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Abstract
Practical deployments of exoskeletons can often be limited by cost, limiting access to their usage by those that would benefit 
from them. Minimising cost whilst not harming effectiveness is therefore desirable for exoskeleton development. For Control 
Systems governing assistive and rehabilitative exoskeletons that react to the wearer’s movements, there will inevitably be some 
delay between when their wearer intends to move and when the exoskeleton can assist with this movement. This can lead to situ-
ations where a user may be limited by their own assistive exoskeleton, reducing their ability to move freely. A potential solution 
to this is to provide a proactive method of control, where the most likely path of the wearer’s movement is predicted ahead of the 
wearer making the motion themselves. This can be used to give the user assistance immediately as they are walking, as well as 
potentially pre-emptively adjust their gait if they suffer from predictable gait deficiencies. The purpose of this paper is to inves-
tigate the Data Collection, Implementation, and Effectiveness of an LSTM Recurrent Neural Network dynamically predicting 
future movement based off of prior movement. These methods were developed to use off the shelf, Low-Cost Microcontrollers 
as to minimise their Financial, Weight, and Power Impact on an overall Low-Cost exoskeleton design, as well as to evaluate 
how effective such an implementation would be when compared to running such a Neural Network on a more powerful proces-
sor. The created model was capable of achieving similar accuracies to far more powerful models on High-Powered Laptops.
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1  Introduction

The concept of an actuated leg attachment designed to aid 
in walking can be traced back to as early as 1890 [1], the 
first working examples are seen in 1969 with Mihajlo Pupin 
Institute’s “Kinematic Walker” [2] and in 1971 with General 
Electric’s “Hardiman I” [3]. These two active exoskeletons, 

actuated by powered electric motors as opposed to passive 
force, required governing control systems to determine how, 
how much, and when their component actuators would 
move, governed by input sensor data. Neural Networks are 
one such control system implementation.

As of 2022, the average UK medical spending per capita 
was estimated at $4,192 per person [4]. By contrast, exoskel-
etons such as EksoNR could cost as much as £126,000 [5], 
a value infeasible for many to afford without external fund-
ing even amongst wealthier countries. Within those nations 
of lower average medical spending and individual wealth 
acquiring such equipment becomes effectively impossible 
for the average person without external funding. An alter-
native method seen in rehabilitation centres therefore is to 
schedule Rehabilitation Sessions, where a user suffering 
from gait degradation may have temporary access to an 
advanced rehabilitation exoskeletons where they may aid 
in improving their gait patterns. These sessions have shown 
to be effective [6], however suffer from limitations such as 
patient proximity, and delay between sessions.
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This paper focuses primarily on exoskeletons of a rehabilita-
tive or assistive focus, designed to be used by wearers suffering 
pathologic gait issues such as Hypo/Hypertonia (muscle limp-
ness/stiffness) and Hypo/Hyperkinesia (poor/excessive muscle 
movements) but are none the less capable of some independ-
ent movement such as sufferers of Cerebral Palsy or Stokes. 
This paper focuses on making an AI Predictive System, sees 
how small this system can be made, and whether it maintains 
effectiveness. In further detail: a) the paper develops an AI 
Prediction System that may aid in a control system’s ability to 
determine the likely future motion of a wearer, by pre-emptively 
assisting this motion, and assesses its effectiveness based on the 
percentage error it predicts from reality, b) it seeks to discover 
how small and inexpensive of a profile such an AI predictive 
system can be fit onto whilst maintaining effectiveness, such as 
a commercially available microcontroller. Due to the high cost 
of many currently existent methods for exoskeletons it would be 
beneficial to focus on reducing this cost such as through simpler 
components and implementations, for example, as detailed in 
[7] there is a need for Lower Cost Exoskeletons able to more 
readily aid those with Gait Deficiencies. Inexpensive exoskel-
etons may allow for their wider deployment by expanding the 
range of individuals capable of affording them, or centres capa-
ble of accessing them.

The proposed implementation takes the form of a Recur-
rent Neural Network (RNN), specifically a Long-Short Term 
Memory (LSTM) prediction system designed to predict future 
knee angle movement of the wearer using prior movement 
such that a theoretical assistive exoskeleton could then aid in 
these movements or attempt to correct potential deficiencies 
by moving to these predicted knee angles as the wearer does, 
thereby aiding in their movement. With LSTM benefitting 
from using memory of prior events to inform future predic-
tions, which is appropriate for predicting repetitive walking 
as prior strides can inform later ones. [8] also predicts knee 
angle, although in simulation. LSTMs also possess superior 
long-term memory, reducing the rate at which learned infor-
mation attenuates in its ability to inform decision making [9]. 
LSTM’s have also been proven to be capable of effectively 
running on the Cortex-M Microprocessors used by many inex-
pensive microcontrollers [10]. Being directly supported by 
TensorFlow, a well-established Machine Learning API, with 
TensorFlow Lite being used in this implementation.

2 � State of the Art

As Described by Caldas R et al. in [11] up until 2016 
some of the most common Machine learning Implemen-
tations within exoskeletons were either Artificial Neural 
Networks (ANN’s) or Hidden Markov Models (HMM’s). 
Common use cases were determining Gait Events such as 
heel strikes and toe off as well as swing/stance positions, 

Spatiotemporal Parameters such as Stride and Step/Step/
Stance Times as well as Gait Velocity and Cadence, and 
Joint Angles which are most relevant to this paper [12]. 
Earlier examples of Joint Angle prediction and measure-
ment using machine learning can be seen in [13] which 
made use of a General Regression Neural Network 
(GRNN) to estimate the Hip, Knee, and Ankle Angles 
based off of motion sensors at the hip, knee, and ankle 
joints. Meanwhile Sun et al. [14] describes other examples 
of Machine Learning up to 2020, such as Reinforcement 
Learning [15], Support Vector Machines [16], etc. Exam-
ples of Recurrent Neural Networks meanwhile are limited, 
as are using such models to predict joint angles. An earlier 
example of such an implementation from 2019 by Mundt 
et al. [17] simulated Accelerometer and Gyroscope data 
from more reliable Optoelectronic markers, using this as 
training data for a Feedforward Neural Network (FFNN) 
and a Long Short-Term Memory Neural Network (LSTM). 
Other examples have built on this, such as [18] [19].

Many LSTM Model examples run on high-power comput-
ers, laptops, or dedicated controllers, with regards to imple-
mentations on Microcontrollers [20] separately implemented 
both a Convolutional Neural Network (CNN) and a Multi-
Layered Perceptron (MLP) onto an ESP32 Microcontroller, 
with a Shank Mounted IMU and current phase to act as input 
data to predict the angular velocity of the foot ~ 200 ms into 
the future. Many Previously described LSTM Models such 
as seen in [21] used multiple LSTM Hidden layers each of 
hundreds of units, whilst allowing for improved accuracy it 
also increases the size of the model and as Microcontrollers 
are limited for space a reduced model size is a necessity. 
In terms of papers that use Neural Networks to predict the 
wearer’s knee angle, [22] used Shank and Thigh Inertial 
Measurement Unit (IMU) Data provided to an ANN model 
to predict walking speed and knee angle, whilst [23] used 
IMU and Electromyography (EMG) data provided to an 
RNN model run on an STM32F4 Microcontroller (costing 
£16.40 [24]) to predict joint torque and moment, although 
did not use LSTM/GRU due to technological limitations. 
Finally, [25] used EMG and Knee angle data collected from 
sensors via a ATMega328p Microcontroller and processed 
on a laptop, similar to this paper’s laptop implementation.

For Sensor usage, papers such as [26] make use of an 
LSTM provided data by Inertial Measurement Units (IMUs) 
placed on the lower leg to predict lower-limb joints, which 
alongside Potentiometers are commonly used, inexpensive 
sensors in exoskeletons.

When viewing effectiveness of microcontroller-based 
neural network predictions in terms of Average Percent-
age Difference from reality, [20] achieved an accuracy 
of ~ 3.75% with a CNN predicting 20–200 ms into the future. 
Meanwhile [23] achieved an accuracy of ~ 4% with an RNN 
predicting 50 ms into the future. This paper’s LSTM network 
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achieves similar accuracies with predictions made up to 
1000 ms into the future.

3 � Initial Overview

TensorFlow 2.11 and Keras 2.10 were used as the baseline 
for creating and training the Machine Learning Models using 
Python 3.10.9. This would then be converted to embedded 
C + + /Arduino code to run on the two microcontrollers that 
were chosen for testing model effectiveness, The ESP32 and 
a Teensy 4.1 which were both chosen due to being inexpen-
sive, possessing multiple cores for RTOS implementation, 
being Arduino code compatible, and being supported for 
TensorFlow Lite [27] Implementations. The AI recognition 
system would use the Time-Variant changes in knee angle 
and ankle motions as input data, to predict the wearer’s knee 
angle in the future.

The Commonly Recognised Gait Events within most 
healthy individuals will follow the pattern seen in Fig. 1, 
Consisting of Right Heel Strike (1), Left Toe Off (2), Left 
Heel Strike (3), Right Heel Strike (4), and finally looping 
back to Right Heel Strike (5). The Knee Angle seen in Fig. 2 
follows a consistent loop of Stance (1–3) and Swing (3–5) 
phases. Note: 0 Degrees represents standing straight.

Figure 3 displays 5 examples of walking cycle data col-
lected at a 20 Hz sampling rate, as an average of sensor 

data collected at 100 Hz. The total time of the gait cycle 
was consistently 1.1–1.2 s, (~ 105 steps per minute) however 
walking rates amongst healthy adults vary dependant on age, 
health, and activity.

As defined in [28], movement, and walking in general can 
be split up into categories ranging from Incidental or Spo-
radic occasional movements whilst performing other tasks, 
to the Slow to Brisk walking speeds of intentional move-
ments. The example in Fig. 3 is a set of Brisk Movement 
and the change in Knee Angle seen during it.

Recurrent Neural Networks are seen to be effective in pre-
dicting continuous, time variant data such as changes in knee 
angle, as seen in other papers such as [29] and [25]. There-
fore being an effective choice for predicting these motions.

3.1 � Hardware Implementation

Data Collection took the form of a simple knee orthosis 
constructed by the author, using a RS Pro P25 Potenti-
ometer (10% Tolerance) to measure Knee Angle attached 
in line with the knee and an LSM9DS1 Inertial Measure-
ment Unit (0.244 mg/LSB – milli-G’s per Least Signifi-
cant Bit) attached to the outer side of the ankle to provide 

Fig. 1   Gait events over one 
cycle

Fig. 2   Example of Repeated Gait Pattern. 1 Sample = 50 ms. 20 Hz 
Sampling Rate

Fig. 3   Knee Angle change over 5 Gait Cycles, continuous. Each 
Cycle consisting of one Left and one Right Step. Left Knee, 20 Hz 
sampling rate
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Accelerometer and Gyroscopic Data, the use of a single 
Inertial Measurement unit just above the ankle is similar to 
examples seen in [30] [31]. As the pattern of sensor move-
ment was more important than exact values, sensor preci-
sion was not prioritised in favour if furthering a low-cost 
implementation.

This device was securely attached to the left leg via a 
basic exoskeleton frame, data was collated by an Adafruit 
HUZZAH32 ESP32 Feather [32], which was then sent via a 
wired serial connection to a Laptop which would via a con-
currently running Python Program save all received infor-
mation to a.csv file at 5 min intervals or when instructed to 
finish via button on the orthosis. This ESP32 would also run 
the LSTM prediction system, with predictions sent along 
with sensor values to be received and stored for later review.

The 8 Collected Data Points would therefore be the Aver-
age Accelerometer X, Y, and Z, Average Gyroscope X, Y, 
and Z, the Potentiometer Value, and Average Rate of Change 
of Potentiometer value each recorded to two decimal places. 
All Average values were calculated over the average of the 
last 5 samples (0.25 s), as to reduce the effects of random 
noise and so External/Parametric Uncertainties. Data Col-
lection would occur at a rate of 100 Hz, or one sample per 
10 ms, with 5 samples averaged to form a 20 Hz true Input 
rate (one sample per 50 ms). While ~ 100–200 Hz is a sam-
pling rate seen in several exoskeleton control implementa-
tions such as in [30] [33], excessive data collection speeds 
for this implementation would lead to bloated sample file 
sizes, reduced time for predictions to be made which would 
ideally update every sample, and necessitate larger input 
data snapshots for the prediction system in order to display 
change in movement.

This would in turn make these prediction systems larger 
and slower to run on limited systems, the 100- > 20 Hz aver-
aged conversion therefore reduced sensor noise whilst keep-
ing sample rates acceptably low.

As the System would be predicting the wearer’s motion 
into the future, as long as the prediction it made was further 
into the future than the time it took to process the prediction 
and for a controlled actuator to begin moving to that loca-
tion, the delay between user motion and exoskeleton motion 
would not be of concern. As the exoskeleton would be effec-
tively reacting before the wearer made the movement. This 
would only apply in cases where the wearer was in the pro-
cess of moving periodically, as sudden movement from a 
still position would not be predictable from joint angle alone 
until the recognition system had received enough inputs to 
recognise a pattern to predict. As this process would require 
actuator implementation, it is beyond the scope of this paper.

The exoskeleton would however experience some Inter-
nal Uncertainty in its predictions, as it was guided solely by 
information regarding the wearer and had no knowledge of the 
wearer’s environment. For example, the wearer kicking a wall 
and stopping their foot suddenly would appear very similar.

3.2 � Data Collection

As the system would ideally be able to universally recognise 
of gait movements, a diverse range of motion need to be 
recorded for training purposes. These were decided based 
on distinct “Movement States” that would make up everyday 
movements, specifically: Walking, Crouching, Walking Up 
Stairs, Sitting, Standing, Wandering, and Resting. Within 
these, variations in speed and wearer would improve data 
diversity, as a recognition system is naturally incapable of 
“implying” information, if solely trained on walking data it 
may predict the user to be walking even in situations where 
they are standing still, as this is the only information the 
system “knows”. This is seen in Fig. 4 where a Recurrent 
Neural Network was trained exclusively on constant walking 
data, then presented with a wearer in a static standing posi-
tion. Note that a Potentiometer value of 0 represents standing 

Fig. 4   Prediction System 
trained only on walking data 
struggles to predict the wearer 
standing still, as it has not been 
trained to “know” what standing 
still is. 20 Hz Sampling Rate
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straight. Movement data for these states was collected from 
12 volunteering healthy adults with an age range between 24 
and 58, with 8 Male Candidates and 4 Female Candidates.

Datasets of ~ 5–10 min each were collected, in addition 
to further data being collected by the author by wearing the 
exoskeleton during extended walks.

Due to external circumstances, it was not feasible to col-
lect data from individuals suffering from gait degradation. 
Instead, healthy patients would provide a proof of concept 
for the prediction system’s ability to predict movement into 
the future.

4 � AI Prediction Systems

A Recurrent Neural Network (RNN) was chosen due to its 
ability to consider prior inputs in its prediction of the future 
as seen in [34] where a Recurrent Neural Network produced 
lower errors than comparable CNN, FCN (Fully Connected 
Network), and Naïve Implementations. It was made with 
TensorFlow 2.11.

4.1 � Data Processing and Model Training

The Acquired model data for the Prediction system would 
provide a “Snapshot” of data consisting of the last 40 sam-
ples across each sensor (Accelerometer X, Y, and Z, Gyro-
scope X, Y, and Z, Potentiometer, and Potentiometer rate of 
change), representing the last 2 s of sensor data prior to the 
current point.

This Feature Vector would be stored as a [40x8] Array, 
Accelerometer, Gyroscope, and Potentiometer data would 
each be normalised separately to between −1 and 1 based 
off of known likely maximum and minimum values collected 
during training, which would be equal to the largest and 
smallest value of the training set for each sensor that was 
within three standard deviations of the average as to prune 
anomalous spikes that would otherwise bias the dataset.

This snapshot process was completed for all input sam-
ples, totalling 215,000 samples (~ 3  h) of sample data 
which was later reduced to 58,000 samples to reduce bias as 
explained in 4.4. This was then randomly shuffled and split 
90/10 to Training and Testing data.

Training data would train the model for 15 Epochs, which 
consisted of a [40x8] Input, and finished with a [30x1] out-
put Dense Layer. A key benefit of both collecting potentiom-
eter data and it being the value predicted by the Prediction 
system was that for testing purposes predictions could be 
directly compared with the “reality” of the actual sensor 
values that occurred at those predicted times to see how 
accurate the predictions were.

This process could be made to occur in real time to 
allow for prediction improvement via linear regression. 

The theoretical implementation achieved evaluated Mean 
Average Error of 4%. Linear Regression (Fig. 5) showed a 
strong association between predicted values and real values, 
which in turn displayed the prediction system as capable 
of recognising patterns within its input samples and accu-
rately outputting predictions similar to reality. Predictions 
of future potentiometer values created from test data that 
the model was not trained were recognisably similar to the 
actual potentiometer values, although predictions tended to 
exaggerate reality. This was later found to be due to having 
too much sample data from a single source, drowning out 
variation from other sources (4.4). After Linear Regression, 
values tended to look more similar to reality (Fig. 6). There-
fore, Linear Regression could potentially reduce prediction 
systematic errors.

While there was a small proportion of notable errone-
ous predictions, as each prediction is made independently of 
the previous, and predictions would be re-calculated every 
50 ms, it would require a cascade of errors to threaten the 
user’s walking capabilities. In such a case, it would be the 
duty of a lower-level control system layer to keep the posi-
tion and direction of the exoskeleton and user within a safe 
range of each other.

Linear Regression was most effective when only trained 
on the 100 samples prior to the predicted samples, as 
opposed to training a regression model for the entire test 
dataset. This may be due to the predictions tending to vary 
in how much they over- and under-estimate reality over the 
length of a gait cycle or full data set, and so a smaller, more 
immediate subset for Linear Regression was better able 
to counteract the errors of the prediction by being more 

Fig. 5   Linear Regression comparing real potentiometer values to pre-
dictions made 10 samples (0.5 seconds) into the future. Lighter spots 
represent a higher density of values. R2 = 0.857
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relevant to the present. The Laptop-based and Microcon-
troller-based implementations would be created using this 
initial design. The Laptop-based version having access to 
higher processing power made use of a larger, more power-
ful model, and therefore test the difference in effectiveness 
between it and the smaller microcontroller.

4.2 � Laptop RNN Implementation

To act as a comparison to the Microcontroller a prediction 
model was tested on a high-power laptop that received 
sensor data from a connected exoskeleton and returned 
prediction data via serial connection. This allowed for the 
usage of a much larger LSTM network and would act as 
a baseline for comparing a model designed to make full 
use of a computer’s predictive capability versus a micro-
controller, the Network consisted of 4 Size 128 LSTM 
Layers similar to [34], as well as a Dropout and output 
[30x1] Dense Layer. The Laptop was placed in a backpack, 
with a USB cable providing the serial connection between 
the ESP located on the exoskeleton and the Laptop. The 
ESP32 used basic Arduino-based Serial.print()/Serial.
read() Functions to send sensor data and receive predic-
tions to and from the Laptop, where a running Python 
program would read and collect it, storing it in a Pandas 
Dataframe. If the Laptop was set to only collect data rather 
than predict it, it would then send a dummy reply back to 
the ESP32 to confirm that data had been received and that 
more data was to be sent.

If the program was set to predict data it would prior to 
the beginning of sample-reading load a saved model that had 
been previously trained, upon receiving at least the mini-
mum number of samples to form an [40x8] input (or 2 s of 
samples). It would then make use of the.predict_on_batch() 
TensorFlow Lite function to output a single prediction set of 
20 values (50 ms to 1000 ms into the future) based on this 
single batch of input data. Which would be saved within the 
same Pandas Dataframe as the samples.

Linear Regression would be performed on all values 
by comparing the previous predictions made to the actual 
potentiometer-measured knee angle values that occurred at 
those predicted times, then applying this calculated regres-
sion value to the present predicted data to counteract the dif-
ference. Testing the effectiveness of the Laptop-based imple-
mentation was done in the same way as data was originally 
collected in 3.2 – Data Collection, by running the system 
in real time whilst an exoskeleton wearer was walking a set 
path and logging predictions.

4.2.1 � Effectiveness of Laptop Implementation

As was expected the Laptop Implementation had a similar 
Mean Average Error and produced similar results to that of 
the freshly trained model run on a PC and had an average 
Processing time per prediction set of less than the 50 ms 
cycle time. When comparing reality to predictions and 
regression predictions, Mean Average Error between reality 
and prediction varied between 3.63% to 8.1% for predictions 
made 50 ms to 1000 ms into the future, or 3.68% to 9.71% 
for regressed predictions. Both examples were averaged over 

Fig. 6   Prediction (Orange) and Post-Regression Prediction (Red) vs Reality (Blue). Dividing line separates input data and output data
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5,000 samples, a short depiction of 120 samples is seen in 
Fig. 7.

While this laptop implementation was reasonably accu-
rate in predicting future values, it was limited in requir-
ing a high-powered laptop in order to function at speed. 
The device used, a ROG Zephyrus M16 GU603ZX cost-
ing ~ £4,000 [35] was more powerful than required, although 
any device used would need to be capable of running Ten-
sorFlow in addition to requiring a wired connection and 
backpack to carry the laptop and its power supply. In com-
parison, the ESP32 used in the first Microcontroller imple-
mentation costed only £15.50, over 250 × less expensive in 
addition to smaller size and power usage. It was noted that in 
practice, Linear Regression had a negligible effect on Mean 
Average Error. This may be as the system was already quite 
accurate, and so there were minimal systematic errors that 
Linear Regression was most effective at reducing.

4.3 � Microcontroller RNN Implementation

The Process of implementing an LSTM was first applied 
onto an ESP32 (Adafruit Huzzah32 ESP32 Feather Board) 
which used the TensorFlow Lite for Microcontrollers library 
[36], specifically “tflite-micro-esp-examples” [37] due 
to ESP32 specific optimisations and ease of use. Prior to 
September 2022, rolled LSTMs were not fully supported, 
causing a “UNIDIRECTIONAL_SEQUENCE_LSTM” 
compatibility error when attempted. Unrolled LSTMs were 
considerably larger than rolled in terms of file size and were 
effectively non-functional due to these size limitations. As 
the limitations of rolled LSTMs has since been resolved, 
the rough size of the tflite model was 245 kb in size, as 
opposed to the 3.2 MB savedModel file used by the laptop. 
It consisted of two LSTM layers of size 64 and 32, plus 

one Dropout layer to reduce overfitting and finally a [20 × 1] 
Dense layer to format the output, which were values chosen 
towards the upper maximum of size limitations that could 
fit on the ESP32’s limited memory.

Predictions would be made using the Tensorflow Lite 
for Microcontrollers Libraries and would make predictions 
based off a [40x8] input array of sensor values, to make 20 
output potentiometer knee angle predictions. The Parameters 
of the Model were determined by trial and error to discover a 
model that was effective within the limitations of the micro-
controller’s maximum allowable size and reasonable pro-
cessing times. For example, more than two LSTM layers of 
similar size resulted in the model unable to function.

4.3.1 � Effectiveness of Microcontroller Implementation

The ESP32 possessed a 240 MHz dual-core processor, the 
lower of the two tested microcontrollers. Due to the Micro-
controller’s Limited Processing power, the initial model 
could not make predictions within the 50 ms cycle win-
dow. Instead, predictions would take an average of ~ 180 ms 
to process, or a 5.56 Hz prediction rate. This resulted in 
a Mean Average Error of 8.93% to 11.87% for predictions 
made 50 ms to 1000 ms into the future. These predictions 
contained notably stepped changes as seen in Fig. 8, as the 
system would retain the previous prediction across several 
cycles in the time it took to process the next prediction.

Using pre-captured sample data to such that all predic-
tions could be made without skipping, an ideal Mean Aver-
age Error of 6.1% to 10.9% could be achieved which would 
simulate the result of the ESP32 possessing sufficient pro-
cessing power to predict every cycle. Linear Regression was 
not attempted due to these limitations, and as such no addi-
tional corrections were made to predictions.

Fig. 7   Laptop Prediction vs 
Reality for data. Prediction 
made for 0.25 s into the future. 
20 Hz Sampling Rate
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4.4 � Improving Microcontroller Implementation

The Primary Limitation of the Microcontroller implemen-
tation was its limited processing power, resulting in the 
stepped output when working in real time as a result of not 
being able to make predictions fast enough for the program. 
However, as seen by the “Slowed” output within Fig. 8, 
which was created using pre-captured sample data that 
was provided at the 5.56 Hz rate the system could handle, 
it was capable of producing accurate results. Therefore, it 
was considered worthwhile to investigate methods to speed 
up and otherwise improve the prediction system. The three 
methods considered were improving recognition system 
effectiveness, reducing the size of the input data array from 
[40x8] to a smaller value, and finally using a more powerful 
microcontroller.

4.4.1 � Cleaning Sample Data

Whilst improving the recognition system does not aid in 
reducing processing time, improving its predictive capabili-
ties and accuracy would allow increase functionality in spite 
of this slow processing time. From experimentation for both 
the Microcontroller and Laptop Implementations, using the 
full 3 h of collected data produced inferior accuracies as 
opposed to using a smaller subset of roughly 30–40 min of 
data.

The larger dataset’s predictions made against test data 
were consistently less than their real values, in these cases 
the Linear Regression of the Laptop Implementation cor-
rected for this (Figs. 9 and 10.

The likely reasoning for this was that most of this 3 h 
of data was collected by the author performing reletively 

Fig. 8   Microcontroller Prediction vs Reality data. Prediction made 0.25 s into the future. 20 Hz Sampling Rate

Fig. 9   Laptop Implementation 
using full dataset produced 
values that consistently under-
estimated reality, potentially 
overfitted. Prediction made for 
0.25 s into the future. 20 Hz 
Sampling Rate
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consistent walking, it was possible that this overwhelming 
majority of very consistent data polluted the dataset as a 
whole causing a notable bias due to Overfitting, by making 
any variety provided by test data from other participants 
insignificant in comparison. When corrected by removing 
most of this long-form walking data, as seen in Figs. 7 and 8, 
predictions were far more consistent with reality and showed 
less bias.

4.4.2 � Reducing Input Size

It was found that while reducing the input size of the model 
did not affect model file size, it did have a proportional effect 
on the processing time of the model, with a smaller size 
resulting in a faster processing time. An increase in model 
size of 80 (10 × 8) resulted in a ~ 44 ms increase in process-
ing time (Fig. 11), as such a range of models of different 
input sizes were run in real time to test the Mean Average 
Error of their predictions vs reality.

Table 1 shows the results of running each of these models 
for ~ 2 min each whilst walking the same path. The average 
percentage difference was calculated as the average of the 
percentage differences of all predictions made from 1–20 
samples into the future for a particular input size, with these 
results shown in Fig. 10.

As seen by the results of Table 1, the [20x8] input size 
presents the lowest percentage difference, acting as the 
intermediate between having sufficient input size to make 
an accurate prediction and being able to do so at a quick 

enough speed to remain useful, this result is ~ 35% less 
accurate than the Laptop Implementation.

The higher errors, at [40x8] and [30x8], are likely of a 
lower accuracy due to the slower processing times (180 ms 
and 135 ms respectively) meaning that whilst having the 
most input data and therefore highest prediction accu-
racy, they cannot make predictions every 50 ms cycle, and 
therefore are not able to follow the continuously received 
data. [15x8] and [10x8] meanwhile see worse accuracy 
likely due to not having enough input data to make use of 
for an accurate prediction even if able to make predictions 
quickly.

Fig. 10   Change in Percentage Difference over number of future predictions due to input size. 1 Sample = 50 ms

Fig. 11   Linear relationship between model input size and average 
processing time
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4.4.3 � Alternative Microcontroller Options

Finally, the second Microcontroller tested in this implemen-
tation was the Teensy 4.1. Possessing a Dual Core 600 MHz 
Cortex-M processor, 2.5 × the 240 MHz of the HUZZAH32 
ESP32 Feather that had been used previously. This produced 
far faster results than expected, with a model of [40x8] input 
size having a processing time of ~ 35 ms, over 5 times faster 
than the ESP32, this was lower than the 50 ms program 
cycle time allowing the prediction system to run in real time, 
providing predictions every program cycle. This consider-
ably improved the Percentage Difference of Predictions vs 
Reality. As such accuracy measurements were re-captured 
for 20, 40, and 60 sized input sizes to compare to the prior 
ESP32 experiments (Fig. 12). [40x8] input size proved the 
best overall percentage difference, varying from 2.01% to 
5.01%, with an average of 3.85%, this result exceeded the 
accuracy of the Laptop Implementation. The Teensy 4.1 
is more expensive than the ESP32 (~ £33.50 [38]), and of 
similar size.

The resultant Prediction vs Reality Graph seen in Fig. 13 
shows that the Teensy 4.1’s predictions were very similar to 
reality for average walking.

Due to the increase processing power, Linear Regression 
was implemented onto the Teensy for the [40x8] input, the 
results for average walking showed slightly inferior accura-
cies, likely as a result of the predictions already being very 

accurate with errors not being consistent enough for Linear 
Regression to have any benefit, however when tested for 
other situations such as standing or sitting still, linear regres-
sion proved far more effective, with the prediction system 
consistently over or underestimating knee angles by some 
amount and allowing linear regression to correct this con-
tinuous error.

The Test to find the ideal input size for the Teensy 
revealed an input of [40x8] produced the best Mean Aver-
age Error of ~ 3.85%, even capable of surpassing the sig-
nificantly more powerful Laptop Model. This unexpected 
outcome prompted re-training the Laptop and Teensy base 
models on identical training data and then testing them on 
the same machine (a desktop computer) on identical test 
datasets consisting of 2 sets of 2000 Samples, with results 
averaged. Both models consistently made each prediction 
below the 50 ms requirement, with the smaller two-layer 
(64,32) LSTM model barely surpassing the Mean Average 
Error of the four-layer (128,128,128,128) model (5.03% vs 
5.11%). When running the smaller model on the Teensy, the 
Mean Average Error was 5.44% (Fig. 14) for between 50 and 
1000 ms into the future.

It is possible that the current method reaches an upper 
limit of precision at the current sample rate and input size, as 
long as the model is capable of predicting every cycle. Ren-
dering the processing power of the Laptop unnecessary due 
to similar Mean Average Errors being achievable even on 

Table 1   Mean Average Error 
for Microcontroller predictions

Input Size [40x8] [30x8] [20x8] [15x8] [10x8] Laptop (40 × 8)

Av. % Diff 10.56% 10.29% 8.22% 8.88% 9.41% 6.09%

Fig. 12   Change in Percentage Difference over number of future predictions using Teensy 4.1. 1 Sample = 50 ms
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the microcontroller, with variance only due to differences in 
testing data in the original test. Therefore, this can be seen as 
the Microcontroller implementation being similarly “effec-
tive” as the Laptop implementation in predicting future joint 
angles, due to a similar Mean Average Error over the same 
prediction range of 50 ms to 1000 ms (1 to 20 samples).

5 � Discussion & Conclusion

As was expected when comparing the Laptop Implemen-
tation to the ESP32 Microcontroller Implementation, the 
Laptop implementation benefits considerably from access to 
higher processing power by being able to run its model much 
faster. With both the HUZZAH32 ESP32 Feather possessing 
a 240 MHz dual core microcontroller and the Teensy 4.1 

Possessing a 600 MHz dual core microcontroller, being not 
fairly comparable to the ROG Zephyrus M16 GU603ZX’s 
5 GHz, 14 Core CPU. Necessitating Practical Limitations 
to the Microcontroller implementation to be smaller in size 
and capacity to make knee angle predictions within reason-
able timeframes (within the 50 ms program cycle time being 
considered ideal).

Despite this, when running both final implementation 
prediction systems on a 5,000-sample length dataset they 
had not been trained on, the average percentage differences 
between Reality and Prediction for both prediction systems 
were observed to be somewhat as expected (Fig. 15). With 
a decrease in accuracy (an increase in Mean Average Error) 
with a further prediction into the future.

For both the Microcontroller and Laptop Implemen-
tations, predictions had a clear linear increase in Mean 

Fig. 13   Teensy 4.1 Prediction vs 
Reality for [8, 40] input. Predic-
tion made for 0.25 s into the 
future. 20 Hz Sampling Rate 

Fig. 14   Change in Percent-
age Difference over number 
of future predictions for Small 
Models on PC and Teensy 
Microcontroller, and Large 
Model on Laptop. 1 Sam-
ple = 50 ms
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Average Error for data predicted further into the future. 
Whilst the Laptop Implementation produced results of a 
higher overall accuracy than the ESP32, improvements to the 
model and usage of the Teensy 4.1 were enough to produce 
similar or superior results despite the considerable dispar-
ity in processing power. It is possible this may be due to 
reaching a limit in the current method’s effectiveness where 
further processing power does not provide additional benefit.

In summary, there is some feasibility in implementing AI 
Prediction systems in Microcontrollers, although they are 
inflexible when presented with situations they have not been 
trained for or otherwise anomalous data. For a Low-Cost 
Implementation, while likely would not be suitable in situ-
ations where high precision is a necessity, they could have 
use as providing a general guide for the likely path of a user 
and is worthy of study as to such potential implementations 
within future work. In Effect, with this method a small and 
inexpensive onboard microcontroller is capable of achieving 
very accurate predictions that are similar or greater than that 
of more powerful devices, thereby removing the requirement 
of expensive tethered components.

As Observed from [39], p. 79]’s review of exoskeleton 
model implementations many models had a temporally 
small output window, with many looking 50–100 ms into 
the future at most, as opposed to this model’s theoretical 
maximum of 1 s into the future. For example, [40] used IR 
Camera Data from 9 optical marks collected at 100 Hz and 
three EMG Electrodes collecting data at 2000 Hz spread 

across all joints, were applied as inputs to separate LSTM 
input layers before being concatenated, and fed to a fully 
connected network trained for 200 Epochs.

This system predicted only 50 ms into the future, but 
achieved accurate results, with RMSE Means of 0.464 
Degrees, or an average percentage different of about 1.54% 
(across a ~ 30-degree variation). Similar papers such as [29], 
and [25] similarly involve knee-angle predicting LSTM’s, 
achieving accuracies of 1.104 and 5.22 degrees for predict-
ing 60 ms and 1 time-step respectively into the future.

These examples did not run upon microcontrollers, as 
such, when referring to examples of microcontroller-run 
models with referenced prediction accuracies, [23] used an 
STM32f407 and sampled IMU and EMG data at 100 Hz, 
using an RNN to predict up to 50 ms into the future with an 
error of ~ 2.93 degrees (~ 4% error). [20] meanwhile used a 
size 20 input of IMU data from the shank and foot, into a 
CNN model with two CNN layers, and was deployed onto 
an ESP32 Microcontroller. A Comparison is seen in Table 2.

In general, the exoskeleton control system produced here 
has similar results to that of other implementations, this 
model was designed to be capable of much higher depths 
of prediction. Over shorter prediction depths, the accuracy 
of the model was on average superior, for example, a pre-
diction of 150 ms into the future as was used to control the 
motor resulted in a Mean Average Error of ~ 2.5%. This was 
achieved despite the far lower sampling rate of 20 Hz and 
computationally smaller model.

Fig. 15   Comparing Percentage 
Differences for the best Micro-
controller, and Laptop Imple-
mentations. 1 Sample = 50 ms

Table 2   Other examples of Knee Angle Tracking using Microcontroller-Loaded Models

Work Input Type Samp. Rate Input Size Processor Model Type Model Size Output Size Pred. Depth MAE (est.)

This One Pot/IMU 20 Hz 40 Teensy 4.1 LSTM 64,32 20 50–1000 ms  ~ 5.44%
[22] IMU/EMG 100 Hz 28/20 STM32 RNN 28/20, 32, 16 1 50 ms  ~ 4%
[19] IMU Unk 20 ESP32 CNN 128, 64 10 20 ms to 200 ms  ~ 3.75%
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In effect, the model created within this paper both capa-
ble of predicting further into the future than many similar 
implementations, and when comparing within the prediction 
ranges of these models, achieved similar or superior Mean 
Average Error percentages.

The most prominent avenue for future work would be 
the combination of this prediction system with an actuator 
control system. Overcoming this current theoretical limita-
tion would allow the system’s functionality to be judged in 
physical implementation, and the difference between theo-
retical prediction and reality measured. This implementation 
is currently ongoing.
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