
Vol.:(0123456789)

Journal of Intelligent & Robotic Systems (2025) 111:32
https://doi.org/10.1007/s10846-025-02226-3

REGULAR PAPER

Development of a Microcontroller‑Based Recurrent Neural Network
Predictive System for Lower Limb Exoskeletons

T. Slucock1  · G. Howells1,2 · S. Hoque1 · K. Sirlantzis3

Received: 29 October 2023 / Accepted: 3 January 2025
© The Author(s) 2025

Abstract
Practical deployments of exoskeletons can often be limited by cost, limiting access to their usage by those that would benefit
from them. Minimising cost whilst not harming effectiveness is therefore desirable for exoskeleton development. For Control
Systems governing assistive and rehabilitative exoskeletons that react to the wearer’s movements, there will inevitably be some
delay between when their wearer intends to move and when the exoskeleton can assist with this movement. This can lead to situ-
ations where a user may be limited by their own assistive exoskeleton, reducing their ability to move freely. A potential solution
to this is to provide a proactive method of control, where the most likely path of the wearer’s movement is predicted ahead of the
wearer making the motion themselves. This can be used to give the user assistance immediately as they are walking, as well as
potentially pre-emptively adjust their gait if they suffer from predictable gait deficiencies. The purpose of this paper is to inves-
tigate the Data Collection, Implementation, and Effectiveness of an LSTM Recurrent Neural Network dynamically predicting
future movement based off of prior movement. These methods were developed to use off the shelf, Low-Cost Microcontrollers
as to minimise their Financial, Weight, and Power Impact on an overall Low-Cost exoskeleton design, as well as to evaluate
how effective such an implementation would be when compared to running such a Neural Network on a more powerful proces-
sor. The created model was capable of achieving similar accuracies to far more powerful models on High-Powered Laptops.

Keywords  Assistive devices · Lower limb exoskeleton · Microcontrollers · Neural networks · Wearable robots

1  Introduction

The concept of an actuated leg attachment designed to aid
in walking can be traced back to as early as 1890 [1], the
first working examples are seen in 1969 with Mihajlo Pupin
Institute’s “Kinematic Walker” [2] and in 1971 with General
Electric’s “Hardiman I” [3]. These two active exoskeletons,

actuated by powered electric motors as opposed to passive
force, required governing control systems to determine how,
how much, and when their component actuators would
move, governed by input sensor data. Neural Networks are
one such control system implementation.

As of 2022, the average UK medical spending per capita
was estimated at $4,192 per person [4]. By contrast, exoskel-
etons such as EksoNR could cost as much as £126,000 [5],
a value infeasible for many to afford without external fund-
ing even amongst wealthier countries. Within those nations
of lower average medical spending and individual wealth
acquiring such equipment becomes effectively impossible
for the average person without external funding. An alter-
native method seen in rehabilitation centres therefore is to
schedule Rehabilitation Sessions, where a user suffering
from gait degradation may have temporary access to an
advanced rehabilitation exoskeletons where they may aid
in improving their gait patterns. These sessions have shown
to be effective [6], however suffer from limitations such as
patient proximity, and delay between sessions.

The supervisors contributed equally to the paper.

 *	 T. Slucock
	 tomslucock@gmail.com

1	 School of Engineering, University of Kent, Giles Lane,
Canterbury CT2 7NT, England

2	 School of Computer Science and Electronic Engineering,
University of Essex, Wivenhoe Park, Colchester CO4 3SQ,
England

3	 School of Engineering, Technology, and Design,
Canterbury Christ Church University, N Holmes Rd,
Canterbury CT1 1QU, England

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-025-02226-3&domain=pdf
http://orcid.org/0000-0002-0960-7795

	 Journal of Intelligent & Robotic Systems (2025) 111:32 32   Page 2 of 14

This paper focuses primarily on exoskeletons of a rehabilita-
tive or assistive focus, designed to be used by wearers suffering
pathologic gait issues such as Hypo/Hypertonia (muscle limp-
ness/stiffness) and Hypo/Hyperkinesia (poor/excessive muscle
movements) but are none the less capable of some independ-
ent movement such as sufferers of Cerebral Palsy or Stokes.
This paper focuses on making an AI Predictive System, sees
how small this system can be made, and whether it maintains
effectiveness. In further detail: a) the paper develops an AI
Prediction System that may aid in a control system’s ability to
determine the likely future motion of a wearer, by pre-emptively
assisting this motion, and assesses its effectiveness based on the
percentage error it predicts from reality, b) it seeks to discover
how small and inexpensive of a profile such an AI predictive
system can be fit onto whilst maintaining effectiveness, such as
a commercially available microcontroller. Due to the high cost
of many currently existent methods for exoskeletons it would be
beneficial to focus on reducing this cost such as through simpler
components and implementations, for example, as detailed in
[7] there is a need for Lower Cost Exoskeletons able to more
readily aid those with Gait Deficiencies. Inexpensive exoskel-
etons may allow for their wider deployment by expanding the
range of individuals capable of affording them, or centres capa-
ble of accessing them.

The proposed implementation takes the form of a Recur-
rent Neural Network (RNN), specifically a Long-Short Term
Memory (LSTM) prediction system designed to predict future
knee angle movement of the wearer using prior movement
such that a theoretical assistive exoskeleton could then aid in
these movements or attempt to correct potential deficiencies
by moving to these predicted knee angles as the wearer does,
thereby aiding in their movement. With LSTM benefitting
from using memory of prior events to inform future predic-
tions, which is appropriate for predicting repetitive walking
as prior strides can inform later ones. [8] also predicts knee
angle, although in simulation. LSTMs also possess superior
long-term memory, reducing the rate at which learned infor-
mation attenuates in its ability to inform decision making [9].
LSTM’s have also been proven to be capable of effectively
running on the Cortex-M Microprocessors used by many inex-
pensive microcontrollers [10]. Being directly supported by
TensorFlow, a well-established Machine Learning API, with
TensorFlow Lite being used in this implementation.

2 � State of the Art

As Described by Caldas R et al. in [11] up until 2016
some of the most common Machine learning Implemen-
tations within exoskeletons were either Artificial Neural
Networks (ANN’s) or Hidden Markov Models (HMM’s).
Common use cases were determining Gait Events such as
heel strikes and toe off as well as swing/stance positions,

Spatiotemporal Parameters such as Stride and Step/Step/
Stance Times as well as Gait Velocity and Cadence, and
Joint Angles which are most relevant to this paper [12].
Earlier examples of Joint Angle prediction and measure-
ment using machine learning can be seen in [13] which
made use of a General Regression Neural Network
(GRNN) to estimate the Hip, Knee, and Ankle Angles
based off of motion sensors at the hip, knee, and ankle
joints. Meanwhile Sun et al. [14] describes other examples
of Machine Learning up to 2020, such as Reinforcement
Learning [15], Support Vector Machines [16], etc. Exam-
ples of Recurrent Neural Networks meanwhile are limited,
as are using such models to predict joint angles. An earlier
example of such an implementation from 2019 by Mundt
et al. [17] simulated Accelerometer and Gyroscope data
from more reliable Optoelectronic markers, using this as
training data for a Feedforward Neural Network (FFNN)
and a Long Short-Term Memory Neural Network (LSTM).
Other examples have built on this, such as [18] [19].

Many LSTM Model examples run on high-power comput-
ers, laptops, or dedicated controllers, with regards to imple-
mentations on Microcontrollers [20] separately implemented
both a Convolutional Neural Network (CNN) and a Multi-
Layered Perceptron (MLP) onto an ESP32 Microcontroller,
with a Shank Mounted IMU and current phase to act as input
data to predict the angular velocity of the foot ~ 200 ms into
the future. Many Previously described LSTM Models such
as seen in [21] used multiple LSTM Hidden layers each of
hundreds of units, whilst allowing for improved accuracy it
also increases the size of the model and as Microcontrollers
are limited for space a reduced model size is a necessity.
In terms of papers that use Neural Networks to predict the
wearer’s knee angle, [22] used Shank and Thigh Inertial
Measurement Unit (IMU) Data provided to an ANN model
to predict walking speed and knee angle, whilst [23] used
IMU and Electromyography (EMG) data provided to an
RNN model run on an STM32F4 Microcontroller (costing
£16.40 [24]) to predict joint torque and moment, although
did not use LSTM/GRU due to technological limitations.
Finally, [25] used EMG and Knee angle data collected from
sensors via a ATMega328p Microcontroller and processed
on a laptop, similar to this paper’s laptop implementation.

For Sensor usage, papers such as [26] make use of an
LSTM provided data by Inertial Measurement Units (IMUs)
placed on the lower leg to predict lower-limb joints, which
alongside Potentiometers are commonly used, inexpensive
sensors in exoskeletons.

When viewing effectiveness of microcontroller-based
neural network predictions in terms of Average Percent-
age Difference from reality, [20] achieved an accuracy
of ~ 3.75% with a CNN predicting 20–200 ms into the future.
Meanwhile [23] achieved an accuracy of ~ 4% with an RNN
predicting 50 ms into the future. This paper’s LSTM network

Journal of Intelligent & Robotic Systems (2025) 111:32 	 Page 3 of 14  32

achieves similar accuracies with predictions made up to
1000 ms into the future.

3 � Initial Overview

TensorFlow 2.11 and Keras 2.10 were used as the baseline
for creating and training the Machine Learning Models using
Python 3.10.9. This would then be converted to embedded
C + + /Arduino code to run on the two microcontrollers that
were chosen for testing model effectiveness, The ESP32 and
a Teensy 4.1 which were both chosen due to being inexpen-
sive, possessing multiple cores for RTOS implementation,
being Arduino code compatible, and being supported for
TensorFlow Lite [27] Implementations. The AI recognition
system would use the Time-Variant changes in knee angle
and ankle motions as input data, to predict the wearer’s knee
angle in the future.

The Commonly Recognised Gait Events within most
healthy individuals will follow the pattern seen in Fig. 1,
Consisting of Right Heel Strike (1), Left Toe Off (2), Left
Heel Strike (3), Right Heel Strike (4), and finally looping
back to Right Heel Strike (5). The Knee Angle seen in Fig. 2
follows a consistent loop of Stance (1–3) and Swing (3–5)
phases. Note: 0 Degrees represents standing straight.

Figure 3 displays 5 examples of walking cycle data col-
lected at a 20 Hz sampling rate, as an average of sensor

data collected at 100 Hz. The total time of the gait cycle
was consistently 1.1–1.2 s, (~ 105 steps per minute) however
walking rates amongst healthy adults vary dependant on age,
health, and activity.

As defined in [28], movement, and walking in general can
be split up into categories ranging from Incidental or Spo-
radic occasional movements whilst performing other tasks,
to the Slow to Brisk walking speeds of intentional move-
ments. The example in Fig. 3 is a set of Brisk Movement
and the change in Knee Angle seen during it.

Recurrent Neural Networks are seen to be effective in pre-
dicting continuous, time variant data such as changes in knee
angle, as seen in other papers such as [29] and [25]. There-
fore being an effective choice for predicting these motions.

3.1 � Hardware Implementation

Data Collection took the form of a simple knee orthosis
constructed by the author, using a RS Pro P25 Potenti-
ometer (10% Tolerance) to measure Knee Angle attached
in line with the knee and an LSM9DS1 Inertial Measure-
ment Unit (0.244 mg/LSB – milli-G’s per Least Signifi-
cant Bit) attached to the outer side of the ankle to provide

Fig. 1   Gait events over one
cycle

Fig. 2   Example of Repeated Gait Pattern. 1 Sample = 50 ms. 20 Hz
Sampling Rate

Fig. 3   Knee Angle change over 5 Gait Cycles, continuous. Each
Cycle consisting of one Left and one Right Step. Left Knee, 20 Hz
sampling rate

	 Journal of Intelligent & Robotic Systems (2025) 111:32 32   Page 4 of 14

Accelerometer and Gyroscopic Data, the use of a single
Inertial Measurement unit just above the ankle is similar to
examples seen in [30] [31]. As the pattern of sensor move-
ment was more important than exact values, sensor preci-
sion was not prioritised in favour if furthering a low-cost
implementation.

This device was securely attached to the left leg via a
basic exoskeleton frame, data was collated by an Adafruit
HUZZAH32 ESP32 Feather [32], which was then sent via a
wired serial connection to a Laptop which would via a con-
currently running Python Program save all received infor-
mation to a.csv file at 5 min intervals or when instructed to
finish via button on the orthosis. This ESP32 would also run
the LSTM prediction system, with predictions sent along
with sensor values to be received and stored for later review.

The 8 Collected Data Points would therefore be the Aver-
age Accelerometer X, Y, and Z, Average Gyroscope X, Y,
and Z, the Potentiometer Value, and Average Rate of Change
of Potentiometer value each recorded to two decimal places.
All Average values were calculated over the average of the
last 5 samples (0.25 s), as to reduce the effects of random
noise and so External/Parametric Uncertainties. Data Col-
lection would occur at a rate of 100 Hz, or one sample per
10 ms, with 5 samples averaged to form a 20 Hz true Input
rate (one sample per 50 ms). While ~ 100–200 Hz is a sam-
pling rate seen in several exoskeleton control implementa-
tions such as in [30] [33], excessive data collection speeds
for this implementation would lead to bloated sample file
sizes, reduced time for predictions to be made which would
ideally update every sample, and necessitate larger input
data snapshots for the prediction system in order to display
change in movement.

This would in turn make these prediction systems larger
and slower to run on limited systems, the 100- > 20 Hz aver-
aged conversion therefore reduced sensor noise whilst keep-
ing sample rates acceptably low.

As the System would be predicting the wearer’s motion
into the future, as long as the prediction it made was further
into the future than the time it took to process the prediction
and for a controlled actuator to begin moving to that loca-
tion, the delay between user motion and exoskeleton motion
would not be of concern. As the exoskeleton would be effec-
tively reacting before the wearer made the movement. This
would only apply in cases where the wearer was in the pro-
cess of moving periodically, as sudden movement from a
still position would not be predictable from joint angle alone
until the recognition system had received enough inputs to
recognise a pattern to predict. As this process would require
actuator implementation, it is beyond the scope of this paper.

The exoskeleton would however experience some Inter-
nal Uncertainty in its predictions, as it was guided solely by
information regarding the wearer and had no knowledge of the
wearer’s environment. For example, the wearer kicking a wall
and stopping their foot suddenly would appear very similar.

3.2 � Data Collection

As the system would ideally be able to universally recognise
of gait movements, a diverse range of motion need to be
recorded for training purposes. These were decided based
on distinct “Movement States” that would make up everyday
movements, specifically: Walking, Crouching, Walking Up
Stairs, Sitting, Standing, Wandering, and Resting. Within
these, variations in speed and wearer would improve data
diversity, as a recognition system is naturally incapable of
“implying” information, if solely trained on walking data it
may predict the user to be walking even in situations where
they are standing still, as this is the only information the
system “knows”. This is seen in Fig. 4 where a Recurrent
Neural Network was trained exclusively on constant walking
data, then presented with a wearer in a static standing posi-
tion. Note that a Potentiometer value of 0 represents standing

Fig. 4   Prediction System
trained only on walking data
struggles to predict the wearer
standing still, as it has not been
trained to “know” what standing
still is. 20 Hz Sampling Rate

Journal of Intelligent & Robotic Systems (2025) 111:32 	 Page 5 of 14  32

straight. Movement data for these states was collected from
12 volunteering healthy adults with an age range between 24
and 58, with 8 Male Candidates and 4 Female Candidates.

Datasets of ~ 5–10 min each were collected, in addition
to further data being collected by the author by wearing the
exoskeleton during extended walks.

Due to external circumstances, it was not feasible to col-
lect data from individuals suffering from gait degradation.
Instead, healthy patients would provide a proof of concept
for the prediction system’s ability to predict movement into
the future.

4 � AI Prediction Systems

A Recurrent Neural Network (RNN) was chosen due to its
ability to consider prior inputs in its prediction of the future
as seen in [34] where a Recurrent Neural Network produced
lower errors than comparable CNN, FCN (Fully Connected
Network), and Naïve Implementations. It was made with
TensorFlow 2.11.

4.1 � Data Processing and Model Training

The Acquired model data for the Prediction system would
provide a “Snapshot” of data consisting of the last 40 sam-
ples across each sensor (Accelerometer X, Y, and Z, Gyro-
scope X, Y, and Z, Potentiometer, and Potentiometer rate of
change), representing the last 2 s of sensor data prior to the
current point.

This Feature Vector would be stored as a [40x8] Array,
Accelerometer, Gyroscope, and Potentiometer data would
each be normalised separately to between −1 and 1 based
off of known likely maximum and minimum values collected
during training, which would be equal to the largest and
smallest value of the training set for each sensor that was
within three standard deviations of the average as to prune
anomalous spikes that would otherwise bias the dataset.

This snapshot process was completed for all input sam-
ples, totalling 215,000 samples (~ 3 h) of sample data
which was later reduced to 58,000 samples to reduce bias as
explained in 4.4. This was then randomly shuffled and split
90/10 to Training and Testing data.

Training data would train the model for 15 Epochs, which
consisted of a [40x8] Input, and finished with a [30x1] out-
put Dense Layer. A key benefit of both collecting potentiom-
eter data and it being the value predicted by the Prediction
system was that for testing purposes predictions could be
directly compared with the “reality” of the actual sensor
values that occurred at those predicted times to see how
accurate the predictions were.

This process could be made to occur in real time to
allow for prediction improvement via linear regression.

The theoretical implementation achieved evaluated Mean
Average Error of 4%. Linear Regression (Fig. 5) showed a
strong association between predicted values and real values,
which in turn displayed the prediction system as capable
of recognising patterns within its input samples and accu-
rately outputting predictions similar to reality. Predictions
of future potentiometer values created from test data that
the model was not trained were recognisably similar to the
actual potentiometer values, although predictions tended to
exaggerate reality. This was later found to be due to having
too much sample data from a single source, drowning out
variation from other sources (4.4). After Linear Regression,
values tended to look more similar to reality (Fig. 6). There-
fore, Linear Regression could potentially reduce prediction
systematic errors.

While there was a small proportion of notable errone-
ous predictions, as each prediction is made independently of
the previous, and predictions would be re-calculated every
50 ms, it would require a cascade of errors to threaten the
user’s walking capabilities. In such a case, it would be the
duty of a lower-level control system layer to keep the posi-
tion and direction of the exoskeleton and user within a safe
range of each other.

Linear Regression was most effective when only trained
on the 100 samples prior to the predicted samples, as
opposed to training a regression model for the entire test
dataset. This may be due to the predictions tending to vary
in how much they over- and under-estimate reality over the
length of a gait cycle or full data set, and so a smaller, more
immediate subset for Linear Regression was better able
to counteract the errors of the prediction by being more

Fig. 5   Linear Regression comparing real potentiometer values to pre-
dictions made 10 samples (0.5 seconds) into the future. Lighter spots
represent a higher density of values. R2 = 0.857

	 Journal of Intelligent & Robotic Systems (2025) 111:32 32   Page 6 of 14

relevant to the present. The Laptop-based and Microcon-
troller-based implementations would be created using this
initial design. The Laptop-based version having access to
higher processing power made use of a larger, more power-
ful model, and therefore test the difference in effectiveness
between it and the smaller microcontroller.

4.2 � Laptop RNN Implementation

To act as a comparison to the Microcontroller a prediction
model was tested on a high-power laptop that received
sensor data from a connected exoskeleton and returned
prediction data via serial connection. This allowed for the
usage of a much larger LSTM network and would act as
a baseline for comparing a model designed to make full
use of a computer’s predictive capability versus a micro-
controller, the Network consisted of 4 Size 128 LSTM
Layers similar to [34], as well as a Dropout and output
[30x1] Dense Layer. The Laptop was placed in a backpack,
with a USB cable providing the serial connection between
the ESP located on the exoskeleton and the Laptop. The
ESP32 used basic Arduino-based Serial.print()/Serial.
read() Functions to send sensor data and receive predic-
tions to and from the Laptop, where a running Python
program would read and collect it, storing it in a Pandas
Dataframe. If the Laptop was set to only collect data rather
than predict it, it would then send a dummy reply back to
the ESP32 to confirm that data had been received and that
more data was to be sent.

If the program was set to predict data it would prior to
the beginning of sample-reading load a saved model that had
been previously trained, upon receiving at least the mini-
mum number of samples to form an [40x8] input (or 2 s of
samples). It would then make use of the.predict_on_batch()
TensorFlow Lite function to output a single prediction set of
20 values (50 ms to 1000 ms into the future) based on this
single batch of input data. Which would be saved within the
same Pandas Dataframe as the samples.

Linear Regression would be performed on all values
by comparing the previous predictions made to the actual
potentiometer-measured knee angle values that occurred at
those predicted times, then applying this calculated regres-
sion value to the present predicted data to counteract the dif-
ference. Testing the effectiveness of the Laptop-based imple-
mentation was done in the same way as data was originally
collected in 3.2 – Data Collection, by running the system
in real time whilst an exoskeleton wearer was walking a set
path and logging predictions.

4.2.1 � Effectiveness of Laptop Implementation

As was expected the Laptop Implementation had a similar
Mean Average Error and produced similar results to that of
the freshly trained model run on a PC and had an average
Processing time per prediction set of less than the 50 ms
cycle time. When comparing reality to predictions and
regression predictions, Mean Average Error between reality
and prediction varied between 3.63% to 8.1% for predictions
made 50 ms to 1000 ms into the future, or 3.68% to 9.71%
for regressed predictions. Both examples were averaged over

Fig. 6   Prediction (Orange) and Post-Regression Prediction (Red) vs Reality (Blue). Dividing line separates input data and output data

Journal of Intelligent & Robotic Systems (2025) 111:32 	 Page 7 of 14  32

5,000 samples, a short depiction of 120 samples is seen in
Fig. 7.

While this laptop implementation was reasonably accu-
rate in predicting future values, it was limited in requir-
ing a high-powered laptop in order to function at speed.
The device used, a ROG Zephyrus M16 GU603ZX cost-
ing ~ £4,000 [35] was more powerful than required, although
any device used would need to be capable of running Ten-
sorFlow in addition to requiring a wired connection and
backpack to carry the laptop and its power supply. In com-
parison, the ESP32 used in the first Microcontroller imple-
mentation costed only £15.50, over 250 × less expensive in
addition to smaller size and power usage. It was noted that in
practice, Linear Regression had a negligible effect on Mean
Average Error. This may be as the system was already quite
accurate, and so there were minimal systematic errors that
Linear Regression was most effective at reducing.

4.3 � Microcontroller RNN Implementation

The Process of implementing an LSTM was first applied
onto an ESP32 (Adafruit Huzzah32 ESP32 Feather Board)
which used the TensorFlow Lite for Microcontrollers library
[36], specifically “tflite-micro-esp-examples” [37] due
to ESP32 specific optimisations and ease of use. Prior to
September 2022, rolled LSTMs were not fully supported,
causing a “UNIDIRECTIONAL_SEQUENCE_LSTM”
compatibility error when attempted. Unrolled LSTMs were
considerably larger than rolled in terms of file size and were
effectively non-functional due to these size limitations. As
the limitations of rolled LSTMs has since been resolved,
the rough size of the tflite model was 245 kb in size, as
opposed to the 3.2 MB savedModel file used by the laptop.
It consisted of two LSTM layers of size 64 and 32, plus

one Dropout layer to reduce overfitting and finally a [20 × 1]
Dense layer to format the output, which were values chosen
towards the upper maximum of size limitations that could
fit on the ESP32’s limited memory.

Predictions would be made using the Tensorflow Lite
for Microcontrollers Libraries and would make predictions
based off a [40x8] input array of sensor values, to make 20
output potentiometer knee angle predictions. The Parameters
of the Model were determined by trial and error to discover a
model that was effective within the limitations of the micro-
controller’s maximum allowable size and reasonable pro-
cessing times. For example, more than two LSTM layers of
similar size resulted in the model unable to function.

4.3.1 � Effectiveness of Microcontroller Implementation

The ESP32 possessed a 240 MHz dual-core processor, the
lower of the two tested microcontrollers. Due to the Micro-
controller’s Limited Processing power, the initial model
could not make predictions within the 50 ms cycle win-
dow. Instead, predictions would take an average of ~ 180 ms
to process, or a 5.56 Hz prediction rate. This resulted in
a Mean Average Error of 8.93% to 11.87% for predictions
made 50 ms to 1000 ms into the future. These predictions
contained notably stepped changes as seen in Fig. 8, as the
system would retain the previous prediction across several
cycles in the time it took to process the next prediction.

Using pre-captured sample data to such that all predic-
tions could be made without skipping, an ideal Mean Aver-
age Error of 6.1% to 10.9% could be achieved which would
simulate the result of the ESP32 possessing sufficient pro-
cessing power to predict every cycle. Linear Regression was
not attempted due to these limitations, and as such no addi-
tional corrections were made to predictions.

Fig. 7   Laptop Prediction vs
Reality for data. Prediction
made for 0.25 s into the future.
20 Hz Sampling Rate

	 Journal of Intelligent & Robotic Systems (2025) 111:32 32   Page 8 of 14

4.4 � Improving Microcontroller Implementation

The Primary Limitation of the Microcontroller implemen-
tation was its limited processing power, resulting in the
stepped output when working in real time as a result of not
being able to make predictions fast enough for the program.
However, as seen by the “Slowed” output within Fig. 8,
which was created using pre-captured sample data that
was provided at the 5.56 Hz rate the system could handle,
it was capable of producing accurate results. Therefore, it
was considered worthwhile to investigate methods to speed
up and otherwise improve the prediction system. The three
methods considered were improving recognition system
effectiveness, reducing the size of the input data array from
[40x8] to a smaller value, and finally using a more powerful
microcontroller.

4.4.1 � Cleaning Sample Data

Whilst improving the recognition system does not aid in
reducing processing time, improving its predictive capabili-
ties and accuracy would allow increase functionality in spite
of this slow processing time. From experimentation for both
the Microcontroller and Laptop Implementations, using the
full 3 h of collected data produced inferior accuracies as
opposed to using a smaller subset of roughly 30–40 min of
data.

The larger dataset’s predictions made against test data
were consistently less than their real values, in these cases
the Linear Regression of the Laptop Implementation cor-
rected for this (Figs. 9 and 10.

The likely reasoning for this was that most of this 3 h
of data was collected by the author performing reletively

Fig. 8   Microcontroller Prediction vs Reality data. Prediction made 0.25 s into the future. 20 Hz Sampling Rate

Fig. 9   Laptop Implementation
using full dataset produced
values that consistently under-
estimated reality, potentially
overfitted. Prediction made for
0.25 s into the future. 20 Hz
Sampling Rate

Journal of Intelligent & Robotic Systems (2025) 111:32 	 Page 9 of 14  32

consistent walking, it was possible that this overwhelming
majority of very consistent data polluted the dataset as a
whole causing a notable bias due to Overfitting, by making
any variety provided by test data from other participants
insignificant in comparison. When corrected by removing
most of this long-form walking data, as seen in Figs. 7 and 8,
predictions were far more consistent with reality and showed
less bias.

4.4.2 � Reducing Input Size

It was found that while reducing the input size of the model
did not affect model file size, it did have a proportional effect
on the processing time of the model, with a smaller size
resulting in a faster processing time. An increase in model
size of 80 (10 × 8) resulted in a ~ 44 ms increase in process-
ing time (Fig. 11), as such a range of models of different
input sizes were run in real time to test the Mean Average
Error of their predictions vs reality.

Table 1 shows the results of running each of these models
for ~ 2 min each whilst walking the same path. The average
percentage difference was calculated as the average of the
percentage differences of all predictions made from 1–20
samples into the future for a particular input size, with these
results shown in Fig. 10.

As seen by the results of Table 1, the [20x8] input size
presents the lowest percentage difference, acting as the
intermediate between having sufficient input size to make
an accurate prediction and being able to do so at a quick

enough speed to remain useful, this result is ~ 35% less
accurate than the Laptop Implementation.

The higher errors, at [40x8] and [30x8], are likely of a
lower accuracy due to the slower processing times (180 ms
and 135 ms respectively) meaning that whilst having the
most input data and therefore highest prediction accu-
racy, they cannot make predictions every 50 ms cycle, and
therefore are not able to follow the continuously received
data. [15x8] and [10x8] meanwhile see worse accuracy
likely due to not having enough input data to make use of
for an accurate prediction even if able to make predictions
quickly.

Fig. 10   Change in Percentage Difference over number of future predictions due to input size. 1 Sample = 50 ms

Fig. 11   Linear relationship between model input size and average
processing time

	 Journal of Intelligent & Robotic Systems (2025) 111:32 32   Page 10 of 14

4.4.3 � Alternative Microcontroller Options

Finally, the second Microcontroller tested in this implemen-
tation was the Teensy 4.1. Possessing a Dual Core 600 MHz
Cortex-M processor, 2.5 × the 240 MHz of the HUZZAH32
ESP32 Feather that had been used previously. This produced
far faster results than expected, with a model of [40x8] input
size having a processing time of ~ 35 ms, over 5 times faster
than the ESP32, this was lower than the 50 ms program
cycle time allowing the prediction system to run in real time,
providing predictions every program cycle. This consider-
ably improved the Percentage Difference of Predictions vs
Reality. As such accuracy measurements were re-captured
for 20, 40, and 60 sized input sizes to compare to the prior
ESP32 experiments (Fig. 12). [40x8] input size proved the
best overall percentage difference, varying from 2.01% to
5.01%, with an average of 3.85%, this result exceeded the
accuracy of the Laptop Implementation. The Teensy 4.1
is more expensive than the ESP32 (~ £33.50 [38]), and of
similar size.

The resultant Prediction vs Reality Graph seen in Fig. 13
shows that the Teensy 4.1’s predictions were very similar to
reality for average walking.

Due to the increase processing power, Linear Regression
was implemented onto the Teensy for the [40x8] input, the
results for average walking showed slightly inferior accura-
cies, likely as a result of the predictions already being very

accurate with errors not being consistent enough for Linear
Regression to have any benefit, however when tested for
other situations such as standing or sitting still, linear regres-
sion proved far more effective, with the prediction system
consistently over or underestimating knee angles by some
amount and allowing linear regression to correct this con-
tinuous error.

The Test to find the ideal input size for the Teensy
revealed an input of [40x8] produced the best Mean Aver-
age Error of ~ 3.85%, even capable of surpassing the sig-
nificantly more powerful Laptop Model. This unexpected
outcome prompted re-training the Laptop and Teensy base
models on identical training data and then testing them on
the same machine (a desktop computer) on identical test
datasets consisting of 2 sets of 2000 Samples, with results
averaged. Both models consistently made each prediction
below the 50 ms requirement, with the smaller two-layer
(64,32) LSTM model barely surpassing the Mean Average
Error of the four-layer (128,128,128,128) model (5.03% vs
5.11%). When running the smaller model on the Teensy, the
Mean Average Error was 5.44% (Fig. 14) for between 50 and
1000 ms into the future.

It is possible that the current method reaches an upper
limit of precision at the current sample rate and input size, as
long as the model is capable of predicting every cycle. Ren-
dering the processing power of the Laptop unnecessary due
to similar Mean Average Errors being achievable even on

Table 1   Mean Average Error
for Microcontroller predictions

Input Size [40x8] [30x8] [20x8] [15x8] [10x8] Laptop (40 × 8)

Av. % Diff 10.56% 10.29% 8.22% 8.88% 9.41% 6.09%

Fig. 12   Change in Percentage Difference over number of future predictions using Teensy 4.1. 1 Sample = 50 ms

Journal of Intelligent & Robotic Systems (2025) 111:32 	 Page 11 of 14  32

the microcontroller, with variance only due to differences in
testing data in the original test. Therefore, this can be seen as
the Microcontroller implementation being similarly “effec-
tive” as the Laptop implementation in predicting future joint
angles, due to a similar Mean Average Error over the same
prediction range of 50 ms to 1000 ms (1 to 20 samples).

5 � Discussion & Conclusion

As was expected when comparing the Laptop Implemen-
tation to the ESP32 Microcontroller Implementation, the
Laptop implementation benefits considerably from access to
higher processing power by being able to run its model much
faster. With both the HUZZAH32 ESP32 Feather possessing
a 240 MHz dual core microcontroller and the Teensy 4.1

Possessing a 600 MHz dual core microcontroller, being not
fairly comparable to the ROG Zephyrus M16 GU603ZX’s
5 GHz, 14 Core CPU. Necessitating Practical Limitations
to the Microcontroller implementation to be smaller in size
and capacity to make knee angle predictions within reason-
able timeframes (within the 50 ms program cycle time being
considered ideal).

Despite this, when running both final implementation
prediction systems on a 5,000-sample length dataset they
had not been trained on, the average percentage differences
between Reality and Prediction for both prediction systems
were observed to be somewhat as expected (Fig. 15). With
a decrease in accuracy (an increase in Mean Average Error)
with a further prediction into the future.

For both the Microcontroller and Laptop Implemen-
tations, predictions had a clear linear increase in Mean

Fig. 13   Teensy 4.1 Prediction vs
Reality for [8, 40] input. Predic-
tion made for 0.25 s into the
future. 20 Hz Sampling Rate 

Fig. 14   Change in Percent-
age Difference over number
of future predictions for Small
Models on PC and Teensy
Microcontroller, and Large
Model on Laptop. 1 Sam-
ple = 50 ms

	 Journal of Intelligent & Robotic Systems (2025) 111:32 32   Page 12 of 14

Average Error for data predicted further into the future.
Whilst the Laptop Implementation produced results of a
higher overall accuracy than the ESP32, improvements to the
model and usage of the Teensy 4.1 were enough to produce
similar or superior results despite the considerable dispar-
ity in processing power. It is possible this may be due to
reaching a limit in the current method’s effectiveness where
further processing power does not provide additional benefit.

In summary, there is some feasibility in implementing AI
Prediction systems in Microcontrollers, although they are
inflexible when presented with situations they have not been
trained for or otherwise anomalous data. For a Low-Cost
Implementation, while likely would not be suitable in situ-
ations where high precision is a necessity, they could have
use as providing a general guide for the likely path of a user
and is worthy of study as to such potential implementations
within future work. In Effect, with this method a small and
inexpensive onboard microcontroller is capable of achieving
very accurate predictions that are similar or greater than that
of more powerful devices, thereby removing the requirement
of expensive tethered components.

As Observed from [39], p. 79]’s review of exoskeleton
model implementations many models had a temporally
small output window, with many looking 50–100 ms into
the future at most, as opposed to this model’s theoretical
maximum of 1 s into the future. For example, [40] used IR
Camera Data from 9 optical marks collected at 100 Hz and
three EMG Electrodes collecting data at 2000 Hz spread

across all joints, were applied as inputs to separate LSTM
input layers before being concatenated, and fed to a fully
connected network trained for 200 Epochs.

This system predicted only 50 ms into the future, but
achieved accurate results, with RMSE Means of 0.464
Degrees, or an average percentage different of about 1.54%
(across a ~ 30-degree variation). Similar papers such as [29],
and [25] similarly involve knee-angle predicting LSTM’s,
achieving accuracies of 1.104 and 5.22 degrees for predict-
ing 60 ms and 1 time-step respectively into the future.

These examples did not run upon microcontrollers, as
such, when referring to examples of microcontroller-run
models with referenced prediction accuracies, [23] used an
STM32f407 and sampled IMU and EMG data at 100 Hz,
using an RNN to predict up to 50 ms into the future with an
error of ~ 2.93 degrees (~ 4% error). [20] meanwhile used a
size 20 input of IMU data from the shank and foot, into a
CNN model with two CNN layers, and was deployed onto
an ESP32 Microcontroller. A Comparison is seen in Table 2.

In general, the exoskeleton control system produced here
has similar results to that of other implementations, this
model was designed to be capable of much higher depths
of prediction. Over shorter prediction depths, the accuracy
of the model was on average superior, for example, a pre-
diction of 150 ms into the future as was used to control the
motor resulted in a Mean Average Error of ~ 2.5%. This was
achieved despite the far lower sampling rate of 20 Hz and
computationally smaller model.

Fig. 15   Comparing Percentage
Differences for the best Micro-
controller, and Laptop Imple-
mentations. 1 Sample = 50 ms

Table 2   Other examples of Knee Angle Tracking using Microcontroller-Loaded Models

Work Input Type Samp. Rate Input Size Processor Model Type Model Size Output Size Pred. Depth MAE (est.)

This One Pot/IMU 20 Hz 40 Teensy 4.1 LSTM 64,32 20 50–1000 ms  ~ 5.44%
[22] IMU/EMG 100 Hz 28/20 STM32 RNN 28/20, 32, 16 1 50 ms  ~ 4%
[19] IMU Unk 20 ESP32 CNN 128, 64 10 20 ms to 200 ms  ~ 3.75%

Journal of Intelligent & Robotic Systems (2025) 111:32 	 Page 13 of 14  32

In effect, the model created within this paper both capa-
ble of predicting further into the future than many similar
implementations, and when comparing within the prediction
ranges of these models, achieved similar or superior Mean
Average Error percentages.

The most prominent avenue for future work would be
the combination of this prediction system with an actuator
control system. Overcoming this current theoretical limita-
tion would allow the system’s functionality to be judged in
physical implementation, and the difference between theo-
retical prediction and reality measured. This implementation
is currently ongoing.

Author’s Contributions  Tom Slucock: Research and Manuscript Com-
pilation. G.Howells, S.Hoque, and K.Sirlantzis: Supervisors, content
advisory.

Funding  This paper has received no external funding.

Data Availability  Data available on Request.

Declarations 

Ethics Approval  The Author has read and approved this manuscript.
Consent was given for the collection of Gait data in order to create
predictive models.

Consent to Participate  Ethics approval gained for collecting training
data from participants. [CREAG012-11–22].

Consent for Publication  The Author has agreed to publish this manu-
script.

Conflicts of Interest  The Author Declares no Conflicts of Interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Yagn, N.: Apparatus for Walking, Running, Jumping. United
States of America Patent 420, 179 (1890)

	 2.	 Vukobratovic, M., Hristic, D., Stojiljkovic, Z.: Development of
active anthropomorphic exoskeletons. Med Biol Eng 12(1), 66–80
(1974)

	 3.	 Specialty Materials Handling Products Operation General Elec-
tric Company, Hardiman I Prototype Project, 1968

	 4.	 T. Prendergast, “Healthcare expenditure, UK Health Accounts
provisional estimates: 2022,” Office for National Statistics, 2023

	 5.	 A. Jones, Interviewee, Ectron EksoNR cost. [Interview]. 21
September 2021

	 6.	 Shakti, D., Methew, L., Kumar, N., Kataria, C.: Effectiveness
of robo-assisted lower limb rehabilitation for spastic patients:
A systematic review. Biosens Bioelectron 117, 403–415 (2018).
https://​doi.​org/​10.​1016/j.​bios.​2018.​06.​027

	 7.	 Slucock, T.: A Systematic Review of Low-Cost Actuator Imple-
mentations for Lower-Limb Exoskeletons: a Technical and
Financial Perspective. J Intell Robot Syst 106(3), 1–31 (2022).
https://​doi.​org/​10.​1007/​s10846-​022-​01695-0

	 8.	 Zhou, Y., Sun, Z., Chen, B., Guang, G., Wu, X., Wang, T.:
Human gait tracking for rehabilitation exoskeleton: adaptive
fractional order sliding mode control approach. Intell Robot
3(1), 95–112 (2023). https://​doi.​org/​10.​20517/​ir.​2023.​05

	 9.	 Sherstinsky, A.: Fundamentals of Recurrent Neural Network
(RNN) and Long Short-Term Memory (LSTM) network. Phys-
ica D 404(132306), 28 (2020). https://​doi.​org/​10.​1016/j.​physd.​
2019.​132306

	10.	 Orasan, I.L., Seiculescu, C., Caleanu, C.D.: A Brief Review
of Deep Neural Network Implementations for ARM Cortex-M
Processor. Electronics 11(2545), 21 (2022). https://​doi.​org/​10.​
3390/​elect​ronic​s1116​2545

	11.	 Caldas, R., Mundt, M., Potthast, W., Neto, F.B.D.L.: A Sys-
tematic review of gait analysis methods based on inertial sen-
sors and adaptive algorithms. Gait Posture 57, 204–210 (2017).
https://​doi.​org/​10.​1016/j.​gaitp​ost.​2017.​06.​019

	12	 Prasanth, H., Caban, M., Keller, U., Courtine, G., Ijspeert, A.,
Vallery, H., J. v. Zitzewitz,: Wearable Sensor-Based Real-Time
Gait Detection: A Systematic Review. Sensors 21(8), 2727–
2755 (2021). https://​doi.​org/​10.​3390/​s2108​2727

	13.	 Goulermas, J.Y., Findlow, A.H., Nester, C.J., Liatsis, P., Zeng,
X.-J., Kenney, L.P., Tresadern, P., Thies, S.B., Howard, D.: An
Instance-Based Algorithm With Auxiliary Similiarity Informa-
tion for the Estimation of Gait Kinematics From Wearable Sen-
sors. IEEE Trans Neural Networks 19(9), 1574–1582 (2008).
https://​doi.​org/​10.​1109/​TNN.​2008.​20008​08

	14.	 Sun, Y., Tang, Y., Zheng, J., Dong, D., Chen, X., Bai, L.: From
sensing to control of lower limb exoskeleton: a systematic
review. Annu Rev Control 53, 83–96 (2022). https://​doi.​org/​
10.​1016/j.​arcon​trol.​2022.​04.​003

	15.	 L. Rose, M. C. Bazzocchi and G. Nejat, “End-to-End Deep
Reinforcement Learning for Exoskeleton Control,” in Interna-
tional Conference on Systems, Man, and Cybernetics (SMC),
Toronto, 2020. https://​doi.​org/​10.​1109/​SMC42​975.​2020.
9283306

	16	 Guo, Z., Wang, C., Song, C.: A Real-Time stable-control gait
switching strategy for lower-limb rehabilitation. Plos One 15(8),
19 (2020). https://​doi.​org/​10.​3389/​fnins.​2021.​645374

	17.	 Mundt, M., Thomsen, W., Witter, T., Koeppe, A., David, S.,
Bamer, F., Potthast, W., Markert, B.: Prediction of lower limb joint
angles and moments during gait using artificial neural networks.
Med Biol Eng Compu 58(1), 211–225 (2020). https://​doi.​org/​10.​
1007/​s11517-​019-​02061-3

	18.	 Sung, J., Han, S., Park, H., Cho, H.-M., Hwang, S., Park, J.W.,
Youn, I.: Prediction of Lower Extremity Multi-Joint Angles dur-
ing Overground Walking by Using a Single IMU with a Low Fre-
quency Based on an LSTM Recurrent Neural Network. Sensors
22(53), 14 (2021). https://​doi.​org/​10.​3390/​s2201​0053

	19.	 Tan, J.-S., Tippaya, S., Binnie, T., Davey, P., Napier, K., Caneiro,
J., Kent, P., Smith, A., O’Sullivan, P., Campbell, A.: Predicting
Knee Joint Kinematics from Wearable Sensor Data in People
with Knee Oseoarthritis and Clinical Considerations for Future

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.bios.2018.06.027
https://doi.org/10.1007/s10846-022-01695-0
https://doi.org/10.20517/ir.2023.05
https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.3390/electronics11162545
https://doi.org/10.3390/electronics11162545
https://doi.org/10.1016/j.gaitpost.2017.06.019
https://doi.org/10.3390/s21082727
https://doi.org/10.1109/TNN.2008.2000808
https://doi.org/10.1016/j.arcontrol.2022.04.003
https://doi.org/10.1016/j.arcontrol.2022.04.003
https://doi.org/10.1109/SMC42975.2020
https://doi.org/10.3389/fnins.2021.645374
https://doi.org/10.1007/s11517-019-02061-3
https://doi.org/10.1007/s11517-019-02061-3
https://doi.org/10.3390/s22010053

	 Journal of Intelligent & Robotic Systems (2025) 111:32 32   Page 14 of 14

Machine Learning Models. Sensors 22(446), 16 (2022). https://​
doi.​org/​10.​3390/​s2202​0446

	20.	 Karakish, M., Fouz, M.A., Elsawaf, A.: Gait Trajectory Prediction
on an Embedded Microcontroller Using Deep Learning. Sensors
22(8441), 22 (2022). https://​doi.​org/​10.​3390/​s2221​8441

	21.	 Varma, V., Rao, R.Y., Vundavilli, P., Pandit, M., Budarapu, P.: A
Machine Learning-Based Approach for the Design of Lower Limb
Exoskeleton. Int J Comput Methods 9(18), 22 (2022). https://​doi.​
org/​10.​1142/​S0219​87622​14201​23

	22.	 Lee, T., Kim, I., Lee, S.-H.: Estimation of the Continuous Walking
Angle of Knee and Angle (Talocrural Joint, Subtalar Joint) of a
Lower-Limb Exoskeleton Robot Using a Neural Network. Sensors
21(8), 2807 (2021). https://​doi.​org/​10.​3390/​s2108​2807

	23.	 Huang, Y., He, Z., Liu, Y., Yang, R., Zhang, X., Cheng, G., Yi,
J., Ferreira, J.P., Liu, T.: Real-Time Intended Knee Joint Motion
Prediction. IEEE Sens J 19(23), 1558–1748 (2019). https://​doi.​
org/​10.​1109/​JSEN.​2019.​29336​03

	24.	 ST, “STM32F407G-DISC1,” [Online]. Available: https://​estore.​st.​
com/​en/​stm32​f407g-​disc1-​cpn.​html. [Accessed 23 August 2023]

	25.	 Z.-Q. Ling, G.-Z. Cao, Y.-P. Zhang, H.-R. Cheng, B.-B. He and
S.-B. Cao, 2021 “Real-time Knee Joint Angle Estimation Based
on Surface Electromyograph and Back Propagation Neural Net-
work,” in 18th International Conference on Ubiquitous Robots
(UR), Gangneung-si, Gangwon-do, Korea https://​doi.​org/​10.​1109/​
UR522​53.​2021.​94946​39

	26.	 Alemayoh, T.T., Lee, J.H., Okamoto, S.: Leg-Joint Angle Estima-
tion from a Single Intertial Sensor Attached to Various Lower-
Body Links during Walking Motion. Appl Sci 13(4794), 1–17
(2023). https://​doi.​org/​10.​3390/​app13​084794

	27.	 TensorFlow, “Get started with microcontrollers,” [Online]. Avail-
able: https://​www.​tenso​rflow.​org/​lite/​micro​contr​ollers/​get_​start​
ed_​low_​level. [Accessed 23 Auguest 2023]

	28.	 Tudor-Locke, C., Han, H., Aguiar, E.J., Barreira, T.V., Schuna,
J.M., Jr., Kang, M., Rowe, D.A.: How fast is fast enough? Walking
cadence (steps/min) as a practical estimate of intensity in adults: a
narrative review. Br J Sports Med 52(12), 776–788 (2017). https://​
doi.​org/​10.​1136/​bjspo​rts-​2017-​097628

	29.	 C. Zhu, Q. Liu, Q. Ai and S. Q. Xie, “An Attention-based CNN-
LSTM Model with Limb Synergy for Gait Trajectory Prediction,”
in International Conference on Advanced Intelligent Mechatron-
ics, Delft, Netherlands, 2021. https://​doi.​org/​10.​1109/​AIM46​487.​
2021.​95175​44

	30.	 Hori, K., Mao, Y., Ono, Y., Ora, H., Hirobe, Y., Sawada, K., Inaba,
A., Orimo, S., Miyake, Y.: Inertial Measurement Unit-Based
Estimation of Foot Trajectory for Clinical Gait Analysis. Front.
Physiol. 10(1530), 12 (2020). https://​doi.​org/​10.​3389/​fphys.​2019.​
01530

	31.	 Kuderle, A., Roth, N., Zlatanovic, J., Zrenner, M., Eskofier, B.,
Kluge, F.: The placement of Foot-Mounted IMU Sensors does
affect the accuracy of spatial paramaters during regular walking.
PLoS ONE 17(6), 29 (2022). https://​doi.​org/​10.​1371/​journ​al.​pone.​
02695​67

	32.	 Pimoroni, “Adafruit HUZZAH32 – ESP32 Feather Board,”
[Online]. Available: https://​shop.​pimor​oni.​com/ products/adafruit-
huzzah32-esp32-feather-board?variant=43873434122. [Accessed
10 August 2023]

	33.	 Hosl, M., Schupfinger, A., Klich, L., Geest, L., Bauer, P., Bonfert,
M.V., Afifi, F.K., Nader, S., Berweck, S.: Relationship between
kinematic gait quality and caregiver-reported everday mobility
in children and youth with spastic Cebebral Palsy. Eur J Paediatr
Neurol 42, 88–96 (2023). https://​doi.​org/​10.​1016/j.​ejpn.​2022.​11.​
009

	34	 Kolaghassi, R., Al-Hares, M.K., Marcelli, G., Sirzlantzis, K.:
Performance of Deep Learning Models in Forecasting Gait Tra-
jectories of Children with Neurological Disorders. Sensors 22(8),
18 (2022). https://​doi.​org/​10.​3390/​s2208​2969

	35.	 Asus, “ROG Zephyrus M16 (2022),” [Online]. Available: https://​
uk.​store.​asus.​com/​rog-​zephy​rus-​m16-​2022-​20368​1799-​90nr0​8r1-​
m000m0.​html. [Accessed 10 August 2023]

	36.	 TensorFlow, “tflite-micro,” 08 May 2023. [Online]. Available:
https://​github.​com/​tenso​rflow/​tflite-​micro. [Accessed 09 May
2023].

	37.	 Espressif, “tflite-micro-esp-examples,” 07 May 2023. [Online].
Available: https://​github.​com/​espre​ssif/​tflite-​micro-​esp-​examp​les.
[Accessed 09 May 2023]

	38.	 Amazon, “Teensy 4.1 (Without Pins),” [Online]. Available:
https://​www.​amazon.​co.​uk/​Teensy-​4-1-​Witho​ut-​Pins/​dp/​B088D​
3FWR7. [Accessed 10 August 2023]

	39.	 Kolaghassi, R.: “Deep learning for Gait Prediction: An Applica-
tion to Exoskeletons for Children with Neurological Disorders”,
University of Kent. Canterbury (2023). https://​doi.​org/​10.​3390/​
s2208​2969

	40.	 L. J. Qingsong, W. Meng, Q. Liu and S. Q. Xie, “Individualized
Gait Trajectory Prediction Based on Fusion LSTM Networks for
Robotic Rehabilitation Training,” in IEEE International Confer-
ence on Advanced Intelligent Mechatronics, Delft, Netherlands,
2021. 10.1109/ AIM46487.2021.9517616

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Tom Slucock  received the M.Eng degree in Electronic and Commu-
nications Engineering from the University of Kent,Canterbury, Eng-
land in 2020. He worked with the University of Kent on a PhD to
develop a low-cost assistive lower-limb exoskeleton making use of a
microcontroller-based neural network prediction system, and has pub-
lishedacademically. He is now working within the avionics industry.
His research interests include Robotics, Microcontrollers,Exoskeletons,
and Neural Networks.

Gareth Howells  is currently a Professor in the School of Computer
Science and Electronic Engineering at the University of Essex. He
has been involved in research relating to pattern recognition, Artificial
Intelligence and assistive technologies for over 35 years and has pub-
lished over 250 papers in the technical literature, co-editing two books
and contributing to several other edited publications.

Sanaul Hoque  received his B.Sc. degree in electrical and electronic
engineering and the M.Sc. degree in computer engineering from the
Bangladesh University of Engineering and Technology (BUET) and
the Ph.D. degree in electronic engineering from the University of Kent,
U.K., where he is currently a faculty member. He has authored more
than 85 research articles . His research interests include assistive tech-
nologies, biometric security, image analysis and machine learning. He
was in the editorial board of theIET Image Processing journal.

Konstantinos Sirlantzis  is Professor of Applied Artificial Intelligence
with the School of Engineering, Technology and Design, Canterbury
Christ Church University (CCCU), Canterbury, Kent, U.K. Previously,
he was Associate Professor of intelligent Systems at the School of
Engineering, University of Kent, where he was the Head of the Robot-
ics and Assistive Technologies Research Group and the Founding
Director of Kent Assistive RObotics Laboratory (KAROL). He has
a strong track record in artificial intelligence and neural networks for
image analysis and understanding, robotic systems, with an emphasis
in assistive technologies, and pattern recognition for biometrics-based
security applications. He has authored over 150 peer-reviewed articles
in journals and conferences. He has organized and chaired a range of
international conferences and workshops.

https://doi.org/10.3390/s22020446
https://doi.org/10.3390/s22020446
https://doi.org/10.3390/s22218441
https://doi.org/10.1142/S0219876221420123
https://doi.org/10.1142/S0219876221420123
https://doi.org/10.3390/s21082807
https://doi.org/10.1109/JSEN.2019.2933603
https://doi.org/10.1109/JSEN.2019.2933603
https://estore.st.com/en/stm32f407g-disc1-cpn.html
https://estore.st.com/en/stm32f407g-disc1-cpn.html
https://doi.org/10.1109/UR52253.2021.9494639
https://doi.org/10.1109/UR52253.2021.9494639
https://doi.org/10.3390/app13084794
https://www.tensorflow.org/lite/microcontrollers/get_started_low_level
https://www.tensorflow.org/lite/microcontrollers/get_started_low_level
https://doi.org/10.1136/bjsports-2017-097628
https://doi.org/10.1136/bjsports-2017-097628
https://doi.org/10.1109/AIM46487.2021.9517544
https://doi.org/10.1109/AIM46487.2021.9517544
https://doi.org/10.3389/fphys.2019.01530
https://doi.org/10.3389/fphys.2019.01530
https://doi.org/10.1371/journal.pone.0269567
https://doi.org/10.1371/journal.pone.0269567
https://shop.pimoroni.com/
https://doi.org/10.1016/j.ejpn.2022.11.009
https://doi.org/10.1016/j.ejpn.2022.11.009
https://doi.org/10.3390/s22082969
https://uk.store.asus.com/rog-zephyrus-m16-2022-203681799-90nr08r1-m000m0.html
https://uk.store.asus.com/rog-zephyrus-m16-2022-203681799-90nr08r1-m000m0.html
https://uk.store.asus.com/rog-zephyrus-m16-2022-203681799-90nr08r1-m000m0.html
https://github.com/tensorflow/tflite-micro
https://github.com/espressif/tflite-micro-esp-examples
https://www.amazon.co.uk/Teensy-4-1-Without-Pins/dp/B088D3FWR7
https://www.amazon.co.uk/Teensy-4-1-Without-Pins/dp/B088D3FWR7
https://doi.org/10.3390/s22082969
https://doi.org/10.3390/s22082969

	Development of a Microcontroller-Based Recurrent Neural Network Predictive System for Lower Limb Exoskeletons
	Abstract
	1 Introduction
	2 State of the Art
	3 Initial Overview
	3.1 Hardware Implementation
	3.2 Data Collection

	4 AI Prediction Systems
	4.1 Data Processing and Model Training
	4.2 Laptop RNN Implementation
	4.2.1 Effectiveness of Laptop Implementation

	4.3 Microcontroller RNN Implementation
	4.3.1 Effectiveness of Microcontroller Implementation

	4.4 Improving Microcontroller Implementation
	4.4.1 Cleaning Sample Data
	4.4.2 Reducing Input Size
	4.4.3 Alternative Microcontroller Options

	5 Discussion & Conclusion
	References

