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Abstract

Many artificial intelligence (AI) algorithms struggle to adapt effectively in dynamic real-world

scenarios, such as complex classification tasks and object relationship extraction, due to

their predictable but non-adaptive behavior. This paper introduces HybridBranchNetV2, an

optimized hybrid architecture designed to address these challenges. The key novelty of our

approach lies in the integration of reinforcement learning for adaptive feature extraction and

the use of graph-based techniques to analyze object relationships in complex environments.

By dynamically adjusting feature extraction based on feedback from the environment, the

model improves adaptability, while graph-based methods allow for a more comprehensive

analysis of object relationships. Our extensive evaluations demonstrate that HybridBranch-

NetV2 achieves average 91.75% accuracy over four different challenging datasets. In par-

ticular, a 14% improvement obtained on the Visual Genome dataset and ImageNet 1K

compared to the original HybridBranchNet model. Additional testing on CIFAR, Flowers,

and ImageNet datasets revealed improvements of 6%, 1%, and 6%, respectively. These

advancements not only enhance classification accuracy but also ensure efficient computa-

tion, making HybridBranchNetV2 suitable for real-time applications with minimal risk of over-

fitting. The proposed framework demonstrates significant improvements in adaptability,

performance, and computational efficiency, addressing critical limitations in current AI

models.

I. Introduction

Artificial Intelligence (AI) denotes the evolution of computer systems capable of performing

tasks conventionally requiring human intelligence. This includes capabilities such as speech

recognition, decision-making, and problem-solving [1, 2]. The significant advancement in AI

research has been the inception of Deep Neural Networks (DNNs). DNNs are modeled on the

structure and function of the human brain, consisting of multiple layers of interconnected

nodes. Each node processes data, relaying it to successive layers, enabling DNNs to discern
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patterns in substantial datasets. This capability is crucial in applications ranging from image

and speech recognition to natural language processing and self-driving vehicles [3].

Nevertheless, DNN training poses significant challenges. The demand for extensive labeled

data–data annotated with specific attributes–stands paramount. Acquiring and annotating of

such datasets can be both time-consuming and expensive, especially in sectors like healthcare

or finance where data confidentiality is paramount [4]. Overfitting, a scenario where the

model intricately adapts to training data but falters with novel data, remains a salient chal-

lenge. Furthermore, DNNs are susceptible to adversarial attacks, compromising the reliability

of their decisions, especially in security-critical applications [5]. Beyond these technical chal-

lenges, Studies indicate that DNNs can confidently predict outcomes for images that are indis-

tinguishable from humans, demonstrating vulnerability to misclassification. The findings

underscore the potential for misleading decisions and emphasize the need for ethical consider-

ations in the deployment of deep learning technologies [6]. Nevertheless, the potential of

DNNs remains vast. Efforts persist to counteract these challenges, to craft more resilient, trans-

parent, and ethically sound AI systems [7].

Deep neural networks have significant potential for innovation in the field of artificial intel-

ligence, but their deployment and application come with numerous challenges [8]. These chal-

lenges include issues such as data quality and accuracy, the ability of models to generalize,

security vulnerabilities, transparency in decision-making, and ethical considerations. Current

research in this field is focused on addressing these challenges to ensure that artificial intelli-

gence systems not only contribute to societal progress but also minimize the risks associated

with them. Furthermore, academic experiences in the field of deep learning, which include

university research and practical applications in this area, have shown us that using limited

input data in deep neural networks can have its limitations. These limitations become particu-

larly apparent when neural networks must deal with environments and conditions that are

variable and complex. In other words, when the input data used for training and tuning neural

networks are not sufficiently diverse and extensive, these networks may struggle with general-

izing findings and making accurate predictions in new and unknown conditions. This issue

becomes especially important in cases where neural networks must be capable of recognizing

patterns or making complex decisions in data with unusual or rare structures. For example, in

situations where the network must recognize images with features very different from the

training data or make predictions based on data with temporal or spatial variations, having

diverse and comprehensive input data is of great importance.

This article seeks to augment neural network models by fusing textual and visual features

and creating the necessary diversity in the input data. The diversity is achieved by combining

different types of textual and visual features. This combination aims to enrich the neural net-

work’s learning experience, allowing it to recognize and understand more complex patterns

and scenarios than it could with a more homogeneous or limited dataset. In this paper, we

address the relationship between descriptive information of each image and the improvement

in image classification accuracy. For this purpose, we augment our base image classification

model (HybridBranchNet) by text interpretation blocks relying on descriptive graphs. We

found that visual information provides limited knowledge about images. Therefore, by inte-

grating text and images using a graph-based technique, we presented a new model that is not

complex and does not suffer from language model errors. Previous methods for integrating

text and image relied on language models, which significantly increased model complexity and

introduced language model errors. In these methods, image feature extraction is dependent on

language model interpretation. Additionally, network errors and imperfections are normally

transferred to the feature extraction part. In the proposed method, by using textual graphic

patterns, feature extraction becomes completely dependent on objects and their relationships.
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This characteristic eliminates language model errors in the feature extraction stage. Our exper-

iments show that the image classification accuracy of the proposed model is increased com-

pared to the methods based on the language model. Furthermore, accuracy on unseen images

has been improved compared to our original HybridBranchNet model.

To further clarify the scope of this work, we provide an example here: A neural network

might struggle to detect a small cat in a large, complex scene like a five-lane road using only

visual data. However, by introducing additional types of data, such as textual descriptions or

tags that might provide context (like the presence of a cat in the image), the neural network

can gain a more comprehensive understanding of the scene. Such data enrichments, with its

requisite diversity, enables the neural network to make more accurate predictions or identifi-

cations, even in complex or challenging scenarios. This research proposes a solution that

involves creating a supplementary model to enhance the recognition capability of the main

model, which identifies the object with textual descriptions.

To fully leverage the features of textual content, we convert texts into graphs. Graphs can

always serve as the best tools for describing and illustrating relationships. This method pro-

vides the ability to display connections more accurately and clearly. Additionally, by increasing

or decreasing these connections in the graph, we can extract new meanings.

Our methodology starts by transforming a generic image into a descriptive graph, meticu-

lously detailing each object, their attributes, and interrelationships. This structure significantly

enhances our ability to understand multifaceted images. In the proposed architecture, we inte-

grate both textual and visual elements. This approach builds upon the foundational architec-

ture referenced in [9], which we will describe in more detail in Section II. The base

architecture has significantly reduced the number of parameters, yet it has enhanced efficiency

and effectiveness. This model not only demonstrates exceptional data extraction capabilities

but also maintains a balance between nimbleness and efficiency, making it well-suited for a

variety of platforms. In summary, the key contributions of this research include:

• Reinforcement learning for feature extraction: Our study introduces a novel approach by

incorporating reinforcement learning techniques into the feature extraction process. While

traditional methods often rely on supervised or unsupervised learning for feature extraction,

our approach harnesses the power of reinforcement learning to dynamically adapt feature

extraction based on feedback from the environment. This enhances not only the adaptability

of the feature extraction process but also enables the system to learn optimal feature repre-

sentations tailored to specific tasks or domains.

• Graph features for analyzing object relationships: Another key innovation of our work lies

in the utilization of graph features for analyzing relationships between objects. Unlike con-

ventional approaches that mainly focus on individual object features, our method considers

the relational context by representing objects and their interactions as nodes and edges in a

graph structure. By leveraging graph-based techniques, we enable more comprehensive anal-

ysis of object relationships, facilitating tasks such as object recognition, classification, and

localization in complex scenes or datasets.

In the initial version of the HybridBranchNet method, one of its fundamental challenges

was the reliance on only one loss function for object classification. This limitation reduced the

network’s ability to gain a more comprehensive understanding of the image data. Specifically,

the network was primarily focused on classifying data and lacked the ability to extract more

features from the image. This issue led the research team to move away from traditional struc-

tures and design a novel hybrid approach that could extract more information from the image

and provide stronger feature representations. This broader information includes object
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detection and relationships between objects that might exist in the image, beyond just the

dominant class. To develop a network capable of interactively and continuously extracting rel-

evant features while maintaining fewer parameters, the design of an interactive network was

deemed necessary.

In this regard, reinforcement learning was chosen as a suitable solution. One of the main

reasons for selecting reinforcement learning in this model is its ability to extract new and hid-

den features from images. This process allows the network to converge more effectively by

considering the rewards and penalties it receives during learning, dynamically optimizing as it

progresses. In other words, reinforcement learning helps the network select the best possible

features at each stage of learning and gradually extract more information from the image. This

capability is especially beneficial for complex image data, as it enables the model to gain a

deeper understanding of the image content.

Another key advantage of this approach is the reduction in the number of trainable

parameters in the network. Complex models with many parameters not only consume

more computational resources but can also face challenges like excessive complexity and

overfitting. By adopting reinforcement learning and implementing it within the Hybrid-

BranchNetV2 architecture, the research team was able to maximize the use of image data

with a minimal number of network parameters. This approach not only reduced the train-

able parameters but also led the network towards a more natural and smoother

convergence.

Ultimately, this design resulted in improved accuracy in image classification, as the network

was able to extract more information from the image and optimally apply it in object classifica-

tion. Therefore, the main goal of designing HybridBranchNetV2 was to reduce the number of

trainable parameters, extract new features, and add more information from the image to the

network, which ultimately led to improved model accuracy.

The rest of the paper is structured as follows: Section II offers a literature review highlight-

ing pivotal AI advancements. Section III delineates our proposed methodology. Section IV

presents detailed experimental insights. Section V sketches a discussion on the obtained results

and achievements. Finally, Section VI provides concluding remarks and future research

avenues.

II. Related works

In this section, we offer a summary of recent literature in artificial intelligence, particularly

emphasizing advancements and research in deep learning and image classification techniques.

This overview highlights the cutting-edge methodologies and innovative approaches being

explored to push the boundaries of accuracy and efficiency in image recognition and analysis,

focusing on the technical aspects and developments within these areas. Our discussion high-

lights their methodologies and findings, emphasizing the critical role of input data in deep

learning and machine learning. We also investigate how integrating auxiliary components into

our architecture can reduce this dependency, moving towards more reliable AI systems.

According to the challenges discussed above, we categorize the related AI models into three

distinct categories which are described as follows.

Each of these categories include a range of topics and issues that are crucial to the develop-

ment and application of AI and deep learning technologies. Organizing the challenges into

these categories aims to create a more coherent and comprehensive understanding of the cur-

rent state of AI research and its future directions.
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II.I. Advances and challenges in deep learning

In [10], the limitations of deep learning algorithms in adversarial environments are discussed,

where an attacker intentionally manipulates data to deceive the algorithm. Nicolas, the author,

argues that deep learning algorithms lack robustness against adversarial attacks, which can

have serious consequences in applications such as autonomous vehicles and cybersecurity.

Nicolas discusses potential solutions and outlines future directions for addressing these limita-

tions. Drawing insights from [10], we can infer those errors or inaccuracies in the network’s

inputs, such as precise graph or image requirements, may not necessarily result in substantial

errors in the overall performance of the network.

The paper [11] explores strategies for effectively training deep neural networks with limited

labeled data, overcoming labeling constraints. The authors explore challenges such as data

availability, high labeling costs, and data ambiguities. To address these challenges, their pro-

posed solutions include transfer learning, AI-driven data augmentation, and the integration of

multiple data sources. These methods aim to alleviate labeling constraints and enhance the

performance of deep learning.

In [12], an effective semi-supervised learning approach, termed Augmented Distribution

Alignment, is introduced. The authors identify a sampling bias in semi-supervised learning,

arising from limited labeled samples and resulting in a distribution mismatch between labeled

and unlabeled data. They propose aligning these distributions to improve learning outcomes.

The paper [13] unveils a novel technique to enhance the scene graph generation (SGG) perfor-

mance. SGG is a task dedicated to extracting (subject, predicate, object) triplets from images.

The proposed method in [13], named IETrans, leverages both internal and external data trans-

fer to boost the quality and quantity of SGG data. Internal data transfer involves sharing infor-

mation from the object detection branch to the relation prediction branch within the SGG

model. In contrast, external data transfer involves incorporating knowledge from a vast pre-

trained language model into the SGG model. The article demonstrates that IETrans can

achieve exceptional results on multiple benchmarks, such as Visual Genome and GQA [14,

15].

In [16], a modified least squares regression model is introduced that incorporates two

constraints for improving classification accuracy. These constraints aim to minimize the

variance within image classes and maximize the separation between different classes. The

method enhances the model’s capability to distinguish between high-dimensional image

data, outperforming traditional regression models. It utilizes an optimization algorithm

tailored for this double-constrained setup, applicable across various image recognition

scenarios. In [17], a novel method for classifying defective images using deep neural net-

works (DNN) is introduced. By optimizing the neural network on both defective and non-

defective images, the proposed approach significantly improves the accuracy of image

classification. The results demonstrate a noticeable increase in classification accuracy

through neural network optimization on defective images. In conclusion, this method

effectively enhances image classification precision by detecting and distinguishing defec-

tive images.

In [18], an innovative approach to content-based image retrieval (CBIR) is proposed, intro-

ducing a query-sensitive co-attention mechanism for large-scale tasks. In contrast to tradi-

tional methods, the proposed method dynamically adapts to query features, thereby enhancing

retrieval performance. To reduce computational costs, the method incorporates clustering of

selected local features. Experimental results demonstrate the effectiveness of the co-attention

maps, especially in challenging scenarios with significant variations in how images are taken

between the query and its matching image.
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In [19], an innovative approach is introduced to address the challenge of Unsupervised

Domain Adaptation (UDA) in image classification. Unlike conventional methods, the pro-

posed method focuses on learning a unified classifier for both the source and target domains,

eliminating the need for explicit domain alignment.

In [20], the Reverse Contrastive Learning (RCL) approach is introduced for high-quality

and diverse image generation in few-shot settings. RCL utilizes a unique regularization

method based on the correlation between generated samples, demonstrating superiority over

existing State-Of-The-Art (SOTA) methods in few-shot scenarios and remaining competitive

in low-shot settings.

In [21], challenges in deep generative models for multi-modal data were noted. Introducing

a novel conditional multi-modal discriminative model, the research maximizes mutual infor-

mation between joint representations and missing modalities. The proposed model achieves

state-of-the-art results in downstream tasks such as classification and image generation.

II.II. Image classification

In the field of image classification, B. Hanin explores the robustness of deep learning models

to label noise in large datasets [22]. The author argues that deep learning models can perform

well even in the presence of significant noise in training data labels. This argument challenges

the traditional belief that noisy labels can severely impact the performance of machine learning

algorithms. The article back this claim with theoretical analysis and empirical evidence, sug-

gesting that the robustness to label noise may stem from the over-parameterization of deep

learning models. The discoveries in this article could carry significant implications for the

development and deployment of deep learning models in real-world applications [22].

In [23], a novel structural regularized semi-supervised learning model is introduced. This

model, specifically designed for Multiview data, is named Adaptive Multiview Semi-supervised

model (AMUSE). The model takes advantage of a priori graph structure to learn weights,

which is considered more reasonable compared to weight regularization. Semi-supervised

learning models for Multiview data are considered significant in image classification tasks due

to their ability to easily obtain heterogeneous features, making them both economical and

effective.

In [24], a novel multi-stage approach for image scene classification is presented. The

approach utilizes high-level semantic features extracted from the image content. In the initial

stage, the identification of object boundaries within the images are carried out, laying the

groundwork for further analysis. The article highlights the importance of image scene classifi-

cation, emphasizing both the challenges and significance of utilizing low/high-level features

for this task. The high-level features, grounded on semantic concepts, provide a more accurate

and nuanced model that closely reflects the human perception of the image scene content.

In [25], a representative sampling model (CALR) for active learning is introduced. This

model selects valuable samples without requiring an initial labeled set or iterative feedback

from target models. To efficiently address the cold-start problem, this model leverages self-

supervised learning, clustering, and manifold learning to identify informative images for label-

ing from the start. These strategies are designed to initiate classification on large unlabeled

datasets, especially adept at handling data imbalance, and overcoming the limitations of ran-

dom selection. The paper introduces a structured framework for initiating the training of clas-

sification models in scenarios with unavailable labeled data. This ensures a balanced

representation of classes and enhances the efficiency of the learning process.

In [26], a deep learning model for image classification and object detection in waste man-

agement, combining CNN and LSTM networks with pre-trained ImageNet weights is
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proposed. This hybrid approach improves accuracy by addressing complexity and data limita-

tions, outperforming EfficientNet models. Grad-CAM visualizations show precise object

focus, and the method supports low-power device deployment, making it suitable for practical

applications.

In [27] a hybrid CNN-LSTM model for image classification and object detection, focusing

on waste management. Using transfer learning with ResNet-50 and LSTM, it classifies waste

into recyclable and organic categories. The model achieves high accuracy with fewer parame-

ters, outperforming EfficientNet models, and is suitable for low-power devices.

In [28], a similarity-based method is introduced, creating a new class of methods for multi-

label learning. This method is generalized in the paper, establishing a new framework for clas-

sification tasks. The proposed framework aims to achieve promising performance in both

multi-label learning and classification tasks.

The study [9] explores systematic examination of branch network structures within Con-

vNet deep neural networks, proposing a novel architecture known as HybridBranchNet. These

networks generally follow a consistent architecture that can be scaled and adjusted for various

applications. Increasing the network dimensions—like depth, resolution, and width—leads to

more trainable parameters and improved accuracy. However, it also contributes to network

complexity. To strike a balance speed, reduce network size, and optimize accuracy, the study

introduces a novel scaling method. This method optimizes depth, width, and resolution

dimensions based on branch neural networks. This approach gives rise to a family of Hybrid-

BranchNet networks that outperform traditional ConvNets. For example, HybridBranchNet3

achieves an 83.1% classification accuracy [9]. In addition, there are other approaches such as

the CoAtNet architecture, which seamlessly blends convolution and attention mechanisms to

efficiently handle data of varying sizes. By integrating both convolutional and attention-based

operations, CoAtNet enhances the flexibility and scalability of neural networks. CoAtNet is

designed to address challenges linked with processing data of diverse sizes, marking it as a

promising strategy for numerous applications.

The study [30] investigates a novel geometric-spatial image representation for scene classifi-

cation. The method combines geometric and histogram features to detect and classify scenes.

By integrating these two types of features, the method provides a more precise and compre-

hensive representation of scenes, leading to higher accuracy in their classification.

In [31, 32] the Vision Transformer (ViT) architecture is used by introducing factorized

attention to better handle large-scale image classification tasks like ImageNet. The method

achieves state-of-the-art performance, outperforming traditional convolutional networks in

terms of both accuracy and training efficiency. The authors discuss how scaling transformers

can help to further optimize deep learning models for visual tasks.

In [33] an approach for improving Vision Transformer training is proposed by token label-

ing, which helps the model learn finer-grained features from images. This method has been

evaluated on the ImageNet dataset and demonstrates superior performance compared to pre-

vious techniques.

In [34] the classification of masked image data involves categorizing images that have

undergone some form of masking or obscuring. This could include images where certain parts

are obscured intentionally or unintentionally, such as due to privacy concerns or noise. The

task typically entails developing algorithms or models capable of accurately identifying the

underlying content of the masked images despite the obfuscations. Efficiently handling

masked image data is crucial in various domains, including computer vision, medical imaging,

and security applications. Techniques for classification often involve advanced image process-

ing, pattern recognition, and machine learning algorithms to infer the true content of the

images from the masked information.
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II.III. Enhancing Vision-and-Language integration

In [35], a method is discussed to address the challenges posed by the size of Vision-and-Lan-

guage Pretraining (VLP) models in image-text retrieval tasks. Introducing Dynamic Contras-

tive Distillation, the authors aim to improve the performance of real-world search applications

by limitations posed by the large size of VLP models.

Coca is an image-text foundation pretraining model capable of undertaking various vision

and vision-language tasks [36]. This model’s architecture includes an image encoder, a text

encoder, and a decoder specifically designed for generating captions for images. The training

process of the model focuses on two primary objectives: a contrastive loss, which aligns the

image and text embeddings within a unified space, and a captioning loss, which predicts text

tokens based on the provided image and preceding tokens. This model gains advantages from

pretraining on extensive alt-text data and annotated images. Furthermore, it’s adaptable to

downstream tasks through zero-shot, few-shot, or fine-tuning methods. Empirical evidence

demonstrates that Coca outperforms its competitors in several benchmark tests, including

those on ImageNet, MSCOCO, VQA, and NLVR2.

In [37], the refinement of the pre-existing architectural framework HybridBranchNet is

addressed. The core of the improvements lies in adapting the architecture based on empirical

results derived under a range of testing conditions. A key challenge identified is the depen-

dency on single-label feature extraction in the processing of images that contain multiple

object categories. This method falls short as it often results in errors, particularly when the

architecture encounters images that include overlapping or similarly structured classes. To

overcome these limitations, the proposed approach involves a more nuanced management of

the extracted features. This includes incorporating additional labels or supplementary infor-

mation for each image within the architecture. These enhancements aim to significantly

increase the accuracy of classification, especially in instances where the extracted features pres-

ent conflicting information. Further, the article emphasizes the importance of refining archi-

tectural inputs, echoing insights from preceding research in the field. It notes that different

architectural designs come with different requirements. For example, some architectures

might need to process images at different resolutions, while others may benefit ancillary data,

like edge detection or external knowledge sources, to improve algorithmic efficiency.

A notable objective of this research is to employ simple, non-deceptive techniques to

enhance classification accuracy. This is achieved by classifying images based on an interpreta-

tion of the scene and examining the effectiveness of this method across diverse scenarios. Our

findings indicate that the application of appropriate reinforcement learning techniques can

significantly boost classification accuracy. In the architectural frameworks we have examined,

the limitations can be broadly summarized into four key areas, each presenting unique chal-

lenges to the advancement and application of artificial intelligence and deep learning

technologies:

Data Availability and Quality: The challenges related to acquiring large volumes of high-

quality, labeled data, and the implications for model training and accuracy.

Model Robustness and Generalization: Vulnerabilities including overfitting, susceptibility to

adversarial attacks, and difficulties in generalizing from training to novel or complex real-

world scenarios.

Architectural and Integration Challenges: Limitations in handling multi-object scenes, inte-

grating diverse data types (e.g., visual and textual information), and achieving efficient

computational performance.
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Ethical and Operational Concerns: The need for ethical considerations in AI deployment

and the requirement for models to be adaptable and reliable across various applications and

conditions.

The overarching goal is to facilitate the transfer of knowledge from images directly into the

model, thereby enhancing the model’s performance in scenarios that differ from the initial

training data conditions. If this knowledge transfer proves effective, it could open the door to

designing more sophisticated architectural models that require less data input yet maintain

high accuracy. Such models would be versatile, and capable of delivering reliable performance

across various conditions and hardware configurations, marking a significant advancement in

the field of image classification and machine learning. As a summary, a list of different meth-

ods for image classification is provided in Table 1, along with their advantages and disadvan-

tages, and the dataset used for each method.

III. Proposed method

We aim to tackle the inability of deep neural networks to autonomously comprehend fundamen-

tal concepts and semantic relationships between objects. Despite their high accuracy in object

classification, current networks often fail to grasp the complex concepts underlying images. Our

approach, "HybridBranchNetV2", integrates linguistic knowledge with image processing tech-

niques. Initially, we assess both image and text processing capabilities. Image processing

Table 1. Methods of image classification with advantages, disadvantages, and utilized datasets.

Method Advantages Disadvantages Dataset

Deep Learning is Robust to Massive Label Noise

[22]

Robust to incorrect labels, can

improve generalization

Requires large datasets, may be

computationally intensive

Large datasets with significant label

noise (MNIST, CIFAR, ImageNet)

Multiview semi-supervised learning model for

image classification [23]

Utilizes unlabeled data, can

leverage multiple data views

May struggle with highly disparate

views, semi-supervised learning can be

sensitive to noise

Multiview datasets with structured

graph information (HeriGraph)

A comprehensive system for image scene

classification [24]

Can handle complex scenes with

multiple elements

May require significant computational

resources, complex to implement

Image datasets with varied scene

content (VAST)

Cold-start active learning for image

classification [25]

Efficient for small datasets, can

quickly adapt

Initial model performance may be low,

and requires careful selection of

samples

Large unlabeled datasets with class

imbalance (SODA10M, ImageNet-

21K, JFT-300M)

A smart waste classification model using hybrid

CNN-LSTM with transfer learning for a

sustainable environment [26]

Effective for temporal and spatial

data, benefits from transfer

learning

May need fine-tuning for specific waste

types, complex model architecture

Datasets of waste images with

labeled categories (TrashNet)

Hybrid CNN-LSTM model with efficient

hyperparameter tuning for prediction of

Parkinson’s disease [27]

Efficient hyperparameter tuning,

good for biomedical signals

Specific to Parkinson’s disease, may not

generalize well to other conditions

Datasets of Parkinson’s disease

patient data with clinical attributes

A similarity-based framework for classification

tasks [28]

Can be very accurate, and useful

for fine-grained classification

Depends on the quality of the similarity

measure, may not scale well

Multi-label datasets with diverse

classes

CoAtNet: Marrying Convolution and Attention

for All Data Sizes [29]

Versatile for different data sizes,

combines strengths of CNNs and

attention

May be complex to train, and requires

careful architecture design

ImageNet, ImageNet-21K, JFT-

300M

A Hybrid Geometric Spatial Image

Representation for scene classification [30]

Innovative approach to scene

classification

May require extensive training data,

and geometric features can be complex

to extract

ADE20K, SUN database

Classification of masked image data [31] Useful for incomplete or occluded

images

Performance can be affected by the

extent of masking, may require

additional processing

COCO, VOC2012

https://doi.org/10.1371/journal.pone.0314393.t001
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identifies and extracts visual features, while text processing understands the associated concepts

and terms. By fusing these domains, HybridBranchNetV2 achieves a deeper understanding of

image content, identifying visual features and comprehending the semantic relationships within

images. This results in a model capable of classifying objects with greater accuracy.

The HybridBranchNetV2 addresses key challenges in image classification, including the

lack of inherent content knowledge within images, the necessity for large datasets, and the

complexities in interpreting deep neural networks’ operations. By combining linguistic knowl-

edge with advanced image processing techniques, this method enhances classification accuracy

without needing to adjust image resolution or increasing the number of parameters, making it

more efficient. Our approach significantly improves image classification accuracy by integrat-

ing textual and visual information, ensuring a comprehensive understanding of image content.

Unlike deep neural networks relying solely on single labels, hybridbranchnetv2 transfers essen-

tial knowledge to the system, overcoming the limitations of single-label-dependent networks

and improving classification accuracy. Additionally, we incorporate reinforcement learning to

optimize pattern extraction, leveraging its unique capabilities to enhance the system’s ability to

identify and interpret patterns within images. This integration adaptively enhances feature

extraction, playing a critical role in fine-tuning the overall classification process.

In Fig 1, an overview of the proposed method in the paper is illustrated. The modifications,

illustrated in Fig 2, play a key role in enabling the extraction of textual features from images.

Additionally, the reinforcement learning component enhances both the efficiency and accu-

racy of the pattern extraction process. Further details on these enhancements and their imple-

mentation will be discussed in subsequent sections of this paper.

III.I. HybridBranchNetV2 architecture

As shown in Fig 2, HybridBranchNetV2 has made modifications to the original architecture

[9]. These modifications include the addition of a reinforcement learning section and the crea-

tion of a loss function based on extracting relationships between objects in the image (these are

labeled as ‘update’ in Fig 2). These changes aim to create a more effective feature in the archi-

tecture leading to improved. Although considerable efforts have been made to understand the

architecture’s errors, our goal has been to conduct research for the development of a stronger

architecture. These efforts encompass not only crafting the methodology to construct relation-

ship graphs for the architecture but also selecting a fitting loss function for these graphs.

To strengthen the emphasis on relationship-centric aspect of our methodology, we intro-

duced an advanced loss function designed to capture nuanced relationships between objects

within the image. Specifically, we implemented the Triplet Margin Loss, a function designed

to enhance the network’s ability to discern relationships, thereby contributing to the overall

robustness of our architecture. The Triplet Margin Loss is denoted with Eq (1).

Lðy anchor; y positive; y negativeÞ
¼ maxð0; kyanchor � ypositive k

2� ky anchor � y negativek 2̂þ aÞ ð1Þ

Let us define the key terms: "y_anchor" is the embedding vector for the anchor sample,

"y_positive" is the embedding vector for the positive sample, "y_negative" is the embedding vec-

tor for the negative sample, "α" is the margin, a constant value. The Triplet Margin Loss func-

tion, denoted as L, is designed to optimize the distances within the feature space for image

classification. The vector representation (y) encompasses information related to the features of

the image, which can include shapes, colors, textures, and relationships between objects within

the image. In the context of the HybridBranchNetV2 architecture, the feature space is particu-

larly designed to comprehend and extract relationships between objects in the image.
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However, this space is not only related to the objects and their visual features but also to the

input text, as the text can contain descriptions or labels that aid in a more accurate interpreta-

tion of the image.

This elaboration on the feature space, its relation to the input image and text, underscores

the importance of a well-defined feature space in enhancing the model’s ability to discern intri-

cate relationships within the data, thereby bolstering the architecture’s robustness and effec-

tiveness in image classification tasks. It achieves this by minimizing the squared distance

between the anchor and positive samples, while simultaneously maximizing the squared dis-

tance between the anchor and negative samples. This is done with a margin of at least "α" to

ensure distinct separation. The function employs the term max (0, kyanchor − ypositivek2
−kyanchor − ynegativek2+α) to ensure that the loss remains non-negative. It activates only

when the squared distance between the anchor and positive points minus the squared distance

between the anchor and negative points, plus a margin α, fails to meet the set criteria.

Fig 1. Image classification process using HybridBranchNetV2 model and graphical concept analysis.

https://doi.org/10.1371/journal.pone.0314393.g001
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The proposed function shares conceptual similarities with reinforcement learning algo-

rithms, particularly in how it enhances performance. Its effectiveness lies in creating a compet-

itive dynamic between negative and positive outcomes, aimed at widening the gap between

features linked to these instances. Through extensive experimentation with various loss func-

tions, it was observed that our proposed method, incorporating this Triplet Margin Loss, con-

sistently yielded the highest accuracy. This approach effectively leverages the principles of

reinforcement learning, translating them into a robust framework for image classification.

The development of a graph for image description is crucial because it establishes the core

framework for the whole process of analyzing and describing images. This graph-based struc-

ture is key for defining how objects, entities, and their relationships are represented and con-

nected in an image. It serves as the backbone for a thorough understanding and interpretation

of the scene, ensuring a coherent and detailed analysis of the visual content. Incorrect

Fig 2. Architecture for updating hybrid feature extraction in HybridBranchNetV2.

https://doi.org/10.1371/journal.pone.0314393.g002
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execution of this process can lead to serious consequences. The graph’s accuracy directly

affects how well the neural network performs in analyzing images. This network relies on the

encoded information from the graph to interpret the image and produce relevant descriptions

or predictions. A graph that’s not accurate or has errors can lead to misinterpretations, mis-

classifications, and reduced performance [38]. Additionally, a faulty graph can obstruct net-

work convergence during training. Training a neural network involves adjusting its internal

parameters to minimize the difference between predicted and actual results. so, if the graph’s

representation has inconsistencies, achieving convergence can become challenging. This chal-

lenge can lead the model to longer training times, reduced accuracy, or even training failure. It

is important to highlight the significance of creating an accurate graph because it strongly

affects the effectiveness of image analysis systems. Its role is crucial in ensuring the system’s

reliability and precision, marking it as an indispensable element.

The graph, in our model, refers to a structured representation that captures the relation-

ships and interactions between various objects and entities within an image. This representa-

tion is not a mere collection of nodes and edges; rather, it is a sophisticated framework

designed to encode the spatial and semantic relationships among the depicted elements. Each

node in the graph represents an object or entity identified within the image, while the edges

denote the relationships between these nodes, such as adjacency, containment, or any other

relevant spatial or semantic interaction.

In the HybridBranchNetV2 architecture, the graph is incorporated at a critical juncture

where it serves as a foundational element for analyzing and understanding the image content.

The process begins with the extraction of features from the input image, which are then used

to construct the graph. This involves identifying objects within the image, determining their

attributes, and establishing the relationships between them based on their spatial arrangement

and semantic connections. The constructed graph thus provides a comprehensive and inter-

connected representation of the image, enabling the architecture to analyze the image in a

more structured and relational manner.

The significance of the graph in our model lies in its ability to facilitate a more nuanced and

detailed analysis of the image. By leveraging the graph-based structure, our architecture can

effectively interpret the scene depicted in the image, taking into account not only the individ-

ual objects but also the complex web of relationships that connect them. This leads to a more

accurate and thorough understanding of the image content, enhancing the model’s capability

to generate relevant descriptions or predictions.

Moreover, the accuracy of the graph directly impacts the performance of the neural net-

work in analyzing images. An accurately constructed graph ensures that the network has

access to a rich and correctly encoded dataset of relationships and attributes, which is crucial

for interpreting the image effectively. Any inaccuracies or errors in the graph can result in mis-

interpretations, misclassifications, and ultimately, reduced performance of the model.

In summary, the graph is a central component of our model, integrated into the Hybrid-

BranchNetV2 architecture as a means to encode and analyze the relationships and interactions

between objects within an image. Its role is instrumental in achieving a deeper and more pre-

cise understanding of the image content, thereby enhancing the overall effectiveness and accu-

racy of the image analysis system.

III.II. Key features of the Visual Genome dataset

The "Visual Genome" dataset stands out as one of the most distinguished and exhaustive data-

sets in computer vision and image interpretation domains. Crafted by the deep learning and

image understanding research community, this dataset provides detailed and accurate
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information for a variety of applications involving different images [15]. Here, we summarize

key features of this dataset, but full descriptive details are provided in Section IV.I.

• Image Descriptions: This dataset encompasses elaborate descriptions for various images.

These descriptions articulate the specifics of the image content and characteristics of objects,

attributes, relationships, and different regions within the image.

• Object Attributes: Visual Genome offers extensive insights into the attributes of objects

present in the images. These attributes encompass features such as color, shape, size, and

material of objects.

• Object Relationships: The dataset contains information regarding relationships between

objects in the images. These relationships include spatial relationships like on, beside, inside,

and above.

• Description of Image Regions: Visual Genome provides detailed descriptions of various

regions within the images, described using natural language sentences.

• Question and Answer Pairs: This dataset comprises a collection of questions and corre-

sponding answers related to the images. These questions can aid in the interpretation and

description of the images.

III.III. Graph-based image analysis with selective focus and relationship

mapping

To capture the complexity of images in a structured manner, our approach utilizes a graph-based

framework. This methodology constructs a network where each identified object is represented as

a node, allowing dynamic interaction by adjusting the activation state of these nodes. This mecha-

nism allows for a detailed examination of the image starting from identifying objects to under-

standing their characteristics and relationships. The adoption of this model is motivated by the

need for a robust and flexible language model that can work within strict time limitations. By

engaging with four key lines of inquiry—naming objects, assessing their dimensions, enumerating

their features, and pinpointing their spatial interconnections—we enable the model to delve into

a wide range of scenarios, thereby enhancing its interpretative capacity. Consequently, this strate-

gic approach not only enhances the diversity of the system’s analytical capabilities but also ensures

a comprehensive extraction and description of the features defining each object in the image.

To improve our image analysis strategy, we design a system where each object, represented

as a geometric shape like a circle, is encoded with a unique identifier, such as "00001". This des-

ignation facilitates the establishment of binary connections between objects. To standardize

the input, the coordinates of objects’ bounding boxes are normalized to a range between zero

and one. Also, normalizing and assigning unique numbers to shapes, establish a consistent

descriptive framework using numerical identifiers. This framework ensures uniform object

representation across different images.

Moreover, we enhance our graph structure to enable selective focus within images. By

leveraging the bounding box coordinates, we can isolate specific segments of an image while

maintaining the relationships between objects within this cropped view. Also, we might choose

to concentrate on a subset of objects. In doing this, additional connections are excluded and

recalibrating the graph to focus exclusively on a subset of objects. This selective emphasis not

only increases attention to specific object relationships but also expands the range of image
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augmentation possibilities. As a result, the network can be trained on a diverse set of scenarios,

enhancing its ability to generalize.

The method described above relies on using numerical identifiers to accurately and repre-

sent shapes and their relationships in images. This approach is crucial because it transforms

visual information into a quantifiable format, making easier for our network to process. It is

important to note that while the original graph captures all relationships within an image, our

modification allows for the selective removal of specific connections. This allows us to custom-

ize the graph for more focused analysis. Such selective pruning is not a contradiction but a

strategic choice. It helps to highlight pertinent relationships while training the network across

various scenarios, thereby improving its capacity to generalize from specific instances to

broader contexts.

Once the proposed architecture has been finalized, the input data prepared, and the input

graph initialized, we proceed to the training phase of the proposed network. This process will

be outlined in three distinct stages, each of which will be detailed in the following sections.

The Visual Genome dataset encompasses various sources of noise and complexity in the

domain of computer vision, some of which include:

• Diversity in lighting conditions and viewpoints: Images are captured from various sources

and may exhibit different lighting conditions and viewing angles, potentially impacting the

model’s accuracy. However, this diversity also fosters appropriate generalization since the

images are captured under various conditions.

• Diversity of objects and their positions: The presence of numerous objects and their vary-

ing positions in images can introduce further complexity in image interpretation and

model accuracy. With over 34,000 available classes in the dataset, using a model with fewer

parameters may hinder the extraction of strong features. Therefore, employing a reinforce-

ment learning model could assist in the suitable features extraction, managing this issue to

some extent by emphasizing specific feature extraction during the reinforcement learning

phase.

• Diverse descriptions and precise details: Some descriptions may focus more on specific parts

of the image or provide more detailed information, which can differentiate the model. How-

ever, some of these descriptions may also contain noise, such as additional information or

errors, which are present in the utilized dataset.

• Discrepancies in object appearances and features: Objects may differ in shape, size, color,

and other features, potentially leading to challenges in modeling them effectively.

• Inaccuracy in labeling: As indicated in the data descriptions, a large number of objects, fea-

tures, and relationships in images are labeled, which leads to inaccuracies in labeling.

• Rare and unintended occurrences: In large datasets like Visual Genome, rare, unintended

occurrences, or data that do not belong to primary categories may exist, contributing to

model challenges.

• Imbalanced data: Some images may have fewer or more objects or relationships between

objects compared to others, potentially causing data imbalance and transferring this imbal-

ance to the model.

Considering these challenges and noises, the importance of thorough preprocessing and

corrective measures on the data, as well as training the model with high accuracy, becomes

more apparent. The preprocessing steps we conducted on the dataset included:
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• Removing classes and features that were less utilized, normalizing the dataset to around

21,000 classes that were utilized more frequently, and discarding the remaining classes.

• Employing augmentations such as rotation, channel swapping, cropping, brightness adjust-

ments, and adding optical noise to the images.

• Utilizing reinforcement learning to enhance feature extraction during training.

III. IV. The proposed network training

The proposed neural network training consists of 3 stages, which are described below.

Stage 1: In the initial phase of our work, we utilized the HybridBranchNet architecture, ver-

sion 3 as cited in [9], to classify objects. This architecture notable for its fewer parameters

and the incorporation of a branching technique along with hyper-feature aggregation. This

combination results in improved accuracy in object classification compared to similar mod-

els. We improved this architecture by expanding upon the features derived from the hyper-

branch. It interfaces with multiple layers of neural networks and is linked to a specific loss

function. This arrangement allows for refining features within the network, equipping it

with the proficiency to interpret and respond to queries related to the objects in the images.

Stage 2: To enhance the precision of our network, we have integrated a reinforcement learning

algorithm, which aids in selecting the most accurate responses from the relationship matrix

established in the previous step. This integration is crucial as it allows the network to itera-

tively improve its accuracy in deducing responses. Prior to applying reinforcement learn-

ing, the network struggled with extended periods of difficulty in achieving convergence.

By accurate evaluation of the relationship matrices within the graph, we found that a fine-

tuned optimization approach, based on a reward-and-penalty system, was necessary. This

approach supports a consistent and progressive rate of convergence by reinforcing correct pre-

dictions and discouraging erroneous ones. it guides the network towards more accurate out-

comes over time. The substantial difference in results obtained without the use of

reinforcement learning is highlighted in Table 6 of the results section, illustrating the signifi-

cant role this method plays in the network’s performance.

The method ensures a consistent and steady convergence rate by providing a structured

framework for the network to learn from its actions. As the network makes predictions, the

reinforcement learning algorithm evaluates these predictions and either rewards or penalizes

the network accordingly. This feedback loop establishes a systematic path for the network,

minimizing oscillations and errors that typically occur in the learning process. It results in a

more stable and reliable convergence towards the correct solutions.

Stage 3: The remaining segments of the HybridBranchNet architecture, dedicated to classifica-

tion, are employed to detect object categories, enhancing the precision of object category

identification within images.

III.V. Reinforcement learning optimization using Q-learning algorithm

The Q-learning algorithm has been selected due to its stability and off-policy capabilities.

This method allows for the gradual collection of more information from the environment,

enabling the formulation of optimal decisions without the need for complex policies. Its
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simple structure and ease of implementation, combined with the use of neural networks for

estimating Q-values in complex environments, make this algorithm suitable for addressing

the problem at hand. Additionally, Q-learning strikes a good balance between exploration

and exploitation, which is crucial for gradual and stable optimization. In the proposed

approach, reinforcement learning, particularly through the Q-learning algorithm, has been

employed to extract complex and hidden features from images. This algorithm effectively

optimizes interactive behaviors in environments where an accurate model is lacking. The

objective of HybridBranchNetV2 is to extract intricate features that can aid in identifying

latent relationships between objects and various parts of an image. Furthermore, a relational

matrix has been designed to represent the connections between objects and different seg-

ments of the image, enhancing the understanding of interactions within the image. Rein-

forcement learning assists in learning which changes in this matrix can enhance

classification accuracy. Through Q-learning, the model can optimize itself via positive and

negative feedback, discovering the best patterns for object recognition in images. Ultimately,

this method provides an interactive and adaptive process that facilitates the optimization of

high-level features and their improvement based on the complex relationships between

objects and features within the image. This advantage is particularly significant in tasks that

require a deeper understanding of intricate relationships in images.

In the optimization of the HybridBranchNetV2’s pattern extraction process, reinforce-

ment learning (RL) plays a critical role, especially through the employment of Q-learning, a

model-free reinforcement learning algorithm. Q-learning assists the model in identifying

which actions to take in a given state based on the action’s expected utility to achieve the

goal, which, in this context, is the accurate classification of objects in images. During the

development and optimization of the proposed model, experiments were conducted to

assess the impact of different approaches on the overall system performance. Part of these

experiments involved examining the accuracy of the proposed architectures, the results of

which indicated no significant improvement in performance. To further improve the

model, textual features were added to the model. However, analysis of the results revealed

that these changes only marginally improved the accuracy of the model, as shown in

Table 6.

We performed a deeper analysis on the feature extraction process. By employing heatmap

techniques to examine the model activations in different layers, we were able to identify

strengths and weaknesses in feature extraction. The proposed model based on reinforcement

learning was able to focus on key objects and activate them. This focus and activation with-

out reinforcement learning was limited and resulted in poor feature extraction. A stronger

reason for the improved performance in image classification after employing reinforcement

learning lies in its ability to provide the model with increased feedback in an interactive envi-

ronment, enabling it to experience new insights. This feedback may include information

obtained by the model during decision-making processes regarding the images. Addition-

ally, through the selection of defined actions, the model can perform newer operations on

features and identify better patterns in the images, ultimately improving the crucial features

for classification.

These advancements are denoted in Fig 5, where heatmaps demonstrate the model’s ability

to identify and focus on key objects. The heatmaps show that the critical features in the model’s

decision-making process are better extracted using reinforcement learning.

Q-learning operates on the principle of Q-values or action-value pairs, which are estimates

of the expected utility of taking a certain action in a given state. The Q-value for a state-action
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pair (s, a) is denoted as Q(s, a) and is updated with Eq (2).

Qðs; aÞ ¼ Qðs; aÞ þ a ∗ ðRðs; aÞ þ g ∗maxðQðs0; a0ÞÞ � Qðs; aÞÞ ð2Þ

where:

• “s” is the current state.

• “a” is the action taken.

• “s’“ is the new state after taking action “a”.

• “R(s, a)” is the reward received after taking action “a” in the state “s”.

• “α” is the learning rate (0 < α� 1).

• “γ” is the discount factor (0� γ< 1), which determines the importance of future rewards.

• max over “a0” of Q(s0, a0) represents the maximum Q-value achievable in the new state “s”,

over all possible actions “a0”.

The agent updates Q-values by interacting with the environment repeatedly. It takes

actions, observes state changes, and considers the rewards in the process. This iterative process

is like exploration, where the agent aims to enhance its policy. The policy is the strategy for

selecting the best action in a given state.

III.VI. Visualization of the reinforcement learning process

To gain a deeper understanding of the impact of reinforcement learning on the decision-mak-

ing process within the proposed neural network, a step-by-step explanation of how feature

extraction and classification are optimized during the training process using the Q-learning

algorithm is provided below:

1. Initial Feature Extraction: The process begins by defining an initial state, where features are

extracted using the HybridBranchNet architecture. These features are then sent to the rein-

forcement learning module for evaluation and the extraction of new features aimed at

enhancing the model’s performance.

2. Action Selection: The extracted features, considered the current state, are forwarded to a

fully connected neural network. This network selects an appropriate action and generates a

new state, representing the newly extracted features derived from the initial data.

3. Reward Evaluation: The reinforcement learning module evaluates the outcome based on

the executed action (i.e., adjustments or modifications to the features). This evaluation is

conducted by comparing the predicted classifications or relationships with the actual out-

comes. If the classification or identification of relationships between objects is accurate, the

model receives a positive reward; otherwise, a penalty is imposed.

4. State Transition: Following the feedback (reward or penalty), the model updates its state

and adjusts the Q-values associated with the executed action. This enables the model to

learn which modifications to the features can enhance classification accuracy.

5. Feedback Loop: This process continues iteratively, allowing the model to continually opti-

mize the features and improve its output. In each iteration, the Q-values are updated, and a

better policy for feature extraction that maximizes the model’s accuracy is learned.

6. Final Output of the Reinforcement Learning Network: The final result of each feature

extraction cycle is produced by the reinforcement learning network as an updated set of
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features. This final output is applied to the model’s loss function to implement necessary

improvements in the accuracy and quality of feature extraction throughout the training

process. Consequently, the HybridBranchNet operates more effectively in conjunction with

the reinforcement learning network at every stage of training.

7. Convergence: As the training process advances, the reinforcement learning module assists

the model in achieving a more stable and accurate strategy for feature extraction and classi-

fication, thereby reducing fluctuations and improving overall accuracy.

Fig 3 provides a concise depiction of the reinforcement learning application for image clas-

sification. It outlines the process by which the reinforcement learning model iteratively

improves feature extraction to categorize images more accurately. The figure demonstrates the

progression from initial feature identification to the conclusive categorization step. It high-

lights how the reinforcement learning framework contributes to guiding the network t for

more accurate image classification through reward-driven optimization.

III.VII. State and rewards

To integrate Q-learning into the HybridBranchNetV2 model, we simulate an environment

where each state represents a specific pattern of features extracted from images, and actions

correspond to adjustments in the feature extraction process. Rewards are assigned based on

the accuracy of the object classification. Positive rewards are given for correct classifications,

while negative rewards are assigned for incorrect ones. Through iterative training, the model

learns a policy that maximizes the total reward, which is equivalent to improving the accuracy

of image classification. The RL framework complements the existing architecture by introduc-

ing an adaptive mechanism that enhances the decision-making process of the neural network,

leading to a more robust and accurate image classification system.

The integration of Q-learning into HybridBranchNetV2 enables the model to leverage not

only its existing hybrid knowledge but also to dynamically refine its feature extraction and

classification processes. This adaptive capability is crucial for dealing with complex and

Fig 3. Reinforcement learning in image classification: Feature extraction and categorization process.

https://doi.org/10.1371/journal.pone.0314393.g003
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nuanced visual data, thereby pushing the limits of what’s possible with AI in the field of image

classification.

In the HybridBranchNetV2 model, the ’actions’ within the Q-learning environment refer to

modifications that the model can make to the feature extraction process. These modifications

can encompass a variety of adjustments, such as selecting different features to focus on, alter-

ing the algorithms used for feature extraction. All these adjustments aim to enhance the accu-

racy of image classification.

To elaborate, when Q-learning is integrated into HybridBranchNetV2, each action taken by

the model is an intentional step towards improving the pattern recognition capabilities. For

instance, the model might ’decide’ to give more weight to certain visual features if doing so has

previously led to successful object classification. Conversely, it might ’learn’ to disregard or

downplay features that have consistently contributed to misclassification. This can involve

changing adjusting thresholds for feature significance, or even selecting entirely different sets

of features for subsequent processing stages.

These action choices are influenced by a reward system that prioritizes classification accu-

racy. Positive rewards are allocated for correct classifications, reinforcing the link between spe-

cific actions and positive outcomes. Conversely, negative rewards are assigned to incorrect

classifications, prompting the model to adjust its approach. Through this iterative refinement

process, the model progressively enhances its feature extraction capabilities, leading to a more

refined and accurate image classification method.

Subsequently, with the establishment of this baseline performance, reinforcement learning

was systematically deployed at the epoch level to facilitate a targeted optimization of the net-

work’s feature extraction capabilities. The reinforcement learning algorithm systematically

assessed and improved the significance of specific features through a process of weight adjust-

ment. This strategic modulation aimed to enhance the discriminative power of the network,

thereby improving the precision of object classification tasks.

This integration of reinforcement learning into the network’s training regimen catalyzed an

iterative refinement process. Each iteration was carefully designed to refine and reinforce the

network’s ability to recognize and prioritize informative features, gradually improving classifi-

cation accuracy. The cumulative enhancements achieved through this adaptive learning pro-

cess were captured and quantitatively analyzed, with the detailed findings and their

implications for the model’s performance encapsulated in Table 6. This table provides empiri-

cal evidence of the effectiveness of reinforcement learning in enhancing the deep neural net-

work’s classification skills after the initial non-reinforcement learning phase of training.

The strategic introduction of reinforcement learning thus served to transition the network

from a state of static learning to a dynamic learning curve, underlining the synergy between

pre-established network knowledge and the adaptive insights garnered through reinforcement

learning.

IV. Experimental results

In this section, we compare the results of the proposed architecture with various object classifi-

cation methods. The primary objective of these experiments is to demonstrate the capability

and efficiency of the proposed method in the field of object classification when applied to unfa-

miliar data. We believe that the system’s classification accuracy will be higher when it performs

better under unfamiliar conditions. Furthermore, our results are based on training and testing

data from a specific dataset. It’s important to note that the main goal of this architecture is not

to extract text from within the image; instead, it leverages unique features associated with

object relationships to extract more potent features.
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The experiments were carried out on a system equipped with an Intel Core i9-10900K Pro-

cessor, which has a base clock speed of 3.70 GHz and can boost up to 5.30 GHz using Intel

Turbo Boost Technology. It includes 20 MB of Intel Smart Cache. The graphical processing

was handled by an NVIDIA Tesla V100, known for its robust computing capabilities, espe-

cially in deep learning and scientific computing, featuring 32 GB of HBM2 VRAM. The system

was supported by 64 GB of DDR4 memory at 3200 MHz and had storage capabilities provided

by a 2 TB NVMe Solid State Drive, with additional data storage facilitated by a 4 TB Hard Disk

Drive.

On the software front, the system ran Ubuntu 20.04 LTS as its operating system. The pro-

gramming was primarily conducted in Python 3.8, making extensive use of the PyTorch 1.8.1

deep learning framework, which was chosen for its CUDA 11.1 support to enable GPU accel-

eration. Additional libraries such as NumPy were used for numerical operations, Matplotlib

for graphical plotting, and OpenCV for handling image processing tasks. The development

and testing of the model were facilitated through the use of Jupyter Notebook, which provided

an interactive development environment.

This experimental setup, leveraging the NVIDIA Tesla V100 GPU for its exceptional

computational power, was meticulously selected to satisfy the high computational demands of

training and evaluating the HybridBranchNetV2 architecture. The initial training phase, con-

ducted over approximately 30 epochs without the integration of reinforcement learning tech-

niques, established a solid foundation for the network to achieve its maximum performance

under the given parameters. This base level of performance was critical for the subsequent

application of reinforcement learning, ensuring that the network was adequately prepared for

this advanced learning approach. The detailed specification of the hardware and software used

in these experiments is intended to provide clarity and facilitate the reproducibility of our

results, adhering to the scientific standards for experimental documentation.

The design of our proposed neural network model, HybridBranchNetV2, is available at the

following GitHub links: https://github.com/Eparcham/HybridBranchNetV2. This repository

contains all the necessary information, including the model architecture.

IV.I. Introduction to datasets

In this section, we provide an overview of the datasets utilized in this study.

1. Visual Genome dataset consists of over 108,000 images, with each image containing an

average of 35 objects, 26 attributes, and 21 pairwise object relationships. This dataset also

includes region descriptions and questions with corresponding answers. According to a sci-

entific paper [15], the number of different classes in the Visual Genome dataset is as

follows:

• Number of object classes: 33,877.

• Number of attribute classes: 18,291.

• Number of relationship classes: 6,672.

2. CIFAR-100 is a dataset used for image classification tasks. It contains 100 classes, each with

600 images. It is often used for evaluating the performance of deep learning models in fine-

grained image classification.

3. Flowers-102 is a dataset specifically designed for fine-grained image classification. It con-

sists of 102 different categories of flowers, with a total of over 8,000 images. This dataset

challenges models to distinguish between visually similar flower species.
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4. ImageNet 1K, often referred to simply as ImageNet, is one of the most widely used datasets

in computer vision. It contains over a million images across 1,000 different object catego-

ries. ImageNet is frequently employed for large-scale image classification and pretraining

deep neural networks for various vision tasks.

In summary, these four datasets were selected to comprehensively evaluate the versatility

and performance of our algorithm. Each dataset poses its unique challenges: Visual Genome

with its complex relationships, CIFAR-100 and Flowers-102 with classification intricacies, and

ImageNet with its vast number of categories. This range of challenges ensures a comprehensive

assessment of our algorithm’s capabilities.

IV.II. Implementation results

In this section, we explore the detailed outcomes and noteworthy findings from our thorough

experimental implementation and comprehensive evaluation of the previously introduced

datasets. Tables 2 and 3 showcase the accuracy results of our proposed method, HybridBranch-

NetV2, compared with other well-established models on the CIFAR-100 and Flowers-102

datasets. This comparison provides a clear insight into our model’s performance against state-

of-the-art methods. On the CIFAR-100 dataset, HybridBranchNet3 achieved the accuracy of

92.30%. Meanwhile, HybridBranchNetV2 surpassed all other models, registering an accuracy

of 98.25%. Notably, despite its fewer parameters (approximately 16M), HybridBranchNetV2

demonstrated superior accuracy, highlighting the efficiency of our architecture in image

Table 2. Accuracy in CIFAR-100 dataset and comparison with other methods.

Model Accuracy Parameters

EffNet-L2 -A2 [39] 96.08% � 480M

EffNet-L2 [39] 93.95% � 37M

MViT-B-16 [40] 87.80% � 67M

Oct-ResNet-152 (SE) [41] 91.70% � 64M

EfficientNet-b7 Tan and Le [42] 92.26% � 120M

EfficientNetV2-L [43] 92.27% � 54M

EfficientNetV2-M [44] 83.64% � 25M

ResNet-50 (Fast AA) [45] 83.95% � 105M

HybridBranchNet3 [9] 92.30% � 9M

HybridBranchNetV2 98.25% � 16M

https://doi.org/10.1371/journal.pone.0314393.t002

Table 3. Accuracy in Flowers-102 dataset and comparison with other methods.

Model Accuracy

EffNet-L2 [39] 99.65%

MViT-B-16 [40] 98.50%

Oct-ResNet-152 (SE) [41] 98.21%

EfficientNet-b7 Tan and Le [42] 98.80%

EfficientNetV2-L [43] 98.80%

EfficientNetV2-M [44] 98.50%

ResNet-50 (Fast AA) [45] 97.90%

HybridBranchNet3 [9] 98.80%

HybridBranchNetV2 99.88

https://doi.org/10.1371/journal.pone.0314393.t003
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classification tasks, even when compared with larger and more complex models like Efficient-

Net-L2 and MViT-B-16.

Considering that the Visual Genome dataset does not encompass all the classes found in

the ImageNet dataset, we initially utilized the Visual Genome dataset to train our architecture.

After this initial training, we deactivated the loss function responsible for extracting object

relationships and feature-related data. This step was taken to freeze the weights associated with

the relationship matrix extraction layers, ensuring no further updates to the network’s weights

for these specific layers. Our objective was to equip the network with the capability to identify

new classes during its training on ImageNet images. The outcomes of this training process are

elaborated upon in Table 4.

Based on the insights gained from Table 4 and following the initial training of the network

on the Visual Genome dataset, which features a broad yet distinct class coverage compared to

ImageNet, the model became adept at recognizing various object classes and their interrela-

tionships. Later, by disabling the loss function for object relationships and features, the net-

work shifted its focus to adapt to the new classes present in ImageNet. The outcomes reveal

that our methodology allowed the network to generalize effectively, performing well at identi-

fying these additional classes. Essentially, the results highlight that our approach, notably

HybridBranchNetV2, is well-suited for handling an extensive range of object classes. This

makes it an optimal choice for image classification tasks requiring expansive class coverage,

competitive accuracy, and resource efficiency. Additionally, we refined our proposed architec-

ture independently of the ImageNet dataset and contrasted the outcomes with those obtained

using ImageNet. This comparison emphasized a more efficient feature extraction process. The

comprehensive results of this fine-tuning are detailed in Table 5. In our results presentation,

we adopted a specific notation to highlight the performance rankings of various models. The

model achieving the highest accuracy is indicated using bold font, while the model securing

the second place is denoted with underline to visually distinguish these performances at a

glance.

Table 4. Accuracy in ImageNet 1K dataset and comparison with another methods train with (Visual Genome,

ImageNet).

Model Accuracy

EffNet-L2 [39] 88.3%

MViT-B-16 [40] 86.4%

Oct-ResNet-152 (SE) [41] 82.9%

EfficientNet-b7 Tan and Le [42] 84.3%

EfficientNetV2-L [43] 87.3%

EfficientNetV2-M [44] 86.1%

ResNet-50 (Fast AA) [45] 79.8%

HybridBranchNet3 [9] 83.1%

HybridBranchNetV2 89.4%

https://doi.org/10.1371/journal.pone.0314393.t004

Table 5. Accuracy in ImageNet 1K train model with Visual Genome.

Model Accuracy

HybridBranchNet3 [9] 65.2%

HybridBranchNetV2 79.5%

https://doi.org/10.1371/journal.pone.0314393.t005
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To elaborate, the process involved dividing the number of images correctly identified by the

algorithm (correct predictions) by the total number of images in the test dataset (total predic-

tions). This quotient was then multiplied by 100 to express the accuracy as a percentage. This

method provides a straightforward and intuitive measure of the algorithm’s overall performance.

The results presented in Table 5 provide intriguing insights when fine-tuning the proposed

architecture exclusively with the Visual Genome dataset, eliminating the dependency on the

ImageNet dataset.

Effectiveness of feature extraction. HybridBranchNetV2 notably achieved an accuracy of

79.5% when exclusively fine-tuned using the Visual Genome dataset. This outcome implies

that our architecture can adeptly extract features, enabling generalization across a more expan-

sive range of object categories without necessitating the ImageNet dataset.

For smaller datasets like CIFAR-100 and Flowers-102, we freeze the feature extraction part

of the model and only train the classification head. This approach is based on the premise that

the features learned from the Visual Genome dataset are highly rich and robust, allowing the

model to effectively capture low-level features such as textures and colors in these smaller data-

sets without needing to re-train the feature extractor. The main purpose of utilizing Visual

Genome is to leverage its complex relational structure to enhance feature extraction. By train-

ing on the relationships within Visual Genome, the model’s feature extractor becomes power-

ful enough to generalize well to simpler datasets, where the relationships between objects are

not as complex.

On the other hand, for larger datasets like ImageNet, as shown in Tables 4 and 5, we fully

train both the feature extraction and classification components. The results clearly demon-

strate that training with both ImageNet and Visual Genome improves classification accuracy.

Specifically, when the model is trained using ImageNet data that includes sufficient textual

information, the classification performance is further enhanced, highlighting the complemen-

tary nature of these two datasets.

In summary, by freezing the feature extraction for smaller datasets and fully training the

model for larger datasets, we are able to optimize performance across a range of classification

tasks. The rich feature representation learned from Visual Genome enables effective feature

extraction for smaller datasets, while full training on ImageNet allows for even higher accuracy

in scenarios where both visual and textual data are abundant.

Model adaptability. In this setting, HybridBranchNetV2’s ability to register a markedly

high accuracy, especially when compared to HybridBranchNet3’s 65.2%, underscores its

adaptability and robust feature extraction prowess.

Reduced dependence on ImageNet. These results further accentuate that our designed

architecture can reduce its dependency on the ImageNet dataset while still maintaining effec-

tiveness. This makes it suitable for situations where procuring ImageNet data might pose chal-

lenges or be restricted.

In conclusion, the findings highlight the versatility and feature extraction proficiency of our

architecture, especially evident in HybridBranchNetV2, even without depending on the Ima-

geNet dataset. This suggests its potential for optimal performance in diverse real-world con-

texts where extensive labeled datasets like ImageNet might be scarce.

IV.III. Evaluation of model performance on the Visual Genome dataset

Since there are no reports in the mentioned tables regarding the execution of the Visual

Genome dataset on specific models like EffNet-L2, MViT-B-16, etc., we conducted experi-

ments to provide a detailed comparison of the models’ ability to recognize scene features and

relationships. The results of these experiments can be found in Table 6.

PLOS ONE HybridBranchNetV2

PLOS ONE | https://doi.org/10.1371/journal.pone.0314393 February 10, 2025 24 / 40

https://doi.org/10.1371/journal.pone.0314393


It is important to note that our model is primarily designed for object classification, with its

main emphasis not being on the extraction of precise object relationships. To evaluate the per-

formance of our proposed model in terms of relationship extraction, we compared it with the

methods presented in Table 6. These methods represent some of the state-of-the-art models

proposed in recent years. As evident from the results, our method may show lower accuracy

compared to some models but surpasses others. The goal of this comparison was to gauge the

efficacy of our relationship extraction module and our loss function. The findings suggest that

our architecture excels in extracting more potent features and knowledge.

The "mR@20" metric measures the average recall of objects in the top 20 positions of a

ranked list produced by a model or system. Essentially, it measures how accurately the impor-

tant objects in the scene were detected and ranked within the top 20 positions. A higher

"mR@20" value indicates better performance, as it signifies that more important objects have

been successfully identified and ranked higher. Mathematically, the "mR@20" metric can be

expressed as in Eq (3).

mR@20 ¼ Number of relevant objects ranked in 20ð Þ=ðTotal number of relevant objectsÞ ð3Þ

This formula, as described in Eq (3), demonstrates the ratio of correctly identified and

ranked relevant objects within the top 20 positions to the total number of relevant objects in

the dataset. It provides a quantitative measure of model performance in recognizing important

objects within a scene. Table 7 presents a comparison of accuracy in the Visual Genome data-

set with and without the application of reinforcement learning to our HybridBranchNetV2

model.

The results indicate that the application of reinforcement learning to our model signifi-

cantly enhances its accuracy on the Visual Genome dataset, increasing it to 79.5% from 70.1%

achieved without reinforcement learning. This improvement suggests that the reinforcement

learning component is crucial for optimizing the model’s performance in complex image rec-

ognition tasks.

In this study, we introduced HybridBranchNetV2, a high-performing model that achieved

exceptional results across various datasets. It achieved a remarkable 98.25% accuracy on the

CIFAR-100 dataset and a 99.88% accuracy on the Flowers-102 dataset. Demonstrating its

adaptability, our model was fine-tuned for the ImageNet dataset and reached an accuracy of

Table 7. Comparison of accuracy in Visual Genome dataset with and without reinforcement learning.

Model Accuracy

HybridBranchNetV2 (Without reinforcement learning) 70.1%

HybridBranchNetV2 (with reinforcement learning) 79.5

https://doi.org/10.1371/journal.pone.0314393.t007

Table 6. Accuracy in Visual Genome dataset to recognize scene features and relationships.

Model mR@20 Parameters

IETrans (MOTIFS-ResNeXt-101-FPN backbone) [13] 36.0 105.4

DLFE (VCTree-ResNeXt-101-FPN backbone) [46] 29.1 135.1

PCPL (MOTIFS-ResNeXt-101-FPN backbone) [47] 25.6 133.2

PCPL (VCTree-ResNeXt-101-FPN backbone) [47] 25.1 140.1

HybridBranchNetV2 [9] 29.3 16.0

https://doi.org/10.1371/journal.pone.0314393.t006
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89.4%. Furthermore, HybridBranchNetV2 exhibited expertise in scene feature recognition,

obtaining an mR@20 score of 28.3 on the Visual Genome dataset.

In ImageNet 5, we provide examples showcasing the capabilities of our network in the

image content extraction phase.

• Objects: Man, Woman, Car, Road, Mountain, Sky, Tree, Surfboard, Sun, Guardrail, Shorts.

• Relationships: (man, in front of, car), (woman, behind, car), (car, on, roadside), (road,

beside, mountain), (road, under, sky), (tree, under, sky), (man, facing, away), (woman, near,

car door), (car, has, surfboard on top), (sun, shining on, scene), (man, wearing, shorts),

(woman, standing, next to car), (car, facing, mountain), (mountain, under, sky), (man, near,

guardrail), (guardrail, beside, road), (tree, beside, road), (surfboard, on top of, car), (moun-

tain, in, background), (sky, above, everything).

Based on the results presented, it becomes evident that adding layer of textual and descrip-

tive knowledge to each image has enhanced the network’s performance. This illustrates that

deep neural networks possess significant learning potential when supplied with appropriate

data and knowledge extraction techniques.

Fig 4 presents a test image employed to examine the relationship extraction and corre-

sponding heatmap of the proposed network [48]. In Fig 5, a normalized heatmap of the net-

work prior to reinforcement learning layer is depicted. This heatmap illustrates how the

activities associated with at least six objects in the image are distributed and enables the obser-

vation of each one separately. The image demonstrates the network’s capability to identify all

objects present in the image. In the heatmap, all objects such as man, woman, car, tree, etc.,

exhibit uniform activation in feature extraction and are easily distinguishable, indicating that

the relationship between objects in classification through graph utilization leads to the activa-

tion of specific regions of the image and decision-making. In existing classification algorithms,

this possibility is usually absent, and only some objects are activated.

The graph presented in Fig 6 visually captures the intricate relationships within a scene,

portraying the dynamic interplay between various elements such as individuals, objects, and

their spatial configurations. Each edge on the graph represents a specific relationship, whether

it be the spatial positioning of an object in front of or behind another, the association between

a person and a nearby entity, or the overarching connections that define the overall

Fig 4. Exemplars of image content extraction using our network (Man standing in front of car near woman) [48].

https://doi.org/10.1371/journal.pone.0314393.g004
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composition. The nodes, representing entities like people, cars, and natural elements, are stra-

tegically placed to highlight the contextual significance of their interactions.

This graphical representation, extracted from our proposed network, provides a concise

and insightful overview of the complex network of relationships in the depicted scene. It pro-

vides a valuable visual aid for understanding the spatial dynamics and associations at play.

This visualization not only simplifies the interpretation of complex relational structures but

Fig 5. Exemplars of image content extraction using our network normalize heatmap.

https://doi.org/10.1371/journal.pone.0314393.g005

Fig 6. Relationships in a scene: Objects, people, and positions in the image provided in Fig 4.

https://doi.org/10.1371/journal.pone.0314393.g006
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also helps identify key patterns and interactions within the scene. It enhances the network’s

ability to analyze and comprehend the underlying complexities of the visual data.

IV.IV. Performance comparison of various models on ImageNet-1k dataset

We compared the proposed model on the ImageNet 1K dataset with new deep learning models

in terms of the number of model parameters, accuracy, FLOPs (number of operations per sec-

ond), training time, and inference time and The result of this evaluation is shown in Table 8.

The training and testing were conducted on a V100 system, ensuring consistent and reliable

results. Additionally, the inference time was assessed on a V100 GPU with a batch size of 16,

utilizing a codebase for fair and accurate comparison across different deep learning models.

The CPU employed for these computations was a 50-core CPU.

In Table 8, a comprehensive comparison is presented between the proposed model, Hybrid-

BranchNetV2, and several advanced deep learning models, such as EfficientNet, ResNet, and

others, based on inference time, the number of parameters, and FLOPs. Despite having more

parameters than its predecessor, HybridBranchNet3, the HybridBranchNetV2 model achieves

an inference time of 31 milliseconds on a V100 GPU with a batch size of 16. This timing dem-

onstrates the model’s capability for real-time applications, such as video stream analysis or use

in edge devices, where maintaining low latency is essential. Additionally, experiments were

conducted with smaller batch sizes, such as batch size 1, and results showed that the inference

time remained below 40 milliseconds, which is well within the acceptable range for real-time

image processing at frame rates of 25 to 30 FPS. The parameter efficiency of this model is par-

ticularly important for use in low-power devices or edge computing systems. With only 16.5

million parameters, HybridBranchNetV2 is significantly smaller than models like RegNetY

(84M) or DeiT-B (86M). This characteristic makes it more suitable for devices with limited

computational resources, such as embedded systems or mobile platforms. The smaller parame-

ter size directly contributes to reduced memory consumption and lower computational over-

head, which is critical in real-time systems. Moreover, quantizing the model allows for

achieving higher speeds on edge hardware, although there may be a slight drop in accuracy.

These features make the HybridBranchNetV2 model an attractive option for real-time applica-

tions and environments with limited resources.

Table 8. Comparison of deep learning models on ImageNet 1K dataset: Parameters, accuracy, and inference time.

Method Top-1 Acc FLOPs #Params Inference time(ms) Training time (hours) (100 epochs)

HybridBranchNet3 [9] 83.1 19.3 9.12M 25 35

HybridBranchNetV2 89.4 33.4 16.5M 31 56

EfficientNet-B3 [42] 81.6 1.9 12M 43 66

EffNet-L2 [39] 88.3 36 121M 69 75

ResNet-101 [45] 83.0 13 48M 73 26

BotNet-T7-hybrid [49] 84.7 46 75M 105 145

RegNetY-16GF [50] 82.9 16 84M 96 130

EfficientNetV2-S [44] 83.9 8.8 22M 48 39

T2T-ViT-24 [51] 82.2 13 64M 59 120

DeiT-B-384 (ViT+reg) [52] 83.1 56 86M 60 120

Top-k DiffSortNets [53] 88.37 150 220M 93 -

Hiera-H [54] 86.9 125 673M 200 -

https://doi.org/10.1371/journal.pone.0314393.t008
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The proposed method, in terms of model size and computational complexity, is slightly

larger than HybridBranchNet3 and therefore operates a bit slower. However, it exhibits a 6.3%

higher accuracy. It also has fewer parameters compared to models of similar complexity,

which enables its deployment on low-power devices. Additionally, the proposed method does

not necessitate extensive parameter tuning during training and testing, unlike the Top-k Diff-

SortNets approach. EfficientNet models are suitable for classification tasks. However, they are

not capable of extracting knowledge among features of objects within an image. In contrast,

our model uses the relationships between objects for training, which leads to better feature

extraction. For this reason, the proposed method is more accurate compared to the Efficient-

Net models.

IV.V. Evaluation of proposed method performance on ImageNet-Hard

dataset

There exists a dataset called " ImageNet-Hard " consisting of 10,980 images from various col-

lections such as ImageNet and its variants. This dataset is designed to challenge advanced

machine vision models, focusing mainly on issues related to scale and spatial orientations in

image classification. To evaluate the performance of the proposed method on the ImageNet-

Hard dataset, we conducted tests to assess the generalization level of this approach and com-

pare its accuracy with other methods.

The performance of models like CLIP-ViT-L/14 on this dataset has significantly deterio-

rated, with their accuracy reported to be very low. This indicates the complexities of the images

in the dataset and the challenges associated with conditions where conventional imaging and

processing methods cannot correctly identify essential details. This dataset is created to

improve our understanding of the limitations of models and strengthen them by introducing

them to more challenging conditions in image classification, conditions that deviate from the

usual distribution. It aims to aid in enhancing image classification algorithms under condi-

tions that are more difficult than normal. Several samples from the ImageNet-Hard dataset are

depicted in Fig 7.

The accuracy of the proposed method on the ImageNet-Hard dataset is presented in

Table 9.

As found from Table 10, the proposed model, achieving an accuracy of 31.5%, notably dem-

onstrates significant improvement compared to many other models. HybridBranchNetV2

employs more effective strategies to deal with the complexities of images in this dataset. These

results can provide a better understanding of the limitations and capabilities of existing models

under challenging conditions. As it is evident, the Coca outperforms the proposed method.

The number of parameters in this model exceeds 2.1 billion, utilizing a strong language model.

Fig 7. Selected examples from the ImageNet-Hard dataset.

https://doi.org/10.1371/journal.pone.0314393.g007
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Whereas the proposed model has much fewer parameters (16.5 million) and does not utilize a

language model.

IV.VI. Comparative analysis of Grad-CAM activation patterns in

HybridBranchNetV2 and HybridBranchNet

Comparing the feature maps of HybridBranchNetV2 and HybridBranchNet using Grad-CAM

reveals distinct differences in their activation patterns. Grad-CAM [56] (Gradient-weighted

Class Activation Mapping) is a technique used to visualize and understand the regions of an

image that contribute the most to the final classification decision made by a convolutional neu-

ral network. In the proposed model, the convolutional layers used in the classification block

are visualized using the Grad-CAM structure to understand which areas the network focuses

on. The output displayed in Fig 8A indicates that the initial layers aim to extract general scene

features and gradually focus on specific regions where the main object is located. This process

demonstrates an increase in active regions in the network, indicating that the network cor-

rectly applies its attention mechanism and ultimately presents the desired object cohesively. In

Fig 8B, considering the image details, undoubtedly, even the minutest details of the object are

thoroughly extracted in the final analysis, rendering individuals distinctly recognizable. This

property can be clearly inspected through Fig 9 which has been enlarged for clarity. Further-

more, in Fig 10, we illustrate the Grad-CAM output corresponding to the HybridBranchNet

architecture. The differences between the two Grad-CAMs are observable, with the proposed

model better and more accurately focusing on the target object.

Table 9. A comparison of the proposed method with image classification models on the ImageNet-Hard dataset.

Model [55] Accuracy (%)

AlexNet [55] 7.34

VGG-16 [55] 12

ResNet-18 [55] 10.86

ResNet-50 [55] 14.74

ViT-B/32 [55] 18.52

EfficientNet-B0 [55] 16.57

EfficientNet-B7 [55] 23.2

CLIP-ViT-L/14@224 [55] 1.86

CLIP-ViT-L/14@336 [55] 2.02

Coca_ViT-L/14 [55] 36.79

HybridBranchNet3 [9] 14.5

HybridBranchNetV2 31.5

https://doi.org/10.1371/journal.pone.0314393.t009

Table 10. Comparison of model performance across multiple runs.

Model Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

HybridBranchNet3 [9] 85.20% 83.80% 82.50% 84.60% 82.10% 83.70% 83.90% 84.30% 84.80% 82.40%

HybridBranchNetV2 88.60% 89.10% 89.80% 90.20% 88.50% 88.90% 89.40% 88.70% 89.30% 90.10%

https://doi.org/10.1371/journal.pone.0314393.t010
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The primary constraint of the proposed method is the requirement of a dataset that

includes relationships between objects or provides a complete textual description of the pre-

sented image. In other words, the relationships between all objects and the relationship

between each object and the background must be specified. Alternatively, the important shape

features of objects must be precisely described. Based on our experience with HybridBranch-

Net model [9], we observed that improper feature extraction leads to some difficulties in the

classification stage, specifically at the end of the convolutions. To elaborate further, we noticed

that for some complex images, rich features were not correctly extracted when we use Grad-

CAM. To address this issue, we decided to introduce a new method in this study, to provide

more information about the image to the neural network and obtain richer extracted features.

For this purpose, we added a component to the model that extracts relationships between

objects and employed reinforcement learning (as described in Section III.V). This approach

led to obtaining richer features consequently achieving a noticeable improvement in classifica-

tion accuracy. This observation is confirmed by the Grad-CAM results in Fig 8 and the classifi-

cation accuracy presented in Tables 4, 5 and 7.

Fig 8. A: Grad-CAM with color in HybridBranchNetV2, B: Grad-CAM with feature in HybridBranchNetV2.

https://doi.org/10.1371/journal.pone.0314393.g008
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IV.VII. Comparative analysis of HybridBranchNet and

HybridBranchNetV2 performance: A multirun study

To perform a comparative analysis of HybridBranchNet and HybridBranchNetV2 regarding

their performance, we executed multiple runs of each model with varying random seeds, total-

ing 10 runs per model. Subsequently, we computed the variances of the evaluation metrics and

determined the p-values. The performance metrics for each model across the 10 runs are pre-

sented in Table 10.

Upon analyzing the experimental results, we derived the following statistical insights:

For HybridBranchNet, variance of evaluation metrics is 2.15, and P-value is 0.032. For

HybridBranchNetV2, variance of evaluation metrics is 0.54, and P-value is 0.001.

The outcomes indicate that HybridBranchNetV2 demonstrates significantly lower variance

in its evaluation metrics compared to HybridBranchNet, as evidenced by both the variance val-

ues and the p-values. Consequently, HybridBranchNetV2 showcases more consistent perfor-

mance across various random seeds, thereby establishing itself as the superior model in terms

of stability.

Furthermore, in Table 11, a comparison between two methods, HybridBranchNetv2 and

HybridBranchNet, is provided to facilitate a more comprehensive analysis.

IV.VIII. Ethical management in AI architecture: Strategies and

recommendations

In the proposed architecture, ethical issues can be managed through several different ways:

• Data Privacy Preservation:

Fig 9. Last layers of Grad-CAM in HybridBranchNetV2.

https://doi.org/10.1371/journal.pone.0314393.g009
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a. Employing local processing methods (such as fine-tuning) to train models using data not

sent to cloud servers.

b. Protecting individuals’ privacy by utilizing techniques like anonymization, removing per-

sonal information, and reducing the possibility of individual identification in the data.

• Reduction of Monopoly and Discrimination:

a. Collecting data from diverse groups within the community to prevent bias in the model.

b. Using techniques such as data augmentation to increase data diversity and reduce monop-

olistic practices.

Fig 10. A: Grad-CAM with color–HybridBranchNet, B: Grad-CAM with feature–HybridBranchNet.

https://doi.org/10.1371/journal.pone.0314393.g010
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• Social Impacts:

a. Assessing the potential social impacts of the proposed models on society and cultures, con-

sidering their various applications, such as diagnosing skin diseases, object detection in

images, etc.

Strategies and Recommendations:

• Extracting relationships between objects and training systems on data sets that prevent infor-

mation disclosure and preserve privacy can ensure that the model does not operate on pro-

hibited processes. In this way, training and extraction based on relationships between

objects and specific features that the system possesses can help enhance privacy.

Implementing reinforcement learning models within the architecture to enforce bound-

aries and constraints, ensuring adherence to ethical, security, and other relevant criteria in the

model’s outputs.

IV.IX. Mitigating overfitting in model training: Strategies and empirical

validation

To ensure that the model did not suffer from overfitting, we implemented several strategies:

• Regularization Techniques: We applied L2 regularization during training to penalize large

weights and prevent the model from fitting noise in the training data. This helped control

the model’s complexity and reduce overfitting.

• Cross-Validation: We utilized 5-fold cross-validation to evaluate the model’s performance.

The consistent performance across different folds indicated that the model generalizes well

to unseen data and is not overly fitted to the training set.

Table 11. Comparison between two methods, HybridBranchNetv2 and HybridBranchNet.

Name HybridBranchNetV2 HybridBranchNet

Approach Utilizing textual knowledge along with visual features in deep neural

networks.

Utilizing the nature of deep neural networks, extensive training samples, and

specific feature extraction structures.

Strengths 1—Integration of linguistic and visual information for deeper

comprehension

2- Improved classification accuracy

3- Efficient feature extraction without altering image resolution or

increasing parameters

4- Incorporation of reinforcement learning for adaptive feature

extraction

5- The need for fewer training parameters.

6—Extracting relationships between objects in the image.

1—Ease of use

2—applicability in various image-dependent scenarios

3- feature extraction based on adjustable network depth, width, and

optimization.

4-Enhanced robustness against noisy or ambiguous input data, leading to more

reliable classification outcomes.

Weaknesses 1—The complexity of model training at two different levels, before

reinforcement learning and after, alongside parameter tuning for each.

2—The complexity of extracting the relationship matrix and filtering

out unnecessary elements.

3- The need for datasets containing text or relationships between

objects.

1—Challenges in independently grasping underlying concepts and semantic

relationships between objects

2—Limited capacity to comprehend intricate concepts and relationships within

images

3—Potential difficulties in handling large-scale datasets, leading to longer

training times and increased computational resource requirements.

4—The risk of overfitting, especially when dealing with complex or noisy data,

which can result in reduced generalization performance on unseen examples.

5—Dependency on high-quality labeled data for effective model training, which

may not always be readily available or easily obtainable for all application

domains.

https://doi.org/10.1371/journal.pone.0314393.t011
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• Monitoring Training and Validation Loss: We plotted the training and validation loss curves

during training. The convergence of both loss curves without a significant gap between them

suggested that the model did not overfit the training data.

• Evaluation on Unseen Data: We evaluated the model on a separate test set that was not used

during training. The similar performance between the test and validation sets indicated that

the model generalized well to unseen data and did not memorize the training examples.

• Comparing Training and Test Performance: We observed that the model’s performance

metrics on the training and test sets were comparable. This suggested that the model learned

generalizable patterns from the training data without overfitting.

• Early Stopping: We implemented early stopping based on the validation loss. Training was

halted when the validation loss stopped improving, preventing the model from overfitting to

the training data.

By employing these strategies and observing empirical evidence such as consistent perfor-

mance across different evaluation metrics, convergence of loss curves, and similar perfor-

mance on unseen data, we ensured that the model did not suffer from overfitting.

IV.X. Model misclassification analysis

In this study, an analysis of the model’s errors was conducted, where 20 random samples of

misclassifications were selected from the ImageNet 1K dataset in Fig 11. The examination of

these samples revealed that the majority of classification errors occurred in complex environ-

ments containing multiple labeled classes within the dataset. In such scenarios, the model

often encounters significant challenges in making accurate classifications.

The primary reason for these errors appears to stem from the presence of various features

extracted from the objects within the images, which can lead to incorrect class selection by the

model. Specifically, in these challenging contexts, the model struggles to differentiate between

classes, resulting in the selection of unrelated categories. Although this issue should be miti-

gated by the use of a classification loss function, the observed outputs were not entirely unex-

pected. This suggests that the intricacies of the features and their relationships in multi-class

settings can hinder the model’s ability to generalize effectively, ultimately impacting its classifi-

cation performance. This finding underscores the importance of further refining feature

extraction methods and exploring more sophisticated strategies for managing class overlap in

complex environments to enhance the model’s accuracy and robustness.

V. Discussion

The primary limitation of object classification in several crucial fields of machine vision is that

it often acts merely as an algorithm for rich feature extraction. Object classification algorithms

learn from extensive datasets, observing numerous categories with considerable diversity

within each category. Due to the diverse training data, methods with high classification accu-

racy have broad applicability. Hence, presenting a classification method with high accuracy is

essential. To increase classification accuracy, there is usually a need to increase the training

parameters. However, augmenting training parameters in datasets with limited amounts does

not necessarily yield satisfactory results. Therefore, to achieve greater generality of classifica-

tion algorithms, it is necessary to reduce training parameters while maximizing accuracy. The

goal of this article is to present a network that achieves high classification accuracy with an

acceptable number of training parameters to ensure broader applicability across various tasks.
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Through examinations of powerful previous methods like Coca and some transformer net-

works, it has been revealed that networks often gain knowledge beyond images. This knowl-

edge can be linguistic, adding textual features to image features, thereby enhancing

classification accuracy. However, incorporating a language model often leads to an increase in

training parameters and introduces linguistic model errors into the feature extraction process.

In the Coca model, adding a language model has created a model with approximately 2.1 bil-

lion parameters. To add knowledge beyond images to the proposed model, a low-cost method

with low error is introduced, which will be discussed further.

Fig 11. Analyzing misclassification in ImageNet 1K dataset: Insights from 20 randomly selected errors.

https://doi.org/10.1371/journal.pone.0314393.g011
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The proposed method adds knowledge to our base model, i.e., HybridBranchNet. Upon

examining the architecture of the HybridBranchNet method, it was evident that the features

extracted by the final classification layers were not very rich, meaning they did not generate

suitable heatmaps. Therefore, appropriate knowledge was added to the base structure, and in

the proposed method, by considering the relationship between objects and reinforcing features

in several last layers, the classification accuracy was improved. For this purpose, reinforcement

learning operations were used to enhance features in the last layers, and by using graph archi-

tecture, object relationships in the network were considered. To account for relationships, a

relational matrix was used. This relational matrix adds approximately 7.5 million parameters

to the model, which is not significant, compared to the achieved accuracy increase. Addition-

ally, the reinforcement learning applied does not add parameters to the network. Therefore,

the proposed model requires only 16.5 million parameters to add knowledge, which is much

less compared to the Coca method.

To demonstrate the generality of the proposed method, the model was trained on the Visual

Genome dataset and tested on the ImageNet dataset, yielding good accuracy. Additionally, to

demonstrate the performance and generality of the model, tests were conducted on smaller

datasets in the field of image classification, resulting in higher accuracy compared to previous

methods. Furthermore, to demonstrate the performance of the method, we went a step further

and tested the model on the ImageNet-Hard dataset, indicating the power of the proposed

method. Although the proposed method achieved lower accuracy than the Coca method in

this dataset, the number of parameters in the proposed model is less than 0.01 of this method,

demonstrating the value and efficiency of the proposed method.

VI. Conclusion

In this article, a model with high accuracy and acceptable training parameters is presented.

Previous powerful methods, such as Coca and some transformer networks, incorporate addi-

tional linguistic model-based knowledge into the network, which can increase classification

accuracy. However, in these models, the number of parameters has significantly increased

compared to the base version. Additionally, the linguistic model error has been transferred to

the feature extraction part, ultimately leading to inadequate performance in some applications.

The proposed method in this study, attempts to address the shortcomings of these approaches

while requiring acceptable number of parameters, with no additional error to the feature

extraction when embedding knowledge. The proposed model is considered an improved ver-

sion of the HybridBranchNet method and is designed to be more accurate and practical in

classification compared to the base model. Reinforcement learning features are utilized to pro-

vide a suitable policy for selecting and extracting new features. Additionally, the relational

graph properties are exploited to specify object relationships in a given scene, aiding the net-

work in finding the best class for each object and somewhat enhancing generalization. The

structure of this model demonstrates that adding more information during neural network

training can significantly increase image classification accuracy.

One limitation of the proposed model is its high dependence on object-scene relationships.

The absence of a detailed description of object states in the dataset leads to errors in the train-

ing of the proposed model and will have inadequate generalization during testing. Therefore,

in future research, we intend to incorporate suitable language models with fewer parameters

and less semantic errors into the proposed model, and also improve reinforcement learning

performance for faster and better convergence. Additionally, besides using language models,

we plan to employ graph networks in the learning structure to extract and utilize graph fea-

tures within deep neural networks. These future directions will help in further improving the
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accuracy, efficiency, and generalization capabilities of our model, making it more robust and

versatile for various image classification tasks.
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