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Abstract—EEG signals exhibit non-stationary 
characteristics, particularly across different subjects, which 
presents significant challenges in the precise classification 
of mental workload levels when applying a trained model to 
new subjects. Domain adaptation techniques have shown 
effectiveness in enhancing the accuracy of cross-subject 
classification. However, current state-of-the-art methods for 
cross-subject mental workload classification primarily focus 
on global domain adaptation, which may lack fine-grained 
information and result in ambiguous classification 
boundaries. We proposed a novel approach called deep 
subdomain adaptation network with class confusion loss 
(DSAN-CCL) to enhance the performance of cross-subject 
mental workload classification. DSAN-CCL utilizes the local 
maximum mean discrepancy to align the feature 
distributions between the source domain and the target 
domain for each mental workload category. Moreover, the 
class confusion matrix was constructed by the product of the 
weighted class probabilities (class probabilities predicted by 
the label classifier) and the transpose of the class 
probabilities. The loss for maximizing diagonal elements and 
minimizing non-diagonal elements of the class confusion 
matrix was added to increase the credibility of pseudo-
labels, thus improving the transfer performance. The 
proposed DSAN-CCL method was validated on two datasets, 
and the results indicate a significant improvement of 3~10 
percentage points compared to state-of-the-art domain 
adaptation methods. In addition, our proposed method is not 
dependent on a specific feature extractor. It can be replaced 
by any other feature extractor to fit new applications. This 
makes our approach universal to cross-domain 
classification problems. 
 

Index Terms— Deep Subdomain Adaptation Network, 
EEG, Brain Computer Interface, Mental Workload, Deep 
Learning, Cross-Subject Classification. 

I. INTRODUCTION 
ENTAL workload (MW) describes the amount of 
psychological and cognitive effort required to 
perform a specific task or activity [1], [2]. Too low 

MW might cause boredom, lack of desire, inattention, and 
blunders. Too high MW might impair a person's decision-
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making capability and work efficiency, as well as lead to 
physical and mental health issues [3]. Therefore, it is crucial to 
recognize MW accurately so as to enhance work efficiency, 
lower error rates, and improve personal health [4]. 

When assessing the MW state, subjective and objective 
measurements are commonly employed. Subjective 
measurements commonly involve the use of questionnaires [5], 
or direct communication between researchers and subjects [6]. 
On the other hand, objective measurements rely on 
physiological signals such as electroencephalography (EEG) 
[7], electrocardiography (ECG) [8], and functional near-
infrared spectroscopy (fNIRS) [9]. Objective measurements are 
considered more reliable and accurate as they are based on 
biological indicators rather than subjective perceptions. Among 
these physiological signals, EEG is particularly favored by 
researchers due to its excellent temporal resolution, safety, and 
cost-effectiveness. 

Recent research [10], [11], [12] shows that deep learning 
models outperform traditional machine learning methods, such 
as k-nearest neighbors [13], random forest [14], and support 
vector machine [15], in the within-subject MW classification. 
In the studies involving cross-subject MW recognition, inter-
subject variability in EEG data poses a challenge to accurate 
recognition. The application of subject-specific models to new 
subjects could potentially result in a reduction in recognition 
accuracy for the model. To improve the generalizability of the 
model in real-world situations, it is advisable to create MW 
recognition models that are suitable for diverse subjects. 

Domain adaptation (DA) approaches may be an effective 
way to address the challenge of the low generalization to new 
subjects, which adapts the learned knowledge (source domain) 
to fit new subjects (target domain). Combining adaptation 
methods and deep learning networks has grown in popularity 
due to their outstanding feature extraction capabilities. It can be 
divided into two categories. The first category is based on 
adversarial learning methods [16], [17], [18], with the core idea 
being to achieve feature transformation between source and 
target domains by training feature extractors and domain 
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classifiers in adversarial competition. Thereby, the model's 
generalization is improved in the target domain. The second 
category is the metric-based technique [19], [20], [21], which 
assesses the distance or similarity between the source and target 
domains.  

Recently, the employment of DA methods to handle the 
cross-task or cross-subject problem with EEG data has 
contributed to an increase in the performance and reliability of 
MW recognition. For example, Zhou et al. [22] and Guan et al. 
[23] attempted to assess cross-task MW by combining manually 
extracted features with traditional transfer learning methods, 
such as transfer component analysis (TCA) and joint 
distribution analysis (JDA) and achieved higher recognition 
accuracy than non-transfer learning methods. Many researchers 
have combined DA methods and deep learning networks to 
solve the MW cross-subject problem. For example, Guarneros 
et al. [24] proposed the custom domain adaptation (CDA) 
model, which embeds the maximum mean discrepancy (MMD) 
loss in the deep learning model to reduce the distributional 
differences between subjects. On this basis, Zhou et al. [25] 
proposed combining adversarial learning with MMD loss after 
feature extraction to increase the network's capacity to extract 
domain-invariant features. Yin et al. [26] used an adaptive stack 
denoising autoencoder (SDAE) to handle a cross-subject 
classification task, allowing for continuous monitoring of an 
operator's mental strain level in a collaborative human-
computer context while warning of transient performance 
decline. The above methods can effectively classify samples 
from both domains. However, these approaches consider the 
data distribution as a whole, ignoring specific distributions that 
occur within each category. This results in an insufficient and 
erroneous transfer from the source domain to the target domain. 

The transfer learning method mentioned above can 
effectively align overall feature distributions across different 
domains but lacks fine-grained information, which results in 
blurry classification boundaries. If each category is considered 
as an independent subdomain and their feature distributions are 
aligned in respective subdomains, it might result in distinct 
classification boundaries for enhancing the performance of 
cross-subject MW classification. We drew Fig. 1 to illustrate 
the differences of feature alignments achieved by global DA 
and subdomain adaptation (SA). 

We proposed a novel deep SA network that integrates CCL 

to enhance the precise and effective classification of cross-
subject MW. The DSAN-CCL model initially employs 
temporal and spatial convolutions to extract MW features from 
both the source and target domains. The alignment of 
subdomain feature distributions between the source and target 
domains is achieved using local maximum mean discrepancy 
(LMMD). CCL aims to mitigate the ambiguity of the pseudo-
labels for the data in the target domain so that the credibility of 
pseudo-labels is enhanced. The contributions of this paper are 
delineated in the following three points. 

1) We proposed the model DSAN-CCL, which processes 
EEG data without handcrafted feature engineering. DSAN-
CCL is an integration of deep learning and transfer learning, 
which benefits from excellent feature representation due to 
deep neural network and high capability of knowledge transfer 
from the source domain to the target domain due to transfer 
learning (in our case, transfer across subjects for MW 
classification). 

2) We utilized predicted probabilities for each category to 
construct class confusion matrix and minimized it to improve 
the credibility of pseudo-labels, thereby enhancing the 
effectiveness of transfer learning. 

3) The proposed method is generic and does not depend on 
a specific feature extractor. In other words, the feature extractor 
can be replaced to fit new classification scenarios. 

The rest of the paper is organized into the following 
sections. Section II covers the theoretical background, 
including the definition of the cross-subject MW recognition 
problem and the discrepancy metric. Section III details the 
proposed model DSAN-CCL. Section IV presents comparison 
results, model ablation, and discussions. Finally, a summary 
and future work are given in Section V. 

II. THEORETICAL BACKGROUND 

A. Problem Definition 
To articulate our study clearly, relevant concepts associated 

with DA are initially presented. In our study, we utilized the 
leave-one-subject-out cross-validation approach to assess the 
cross-subject MW classification for excluding potential biases 
due to the subject selection for the testing data. In each fold, the 
data from a subject are testing data, which are without category 
labels, represented as 𝐷! = {(𝑥"!)}"#$

%! . This is considered as the 
target domain. The data from the remaining subjects and their 
labels are denoted as 𝐷& = {(𝑥'&, y'&)}'#$

%" , which is considered as 
the source domain. 𝑁!  represents the number of unlabeled 
samples in the target domain, and 𝑁& represents the number of 
labelled samples in the source domain. We assume that the 
source and target domains share an identical label space and 
feature space, where y& ∈ {1,2,⋅⋅⋅, 𝐾} and 𝑥&, 𝑥! ∈ 𝑅(×*. Here, 
𝐶 represents the number of EEG channels per sample, 𝑇 stands 
for the number of data points per channel, and 𝐾 indicates the 
number of MW categories. However, there are distinct marginal 
distributions 𝑃&(𝑥&) ≠ 𝑃!(𝑥!)  and conditional distributions 
𝑃&(y&|𝑥&) ≠ 𝑃!(y!|𝑥!) . The objective is to mitigate inter-
domain bias by transferring source domain knowledge to 

 
Fig. 1. Illustration of global DA and SA. Global DA ignores fine-grained 
information during feature alignment, whereas SA aligns features 
separately for each category. 
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enhance the generalization capabilities of the model on the 
target domain. 

 

B. Discrepancy Metric 
DA tries to align the distributions between domains. MMD 

[27] is often used to quantify the difference between the source 
and target domain distributions 𝑝  and 𝑞 , measured by 
calculating the L2 of the expectation difference between the two 
distributions in a high-dimensional space. It is defined as 
follows: 

ℒMMD(𝑝, 𝑞) ≜ ∥∥𝐸+[𝜙(𝑥&)] − 𝐸,[𝜙(𝑥!)]∥∥-
. (1) 

The function 𝜙(⋅) is a high-dimensional mapping function 
that maps the extracted features into the reproducing kernel 
Hilbert space 𝐻 [28], utilizing the kernel function ℎ to measure 
the similarity between the two domains in the feature space, 
where ℎ(𝑥&, 𝑥!) = ⟨𝜙(𝑥&), 𝜙(𝑥!)⟩, ⟨⋅,⋅⟩ denotes inner product 
of vectors. the MMD metric is redefined as follows: 

ℒ//0(𝑝, 𝑞) =
∥∥
∥∥
∥ 1
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D 
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III. PROPOSED MODEL 
We employed a domain-sharing convolutional network as a 

feature extractor in the proposed model (see the model 
architecture in Fig. 2). The feature extractor consists of both 
temporal convolution and spatial convolution, as well as 
average pooling. It extracts high-level features from the 
preprocessed EEG data. Subsequently, the extracted features 
are fed into a SA module for two objectives. The primary 
objective is to predict the sample labels of either the source 

domain or target domain based on the input features. The other 
objective is to quantify the differences in feature distributions 
of the source and target domains for each category (subdomain) 
using LMMD and to minimize the inter-domain variances. 
Finally, the pseudo-labels generated by the label classifier are 
fed into the CCL module to enhance the credibility of the 
pseudo-labels for the improvement of transfer effectiveness.  
 

A. Domain-Shared Feature Extractor 
Feature extraction module is utilized for the extraction of 

EEG features. It integrates temporal and spatial convolutions to 
effectively capture spatiotemporal information in EEG signals. 
The initial layer of the module consists of a one-dimensional 
convolutional layer with 𝑛 kernels in the size of (1, 13) and the 
stride of (1, 1). This layer aids in capturing temporal-dependent 
characteristics along the temporal dimension through 
convolutional operation. The following one-dimensional 
convolutional layer functions in the spatial dimension using 𝑛 
kernels in the size of (𝐶, 1) and the stride of (1, 1) to capture 
the interaction information among the various electrode 
channels. To expedite the training process and improve the 
generalization of the model, a batch normalization layer was 
incorporated, along with Gaussian error linear units (GELU) as 
the activation function. Subsequently, an average pooling layer 
is employed to enhance feature smoothing and decrease 
computational complexity. The layer is characterized by a 
kernel size of (1, 35)  and a stride of (1, 7) . Moreover, the 
inclusion of a dropout layer (𝑑 = 0.5) serves to mitigate the 
risk of overfitting. Finally, the high-dimensional features 
obtained are flattened, and the extracted features are then 
projected into a 1024-dimensional feature space using a linear 
mapping layer. In summary, the input data (𝑥&, 𝑥!) are mapped 
to the feature 𝑓 through the feature extractor 𝐺1 with parameter 
𝜃1 , denoted as [𝑓& = 𝐺1(𝑥&; 𝜃1) , 𝑓! = 𝐺1(𝑥!; 𝜃1) ]. This 
module is intended to provide a more informative feature 
representation for subsequent processes. The parameter settings 
are summarized in Table I. 

 
Fig. 2. Model architecture of the proposed DSAN-CCL. The LMMD aligns the feature distributions between the source domain and the target domain 
for each category. The process of minimizing CCL aims to enhance the credibility of the pseudo-labels. 
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B. Label Classifier 
We used two fully connected layers (see the parameter 

settings in Table I) as the label classifier in the proposed model. 
The first layer utilizes the GELU activation function, whereas 
the output of the following layer is subjected to the SoftMax 
function to obtain the predicted label yU . The process can be 
summarized as follows: the intermediate features 𝑓, generated 
by the feature extractor, are mapped to the predicted label yU 
through the label classifier 𝐺2  utilizing the parameter 𝜃2 , 
formulated as yU 	= 𝐺2(𝑓; 𝜃2). The training process entails the 
utilization of labelled samples from the source domain and 
applying a cross-entropy loss function to ensure the prediction 
precision of the label classifier. The loss function of the label 
classifier can be formally defined as: 

ℒ345 = −
1
𝑁&
VD  
%"

'#$

D 
6

7#$

𝐼[y'& = 𝑘] log(𝐺2(𝑓; 𝜃2) = 𝑘)\ (3) 

If y'& = 𝑘, then the function 𝐼[y'& = 𝑘] takes the value of 1; 
otherwise, it takes the value of 0. 

 

C. LMMD-Based Subdomain Adaptation 
In cross-subject MW classification, current DA techniques 

treat all data as a whole, thus overlooking the nuanced 
distribution of data within individual categories. To tackle this 
issue, we employ the LMMD [29], [30] methodology, which 
considers each category data as a subdomain. LMMD offers 
more precise subdomain alignment by evaluating the kernel-
mean embedding correlation of the subdomains in Hilbert 
space. This approach enables the feature extractor to acquire 
domain-independent features and accomplish the alignment of 
subdomain feature distributions. The formula for LMMD is 
presented as： 

ℒ5//0(𝑝, 𝑞) ≜ 𝐸7 ∥∥𝐸+($)[𝜙(𝑓
&)] − 𝐸,($)[𝜙(𝑓

!)]∥∥-
. (4) 

This LMMD can be considered a weighted MMD, where 
weights {𝑤&7 , 	𝑤!7}  are assigned to the samples from each 
category. The weights {𝑤&7 , 	𝑤!7}  can be mathematically 
represented as: 

𝑤'&7 =
y'&7

∑  89&,;&<∈>" y"
&7 						𝑜𝑟					𝑤'

!7 =
y'!7

∑  89&,;&<∈>! y"
!7 (5) 

For the samples in the source domain, weights 𝑤&7 can be 
determined according to their actual labels. For the samples in 
the target domain, we used the label classifier to generate 
pseudo-labels and then weights 𝑤!7  are computed based on 
these pseudo-labels. The optimization of (4) can be achieved as 
follows: 

ℒ5//0(𝑝, 𝑞) =
1
𝐾D  

6

7#$ ∥∥
∥∥
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D  
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9&
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-

.

(6) 

The inputs of LMMD include the features 𝑓& , 𝑓!  from the 
source and target domains, the actual labels y& from the source 
domain, and the pseudo-labels yU!  generated by the label 
classifier for the samples in the target domain. Inputting this 
information into (6) yields the complete LMMD loss as follows: 

ℒ5//0(𝑝, 𝑞) =
1
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(7) 

 

D. Class Confusion Loss 
In the computation of the LMMD loss, as indicated in (7), the 

pseudo-labels generated by label classifiers are incorporated. If 
these pseudo-labels are not reliable, it leads to a decline in the 
model's performance. The quality of the pseudo-labels plays a 
critical role in determining the final model's performance. 
Hence, we proposed to utilize CCL [31] to enhance the 
credibility of the pseudo-labels and improve the overall 
performance of the transformation process. The primary 
concept posits that the confusion arising from distinct classes 
can be inherently manifested in the product of the class 
probabilities predicted by the label classifier and its transpose. 
As depicted in Fig. 3, within this procedure, the information 
entropy of samples is initially computed based on the class 
probabilities generated by the label classifier, represented by 
the following: 

𝐸(yU?) = −D  
6

7#$

yU?7 log yU?7 (8) 

yU?7 denotes the probability that the r-th sample belongs to the 
category 𝑘. According to entropy theory, a lower entropy value 
indicates a higher certainty in category prediction. To achieve 
this, the sign of the entropy will be inverted and fed into the 

TABLE I 
PARAMETER SETTINGS 

 Layer Parameter Output 
 Input Shape: (1, 𝐶a, 𝑇b) / 

Temporal 
Conv Conv_1 

Kernel: (1, 13) 
Stride: 1 
Padding: 0 

(𝑛, 𝐶, 𝑇!c) 

Spatial  
Conv Conv_2 

Kernel: (n, 1) 
Stride: 1 
Padding: 0 

(𝑛, 1, 𝑇!) 

  BatchNorm2d  
GELU  

 Average 
Pooling 

Kernel: (1, 35)  
Stride (1, 7)  
Padding: 0  
Dropout: 0.5 

(𝑛, 1,	𝑇"d) 

Projection Dense_1 Flatten 
Units: 1024 (1024, 1) 

Label 
Classifier 

Dense_2 
Units: 512  
GELU  
Dropout: 0.5 

(512, 1) 

Dense_3 Units: 3 (3, 1) 
a: 𝐶 represents the number of EEG channels per sample. b: 𝑇 stands for the 
number of data points per channel. c: 𝑇! =

#$!%
!
+ 1. d: 𝑇" =

#!$%&
'

+ 1. 
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exponential function. Ultimately, the weight of each sample can 
be expressed as: 

𝑎? =
𝐵 ⋅ (1 + exp	(−𝐸(yU?)))
∑  @
"#$ (1 + exp	(−𝐸(yU")))

(9) 

𝑎  is a weight vector. 𝐵  denotes the batch size, where the 
sample weights are multiplied by a factor of 𝐵 to ensure that the 
total weight of samples in a batch equals 𝐵, an average weight 
of 1 for each sample. The predicted class probabilities are 
multiplied by their corresponding weights to calculate weighted 
class probabilities. These weighted class probabilities are then 
multiplied by the transpose of the class probabilities to obtain 
the class confusion matrix (CCM), denoted as:  

𝐶𝐶𝑀 = 𝑌l*(𝑌l ⊙ 𝑎) (10) 
𝑌l  is a class probability matrix. ⊙ denotes the element-wise 

multiplication of the vector 𝑎 with each column of 𝑌l. 𝐶𝐶𝑀 is 
further normalized as follows: 

𝐶𝐶𝑀AB
C =

𝐶𝐶𝑀AB

∑  6
D#$ 𝐶𝐶𝑀AD

(11) 

The 𝐶𝐶𝑀C illustrates the degree of confusion for each class 
in the target domain. The values on the diagonal represent the 
probabilities of accurate classification. We aim to maximize the 
value of the elements located on the diagonal while minimizing 
the value of the remaining elements. Therefore, the CCL can be 
formulated as: 

ℒ335 =
1
𝐾 (D  

6

A#$

D 
6

B#$

𝐶𝐶𝑀AB
C −D  

6

A#$

𝐶𝐶𝑀AA
C ) (12) 

The cost function of the proposed DSAN-CCL model 
comprises three components: label classifier loss, LMMD of the 
SA and CCL. The final loss function of the proposed model is 

the sum of the losses of the above three components (see Eqs. 
(3), (7), and (12)) and is defined as: 

ℒEFEGHF𝜃1 , 𝜃2G = ℒ345 + 𝜆Iℒ5//0 + 𝜆2ℒ335 (13) 
Where 𝜆I  and 𝜆2  are denoted as the weights of ℒ5//0 and 

ℒ335 , respectively. The algorithm for the model training is 
presented in Algorithm I. 

IV. RESULTS AND DISCUSSIONS 

A. Datasets and Methods Used in Comparisons 
To validate the superiority of DSAN-CCL in the cross-

subject MW classification, two datasets were employed for 
performance evaluation: a private dataset known as the 
simulated flight experiment (SFE) [32] and a publicly available 
dataset named the multi-attribute task battery (MATB) [33] (see 
the information in Table II). For the MATB dataset, we 
performed cross-subject classification separately for each 
session (Session 1 and Session 2). Detailed descriptions of the 
dataset and preprocessing steps can be found in [14], [32], [33]. 
The experiment protocol for the private dataset was reviewed 
and approved by the Institutional Review Board of the National 
University of Singapore. A consent form was given by each 
subject before the start of the experiment. 

We selected six state-of-the-art DA methods. To ensure the 
fairness of the comparison, all methods used the same feature 
extractor (i.e., S-Net). The following is a brief summary of the 
comparative methods. 

 
Fig. 3. Illustration of the computation of CCL. In Step 1, the entropy 
weights of the samples are calculated. In Step 2, the weighted class 
probabilities are obtained by multiplying the class probability by the 
weight. The CCM is generated by multiplying the weighted class 
probabilities by the transpose of the class probabilities in Step 3. Finally, 
the CCL is minimized in Step 4 by minimizing the non-diagonal elements 
of the CCM while maximizing the diagonal elements. 
 

Algorithm 1 DSAN-CCL Model Training 
Require: the source and target samples (𝑥&, 𝑥!); learning 
rate 𝑙 = 0.0001; batchsize 𝐵 = 128; max epoch 𝑒 = 100. 
1: For (𝑒𝑝𝑜𝑐ℎ; 	𝑒𝑝𝑜𝑐ℎ ≤ 𝑒; 	𝑒𝑝𝑜𝑐ℎ ← 𝑒𝑝𝑜𝑐ℎ + 1) do 
2:     While 𝑏𝑎𝑡𝑐ℎ ≤ 	𝑏𝑎𝑡𝑐ℎ𝑒𝑠: 
3: A batch of source data {(𝑥'&, y'&)}'#$@ ; 
4: A batch of target examples {𝑥"!}"#$@ ; 
5: Capturing feature 𝑓! and 𝑓&; 
6: Computing ℒ345 by Eq. (3); 
7: Obtain the pseudo-labels {yU"!}"#$@ ; 
8: Computing ℒ335 by Eq. (12); 
9: Computing ℒ5//0 by Eq. (7); 
10: Computing ℒEFEGHF𝜃1 , 𝜃2G by Eq. (13); 
11: Update 𝜃1 , 	𝜃2;	
12: 𝑏𝑎𝑡𝑐ℎ+= 1;	
13: End 
14: End 

 

TABLE II 
INFORMATION ABOUT DATASETS 

  SFE MATB 
Number of Subjects 7 15 
Number of Classes 3 3 
Sampling Rate 256 Hz 250 Hz 
Number of Channels 62 61 
Number of Samples 540 447 
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1) Shallow-Net (S-Net) [34]: S-Net trained using only source 
domain data, serving as a benchmark in our comparisons. 

2) Custom domain adaptation (CDA) [24]: CDA integrates 
MMD with a deep learning network to reduce the differences 
between the source and target domains. 

3) Deep domain adaptation (DDA) [25]: DDA integrates 
adversarial learning with MMD to tackle the cross-subject MW 
issue. 

4) Correlation alignment (CORAL) [35]: CORAL employs 
correlation alignment to address distributional variations across 
multiple domains. 

5) Domain adversarial neural network (DANN) [36]: DANN 
employs adversarial learning to facilitate the adversarial 
training of feature extractors and domain classifiers, thereby 
extracting domain-invariant features. 

6) Conditional adversarial domain adaptation (CDAN) [37]: 
CDAN enhances DANN by incorporating multilinear 
conditional conditioning and entropy conditional conditioning 
to improve classification performance. 

7) Siamese deep domain adaptation (SDDA) [20]: SDDA 
utilizes MMD and cosine-based center loss to minimize the 
disparity between embedded features in the source and target 
domains. 

 

B. Comparison Results 
We aim to transfer between subjects (cross-subject MW 

classification). In this case, we adopted leave-one-subject-out 
cross-validation to evaluate the models. In each round, one 
subject is designated as the target domain, while the rest of the 
subjects are designated as the source domain. In the below 
results, an accuracy for subject x was obtained when this subject 

x was designated as the target domain and the rest of the 
subjects were designated as the source domain. The average 
accuracy was calculated by averaging across all subjects. 

1) Results on the SFE: Fig. 4 shows the classification results 
of the proposed method and the other compared methods 
evaluated using the SFE dataset. S-Net lacks DA and is not 
good for the cross-subject classification. It is obvious that the 
other methods with DA surpass S-Net in the classification 
performance. This indicates that DA has a positive effect on the 
cross-subject MW classification. Compared to other DA 
methods, the proposed model is considerably better, with an 
average accuracy of 70.4%, which is elevated by 8~10 
percentage points. The performance enhancement is due to the 
fact that DA is conducted separately in each subdomain in our 

 
Fig. 4. Comparison results for the dataset SFE. The colored dots 
indicate the accuracies of each subject. The black dots present average 
accuracies of each method. 

TABLE III 
 COMPARISON RESULTS FOR THE DATASET MATB_SESSION 1 (CLASSIFICATION ACCURACY IN %) 

Subject 
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean STD 

S-Net 69.35 58.39 44.52 61.30 60.63 62.42 57.97 53.24 62.19 43.18 43.85 69.80 41.39 46.98 55.26 55.36 9.12 

CDA 73.38 65.32 58.84 65.55 60.85 60.29 62.27 61.74 63.59 48.55 49.68 75.39 42.95 47.65 59.17 59.68 8.86 

DDA 72.81 61.52 65.10 66.37 59.73 61.07 63.98 57.72 65.62 42.95 47.45 74.05 48.99 45.86 55.68 59.26 9.18 

CORAL 71.59 64.65 57.94 63.98 60.89 61.52 61.74 60.18 63.53 47.43 48.77 74.27 42.73 47.87 59.51 59.11 8.63 

DANN 71.67 62.64 60.28 63.09 59.96 63.79 59.73 59.06 68.00 47.76 53.91 72.04 49.20 47.67 54.36 59.54 7.58 

CDAN 70.68 62.56 59.51 64.83 60.54 64.65 58.61 59.51 66.22 48.19 55.89 70.47 46.58 49.34 53.69 59.42 7.31 

SDDA 72.25 66.67 56.38 64.88 61.07 60.28 59.79 62.37 61.30 46.98 46.76 74.50 44.52 48.52 58.27 58.97 8.77 

Ours 71.36 74.94 77.40 65.77 60.18 72.93 77.85 72.26 69.57 46.53 49.66 78.97 62.19 50.56 57.05 65.82 10.52 

 
TABLE IV 

COMPARISON RESULTS FOR THE DATASET MATB_SESSION 2 (CLASSIFICATION ACCURACY IN %) 
Subject 

Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean STD 

S-Net 56.38  55.26  59.28  58.84  49.89  50.34  60.40  50.56  59.96  48.32  50.11  57.94  52.57  45.86  62.42  54.54  5.00  

CDA 56.82  55.93  58.36  62.67  50.78  63.31  62.48  60.70  64.88  64.65  57.42  58.61  51.60  52.13  66.00  59.09  4.82  

DDA 57.82  56.78  55.48  63.09  53.47  57.40  62.54  57.46  63.76  62.68  56.29  59.90  51.23  48.77  65.10  58.12  4.61  

CORAL 57.27  57.91  56.24  61.74  52.69 59.15  61.67  54.25  62.46  57.49  57.24  58.21  51.90  49.34  65.55  57.54  4.18  

DANN 55.60 55.27 57.40 60.40 53.24 57.67 59.06 54.36 61.07 54.59 57.66 57.86 48.32 48.55 64.47 56.37 4.18 

CDAN 55.93 55.70 58.83 63.82 52.57 61.47 59.89 56.46 61.48 55.03 58.59 59.34 50.64 47.34 61.56 57.24 4.37 

SDDA 57.49 59.66 57.27 61.52 51.45 59.67 60.85 53.91 62.47 56.38 56.15 57.72 52.80 47.67 66.67 57.45 4.60 

Ours 60.18  62.19  91.50  73.83  62.86  77.85  68.01  69.57  66.67  80.54  59.51  58.39  49.22  49.66  61.97  66.13  10.96  
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proposed model to better adapt to local properties and 
variations.  

2) Results on the MATB: Table III and Table IV illustrate the 
MW classification results on session 1 and session 2 of the 
MATB dataset. Unsurprisingly, all DA methods achieve higher 
results than S-Net. This result reiterates the advantage of DA in 
the cross-subject MW classification. The proposed method 
DSAN-CCL obtained the highest average accuracies of 65.82% 
and 66.13% for session 1 and session 2, respectively. The 
average accuracy in session 1 is 10.5 percentage points higher 
than that of S-Net and 6~7 percentage points higher than that of 
the compared methods. For session 2, it is 12 percentage points 
higher than S-Net and 7~9 percentage points higher than others. 
These results further demonstrate the superiority of DSAN-
CCL. 

3) Statistical Analysis: Wilcoxon paired signed rank test [38] 
was used to assess whether the performance difference between 
the proposed DSAN-CCL model and the compared models is 
statistically significant. The statistical analysis results show that 
DSAN-CCL is significantly better than S-Net without DA on 
the SFE dataset (p<0.01). DSAN-CCL is also better than the 
other compared models at the significance level of 0.05. When 
compared to all other methods on both sessions of the MATB 
dataset, DSAN-CCL achieved significantly better performance 
(p<0.01). 
 

C. Exploring Methodological Versatility 
To comprehensively investigate the generalizability of our 

proposed model and its association with feature extractors, we 
used two typical networks in the EEG signal classification, 
namely EEGNET [39] and Conformer [40], to substitute the 
feature extractor (S-Net) in our method. According to the 
results shown in Fig. 5, it is evident that the performance was 
considerably enhanced when SA was adopted compared to the 
case without (W/O) SA. These results suggest that our proposed 
approach is independent of particular feature extractors and can 
be seamlessly transferred to various feature extraction methods. 
This is useful for adapting to different tasks in which features 

need to be extracted by a different feature extractor, making our 
approach universal and scalable. 

D. Model Analysis 
In order to comprehensively understand the proposed 

DSAN-CCL, we conducted the following explorations using 
the public dataset MATB. First, an ablation study was 
performed to assess the influence of weighted losses on the 
model's performance. Second, a comparison among different 
pseudo-label losses was performed to indicate the effectiveness 
of the CCL. Third, the intermediate features extracted by the 
feature extractor were visualized to show their distributions and 
centers, showing the differences between the source domain 
and the target domain. Finally, quantitative distances were used 
to measure the DA performance for each method. The method 
comparison was given. 

1) Ablation Study: An ablation study was performed on both 
sessions of the MATB dataset to find out the best parameters 
(i.e., weights 𝜆I and 𝜆2) of LMMD loss and CCL in the DSAN-
CCL model. When a weight of 0 is assigned to a loss, it means 
that this loss is completely removed and does not contribute to 
the training of the DSAN-CCL model. We attempted different 
combinations of weights for these two losses and presented the 
results in Fig. 6. For example, [1, 0] stands for only adopting 
the LMMD loss. The cases [0, 0.5] and [0, 1] are excluded 
because the presence of a CCL presupposes the existence of a 
LMMD loss. The results show that the classification accuracy 
is lowest when both losses are removed from the model (see the 
case [0, 0] shown in Fig. 6). The accuracy is gradually increased 
with the increase of the weight of the LMMD loss (𝜆I). This 
trend is detrimentally influenced when the weight of the CCL 
(𝜆2 ) exceeds that of the LMMD loss. As the weight 𝜆I  is 
increased, the model elevates the emphasis on the 
distribution alignment between the source domain and the 
target domain, resulting in a reduction of cross-domain 
discrepancy. This positively improves the model's 
generalization to the target domain. The increase of the 
weight 	𝜆!  strengthens the effect to maximize one of the 
predicted class probabilities while minimizing the rest of 
them, which enhances the certainty of the model prediction. 

 
Fig. 5. Classification performance when different feature extractors are 
adopted, with or without SA. 
 

 
Fig. 6. The performance of the proposed method was evaluated with 
different weights assigned to the LMMD loss 𝜆( and CCL 𝜆). 
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However, a large value set for 	𝜆2  can reduce the model 
performance. This is because CCL forces one class to be 
dominant in the prediction, but it cannot guarantee that the 
prediction is correct. If the prediction is not correct, it poses a 
negative effect on the model training. Therefore, the model 
performance is decreased. According to the results, the model 
achieves the best performance for both sessions when 
[𝜆I , 	𝜆2] = [1, 0.5]. 

2) Pseudo-Label Loss: In our proposed method, CCL is used 
to evaluate the quality of the generated pseudo-labels. In order 
to show the superiority of CCL, two methods, pseudo-label 
entropy loss (PEL) [41] and class-margin loss (CML) [42], are 
included in the comparison. According to the results of the 
ablation study, a weight of 0.5 is optimal. Therefore, the weight 
is kept at 0.5 in the comparisons. Table V shows the comparison 
results based on the MATB dataset. CCL is the best method 
among the methods in the comparison, which is around 1~2 
percentage points higher than the other methods. The higher 
performance achieved with CCL might be due to the fact that 

CCL also takes between-class penalties into consideration. For 
the methods of PEL and CML, only within-class penalties are 
included. 

3) Feature Visualization: DA facilitates the feature extractor 
to capture distinctive domain-invariant features. We visualized 
the features to inspect the effectiveness of DA methods. The 
extracted features are highly dimensional and cannot be 
visualized directly. Therefore, we employed t-distributed 
stochastic neighborhood embedding (t-SNE) [43] to reduce the 
dimensionality of the features. We took Subject 8 from session 
1 of the dataset MATB as an example for illustration. As 
depicted in Fig. 7, the centers of each subdomain are indicated 
by symbols, and the extent of each subdomain is visualized in 
colors. When looking at the distributions of the source domain 
only, we found that there is no overlap between the categories 
for all methods. It means that all methods are able to distinguish 
each category perfectly in the source domain, showing a good 
outcome of the model learning with available labels in the 
source domain. When transferring to the target domain, all other 
methods have a relatively large overlap between the categories 
in the target domain except the proposed DSAN-CCL method. 
The proposed method has distinct boundaries among categories 
except for a certain overlap between the medium MW category 
and the high MW category. When taking both source and target 
domains into consideration, the proposed method exhibits the 
closer centers between the source domain and the target domain 
for each category. It also exhibits a better overlap between the 
domains for the same category. In contrast, other methods 
showed much less overlap and farther centers. This result 
demonstrates that the proposed method is able to better align 
features between the source domain and the target domain and 
is advantageous for the cross-subject MW classification. 

4) Distribution Discrepancy: To further illustrate the validity 
of the proposed methodology. We utilized A-distance [44], [45] 
to quantify the difference in the feature distributions between 
the source domain and the target domain. The A-distance is 
defined as 𝑑J = 2(1 − 2𝜖) . Here, 𝜖  represents the 
generalization error of a simple classifier (e.g., SVM with linear 

TABLE V  
PERFORMANCE COMPARISON AMONG PSEUDO-LABEL LOSSES (IN %) 

 Session 1 Session 2 
 CCL PEL CML CCL PEL CML 
1 71.36 66.67 70.47 60.18 61.74 60.63 
2 74.94 68.01 69.80 62.19 62.86 61.74 
3 77.40 75.84 78.08 91.50 78.30 86.35 
4 65.77 57.27 58.17 73.83 70.69 72.48 
5 60.18 61.07 61.52 62.86 58.84 59.28 
6 72.93 68.68 71.59 77.85 62.42 69.35 
7 77.85 61.97 67.79 68.01 63.31 63.76 
8 72.26 74.94 76.06 69.57 68.46 68.23 
9 69.57 74.72 75.62 66.67 65.77 66.00 
10 46.53 51.01 51.23 80.54 79.19 78.75 
11 49.66 51.90 54.36 59.51 57.05 56.82 
12 78.97 73.15 76.96 58.39 61.52 61.30 
13 62.19 61.52 61.07 49.22 49.44 51.01 
14 50.56 47.87 47.87 49.66 52.35 52.35 
15 57.05 55.48 53.91 61.97 63.98 64.65 
Mean 65.82 63.34 64.97 66.13 63.73 64.85 
STD 10.52 8.98 9.82 10.96 7.92 9.06 

 
 

 
Fig. 7. Visualization of the features extracted by the feature extractor with different DA methods. The symbols indicate the centers of each 
subdomain. The color-coded areas delineate the extent of each subdomain. 
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kernel) in the binary classification problem of distinguishing 
between source and target domains. We applied A-distance to 
the feature distributions between the source domain and the 
target domain from a global perspective, and between the 
source subdomain and the target subdomain from a subdomain 
perspective for each method, respectively. The features from 
the samples of both source and target domains are used to train 
the classifier to obtain the generalization error. For this 
quantitative metric, a smaller A-distance indicates a better 
alignment between the source domain and the target domain. 
The results are shown in Table VI and Table VII. DSAN-CCL 
obtains the smallest A-distance in both sessions, which is 
consistent with the observations of feature visualization in Fig. 
7. Once again, it demonstrates that the proposed model not only 
makes closer between the source domain and the target domain 
from the global perspective but also aligns them better for each 
subdomain. 

 

E. Limitations 
In this study, we treated the samples from all subjects as a 

sample pool for the source domain during the training. Each 
training sample was utilized equally for the training without 
considering the sample variation across the samples from 
different subjects. If the sample variation is considered during 
the training, the performance could be further improved. In 
addition, the number of subjects is not large in both of the 
datasets used in this study. It would be better to have more 
subjects used in the performance evaluation. However, to some 
extent, the evaluation of leave-one-subject-out cross-validation 
releases this limitation. Our dataset, as well as the publicly 
available datasets, are of three levels of MW, each of which has 
an equivalent number of samples. The equivalent sample size 
might not always be the case. The imbalanced situation has not 

been tested in this study. Moreover, the MW state might be 
more complex in the real world. The experiments for collecting 
both datasets used in this study do not completely simulate the 
complex real-world situation. This inevitable factor could 
introduce a confounding contribution to the assessment of the 
proposed method. We will investigate these aspects in our 
future work. 

V. CONCLUSION AND FUTURE WORK 
This study proposed a SA-based transfer learning model (i.e., 

DSAN-CCL) to classify MW levels, which achieved better 
performance in cross-subject classification. DSAN-CCL aligns 
the feature distributions between the source domain and the 
target domain separately for each category while forcing the 
feature extractor to generate more domain-invariant features, 
collectively resulting in better classification performance in the 
MW classification. CCL is used to improve the credibility level 
of pseudo-labels generated by the label classifier and to further 
improve the transfer performance of subdomain adaptation. In 
addition, our study demonstrated that it does not rely on a 
particular feature extractor and is applicable to any feature 
extractor. The feature visualization further confirmed the 
advantage of DSAN-CCL, showing more separable features 
among categories but more aligned features between the source 
domain and the target domain. 

As mentioned in the section on limitations, we will consider 
sample variation to improve the performance in the future. 
Moreover, we will utilize complementary information from 
different source domains to enhance target DA performance. 
One of the potential approaches is to employ a feature-
weighting strategy for multiple source domains. Alternatively, 
adversarial training can be used to construct a shared feature 
space that retains distinct characteristics of each source domain, 
thus preventing information loss. This might be helpful to 
accomplish good adaptation in diverse and complex situations. 
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