔR � 1=κ, as previously noted for the fundamental double-helix
geometry, then we can express the magnitude of the hyperbolic ve-
locity as (recasting Eq. (20b)):

jq0 j � κ2R2 (21a)

However, from Eq. (8b) we have for a double helix jq0 j ¼ κR, such
that Eq. (21a) can therefore also be expressed as:

jq0 j � jq0 j2 (21b)

with the novel implication that

jq0 j 
 1 (22)

Kinematics makes a distinction between the group velocity vg � ∂ω/∂k
(equivalent to vg ¼ ∂H/∂p as in Eq. (1c)) and the phase velocity vφ � ω/k;
the group velocity represents the speed of a particle and corresponds to
the speed of information transfer, where ω is the frequency and k ¼ 2π/λ
is the propagation constant or wavenumber of the wave of wavelength λ.
The phase velocity is not constrained by c since matter and information
can still only travel at the group velocity.

We underline the standard result of classical electrodynamics (see
Jackson [39] x8.5) that in natural units (that is, c ¼ 1) the product of
group (vg) and phase (vφ) velocities is unity:

vgvφ ¼ c2 (23a)

and note that Maxwell’s equations are a hyperbolic version of the Cauchy-
Riemann equations (see Courant & Hilbert [27] vol.II p.178). Therefore,
exploiting the comprehensive isomorphism between the kinematic and
hyperbolic entropic velocities, we define for the first time a ‘phase’ hy-
perbolic velocity q0φ, such that the product of q0 (the ‘group’ hyperbolic
velocity) and q0φ is unity:

q
0 � 1

�
q
0
φ (23b)

Any hyperbolic velocity greater than unity must be considered to be
the phase hyperbolic velocity q0φ, so that we therefore have a lower bound
for the phase hyperbolic velocity:

q0

φ



 � 1 (23c)

which is consistent with Eq. (22) and therefore also consistent with the
entropic uncertainty principle Eq. (13). It should be noted that calcula-
tions for the radius and wavelength of lengths of double-helical B-DNA
and P-DNA in PJ2019 with R ¼ {1.0, 0.6} nm and λ ¼ {3.32, 1.28} nm,
respectively, indicate hyperbolic velocities of



q0
B�DNA



 ¼ 1:89 and

q0
P�DNA



 ¼ 2:95; these must therefore be understood to represent the
relevant phase hyperbolic velocities.
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This highlights an essential ambiguity in hyperbolic space between
the hyperbolic velocity and its inverse, since being dimensionless they
both yield the same magnitude (but of different sign) for the kinetic
entropy TS � �mS ln q

0
(PJ2019, Eq.10a). In which case, as indicated by

Eq. (23), the group hyperbolic velocity is axiomatically defined to be less
than or equal to unity (in conformance to the entropic uncertainty
principle). In contrast, its reciprocal (the phase hyperbolic velocity) must
be more than or equal to unity. Both hyperbolic velocities are calculated
using the entropic Hamiltonian equation of state identity: q

0 � ∂HS=∂p
from Eq. (4a).

8. Discussion

Section x5 considers explicitly the geometry of the double-helix, this
being the fundamental eigenvector of the QGT formalism. In particular,
the double-helix is mathematically described as a double plane-wave
(Eq. (8) of PJ2019), and a general treatment would involve a com-
plex vector representation (as per the Riemann-Silberstein description
of Maxwell’s equations in optics, for example). x5 and consequently
xx6,7 deal only with non-time-varying (stable) geometries, for which a
scalar description is sufficient. A fully general analysis where the full
temporal behaviour is described, would require a fully vectorial anal-
ysis; but we do not yet consider this, for now treating only static geo-
metric structures in equilibrium. The study of non-equilibrium systems
is now emerging as important (witness the work of Prigogine’s Brussels-
Austin school [14,16]). This is also seen in other important recent de-
velopments in non-equilibrium thermodynamics, such as the
fluctuation-dissipation theorem where the Jarzynski equality [40] is a
relatively recent development. In the future it will clearly be desirable
to achieve a fully-vectorial (relativistic) analysis that includes the
time-varying aspects of systems within a dynamic setting: this will
enable generalisation of this work to other non-equilibrium (maximum
and minimum entropy production) physical phenomena (such as gal-
axies [15]).

We emphasise that the entropic Partition Function of Eq. (16a) (as
exemplified by the entropic parameter βS � 1/kB) is intrinsically inde-
pendent of temperature T; that is, as a MaxEnt description, Eq. (16a) is
valid for all values of T. In contrast, for the conventional Partition
Function employing the kinematic Hamiltonian H, the principle of
Maximum Entropy only applies for a particular temperature as deter-
mined by the value of the Lagrangian multiplier β. Temperature only
starts playing a role in any entropic analysis when the connection to a
kinematic description (that is, related to energy) is required. Therefore,
temperature can be seen as the coupling parameter (coefficient) con-
necting the kinematic and entropic domains.

The isomorph between the Schr€odinger Equation and entropic
Partition Function probability amplitude component of Eq. (15) also has
similarities to the Wick rotation which effects a transformation between
the time evolution operator of quantum mechanics and the density
operator of statistical mechanics. For the Wick rotation (see Penrose [22]
x28.9) this transformation maps imaginary time onto “thermodynamic
time” τ (see Eq. (18) of C�ordoba et al., 2013 [37], and see also Hongo,
2017 [9]): it↔ τ. However, whereas the Wick rotation maintains the
same kinematic Hamiltonian H as well as the reduced Planck constant ħ
across the transformation into the statistical mechanical domain, it is
clear in our analysis that we employ a different (that is to say, an
entropic) HamiltonianHS in our entropic Partition Function as well as the
Boltzmann constant kB. Thus, our entropic analysis here shares intriguing
features with the Wick rotation: compare our use of the Euclidean Pauli
conjugate variable x3, corresponding to a real space co-ordinate, it↔ x3.

Also compare the requirement for information-bearing (entropic)
functions such as the entropic Hamiltonian HS to satisfy the Hurwitz
polynomial criterion for stability (see Parker&Walker, 2004 [7] ); this is
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equivalent to the Wick rotation requirement that the imaginary compo-
nent of complex tmust be less than or equal to zero. It is also worth noting
that when applying the Wick rotation to the path-integral of
quantum-mechanical propagators, this transforms the conventional ki-
nematic Lagrangean L into what is called the Euclidean Lagrangean LE,
since it is now defined in Euclidean (as opposed to Minkowski) space.
However, following Wick-transformation the kinematic Euclidean
Lagrangean also frequently becomes identical to the kinematic Hamil-
tonian where the kinetic and potential energy terms sum. From this
perspective, another interesting common feature becomes evident that
our entropic Partition Function with its entropic Hamiltonian shares with
the Wick-rotated path integral; yet our entropic Partition Function is still
resolutely within (hyperbolic) Minkowski 4-space.

In addition, the Wick rotation is also generally associated with a pe-
riodic boundary condition for its ‘thermodynamic’ time dimension; this
also has a strong resonance with the periodicity λ seen along the x3 axis of
the MaxEnt double-helix eigenvector geometry. Overall, the Wick rota-
tion represents an elegant connection between quantum mechanics and
statistical mechanics; fully understanding the distinction between it and
our entropic approach is the subject of further research.

We can also comment briefly on how this formalism accounts for the
difference between bosons and fermions. Further work [41] on the alpha
particle naturally incorporates the antisymmetrisation requirement of
fermions. We have not so far treated photons (bosons) directly, except in
so far as the field-free electromagnetic wave is well-known to be
holomorphic.

9. Concluding remarks

The close relationship between quantum mechanics (as expressed by
the Schr€odinger Equation) and statistical mechanics (as defined by the
Partition Function) is well known (via the Wick rotation). However,
using geometric entropy and the entropic version of Liouville’s Theorem,
we have been able to describe a comprehensive isomorphism between
the Schr€odinger Equation and the amplitude components of an entropic
form of the Partition Function which intrinsically conform to the prin-
ciple of Maximum Entropy. In so doing, we have shown not only how the
entropy of a MaxEnt system is holographic in nature, but also that there
exists an associated entropic version of the uncertainty principle, based
on the Boltzmann constant as the appropriate entropic counterpart to the
Planck constant. The entropic uncertainty principle places bounds on the
(dimensionless) hyperbolic velocity q0 such that its upper bound is unity,
which is isomorphic to the kinematic speed of light in vacuum c, and
which also represents the hyperbolic boundary between the group and
phase hyperbolic velocities.

Finally, the phenomenon of “dimensional reduction” observed in
black hole physics has been characterised by Carlip [42] as “a hint that
spacetime at very short distances becomes effectively two dimensional”. We
think that, whatever the merits of this view, the well-known holographic
effects observed in black holes are not confined to black holes or Planck
distances but are actually ubiquitous in nature, as partially demonstrated
here. We have interpreted this as a consequence of an entropic applica-
tion of Liouville’s Theorem to maximum entropy systems in hyperbolic
space and shown that it is essential to a quantitative treatment of geo-
metric thermodynamics.
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