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Learn More From Your Data With Asymptotic Regression

Alasdair D. F. Clarke1 and Amelia R. Hunt2
1 Department of Psychology, University of Essex
2 School of Psychology, University of Aberdeen

All measures of behavior have a temporal context. Changes in behavior over time often take a similar
form: monotonically decreasing or increasing toward an asymptote. Whether these behavioral
dynamics are the object of study or a nuisance variable, their inclusion in models of data makes
conclusions more complete, robust, and well-specified, and can contribute to theory development.
Here, we demonstrate that asymptotic regression is a relatively simple tool that can be applied to
repeated-measures data to estimate three parameters: starting point, rate of change, and asymptote.
Each of these parameters has a meaningful interpretation in terms of ecological validity, behavioral
dynamics, and performance limits, respectively. They can also be used to help decide howmany trials to
include in an experiment and as a principled approach to reducing noise in data. We demonstrate the
broad utility of asymptotic regression for modeling the effect of the passage of time within a single trial
and for changes over trials of an experiment, using two existing data sets and a set of new visual search
data. An important limit of asymptotic regression is that it cannot be applied to data that are stationary or
change nonmonotonically. But for data that have performance changes that progress steadily toward an
asymptote, as many behavioral measures do, it is a simple and powerful tool for describing those
changes.

Public Significance Statement
Experiments in psychology often involve measuring behavior repeatedly over time. Sometimes
understanding the way behavior changes over time is the goal of the experiment, but often it is not.
Even if they are not of direct interest, changes in behavior over time make average measurements
difficult to interpret or compare across conditions. In this article, we point out that changes over time
often take a similar form that can be statistically modeled using asymptotic regression. We present
three applications that demonstrate the range of problems this approach can solve.
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When measuring the effect of an independent variable or
manipulation on behavior, we have to measure it in the context of
many other factors that influence our measurements, some of which
we can control, and some of which we cannot. For example, there will
be differences between individual participants in a given sample that
we cannot control and may not be relevant to our research question,
but add substantial variability to the data. The standard statistical

approach to dealing with individual differences in behavioral
measurements is to estimate their effect on the data and remove
them from the statistical model (e.g., by applying a repeated-measures
analysis of variance or including participant as a random factor in a
multilevel model). This approach is so routine when it comes to
differences between individuals that it is a fundamental part of most
introductory undergraduate statistics courses in psychology. There

Timothy Vickery served as action editor.
All data and analysis code are available on a public Open Science

Framework repository (https://osf.io/64r7m/). The first draft was uploaded to
PsyArXiV onOctober 20, 2023 (https://osf.io/preprints/psyarxiv/fkbza). The
ideas in this article were presented in part at the annual meeting of the Vision
Sciences Society in May 2023 and at the European Conference on Visual
Perception in August 2024.
This project was supported by an Economic and Social Research Council

standard grant (ES/S016120/1) with Amelia R. Hunt as principal investigator
and Alasdair D. F. Clarke as coinvestigator. The authors are grateful to Aaron
Cochrane for comments on the draft and to the reviewers for comments on the
submitted article. We are also grateful to Sitong Lin for her contributions to
Example 3.

Open Access funding provided by University of Essex: This work is
licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0; https://creativecommons.org/licenses/by/4.0). This license
permits copying and redistributing the work in anymedium or format, as well
as adapting the material for any purpose, even commercially.
Alasdair D. F. Clarke played a lead role in data curation, formal analysis,

investigation, methodology, project administration, software, and visualiza-
tion, a supporting role in writing–original draft, and an equal role in
conceptualization and writing–review and editing. Amelia R. Hunt played a
lead role in resources and writing–original draft and an equal role in writing–
review and editing.
Correspondence concerning this article should be addressed to Alasdair

D. F. Clarke, Department of Psychology, University of Essex, Colchester
CO4 3SQ, United Kingdom. Email: a.clarke@essex.ac.uk

Journal of Experimental Psychology: General

© 2025 The Author(s)
ISSN: 0096-3445 https://doi.org/10.1037/xge0001710

1

https://osf.io/64r7m/
https://osf.io/preprints/psyarxiv/fkbza
https://creativecommons.org/licenses/by/4.0
mailto:a.clarke@essex.ac.uk
https://doi.org/10.1037/xge0001710


are of course also many situations in which individual differences are
part of the theory being tested, in which case the random effect of the
participant is not (or should not be) discarded, but included as part of
the statistical model of the data used to test hypotheses. But whether a
researcher is interested in individual differences or not, the logic of
estimating their contribution to variation in the data is well-accepted
and broadly applied. By attributing variance to known sources, we
boost our sensitivity to measure the effects of the independent
variable we are interested in.
An equally ubiquitous variable in experimental psychology is

time, but the conventions around estimating the effects of time
are far less established than for the effects of the participant. When
behavior is relatively stable over time, a central tendency measure is
a simple and meaningful way to aggregate a lot of information into a
single estimate. But when there are substantial changes over time,
the median or mean performance might be an accurate representa-
tion of behavior only at a single timepoint in the trial sequence, and
presenting this piece of information outside of its temporal context
is to commit what Alfred North Whitehead would call the “Fallacy
of Misplaced Concreteness” (1929). When behavior is in flux,
the unit of analysis cannot be a single number. A similar principle
applies for time as applies to participant differences; whether time
is a theoretically meaningful variable in your experiment or not,
accounting for the effects of time on the data means estimating and
attributing variability to time that would otherwise be considered
random noise.
Many classic psychological phenomena are embedded within the

context of a short-term flux, as behaviors emerge or dissipate within
the span of a single trial. Some effects, such as adaptation, take some
time to develop to their optimum (Newell et al., 2009). Speed–
accuracy trade-offs are ubiquitous as well, with slower responses
typically (but not always) associated with decreasing error rates and
higher motor precision. In specific subfields, theories of the under-
lying mechanisms of temporal patterns lead to specific predictions
about how changes unfold within a trial. For example, the timecourse
of visual selection can be observed in a phenomenon known as
oculomotor capture (Theeuwes et al., 1998), in which the tendency
for eye movements to inadvertently deviate toward visually salient
distractors diminishes as the latency of the saccade increases. In task-
switching, the cost of switching between tasks tends to get smaller
with longer preparatory intervals, suggesting participants are able to
engage in active, time-consuming reconfiguration of their readiness to
perform a specific task (Koch, 2003). In perceptual aftereffects and
other serial dependencies, the size of the bias induced by the preceding
event diminishes with time (e.g., Manassi et al., 2023). Across these
diverse examples, the shape of the timecourse is similar, with effects,
biases, costs, and errors monotonically either decreasing or increasing
over time toward an asymptote.1 This similarity provides an
opportunity for a general-purpose solution that could more precisely
represent the effects of interest, and ease comparison from one study
to another.
Performance changes over time are also inherent in any series

of repeated trials. Our usual approach to addressing the problem
of variability due to time in our own research has been to follow
the norm in experimental psychology: We include a set of practice
trials. Practice trials tend to be excluded from further analysis,
and sometimes not even recorded. We rarely scrutinize these pract-
ice trials to evaluate whether they were sufficient, to learn infor-
mation from them, or to consider their potential to limit or extend

generalizability. After practice, the rest of the trials are typically
considered as a stationary set, with the unit of analysis being a
measure of central tendency taken from all the trials within a given
condition/participant. But even beyond the early learning of instruc-
tions and response mappings, as participants gradually experience
all the conditions of the experiment, they can adapt their strategies
to optimize performance, tune their attention to pick up information
from the appropriate locations, and start to anticipate sequences of
events and their timing with more precision. As responses become
more automated, there may even be a shift from one underlying
mechanism to another. Logan’s classic instance theory of automatic-
ity (Logan, 1988), for example, proposes that responses to previous
encounters with the same stimulus are stored and retrieved when we
encounter the same stimulus again. The lower limit on response time
(RT) depends on how quickly the algorithm leading to a response can
be executed, or on how quickly the memory of the response executed
in the previous encounter with that stimulus can be retrieved and
instantiated, whichever is fastest. As the number of instances builds in
memory, the probability that memory retrieval drives the response
increases. In other words, RTs at the start of an experiment may be
determined by qualitatively different mental processes than those
executed later, even though the task is the same. An average of the
whole trial sequence will therefore represent some midway point
between two mental processes, which is an unproductive approach to
understanding either of them. Instead, both timepoints, as well as the
transition between them, are more meaningful measures of human
performance.

A fundamental part of the design of most behavioral experiments
that is rarely questioned or discussed is how much practice is
needed. Almost all experiments include some practice trials to
ensure the participant understands the instructions, but exactly how
many trials to include seems to be determined by an unspoken
combination of convention, instinct, time constraints, and personal
preference. Although the underlying purpose of practice is to
stabilize performance, we rarely scrutinize whether the practice
provided was sufficient to achieve this end. Being able to evaluate
how much practice is sufficient can also ensure we are not wasting
participants’ limited attention span on unnecessary practice trials.
To address this ubiquitous dilemma of experimental design, the
same tools that can provide a description of the effects of time
can also be applied to remove noise due to the effects of time when
these effects are not of interest. The stable differences that emerge
between controlled conditions or groups, irrespective of time, will
be a cleaner estimate of these differences. The implication is that
there need be no separation between “practice” and “experimental”
trials in any experiment. Instead, we can use the full set of data to
estimate the start and end points of behavior and the rate of change
between them. This information can be useful in deciding how
many trials are needed to achieve stable performance, addressing
the question of not only how many practice trials are needed (i.e.,
none), but also how many experimental trials are needed (i.e.,

1 The precise function the change follows is, in many specific areas
of research, an important constraint on theory (e.g., Cochrane & Green,
2021; Heathcote & Brown, 2000). In this article, we are not comparing
functions but instead presenting one simple function that usually
provides a reasonably good fit for behavioral change and can be broadly
applied.
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enough that performance estimates no longer change much as more
trials are added).
Perceptual and statistical learning are substantial subfields within

psychology with the goal of understanding the mechanisms under-
lying changes in performance over a range of timescales and
conditions. In perceptual learning (e.g., Goldstone, 1998), changes
can happen gradually as participants learn and streamline procedures
and transformations, or they can happen suddenly, like the classic
examples of Mooney faces where there is an instantaneous and
permanent change in how the visual information is organized and
interpreted. In the literature on contextual cueing (e.g., Chun & Jiang,
1998) and statistical learning in a visual search context (e.g., Wang &
Theeuwes, 2018), the focus is on the extent to which participants
learn, over a series of repeated trials, to exploit nonrandom spatial and
temporal features of the contexts to guide spatial selection, refine
target templates, and suppress distractors. In these fields, change over
time is often characterized blockwise, or with an arbitrary division
of trials into quantiles within which performance is averaged and
between which it is compared. While this is a useful approach
for determining whether change occurred, and to some extent for
measuring how large that change is, it does not allow for any
interpretation of the rate of change itself, as noted in Kershner and
Hollingworth (2023). Similarly, Kattner et al. (2017) have criticized
the conventional approach to analyzing timecourse data in the
perceptual learning literature, whereby psychometric functions are fit
to single estimates summarizing a series of blocks, each containing
many trials, ignoring the likely case that there are changes within
blocks as well as between them. They advocate for modeling the trial-
dependent changes that are a close match to the continuous learning
that presumably underlies these changes over time. We agree with
this point and argue here that modeling time-dependent changes does
not need to be restricted to situations where these changes over
time are the subject of investigation. Rather, we should treat time the
way we treat differences between participants, routinely estimating
variability due to time and either including it as part of our statistical
models (if it is relevant to our predictions) or removing it from the
category of “unexplained noise” (if it is not relevant).
In summary, changes over time are a fundamental part of human

behavior, and these often take the same form: a monotonic increase
or decrease toward an asymptote. Some researchers are developing
theories that make predictions about time effects, but lack a simple
convention that can be applied across many circumstances to estimate
the span and rate of change. Other researchers are not interested in the
effects of time per se, but could be using them to designmore efficient
experiments and to provide a more refined estimate of effects of
interest. Either way, researchers who are measuring human behavior
at more than a single timepoint will benefit from converging on a set
of conventions about how to account for the effects of time in their
experiments, and we propose a simple solution here and provide four
diverse examples of how to apply it.

Asymptotic Regression

Asymptotic regression refers to a class of nonlinear models
in which the predicted value y approaches some asymptote as the
predictor x approaches infinity. Perhaps the simplest of these models
(Stevens, 1951) is defined by the exponential equation:

μ = a − ða − bÞρt , (1)

where ρ ∈ ð0, 1Þ. It is worth noting that is equivalent to μ =
a − ða − bÞe− st where s = − logðρÞ. The model outlined in
Equation 1 is just one specific approach from a more general set
of models that seek to deal with temporal dynamics. Depending on
context, more sophisticated models such as splines, or those outlined
by Speekenbrink and Shanks (2010), may offer a better description
of these dynamics (e.g., see Pasqualotto et al., 2024). That said,
many common patterns in behavioral data such as those described
above are well-suited to asymptotic regression (practice effects,
learning, performance gains with longer preparatory intervals or
exposure durations), and the three parameters in the regression all
have meaningful interpretations.

Parameter Interpretations

• The initial value (b) is behavior at a hypothetical “time 0.”
For issues of ecological validity, and generalizing to predict
behavior in applied or new settings, this can be a useful
estimate of what performance would have looked like
before performance was altered over time or by repeated
exposure. This parameter improves on just looking at early
performance in isolation because it uses information from
the whole time series to estimate the start point.

• The rate (ρ) describes how performance curves from the
initial value toward the asymptote, and provides a single,
simple measure of the effect of time on performance data.
This is a more sensitive measure than simply comparing
performance change from the start to the end of a period of
time; two manipulations could lead to the same change
overall, but if one produces that change more quickly than
the other, this will be reflected in the rate. In order for us to
obtain an asymptote, ρ must be 0 < ρ < 1. We enforce this
constraint by using a logistic transform, in much the same
manner as one would when fitting generalized linear models
with link functions.

• The asymptote (a) is the hypothetical projected performance
as it flattens, which is useful when the researcher is chiefly
interested in “best case” performance. This is often the case
in a situation involving comparison to theoretical predictions
and optimal performance, or with an AI. Asymptotes can
also be used to compare between groups of participants who
may differ in their familiarity with the laboratory setting or
who take longer to learn and remember response mapp-
ings or task rules. They are also useful when effects are
anticipated to be small relative to the noise of early trials and
learning.

See Figure 1 for an illustration of the three parameters. All three
taken together provide a more complete and accurate description of
the flux of behavior that is present in many data sets. Of course,
not all data take this form. As we return to in the discussion, there are
other effects of time on behavior that require different tools. But
when we started opportunistically sampling and examining data
from our own work and others, we found asymptotic regression was
often a good model, and when it was, it led to new insights about the
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data that could not have come from examining standard measures
of central tendency. Despite the usefulness of this approach for
describing human behavioral data, however, we could find few
examples of its application in psychology outside of the learning
literature (e.g., Cochrane et al., 2018; Cochrane & Green, 2021;
Rast, 2011; Williams et al., 2019). A notable exception is Cochrane,
Cox, and Green (2023), who used a similar approach to what we
advocate here to explore how performance on a classic test of latent
bias (the Implicit Association Test) changes over the course of trials
and blocks of trials. This approach uncovers differences between
individuals that go beyond a simple effect size between conditions,
but instead reveal more distinct and specified differences in start
point, rate, and asymptote (see also Cochrane, Sims, et al., 2023). Our
aim in the current article, therefore, was to advocate for the broader
use of asymptotic regression for modeling time series effects and to
provide some simple worked examples of the additional insight
that can be gained from using it. We selected these three examples
somewhat arbitrarily, with the only constraint being that the experi-
ments are relatively simple to describe and that they present distinct
scenarios. We first provide a more precise description of the
asymptotic regression model.

Model Equation

We can model the relationship between t (in this example, t is a
trial, but it could also be other units of time) and our outcome
(dependent variable) y as Equation 2:

y∼N ðμ, σ2Þ
μ = a − ða − bÞð1 − ρÞt=ts
logitðρÞ = r,

(2)

where a (asymptote), b (initial value), r (i.e., the inverse logit of the
rate), and σ are parameters to be estimated from the data. t is the trial
number, and ts is some standardizing constant that helps us avoid
computational difficulties due to floor and ceiling effects (discussed
below).2 Some examples of this function are shown in Figure 1. We
use 1 − ρ rather than simply ρ so that larger values lead to faster
progress from the initial value to the asymptote (see Figure 1).

In most situations, this relationship is not our primary interest.
Instead, we wish to analyze how behavior varies between experi-
mental conditions, or with some numerical covariate. In these cases,
we can allow a, b, and ρ to vary such measures (Equation 3):

a∼ βaX
b∼ βbX
r∼ βρX:

(3)

After fitting such a model, we can examine the posterior distri-
butions and characterize the extent to which predictors (experimental
manipulations, independent variables) lead to changes in a, b, and ρ.
We also recommend generating posterior predictive plots. The model
can be extended to incorporate multilevels (i.e., random effects,
hierarchical modeling) by adding a random effect structure to the
linear models for a, b, and r.

Interpreting ρ and Selecting ts

The asymptote and starting point, a and b, have straightforward
interpretations: The values are measured in the same units as our
dependent variable y. One point to note here is that the model
estimates performance at a hypothetical point where t = 0. It is
therefore important to consider what 0 means in the context of your
data. For example, if your raw time unit is based on a computer’s
system time, or the time of day, 0 is meaningless and you will need
to adjust your time units so that 0 reflects the start of the time series
you are modeling.

Giving a meaning to ρ (the rate) is perhaps a little less intuitive.
To simplify, consider a case where ts = 1 and a = 0. In this case, y =
(1 − ρ)t, so we move (1 − ρ) of the way toward 0 for every unit
increase in t. In other words, if ρ = 1/2, y halves every time we go
from x to x + 1. If a is some arbitrary value, then 1 − ρ is the
proportion of the way wemove from our current value to awith each

Figure 1
Illustration of the Three Model Parameters
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Note. (Left) An example of the asymptotic regression curve with the initial value (b) and asymptote (a) highlighted. (Right)
An example of three different values of ρ. See the online article for the color version of this figure.

2 We originally denoted this parameter as t0, and it appears this way in
some of our code. We changed to using ts in the article to avoid any potential
confusion with b, which represents starting point performance, that is, when
t = 0.
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increase in t. We have to complicate things slightly by including
a normalizing constant ts. This is due to the fact that t could be
measured in a wide range of units such as seconds, milliseconds, or
the tth trial in a block of trials. This means that the effect of moving
from t to t + 1 could be wildly different depending on the time range
and units. Our proposed solution is to normalize t by a constant ts, in
much the same way as z scores of a variable can be used.
This leads to the obvious question: How should ts be selected?

Our advice is to plot your dependent variable against your time
range and set ts to the value of t which lines up with the point at
which y has moved approximately halfway from the initial value
to the asymptote. This leads to estimates of ρ ≈ 1/2 and r ≈ 0. This
facilitates easier computational estimating by avoiding extremely
small or large values of r. Ideally, the choice of ts could be made
based on pilot data, or data from similar studies. There is no need to
be overly precise in the choice of this hyperparameter; the aim is
simply to avoid ρ ending up very close to 0 or 1.

Implementation Details

We have implemented this model in Stan (Stan Development
Team, 2020), a probabilistic programming language for fitting
Bayesian models.3 As this model is somewhat more complex than
a standard linear regression, care should be given to the choice of
priors. We favor using weakly informative priors that guide the
algorithm to plausible regions of the parameter space without overly
biasing themodel oneway or another. For the random effect structure,
we follow Lewandowski et al. (2009) and use an LKJ prior. Code for
the full multilevel model is available at https://osf.io/64r7m/. For
more about priors, see the Limitations section of the discussion.
Two of our examples involve modeling RTs. RT distributions are

often strictly positive and highly skewed with a long tail. We have
chosen to log-transform RTs in Example 2 to demonstrate the model
with a simple approach to skewed distributions. In Example 3,
we demonstrate a more sophisticated approach, using a lognormal
distribution. In theory, asymptotic regression can be applied to more
complex models of reaction time data, such as shifted-lognormal
(Hughes et al., 2024), ex-Gaussian (Cochrane et al., 2021), and drift-
diffusion models (Cochrane, Sims, et al., 2023), but our purpose
here is to focus on the time series modeling, so we stick to simpler
approaches.
In addition to asymptotic regression, we also fit linear (μ= bx+ a)

and stationary (μ = a) models in order to demonstrate the extent to
which asymptotic regression can offer a closer fit to the data. We
used LOO (leave-one-out) with Pareto smoothed importance
sampling (Vehtari et al., 2024) to approximate how well each
model can predict a held-out point when trained on the rest of the
data. We then computed model weights to compare the three
models. These tell us how often we should expect each model to
outperform the other models under consideration. (Alternatively, we
can interpret these as the weights with which we should combine all
three models to give the best overall prediction.) One complication
with this procedure is that a small (<1%) proportion of the data has
unreliable Pareto k statistics. This appears to be mainly due to the
initial few points being overly influential in the estimate of the b
parameters.4 To deal with this issue, we adopted an iterative process
in which we repeatedly (a) fit the model, (b) calculate LOO Pareto k
statistics, and (c) remove any points from the data with a Pareto k

greater than 0.7. This process is repeated until we obtain LOO
statistics with no warnings.

Simulations Illustrate the Problem With
Ignoring Time

The standard approach to summarizing data over repeatedmeasures
is to use a measure of central tendency (e.g., mean5) and variance,
typically with an assumption that the distribution is normal. In the
additional online materials at https://osf.io/64r7m/, we have presented
model comparisons when asymptotic regression, linear regression,
and a normal distribution are applied to simulated data with different
underlying trends. These demonstrate the general point that unless
there are no trends in the data, the asymptotic model minimizes
residual error, a point we illustrate with human data in the three more
complex examples that we present in the rest of this article. There are
problemswith ignoring time that can extend beyond that of simply not
accounting for variance, however. Inmany experiments in psychology,
practice effects (e.g., slower RTs early in the experiment)will influence
the mean, and the more trials there are in an experiment, the smaller
that influence becomes. This can be seen in Figure 2. The beige interval
shows the range of estimates of the mean of simulated data (the points)
as the number of trials in the experiment increases from 1 to 500. The
mean clearly drops as the number of trials increases. This creates a
serious confound when comparing conditions that differ in the
numbers of trials, the amount of practice, or the rate of learning: Any
difference between means, or lack of difference, becomes impossible
to interpret. In contrast, the estimate of the asymptote (the blue
distribution in the plot) is uncertain when based only on the early trials,
which is entirely appropriate. As the trial sequence progresses, the
estimate quickly becomes more certain, and by about trial 100 (in this
simulation), the asymptote estimate is more certain than the mean.
Importantly, the asymptote parameter is not biased toward early trials
like the mean, but remains unbiased. As a result, estimates of the
asymptote from one condition can be compared to another condition
with fewer trials, while estimates of the mean cannot.

Issues with comparing conditions with different numbers of trials
have been raised before (e.g.,Miller, 1988). A relevant related point is
made nicely by Rouder and Haaf (2019), who note that effect sizes
and reliability tend to increase as the number of “replicates,” or trials,
increases. The problem they point out is that this leads to a lack of
portability. Portability is an underappreciated standard we should
be striving for in our measurements, that effect size estimates
should be reliable, that is, stable from one sample to another. This
allows researchers to state (within some confidence interval) how
large an effect actually is, which is important for practical applications
as well as for being able to plan future experiments with appropriate
statistical power. Psychological tasks often fail to meet this portability
standard because from one experiment or condition or population to

3 There is nothing inherently “Bayesian” about these models. They could
be fit using frequentist methods and maximum likelihood estimation.

4 Pareto k statistics can be thought of as a Bayesian equivalent to Cook’s
distance. These points are not necessarily being poorly fit by the model.
Instead, they are an indication that they are particularly important in
determining which set of parameter values best fits the data.

5 We discuss the problem in relation to comparing means because it is a
commonly used metric, but the problem we highlight here arises from
comparing distributions of repeated-measures data without accounting for
time, regardless of how the distribution is represented.
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another, they tend to vary in the number of replicates, which makes
effects sizes smaller or larger, confounding any comparison bet-
ween them. Rouder and Haaf (2019), in addition to highlighting
that the number of trials is at least as important to power and
reproducibility as the number of participants, also advocated using
hierarchical models that remove variability due to trials, to achieve
more portable estimates of effect size. Asymptotic regression also
solves the portability problem, but goes a step further by modeling
change over the sequence of replicated measurements explicitly,
rather than treating each instance as independent. The estimates
resulting from hierarchical models would still drift toward the
asymptote as the sequence of trials progressed, while the asymptote
estimate does not. The examples that follow illustrate the ways in
which asymptotic regression can provide an approach to aggre-
gating and describing data that are even more portable than a
hierarchical model that ignores time.

Overview of the Examples

In each of the three examples shown below, we demonstrate
different aspects of timecourses and how they can be modeled using
asymptotic regression, starting with a simple use case and adding
experimental complexity with each example. In the first example,
asymptotic regression is applied to model change in facial muscle
activation taking place over a 5-s interval in response to viewing face
change between happy and angry facial expressions (the control
condition from Korb et al., 2023). This straightforward case demon-
strates how asymptotic regression allows separate estimates of both
the rate at which muscles change in response to the face changing
expression and the state of the muscles as they reach asymptote.
Example 2 models a well-established tendency to respond more

quickly to self-relevant targets, where the association between the
participant and an arbitrary shape is introduced at the start of the

experiment and then measured over multiple trials. We show that, as
the variance and reaction time decrease over time, the differences
between conditions emerge more strongly in the asymptotes. This
example presents a useful application of asymptotic regression as a
way of removing the early effects of practice that can mask the
strength of effects. To this end, we show how the estimates of the
asymptote would have changed had the experiment included fewer
trials, presenting a useful tool for planning efficient experiments that
avoid collecting excessive trials of data.

In the final example, we introduce a new set of data that were
collected to better understand how visual search behavior changes
with experience. Specifically, a well-established measure of visual
search performance is the ratio of reaction times on trials where the
target is present to reaction times on trials where the target is absent. In
this example, we show that the ratio itself decreases to an asymptote
over the course of a block of trials, that it resets at the start of each
block, and that the rate at which the ratio changes is affected by what
the participant experienced in the preceding block. These observations
raise a fundamental interpretation question: A typical average ratio,
which ignores time, does not accurately reflect behavior, as it only
represents a point participants pass through transiently on their way
from the start to the end of a block of trials. The ratio therefore depends
not only on how many trials the experimenter chooses to include
in the experiment, but also on how they split the trials into blocks,
and how they intermingle different block and trial types together.
This is one example of a ubiquitous problem, considering most effects
in the literature are based on averages that ignore time. Asymptotic
regression offers a relatively simple solution to these interpretive
problems.

Transparency and Openness

All data and analysis code are available on a public Open Science
Framework repository at https://osf.io/64r7m/. See the reference list
for the full citation (Clarke & Hunt, 2024).

Example 1: Modeling Behavior Within a Trial

For our first example, we demonstrate how asymptotic regression
can be used to model the timecourse of behavior changes within a
trial. The example we are using here comes from Korb et al. (2023),
who are interested in facial mimicry. Specifically, they measured
facial reactions to dynamic happy and angry faces using the
electromyography (EMG) of the zygomaticus major and corrugator
supercilii muscles. The original study was interested in how these
signals were modulated after pharmacologically manipulating the
opioid and dopamine systems, but we will only look at the placebo
condition here. A model of the full experiment is presented in the
additional online materials at https://osf.io/64r7m/.

Method

A brief summary of the methods is presented below. For further
details, please see Korb et al. (2023).

Participants

The full sample included data from 130 participants, although
we are only concerned with the subset of 40 who were assigned to

Figure 2
Simulation Example Demonstrating the Effect of Varying the
Number of Trials in an Experiment
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Note. Points show the simulation data. Summarizing the distribution of the
data using the typical method of using a normal distribution that disregards
time (beige) leads to an estimate that is affected by the early trials, and the
size of this effect depends on the number of trials. In early trials, the
asymptote estimate (blue) is more uncertain but not shifted toward the early
trial like the mean, and as more trials are added, it becomes more certain than
the mean, as can be seen in the width of the range of estimates. Full code for
simulation is provided in additional online materials at https://osf.io/64r7m/,
Section 4. See the online article for the color version of this figure.
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the placebo condition. Demographic details of the participants and
recruitment are reported in full in an article (Korb et al., 2023). The
research was conducted in line with local ethics regulations and the
Declaration of Helsinki.

Stimuli

The stimuli consisted of 24 videos based on photos of 10 faces (five
male) with happy and angry expressions. The videos were created
using morphing software (Morpheus Photo Morpher, Version 3.17)
and had a duration of 5 s. The videos displayed a happy face gradually
becoming angry, or vice versa, and were repeated four times. This
gave a total of 96 trials shown in semirandom order (a maximum of
three successive stimuli with the same emotion was allowed) in two
blocks of 48 trials.

Procedure

On each trial, participants were instructed to indicate the moment
at which the first expression changes into the second, by pressing the
arrow-up button on a keypad. A fixation cross was shown at the
center of the screen for 2–3 s before each trial, and a feedback screen
was displayed after each trial for 1 s. The task was preceded by four
practice trials. Details of the EMG measurement procedure can be
found in Korb et al. (2023).

Preprocessing

EMG data were preprocessed in Matlab, using the EEGLAB
toolbox (Delorme & Makeig, 2004). Epochs were extracted from
0.5 s before to 5 s after stimulus onset, and expressed as a percentage
of baseline (the average of the 500 ms preceding stimulus onset).
Trials with average or peak values more than 2 SDs above or below
the mean (for that subject and muscle) were removed from analyses.
Trials were also removed if outlier values were detected in the
baseline period.

Data were converted to the proportion of baseline (e.g., a value of
0 indicates 0% of the baseline, and a value of 1 indicates 100% of the
baseline) and then log-transformed to account for their skewness.
The results of two standard approaches are shown in Figure 3: The
connected points show the average of the EMG measure within
each of five time bins, and the straight line shows a simple linear
regression (without applying asymptotic regression).

Analysis

One interesting detail of this study is that each person’s EMG
signal has been normalized by a baseline signal. This means that we
can fix b = 0 in our model, leaving us to fit a and r to the data. Both
of these parameters are allowed to vary from one condition to the
next, and a maximal random effect structure is used (Equation 4):

a∼ xm × xe + ðxm × xejZÞ

b = 0

r∼ xm × xe + ðxm × xejZÞ,

(4)

where xm and xe are the muscle and emotion variables, and Z is
participant ID.

Results

The posterior model fit is illustrated in Figure 4. These are small
effects that take time to emerge. At the start of the trial (parameter b),
activation is at 0 (baseline). As the participant processes the visual
stimulus and their facial muscles react to it, an effect emerges and
can be clearly seen in the asymptotes (a). Taking the full set of
measurements over the trial would underestimate the effect of facial
expressions on these muscles. Comparing asymptotic regression to
the standard approaches shown in Figure 3, the change in facial
expression over time does not follow a straight line, and in any case,
fitting this line does not make interpretation of the data any easier,

Figure 3
Two Standard Alternative Approaches to Modeling Time: Linear Regression and
Binning
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Note. Using linear regression like this requires two parameters per condition, so eight in total
(not counting random effects). Treating time as a categorical factor would require five
parameters per condition (because five bins have been used in this example). It is already clear
from the mismatch between the bin averages and the regression line that a straight line is not a
good fit with the data. See the online article for the color version of this figure.
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because it does not provide a meaningful end point. An approach
that lends itself better to comparison of the conditions is to separate
the data into time bins and compare only the later bins, where the
effect emerges. But doing so requires making an arbitrary decision
about how many bins to use and discards most of the information in
the data set. Asymptotic regression makes use of the full time series
and provides more sensitive, transparent estimates of the effect of
facial expression on muscle activation.

Discussion

The aim of this example is to provide a simple demonstration of
asymptotic regression in action. The model presented here is slightly
simpler than the one outlined in Korb et al. (2023) as we fix b = 0.
The other difference is that the original analysis was on the full data
set and investigated whether a model that allowed a, b, and r to vary
between the three drug groups outperformed a model that did not.
The results of this analysis suggested that there was no clear effect of
the intervention. Applying asymptotic regression adds confidence
that there are not underlying differences obscured by the way data
were binned or averaged over time.

Example 2: Self-Reference Effect

In our second example, we fit models to data to illustrate how
the self-reference effect (SRE) changes over a block of trials. In the
typical SRE experiment (Sui et al., 2012), an association is learned
between one’s self and a particular object. Participants are then
asked to match objects with the labels they learned in a speeded
reaction time task. The typical pattern of results is faster RTs to
confirm the shape and label match when they were associated with
one’s own self, relative to the other conditions (when the shape and

label do not match, or they matched with the label “stranger” or
“friend”).

In addition to modeling how the effect changes over repeated
trials, we will also demonstrate a more advanced version of the
asymptotic regression model in which the variance is allowed to
vary over time as well as the mean. See R and Stan code at https://osf
.io/64r7m/ for full model specification.

Method

Participants

Twenty-five (16 female, nine male, indicated by selecting from
options “M/F/O” in an anonymized form) participants were recruited
to a visual search experiment in which the SRE task was included
(Bhat et al., 2024). The search aspect of the experiment is not relevant
to the current research so will not be described here, except to provide
the context that participants completed 102 visual search trials,
followed by the SRE task described below, followed by another 102
visual search trials. The full experiment took approximately an hour,
and participants were remunerated £10. The protocol was reviewed
and approved by the Aberdeen Psychology Ethics Committee.

Stimuli and Apparatus

There were two categories of stimuli: a single line segment tilted
45° clockwise from vertical, which was the object labeled as “YOU”
in the experiment, and a set of line segments, each with an orientation
that was determined by random selection from a uniform distribution
withmean 45° anticlockwise from vertical and a variance of 120. This
set of line segments was “STRANGERS.”All line segments were 1.2
cm (1.5 visual angle). The display was the same as for the previous
experiment.

Figure 4
Model Fits for the EMG Experiment
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Procedure

Using a brief on-screen tutorial, participants were taught the
associations between the line segment rotated 45° clockwise from
vertical and the label “YOU,” and sets of four randomly oriented
line segments displayed in a single horizontal line and the
label “STRANGERS.” They were then given 16 practice and 160
experimental trials (note that practice trials were not removed in the
asymptotic regression analysis below). On each trial, a single line
segment appeared with a label in capital letters underneath (“YOU”
or “STRANGER”), and the participant had to indicate whether
they matched or not, using the “F” key for match and the “J” key
for mismatch. Participants were instructed to respond as quickly
and accurately as possible. The four trial types (crossing
YOU/STRANGER, Match/Mismatch) were equal in number
and randomly ordered.

Preprocessing

Trials with RTs less than 100 ms (12 trials) or longer than 9 s (14)
were removed. Two hundred ninety-five incorrect trials were also
removed, leaving us with 4,079 observations. In order to produce
reliable LOO estimates, a further 26 points (0.6%) were removed.

Analysis

We fit a multilevel asymptotic regression model in which all three
parameters are allowed to vary across experimental conditions
(Equation 5):

a∼ x + ðxjZÞ
b∼ x + ðxjZÞ
r∼ x + ðxjZÞ,

(5)

where x ∈ fmatch − you, nomatch − you, nomatch − stranger,
match − strangerg, and Z is participant ID.

Results

An overview of the RTs is given in Figure 5 while the asymptotic
regressionmodel fit to the SRE data is shown in Figure 6. LOOmodel
comparison (see Table 1) suggests that the standard asymptotic
model outperforms both linear regression and a stationary normal
distribution (7.1%). If we additionally include the varying-variance
asymptotic regression model, we see that this is an even better fit of
the data.
There is a clear SRE in the asymptotes: The estimated asymptote

for the match–you condition is clearly lower than the other
conditions. We can confirm this result by calculating the posterior
probabilities of a difference (see Table 2). The results are more
ambiguous as to whether this effect exists in the b and r parameters.
This suggests that the SRE only has an effect after participants have
spent some time with the task.
We can also see that the variance in log RTs decreases during the

experiment. It is worth pointing out that this decrease is above and
beyond what we would naturally see when modeling RTs with a
lognormal distribution (i.e., a longer μ leads to higher variance when
we look at the unlogged data). The empirical data have a standard
deviation of 0.45, and the highest density posterior interval estimate

for the asymptotic standard deviation is lower, with a range of
[0.26, 0.34].

Estimating How Many Trials Are Needed

The fact that the effects emerge only in the asymptotes leads
naturally to the question of how many trials we require to accurately
estimate the effect. We addressed this by simulating what the model
fits would have been if we had collected 25, 50, or 75 trials in total. An
important note here is that we are not randomly sampling from the
trials, but only fitting the firstN trials of the experiment to see how our
estimates change with more or less repeated trials in the series.
The results are shown in Figure 7, in terms of the distribution of the
differences in asymptote between the self and other conditions. We
can see the asymptote estimate does not change or become more
precise after a hypothetical experiment that contained just 75 trials.
This tells us how short the experiment could be to still produce the
same results.

Discussion

Two new points are raised by these results. First, the predicted
effect of the self-label was relatively weak in the overall reaction
times, but stronger in the asymptotes. This implies that the effect
emerges after participants learned the task and response mappings
and settled into a strategy, demonstrating the potential for using
asymptotic regression as a principled way to account for variance
in data. These results may also constrain the possible theoretical
explanations for the effect since it appears to be a stable behavioral
trend that takes some time to emerge but persists over time. Second,
the dynamics of the variance can also be modeled using asymptotic
regression. This points to a useful application for planning experi-
ments and estimating power. Given an established effect for which
data already exist, and knowing that the effect is observed in the
asymptotes, it is possible to estimate how power changes with the
number of trials to decide how many trials are sufficient to achieve a
particular threshold for power.

Figure 5
Density Plots Showing the Distribution of Response Times in the
Self-Reference Effect Study
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Example 3: Visual Search

Our final example models new data from a visual search study in
which participants were tasked with deciding whether a target was
present or not.6 The aim of this experiment was to better
understand a tendency originally observed in Nowakowska et al.
(2017) to search for easy-to-find targets for longer than was
required. Our working hypothesis was that this tendency to
oversearch would diminish with experience and that this would
be particularly true when that experience required participants to

search under time pressure. This is a hypothesis that asymptotic
regression is particularly well-suited to evaluate. Our initial
analysis of these data led to our interest in modeling how RTs
change over a block of trials and gave rise to the ideas that
motivated this article.

The duration of the search display was either unlimited (“long”)
or limited to 200 ms (“short”). The question our analysis addresses
is: How does RT on easy trials with long durations change as a
function of experience? The three key experience conditions are
either none (i.e., performance in the first block of trials), experience
with long-duration trials (the second block, after completing a full
block of “long” trials), or experience with short-duration trials
(the second block, after experiencing a full block of short trials).
For this example, we demonstrate how we can easily generalize
the asymptotic regression model to use nonnormal probability
distributions. In this case, rather than fitting a normal distribution
to log reaction time, we fit a lognormal distribution to the reaction
times directly.

Figure 6
Model Fits for the SRE Experiment
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Table 1
LOO Model Weights for the Self-Reference Effect Data for Three-
and Four-Way Model Comparisons

Model Three models Four models

Stationary μ 0.071 0.087
Linear μ 0.042 0.022
Asymptotic μ 0.887 0.285
Asymptotic μ and σ 0.606

Note. LOO = leave-one-out.

6 These data were presented at the Scottish Vision Group meeting in April
2023.
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Method

Participants

Fifty people (25 female, 25 male; Mage = 26, SD = 9.3)
completed the experiment. Demographic details were indicated
by participants selecting from options “M/F/O” and writing in age
on an anonymized form. Full details of the data set and exclusions
can be found on https://osf.io/64r7m/. The protocol was reviewed
and approved by the Aberdeen Psychology Ethics Committee.
None of the participants had taken part in related studies run by
our lab.

Stimuli and Apparatus

The stimuli consisted of 22 × 16 arrays of black line segments
on a gray background. The target (if present) was the unique item
orientated 45° to the right. The remaining line segments had a
mean orientation of 45° to the left and a variance of either 30°
(easy trials) or 120° (hard trials). For stimulus examples, see
Nowakowska et al. (2017). The displays were viewed from a chin
rest stationed 50 cm from a 19-in cathode-ray tube ViewSonic
Graphics Series G90fB monitor with a 1,024 × 768 resolution and
100 Hz refresh rate. The experiment was programmed using the
Psychtoolbox in MATLAB 2014b. Participants were seated alone
in a dimly-lit room, and their eye movements were tracked using an
EyeLink 1000 desktop-mounted eye tracker (only the keypress
RTs are analyzed here).

Procedure

Participants pressed the space bar while fixating a central cross
to initiate the eye tracker’s drift check and start each trial. The
search array for that trial then appeared. The participant was
instructed to respond as quickly and accurately as possible by
pressing the right arrow key if the target was present or the left
arrow key if it was absent. The display remained on until a
response. A red screen followed incorrect responses. There were 96
trials in each block, with equal numbers of easy and hard trials and
target-present and target-absent trials, randomly intermixed. As the
hard trials are essentially filler trials, only data from the easy trials
are analyzed here.

There were two (blocked) search durations. In long blocks, the
search display was presented until the participant responded or the
trial timed out (maximum of 60 s). In short blocks, the search display
was presented for 200 ms and then removed, leaving a gray screen
until the participant responded or 60 s elapsed. Each participant
completed two blocks of 96 trials, in one of three block orders: short
then long (N = 18), long then short (N = 18), long then long (N =
14). As noted above, we are interested in modeling how search
times change over time. In particular, previous research shows
that search strategies are not directly affected by time pressure, but
they do show gradual improvements over time (Nowakowska et al.,
2021). Our hypothesis was that experience with a block of 200-ms
duration trials might improve learning on subsequent long-duration
trials relative to equivalent experience with trials with unlimited time.
We therefore were particularly interested in comparing the long-
duration trials when presented as Block 2, following a block of short-
duration trials versus a block of long-duration trials.

Preprocessing

Five participants were removed based on their accuracy and
median RT: One participant who failed to achieve at least 75% in the
long display duration—target-absent condition—was removed. We
removed a further two participants who had median RTs of over 10 s
(the next slowest person had a median RT of less than 5 s), and one
person who had a median RT of 3 s for target-present trials (all other
participants had a median RT of less than 1.25 s in this condition).
This resulted in a total of 43 participants (short then longN= 16, long
then short N = 15, long then long N = 12). After these exclusions,
accuracy on the easy/long trials was close to 100% so we focus on
reaction time in the analysis (see the additional online materials at
https://osf.io/64r7m/ for a full description of the data and exclusions).

We also excluded 167 trials (4.1%) with exceedingly long or short
RTs (details given in the additional online materials at https://osf.io/
64r7m/). Finally, to get reliable LOO estimates, a further 6 points
(0.24%) were removed.

Analysis

We fit a multilevel asymptotic regression model in which all three
parameters are allowed to vary across experimental conditions
(Equation 6):

a∼ xb × xtarg + ðxtargjZÞ
b∼ xb × xtarg + ðxtargjZÞ
r∼ xb × xtarg + ðxtargjZÞ,

(6)

Table 2
The Posterior Probability of the Match–You Condition Being
Smaller Than Each of the Other Conditions for a, b, and r

Parameter Match–stranger No match–you No match–stranger

a >0.99 >0.99 >0.99
b 0.97 0.82 0.80
r 0.87 0.67 0.63

Figure 7
Estimates for the Asymptotic SRE Effect, Based on Fitting to the
First 25, 50, or 75 Trials, or the Full Data Set (176 Trials)
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where xb ∈ flong first, long after long , long after shortg; xtarg
represents whether the target is present or absent; and Z is
participant ID.

Results

As with previous examples, the LOO model weights strongly
favor the lognormal asymptotic regression model (84.6%) over linear
(9.1%) and stationary (6.3%) models. From the posterior predictions,
for target-present trials, the search task is indeed easy, with the
average participant taking around 1 s to respond, and there is little
evidence of any change in performance over the block. The target-
absent trials, in contrast, change substantially over time. For visual
clarity, we have therefore focused on target-absent RTs in Figure 8.
From this figure, we can see that (a) target-absent RT asymptotes are
similar across conditions, but somewhat faster in the second block
after experiencing short durations in the first block. (b) The initial
value is higher for the first block compared to the second, reflecting
the effects of practice with the task. There is also a notable “reset”
effect in the initial values at the start of Block 2. This is clearest in the
posterior predictions on the bottom half of Figure 8: The shift from
Trial 96 to 97 represents the end of one block and the start of the next,
and there is an uptick followed by a return toward asymptote. (c)
There is an intriguing difference in the rate at which performance
improves over trials as a function of experience. In particular, practice
with long-duration trials in the first block is associated with a faster
drop toward asymptote in the second block compared to when there is
a change from short to long durations.
A particularly important metric of visual search performance

is the ratio of target-absent to target-present RTs. It has long been
noted in the literature (e.g., Treisman & Gelade, 1980) that we can
expect ratios to be around 2:1, if participants carry out an exhaustive
item-by-item search. This is because for target-absent trials, each

item will be inspected once, and for target-present trials, the target
will be found on average after inspecting half of the items. But it has
also been observed that these ratios are nearly always larger than this
in empirical data (Wolfe, 1998). The bottom right panel of Figure 8
provides a tentative explanation by illustrating how the ratio of
target-absent to target-present reaction time changes over the course
of the block of trials, with 2:1 denoted as the horizontal dashed line.
The ratio approaches 2:1 in the asymptotes, but because of the
gradual learning effects in the target-absent trials, early in the block
the ratio is much higher than this. If instead we had averaged the
early and later trials, as is done in the typical approach to calculating
this ratio, we would have concluded overall that the ratio exceeds
2:1. Moreover, the amount by which our estimates would exceed 2:1
would depend on how many trials we decided to run, how these
trials were blocked, and the order in which blocks were presented.
This reinforces, in real data, the problem raised in the simulations
presented in the introduction: In the presence of practice effects,
estimates of performance that disregard the trial sequence are
problematic for comparing across conditions and studies that might
differ in seemingly small methodological details like how many
practice trials were included. In contrast, the asymptotes provide
estimates that are stable and more directly comparable from one
experiment or condition to another.

Discussion

In this example, we applied asymptotic regression to uncover the
effects of experience on visual search times. Using this method, we
could more precisely describe how target-present and target-absent
RTs, and the ratio between them, changed from the start of each block
to the end. The separate measurement of initial value, rate of change,
and asymptote allowed us to observe the specific effects of experience
with different conditions on performance, with implications for

Figure 8
Asymptotic Regression Fit for the Search Duration Data
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understanding the source of search inefficiencies. Had we instead
applied standard analyses to these data, we would not have been able
to distinguish or estimate the distinct effect of experience on the rate
of performance changes over time.
This example also underscores the cautionary point we make in

the introduction, that effects that change over time cannot be
expressed as a single number. Without taking the trial sequence into
account, we would simply conclude that responses are slower on
target-absent trials than a 2:1 ratio with target-present trials would
predict. After considering RTs in an appropriate temporal context,
however, we can see that this conclusion does not describe the data
very precisely or completely. The way the ratio between target-
present and target-absent trials changes over trials is particularly
striking because, as a ratio, this measure removes the overall prac-
tice effect on RT and presents the relative change between two
conditions. An important implication of these results is that if we had
summarized our data using the typical method of averaging all trials
together, the amount by which the 2:1 ratio is exceeded would have
depended critically on how many trials we had included in the
original experiment, and on how many practice trials we ran. Based
on fewer trials and less practice, the ratio could have been 3:1 or 4:1.
Based on more trials and practice, it would look like 2:1, or possibly
even lower. Neither conclusion would have been correct, given that
they both ignore the substantial effect of the repeated sequence of
trials.

Limitations

In this final section, we outline four potential limitations of using
asymptotic regression, along with proposed solutions. While these
limitations are all discussed in the context of asymptotic regression,
it is worth bearing in mind that they are comparable to the limitations
associated with applying any of the more standard statistical models
inappropriately.

No Change Over Time

Sometimes there is no trend in the data. This can happen frequently
with real-world data: Perhaps the task is very easy or hard, and
participants either start at ceiling performance or fail to improve from
some floor. This can also occur if participants are already at their
asymptotic performance at the onset of data collection. For example,
it is common practice to include a number of practice trials when
collecting data from participants (human and other animals). In these
situations, if practice data are discarded, the learning has already
occurred before we start with Trial 1, and the asymptote may already
have been reached.
Such situations cause problems for our modeling procedures,

similar to issues around collinearity when dealing with linear models.
Ideally, we should conclude that a = b, that is, the initial value is
already at asymptote. However, this leads Equation 2 to simplify:

μ = a − ða − bÞð1 − ρÞt=ts = a: (7)

This leaves ρ unconstrained, which can cause convergence
problems for model fitting procedures. The problem is actually
somewhat worse than this, as we have no guarantee that we will
conclude that a = b from the data. For example, as ρ → 1 (i.e., as
estimates of ρ approach 1), ð1 − ρÞt=ts → 0. This leads Equation 7

to reduce to μ = a, leaving us with b unspecified. Using similar
logic, as ρ → 0, ð1 − ρÞt=ts → 1 ⇒ μ = b leaving a unspecified.7 In
summary, when the data are constant, we estimate either a = b
with ρ unspecified, a, ρ ≈ 1 with b unspecified, or b, ρ ≈ 0 with a
unspecified.

One benefit of using a Bayesian framework for statistical inference
is that we can elegantly tackle this problem by selecting an appropriate
prior for r = logit(ρ) that places the bulk of prior probability away
from the problematic floor and ceiling values. An example of this is
given in Figure 9 in which we have simulated data with a= b= 1. We
fit two models to the data, one using a prior of r ∼ N(0, 1) while the
other uses r ∼ N(0, 5). The N(0, 1) gives (after applying the logit
transform) a 95% interval of [0.125, 0.875]. This contrasts with the
N(0, 5) prior which leads to a U-shaped distribution with most of the
weight bunched up around 0 and 1. The 97% highest density posterior
intervals for the posterior distributions are given in Table 3, and we
can clearly see that using a wider prior for ρ leads to increased
uncertainty in the estimates for a and b and a bimodal posterior
estimate for ρ. A similar solution could be applied under a frequentist
framework, by setting boundaries on possible values of ρ.

Linear Trend

While a linear trend is unlikely over a large enough collection of
trials (presumably there is some limiting factor on how high or low
response variables can be, whether due to physical or biological
constraints), it is quite possible that a trend appears to be linear in
the observed/collected data for low numbers of trials. An example
of an asymptotic fit to linear data is given in Figure 10. While we
end up with a reasonable fit over the range of observed data, the
model diverges from the linear groundtruth behavior as t increases.
Furthermore, we can see from Figure 10 that there are strong
correlations between the posterior samples of some of our model
parameters. Such correlations are a classic indication that care
should be taken with the parameter estimates as there are multiple
ways in which we can adjust a and r to give similar predictions.

If you find yourself in such a situation, then we suggest either
collecting data over a longer period of time or using an informative
prior for a (or r). Alternatively, you could simply use linear regression
if you believe that the process you are studying is truly linear.

Nonmonotonic Trend

The previous two examples were cases in which we were fitting
our three-parameter model to data that were generated by either one
(constant) or two (linear) parameter models. While this can lead to
problems around overfitting and correlated parameters, both these
problems can largely be addressed by selecting suitable priors. An
alternative set of problems can arise from underfitting, where we
might struggle to fit our monotonic asymptotic regression model to
data that have a more complex structure. For example, a participant’s
performance may initially improve as they familiarize themselves
with the task but then decline due to fatigue or boredom. Another
possibility is that if we split our trials up into a number of blocks, we

7 In the first case, the rate is so high that we reach the asymptote by the time
we get to the first trial. In the second, the rate is so low that we do not
measurably move away from the initial value by the time we get to the
final trial.
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may see steady improvements within each block, but with a partial
“reset” to a new initial starting point at the start of each new block
(as observed in Example 3, although we fit blocks separately in this
example).
These more complex trends present problems for our method (as

well as for commonly used methods such as analysis of variance or
multilevel linear models). In such cases, more complex time series
models could allow for nonmonotonic behavior, or one could use an
atheoretical approach such as fitting splines.

Variation in Time Range and Frequency

In the three examples we presented here, the time range and
frequency were the same for every participant. The first example
sampled muscle activation at a fixed rate over a time interval that was
the same on every trial. In the second and third examples, the time
unit was trial, and every participant started at Trial 1. But in many
other instances, the sampling range and rate over time can vary.
For example, over the span of a single trial, the influence of different
stimulus characteristics waxes and wanes (van Zoest et al., 2010),
and so it can be critically important to consider the time at which
responses were executed when trying to understand or compare
conditions or response modalities that have different latencies (e.g.,
Hunt et al., 2007). To show how behavioral biases and errors change
with RT, the typical approach is to allow for spontaneous variation in
RTs in a group of participants performing a series of trials, and then to
treat RT as an independent variable. In the additional online materials
at https://osf.io/64r7m/, we provide an example of this approach from
an eye movement control experiment, in which we model changes in

the bias to fixate a salient distractor (known as oculomotor capture;
Theeuwes et al., 1998) over time. The limitation here comes from the
issue that each participant produces a different time series, meaning
there is a unique “Time 0,” time scale, and distribution of samples
over that timescale for each individual. We can apply asymptotic
regression to individual binary data and estimate the probability of
fixating the target as a function of when the saccade was initiated for
each person separately, and this can provide a useful set of parameters
at the level of the participant, which could be analyzed just as any
other participant-level summary statistics. But applying a multilevel
version of this analysis is not straightforward. There are possible
statistical solutions to this problem (such as rescaling time or
implementing some strong priors) but they come with tenuous
assumptions. To be confident in the results, we would require a more
strictly time-controlled experiment and/or a much larger data set. To
be fair, however, this is a potential limitation of any multilevel model
where there is a lack of control over how participant data are
distributed across the conditions.

General Discussion

Changes in human behavior over time can often be described as a
monotonic increase or decrease toward an asymptote. We presented
three illustrative examples that demonstrate how asymptotic reg-
ression can be applied to estimate the start point, rate of change, and
asymptote of behavior that takes this form. Our goal is to encourage
broader use of this statistical approach, as it provides a useful and
versatile convention for describing the temporal profile of many
behaviors.

In the first example, we modeled changes over a timescale of a
few seconds. Modeling the changes in EMG over the course of a
single trial revealed the subtle emergence of the effects of viewing
changes in facial expressions in the asymptote estimates that
provided a more precise baseline to which to compare the effects
of pharmaceutical interventions. In the second and third examples,
participants completed blocks of repeated trials, as is common
practice in behavioral experiments. Asymptotic regression allowed
us to estimate how the effects of interest changed from the start of

Figure 9
Example Model Fit to Simulated Data With No Trend
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Table 3
97% Highest-Density Posterior Intervals for Model Fits to Data
With No Trend

σ a b r

1 [0.9, 1.08] [0.79, 1.33] [−2.43, 2.68]
5 [−1.46, 2.50] [0.139, 1.11] [−13, 11.8]
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the block of trials to the end. In one case (the SRE), the differences
in RTs between self-relevant and control objects strengthened over
repeated trials. As a consequence, the small, noisy effect in the
overall averages was more clearly evident in the asymptotes,
demonstrating the potential of asymptotic regression as an
approach to improving signal-to-noise ratios in repeated-measures
data, even when time effects are not of direct theoretical interest.
RT differences that reflect a stable behavioral effect can be masked
by the larger variance observed early in the experiment. We use this
observation to show how the estimates of the strength of the self-
relevance effects would have changed as the number of trials
increased, and propose using asymptotic regression for planning
experiments that are maximally sensitive and efficient.
In the third example, we use asymptotic regression to describe

how visual search performance changes with experience. Separately
estimating the initial value, rate of change, and asymptote parameters
allows for a more accurate description of behavioral dynamics
than conventional approaches. An important observation to highlight
from this example was the substantial change in estimates of the ratio
of RTs on target-absent versus target-present (TA:TP) trials over the
sequence of trials. This is important because it demonstrates that
estimates of the size of the TA:TP ratio based on medians or means
would depend on how many trials are run: The ratio would get
smaller as the number of trials increased. Conclusions about the
mechanisms of visual search are often grounded in whether the TA:
TP ratio is larger or smaller than 2:1, and how it deviates from this
ratio across different conditions (e.g., Wolfe, 1998). But which
estimate is the “true” ratio of target-present to target-absent reac-
tion time in these example data? Is it the average ratio, the ratio at
asymptote, or the ratio at the start? To consider any of these in
isolation will misrepresent the data, and so we advocate for the full
function being the estimate, as opposed to any one parameter in
isolation.
Asymptotic regression applied to a series of trials can perform a

range of functions that are both theoretical and practical. On the
theory side, the timecourse of effects can help us understand
their fundamental nature. Do they reside largely in the way people
respond to a new or unfamiliar context, or do they reside in how
people respond after they have adapted to that context? When

generalizing an effect from one context to another, for example,
from a laboratory context to a more ecologically relevant context,
we should expect a phenomenon that only appears or stabilizes after
many repeated trials (as was the case for the SRE in our second
example) to have less potent effects in everyday situations than one
which is evident at Time 0. At the same time, effects that abide in the
asymptotes suggest a stable behavioral characteristic, and as such,
the extent to which different conditions can change asymptotic
effect sizes may be more useful and convincing evidence for theory
development relative to changes in overall means or in initial values.

On the more practical side, asymptotic regression provides a
principled and reproducible way to boost signal and reduce noise in
data, particularly for effects that depend on learning a complex set of
responses, acquiring a set of expectations, or adjusting task sets or
attentional control settings, which may take some time to instantiate.
This may be especially useful for comparing groups of participants
who may be more or less experienced in the testing conditions
(e.g., comparing across age cohorts or neurodiverse samples), as
these differences will reside in the start points. We also demon-
strated that asymptotic regression can be useful for planning
experiments, by guiding our choices about how many trials we need
to run before our effects can be expected to reach asymptote. Just
as we can decide how many participants to sample using power
analysis on preexisting data, we can apply asymptotic regression to
avoid wasting precious participant and equipment time by running
more (or less) trials than we need to get a stable estimate of per-
formance levels that approach an asymptote.

A related persistent challenge in behavioral research is the problem
of whether and how to exclude outliers in data. The motivation for
removing extreme values is to improve the signal-to-noise ratio in
detecting true differences between conditions or groups, but two
recent articles in this journal (Karch, 2023; Miller, 2023) have made
compelling cases against outlier exclusions. In the case of between-
group comparisons, Karch (2023) argued that removing outliers
leads to inflated effects sizes, an increased risk of Type I errors, and
uninterpretable confidence intervals. For reaction time data specifi-
cally, Miller (2023) compared 58 outlier exclusion procedures and
concluded they do not, on balance, improve power and run the risk of
biasing results. In both cases, the recommendation is only to remove

Figure 10
Example Model Fit to Simulated Data With a Linear Trend
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data we can be confident are “erroneous.” We note that asymptotic
regression does not offer a solution to the problem of outliers. But it
does improve signal-to-noise ratios, by attributing a portion of what
would otherwise be considered “noise” to the effects of time, leading
to more precise estimates of effect sizes. We generally agree that only
the most extreme cases should be removed from data, and this is the
approach we adopted in the analyses reported here.
In the examples we present here, we model the effect of time on

continuous measures, with a single measure from each timepoint of
the series (e.g., measuring the effect of repeated trials across a block,
where there is one reaction time per trial). A related challenge here
comes from applying asymptotic regression to parameters derived
from distributions of data; for example, probability in the example in
the additional online materials at https://osf.io/64r7m/, or d-prime
(Cochrane & Green, 2021) and drift-diffusion model outputs
(Cochrane, Sims, et al., 2023). The difficulty comes from fitting
complex models over multiple trials: Each person only has one first,
second, third (and so on) trial, and these have to be shared out
between all the conditions in the experiment. It is theoretically
possible with a good set of strong, informed priors and an adequate
sample size, but these are potential limiting factors on the
hierarchical application of asymptotic regression to parameters
whose estimation relies on the full set of trials. For examples of
solutions to these challenges, the articles referenced above provide
an excellent starting point.
Another limiting factor is that asymptotic regression does not, of

course, fit all behavioral data. We illustrated the problems that can
arise from trying to fit asymptotic regression to data that are flat or
linear over time. In both of these cases, using means/medians or linear
regression, respectively, may be more appropriate, but it is also
instructive to see what happens when asymptotic regression is applied
instead. This may sometimes be necessary, as illustrated in our third
example set of data, in which we had one condition (target-absent) in
which there was a clear downward trend as reaction times got faster
over time and approached an asymptote, and another (target-present)
which was already near the floor at the start of the experiment, and so
remained relatively flat over time. The model estimated a start point
and asymptote of both target-present and target-absent conditions, but
was highly uncertain about the rate for the target-present condition in
particular. The behavior of the model in this case was reasonable, and
we were still able to compare the two conditions, but as we cautioned
in the Limitations section, problems could arise in the other two
parameters if priors around the rate are too wide. More generally, to
accurately estimate the full timecourse, it is crucial to have measured
it in the first place. Cutting short the data collection interval before
performance levels off may result in a strictly linear trend, and the
asymptote can no longer be reliably estimated. Similarly, failing
to record or include practice data will result in unrealistically flat
performance over time. This will make estimates of the start point and
rate meaningless. In both cases, crucial information about the data
will be missing from the analysis.
There are many other ways in which time can have systematic

effects on data that require different approaches from asymptotic
regression. For example, performance can build up or break down
as conditions repeat or switch, such as in repetition priming and
repetition suppression (e.g., Bertelson, 1961; Wiggs & Martin,
1998), and these are best approached by coding trials according to
what preceded them. Oscillations at a variety of periodicities can be
measurable in an experimental context, such as α waves (8–12 Hz),

or basic-rest activity cycles (around 90 min). Here, spline-fitting is
the more appropriate tool. Spline-fitting could be considered a more
general-purpose tool than asymptotic regression because it can
describe performance changes that fluctuate rather than following a
monotone. However, the parameters from fitting splines are not as
easily interpreted, nor as comparable across different experiments,
so we think routinely using asymptotic regression as a general tool
for describing a wide range of different behavioral data is a more
promising approach.

Many questions related to the process of designing an experiment
to measure behavioral effects do not have clear principles to guide
the answers. How many practice trials is enough? How many
experimental trials should be run? Asymptotic regression can provide
much-needed consensus for making these decisions, as demonstrated
in these examples. There need be no distinction between practice and
experimental trials if the full set of data contributes to the analysis, and
as demonstrated in Example 2, previous data can tell us how many
trials we can expect will be needed to achieve a stable estimate of
a given effect. Being able to assign some of the variability in data to
a temporal source also means less unexplained variance in the
denominator of our effect size calculations. Just as we routinely
account for variability due to participants in our statistical models, we
could also be routinely accounting for variability due to time and
factoring it out of our behavioral effects when it is not of direct
interest. Asymptotic regression is just one of many possible models
for describing time effects, and a more general point is that any
approach to accounting for the temporal characteristics of data is better
than none. Our examples demonstrate that ignoring timecourse effects
in data, where they exist, can lead to an impoverished, and sometimes
even inaccurate, view of behavior. Our goal in the current article is
to raise awareness of asymptotic regression as a relatively simple and
versatile tool for describing a common profile of timecourse effects: a
monotonic change toward an asymptote. This tool has a long history
but has not become part of the common statistical arsenal used in
analyzing behavioral data. Having a shared approach and language for
estimating and describing this common temporal profile would be an
important first step toward a more complete and accurate view of
behavior across all areas of psychology.

Constraints on Generality

Asymptotic regression can be applied to any data that take the
form of a monotonic increase or decrease toward a stable asymptote.
As noted in the Limitations section, there are many other forms the
data can take, for which other approaches are more appropriate.
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