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A B S T R A C T

In this paper we present three neurocontrol problems where the analytic policy gradient via back-propagation
through time is used to train a simulated agent to maximise a polynomial reward function in a simulated
environment. If the environment includes terminal barriers (e.g. solid walls) which terminate the episode
whenever the agent touches them, then we show learning can get stuck in oscillating limit cycles, or local
minima. Hence we propose to use fixed-length trajectories, and change these barriers into soft barriers, which
the agent may pass through, while incurring a significant penalty cost. We demonstrate that the presence
of soft barriers can have the drawback of causing exploding learning gradients. Furthermore, the strongest
learning gradients often appear at inappropriate parts of the trajectory, where control of the system has already
been lost. When combined with modern adaptive optimisers, this combination of exploding gradients and
inappropriate learning often causes learning to grind to a halt. We propose ways to avoid these difficulties;
either by careful gradient clipping, or by smoothly truncating the gradients of the soft barriers’ polynomial
cost functions. We argue that this enables the learning algorithm to avoid exploding gradients, and also to
concentrate on the most important parts of the trajectory, as opposed to parts of the trajectory where control
has already been irreversibly lost.
1. Introduction

In neurocontrol, the aim is to train a neural network to control an
agent such that it maximises a total reward function in a given envi-
ronment (Fairbank, Prokhorov, & Alonso, 2014; Kremer & Kolen, 2001;
Prokhorov, Santiago, & Wunsch, 1995; Sarangapani, 2018; Werbos,
2018). In this sense, neurocontrol is an umbrella term which includes
specific forms of Reinforcement Learning (RL) and Adaptive Dynamic
Programming (ADP) (Prokhorov & Wunsch, 1997; Sutton & Barto,
1998; Wang, Zhang, & Liu, 2009). Compared to RL, which considers
the environment to be a black box, in neurocontrol we may assume the
environment is known and differentiable, which allows us to learn by
considering simulated trajectories of the agent; and to perform gradient
ascent on the total trajectory reward (i.e. to perform policy-gradient
learning (PGL) analytically, for example by using backpropagation
through time (BPTT) to calculate that gradient (Werbos, 2018)). In the
discrete-time neurocontrol problem, at each time step 𝑡, the agent has
state vector �⃗�𝑡 ∈ S, and uses a neural network (the ‘‘action network’’
or ‘‘policy’’) function 𝐴 to choose an action 𝑢𝑡 = 𝐴(�⃗�𝑡, �⃗�) ∈ A to take at
that time step. At each time step the agent receives a reward, or step
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E-mail address: m.fairbank@essex.ac.uk (M. Fairbank).

utility, 𝑈𝑡. Hence the total discounted reward, accumulated along the
entire trajectory, is given by

𝑅 =
𝑇𝐹−1
∑

𝑡=0
𝛾 𝑡𝑈𝑡, (1)

where 𝛾 ∈ (0, 1] is a discount factor, and 𝑇𝐹 is the final time step of the
trajectory.

In a sense, neurocontrol by PGL is the simplest and most elegant
way to address the neurocontrol problem: it is simply gradient ascent
on 𝑅 with respect to the weight vector of the neural network, �⃗�.
Compared to other ADP/RL methods, which might involve multiple
neural networks that interact with each other during training (e.g. an
actor and a critic, each with their own function-approximation limi-
tations, potentially causing divergence (Fairbank & Alonso, 2012a)),
PGL has relatively strong convergence guarantees that come associated
with gradient ascent methods; assuming smoothness of the policy-
gradient function (Fairbank, Alonso, & Prokhorov, 2013). However
in practice, we find that PGL often gets stuck. This is because the
policy-gradient function is usually not smooth (e.g. see the Oscillating
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Fig. 1. The ‘‘Oscillating Corner-Avoidance Problem’’ in a concave environment. Here
he agent has a fixed start point O, and plans to find the shortest straight-line path
hich moves north past the barrier. Analytic PGL methods will often get stuck in a limit

cycle here, with the trajectory alternating between the path OA and the path OB. In
this common situation, the policy gradient is not smooth; and changes discontinuously
as the trajectory shifts from OA to OB.

Fig. 2. Example of ‘‘Deliberate Early Suicide’’ where the agent is incentivised to
truncate the accumulated negative trajectory reward, by deliberately crashing as early
s possible. Here, to address the Oscillating Corner-Avoidance Problem shown in Fig. 1,
e have introduced penalty terms (shown as dotted lines here) to discourage the agent

rom getting close to the barrier. However in this example, reducing the action chosen,
, would mean that the trajectory traverses less distance through the dotted contour
ines of negative utility, and hence that 𝜕 𝑅∕𝜕 𝜃 is negative, indicating that the agent
ants to steer left, i.e. to deliberately crash into the barrier sooner.

Corner-Avoidance Problem in Fig. 1), it might have many local max-
ima, or because there are exploding or vanishing gradients occurring
omewhere. We look at these cases in this paper, expand on them, and
ropose solutions.

One approach to address the oscillating corner-avoidance problem
might be to introduce penalty terms for just getting close to the barrier,
ut this can lead to unexpected consequences, such as a kind of local

maximum which we call ‘‘Deliberate Early Suicide’’ (see Fig. 2). Other
solutions might be to add stochastic terms to the environment or agent’s
ehaviour, so that there is always a certain probability that the agent
lips the barrier, and thus the learning algorithm never forgets about
he barrier. In this paper we explore another solution, where, while
n the simulation stage of learning, we change the barriers into ‘‘soft
arriers’’,1 which the simulated agent can move straight through at the

expense of a penalty, and we make the trajectories have fixed length
(thus preventing early suicide).

Hence in this paper, we only consider situations where the trajectory
uration 𝑇𝐹 (in (1)) is constant; regardless of how far the agent may

penetrate through a soft barrier. Ultimately though, the agent must still
learn to avoid going through soft barriers, because after training, the
agent could potentially be acting in the real world, where crashing into
barriers is costly. Hence during training, in the simulated environment,
there must be significant penalty costs (i.e. significantly negative re-
wards 𝑈𝑡) associated with going through soft barriers; and the training
process must learn to avoid these penalties. Such a polynomial penalty
function might be given by 𝑈𝑡 = −𝐶(𝑥penet r at ion𝑡 ), where 𝑥penet r at ion𝑡 > 0 is
the perpendicular distance which the agent has penetrated the barrier
at time 𝑡, where the barrier is positioned at 𝑥penet r at ion = 0, and 𝐶(𝑥) is

1 This usually requires a software simulation of the environment to be
vailable.
 c

2 
Fig. 3. An illustration of the simple polynomial cost function (2) forming a soft barrier.
For this function, the cost starts to rise in the yellow region, before the agent even
enetrates the barrier. This aims to repel the agent before hitting the barrier. In the

region 𝑥penet r at ion < −𝑘r epel, the cost function is flat and zero (as enforced by the max
unction in (2)); giving the agent total freedom to navigate as it sees best in this flat

region of cost. The blue curve penetrates the intended soft barrier, indicating that the
cost is not infinite. But this curve can be made as steep as required by increasing the
onstants 𝑘scale or 𝑘pow.

a positive cost function defined by

𝐶(𝑥) = 𝑘scale

(

max
[

𝑥
𝑘r epel

+ 1, 0
])𝑘pow

. (2)

Here 𝑘pow ≥ 1 is the power of the polynomial penalty, and 𝑘r epel is
an argument specifying how wide we want the repulsion zone of this
barrier to be, and 𝑘scale > 0 is vertical stretch factor. See Fig. 3 for a
visualisation.

A drawback of using soft barriers, and fixed trajectory durations 𝑇𝐹 ,
is that the agent can travel arbitrarily far through the soft boundaries
imposed by (2), potentially generating hugely negative 𝑅 values. This
is especially likely at the start of learning when the neural network’s

eights have just been randomised, and trajectories are therefore ran-
omised paths.2 On consideration of (2) with 𝑘pow > 1, we know that
he gradients 𝜕 𝐶∕𝜕 𝑥 → ∞ when the penetration distance 𝑥 is large.

e find that these large gradients cause two severe problems to this
pproach:

1. They cause exploding policy gradients, which prevents learning.
2. They cause the largest gradients to appear at a point in the

trajectory where the agent has potentially already lost control
(i.e. at the point where 𝑥penet r at ion is largest), and where remedial
actions are impossible. This is illustrated most clearly later in the
paper, in Fig. 5.

It might be expected that high gradients such as those described
bove produce overly-fast learning, and the associated problems that
ome with that (e.g. non-monotonic progress of improvement in 𝑅).
o the contrary, with modern acceleration algorithms (e.g. Adam and
MSProp), we generally see extremely slow learning occurring, with a
uzzling effect of trajectories appearing to freeze up. An explanation
or this is that Adam and RMSProp both use an adaptive learning rate
hose denominator is proportional to the exponential moving average
f the squared gradient components. Therefore, when large gradients
re encountered, both algorithms develop a huge denominator which
lows down learning to a halt.

Furthermore, when ordinary gradient descent is used (with a con-
stant learning rate), then huge gradients mean that divergence can
occur resulting in infinities or NaN errors. Hence for ordinary gradient
descent, it is necessary to use a tiny learning rate. So again, learning
eases up.

In this paper we propose two methods to address the above two
oints:

2 Remember, with only soft barriers present, the trajectories are often
ompletely unconstrained to meander anywhere.
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1. We can use gradient clipping inside of the backwards propa-
gation of value gradients (𝜕 𝑅∕𝜕 ⃗𝑥) within the BPTT algorithm.
(Note that this is different from ordinary gradient clipping,
which acts on 𝜕 𝑅∕𝜕�⃗�).

2. Alternatively, we propose to smoothly truncate the gradients
of the steep-sided cost functions appearing in (2), using what
we call a ‘‘tanh wrapper’’, so that they never exhibit infinite
gradients in the limit as 𝑥penet r at ion → ∞.

Seeing as the choice to use soft barriers and fixed trajectory lengths
aises the problems described above, it might seem better instead to
se hard barriers, such that the trajectory terminates instantly when a
arrier is breached. However terminating the trajectory early like this
rings its own problems:

1. If the hard barrier is breached part-way through a time-step,
then it can distort the direction of the learning gradient, and
a careful correction involving clipping of the final time step
needs making, as described by Fairbank, Prokhorov, and Alonso
(2014).

2. With hard barriers, the 𝑇𝐹 appearing in (1) depends upon the
policy, i.e. upon �⃗�, but many learning algorithms which aim to
do analytic gradient ascent on 𝑅 do not take this dependency
into account, especially when 𝑇𝐹 is a discrete quantity. Hence
they either are not performing true gradient ascent on 𝑅; or the
surface of 𝑅 with respect to �⃗� is not smooth, i.e. not suited to
gradient ascent, resulting in the problems exemplified in Figs. 1
& 2.

The central aim of this paper is to make analytic PGL via BPTT
more robust, and applicable to a wider range of environments. The
contributions of this paper are as follows:

1. We explain how Oscillating Corner-Avoidance and Deliberate
Early Suicide can adversely affect neurocontrol in hard-barrier
environments.

2. We define useful soft-barrier functions, introduced to address the
above two problems. The soft-barrier functions proposed allow
the agent to explore in a flat zero-cost region, but provide steep
differentiable walls.

3. We explain a common cause of why BPTT algorithms can seem
to stall with their learning, when soft-barrier, fixed-length tra-
jectories are used; our answer is that exploding value gradients
(𝑑 𝑅∕𝑑 ⃗𝑥) occur at inappropriate time steps of the trajectory.

4. We propose solutions to this problem by clipping the back-
propagated gradient or by smoothly truncating the gradients of
soft-barrier cost functions, with what we call a ‘‘tanh wrapper’’.

In the rest of this paper, in Section 2 we list related work. In
Section 3 we give the main contributions of this paper, which in-
clude methods to smoothly truncate learning gradients to enable more
efficient learning in neurocontrol. In Section 4, we define a useful
lat-bottomed soft barrier function, and apply it in three experiments

that all show the benefit of using the methods proposed in this paper
to smoothly truncate gradients. These include a car-driver problem
(Section 4.1), which becomes solvable only when the tanh-wrapper or
lipped gradients are used; the classic pole-balancing problem (Sec-

tion 4.2), where we show learning becomes much more robust when
the tanh wrapper method is used; and an electrical grid-connected con-
verter tracking problem (in Section 4.3), which becomes solvable for
quadratic and quartic cost functions using the tanh-wrapper or clipped
gradients, which was not previously possible. Finally, in Section 5, we
give conclusions.

2. Related work

The use of gradient ascent to train a neural network to perform neu-
ocontrol, where the gradient is found analytically (i.e. using automatic
3 
differentiation) dates back to Werbos (1990, 2018). Analytic gradient-
ased learning methods for optimising trajectories are still an active
esearch area, (e.g. de Avila Belbute-Peres, Smith, Allen, Tenenbaum,

& Kolter, 2018; Toussaint, Allen, Smith, & Tenenbaum, 2018); and
physics engines which provide differentiable environments for the sole
urposes of ADP/RL research are being actively developed (de Avila

Belbute-Peres et al., 2018; Freeman et al., 2021; Hu et al., 2019).
Gradient ascent on the total trajectory reward 𝑅 is known as Ana-

ytic Policy Gradients by Wiedemann et al. (2023) and Freeman et al.
(2021), which in this paper we refer to as BPTT. Despite gradient ascent
offering convergence guarantees under smoothness assumptions and us-
ing appropriate learning rates, it is noted by Freeman et al. (2021) that
gradient-based learning methods such as BPTT can frequently get stuck
in local minima, and/or suffer from vanishing or exploding gradients,
ompared to model-free RL methods. In this paper we attempt identify
nd rectify a class of those obstacles.

In our work, we propose smoothly truncating the gradients of the
utility function. The benefits of this are to prevent exploding gradients,
and to make the steepest gradients appear at appropriate locations of
the trajectory. This is related to some of the ideas used by Mnih et al.
(2015) when they modified the reward-signal received when learning
to play Atari games. In their case, after any game action was taken that
ed to a change of game score, regardless of the magnitude of the game-
core change, their RL system received a truncated reward of +1 if the
ame score went up, and −1 if the game score went down. A stated
otivation for doing this was so that they could use the same learning

ates over a wide range of Atari games. But a secondary benefit of doing
his would have been to ensure that the learning gradient magnitudes
ere never too large or too small, and thus less likely to explode.

Another trick used by Mnih et al. (2015) was that they truncated
the temporal-difference error used in their Q-network’s weight up-
date, if it exceeded a certain amount. This is also reminiscent of the
clipped value-gradients we propose in this paper. In both cases though,
the methods used for the Atari-learning work was for discrete state-
spaces and scalar-based RL algorithms; whereas the work in this pa-
per is applicable to continuous-valued state-spaces and gradient-based
neurocontrol learning algorithms

Barrier functions are already known about and used in optimisation
theory. They can be added to the optimisation objective function to act
s a penalty term which tends to infinity when the solution enters into a

forbidden region. Similarly, in control theory, control barrier functions
can be used to assure that a dynamical system will never enter into an
undesirable region (Ames et al., 2019).

Exploding gradients have been studied in neural-network training in
a non-control setting, for deep and recurrent neural networks (Bengio,
Simard, & Frasconi, 1994). Resolutions have included gradient clip-
ping (Pascanu, Mikolov, & Bengio, 2013), careful weight initialisa-
tions (Glorot & Bengio, 2010; Yilmaz & Poli, 2022), target-space meth-
ods (Fairbank, Samothrakis, & Citi, 2022; Rohwer, 1990), and memory
gates (Hochreiter & Schmidhuber, 1997).

In this paper we use the term ‘‘gradient clipping’’ to specify that
earning gradients over a certain magnitude are reduced. In previous
ork we discussed ‘‘Clipping in Neurocontrol’’ (Fairbank, Prokhorov,

& Alonso, 2014) which has a different meaning, namely referring to
truncating the final time step of a trajectory into a fractional quantity;
so that it exactly reflects the fraction of the final time step in which a
hard barrier was breached. It turns out that it is necessary to performing
this fractional calculation carefully, as omitting it can radically distort
the learning gradients, and prevent the neurocontrol objective from
being achieved. A related ‘‘time-of-impact’’ consideration was identified
and solved by Hu et al. (2019) that affects the differentiability of
physics models during collisions against barriers.

Another way to truncate exploding gradients in BPTT for control
s to only backpropagate the value gradients for a fixed number (ℎ) of

trajectory time steps, as in the algorithm BPTT(ℎ). This is related to the
gradient clipping method we use. BPTT(ℎ) was shown to be particularly
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Fig. 4. Effect of tahh wrapper with 𝑘max = 3 on the soft barrier function defined in
2) with 𝑦 = 𝐶(𝑥 − 4), and 𝑘r epel = 3, 𝑘pow = 8 and 𝑘scale = 1. In this case, the argument
− 4 means barrier is defined to be at 𝑥 ≥ 4 (shown here in grey). The curve smoothly

aturates at a maximum of 𝑦 = 𝑘max. Gradients 𝑑 𝑦2∕𝑑 𝑥 → 0 as 𝑥 → ∞.

effective compared to the full BPTT method (see, e.g. Puskorius &
Feldkamp, 1994; Williams & Peng, 1990). However choosing the value
of ℎ is sometimes non-trivial, and we address that in this paper through
he introduction of soft-barrier fixed-length trajectories.

3. Proposed methods

We describe the method of smoothly truncating the gradients of
oft-barrier cost functions in Section 3.1. We explain how to apply

gradient-clipping to value gradients in Sections 3.2 and 3.3, where we
explain how to incorporate it into the back-propagation through time
algorithm.

3.1. Tanh-wrapper around cost functions

Two problems with soft-barriers are the infinite gradients associated
with them, and the fact that their gradients are largest at points
where the agent has often already irrecoverably lost control. We can
avoid these infinite gradients by smoothly truncating the magnitudes
of the steep-sided cost function. Assume the utility function includes a
egative pure cost function, like 𝑈𝑡 = −𝐶(𝑥penet r at ion), with 𝐶(𝑥) > 0 as
n (2). Then, we can modify the cost function to be smoothly truncated

by:

C𝑡 ∶= 𝑘max t anh
(

1
𝑘max

𝐶𝑡

)

(3)

We refer to (3) as a ‘‘tanh wrapper with constant 𝑘max’’ around
a step-cost function, and refer to C and 𝐶 as the wrapped and un-
wrapped step-cost functions, respectively. In this paper, we find that
using this tanh-wrapper can greatly help learning. The tanh wrapper
changes a typical polynomial cost function from being an unbound
function into a bound one, since (3) ensures that C𝑡 < 𝑘max; and one

here the unbound gradients are removed. In the region 𝑥 ≤ 0, the
riginal step-cost function is largely unaffected. But the function C
moothly saturates at the asymptote 𝑦 = 𝑘max (and with zero gradient)
s 𝐶𝑡 → ∞. Fig. 4 illustrates this behaviour, for a soft-barrier function,
ith tanh-wrapper constant 𝑘max = 3.

The choice of t anh in (3) is probably not the only option available
o achieve what we want; however, the t anh function was chosen for
he following desirable properties:

• It is smoothly bound above by an asymptote along the line 𝑦 = 1.
• Its derivative at 𝑥 = 0 is 1. This means that if 0 ≤ 𝐶𝑡 ≪ 𝑘max in

(3), then we have C𝑡 ≈ 𝐶𝑡.
• Because we assume 𝐶𝑡 ≥ 0, we only need consider the positive

domain of the t anh function.
• The function t anh and its derivatives are readily available in

neural-network software libraries.
4 
The effect of the tanh-wrapper on a soft-barrier cost function in a
2D navigable environment is illustrated in Fig. 5. This figure highlights
how the tanh-wrapper makes the learning algorithm concentrate on the
most important parts of the trajectory for successful navigation.

3.2. Back-propagation through time algorithm for control

To solve the neurocontrol problem, we aim to maximise 𝑅 in (1)
with respect to �⃗� in the action network. We can achieve this by an
iterative gradient-ascent weight update:

𝛥�⃗� = 𝛼
𝜕 𝑅(�⃗�0, �⃗�)

𝜕�⃗�
(4)

for some small positive learning rate 𝛼. Gradient ascent will naturally
find local maxima of 𝑅(�⃗�0, �⃗�), and has good convergence properties
when the surface 𝑅(�⃗�0, �⃗�) is smooth with respect to �⃗� and has an upper
bound.

At each time step, when the agent chooses action 𝑢𝑡 from state �⃗�𝑡,
e assume the environment applies a known differentiable function 𝑓 ,
hich takes the agent to the next state according to

�⃗�𝑡+1 = 𝑓 (�⃗�𝑡, ⃗𝑢𝑡), (5)

and gives it an immediate step reward, or utility, 𝑈𝑡, given by the
function 𝑈𝑡 = 𝑈 (�⃗�𝑡, ⃗𝑢𝑡). The agent keeps moving, forming a trajectory
of states (�⃗�0, ⃗𝑥1,… , ⃗𝑥𝑇𝐹 ), until the final time step 𝑡 = 𝑇𝐹 is reached.

For our purposes, we assume that the functions 𝑓 (�⃗� , ⃗𝑢), 𝑈 (�⃗� , ⃗𝑢)
and 𝐴(�⃗� , �⃗�) are known and differentiable, so that the gradient 𝜕 𝑅∕𝜕�⃗�
can be computed analytically. The assumption on differentiable func-
tions is not a strong limitation, as methods exist to allow effective
non-differentiable training for neurocontrol (e.g. Prokhorov, 2006).

The back-propagation through time equations (Werbos, 1990), which
are used to calculate 𝜕 𝑅∕𝜕�⃗�, can be implemented easily with modern
utomatic-differentiation packages. However we derive them explicitly
ere.

The total trajectory reward 𝑅(�⃗�0, �⃗�) = ∑𝑇𝐹−1
𝑡=0 𝛾 𝑡𝑈𝑡 can be written

ecursively as

𝑅(�⃗� , �⃗�) = 𝑈 (�⃗�, 𝐴(�⃗� , �⃗�)) + 𝛾 𝑅(𝑓 (�⃗�, 𝐴(�⃗� , �⃗�)), �⃗�) (6)

with 𝑅(�⃗�𝑇𝐹 , �⃗�) = 0 at the final time step.
To calculate the gradient of (6) with respect to �⃗�, we differentiate

using the chain rule:
(

𝜕 𝑅
𝜕�⃗�

)

𝑡
=
(

𝜕
𝜕�⃗�

(𝑈 (�⃗�, 𝐴(�⃗� , �⃗�)) + 𝛾 𝑅(𝑓 (�⃗�, 𝐴(�⃗� , �⃗�)), �⃗�))
)

𝑡

=
(

𝜕 𝐴
𝜕�⃗�

)

𝑡

((

𝜕 𝑈
𝜕 ⃗𝑢

)

𝑡
+ 𝛾

(

𝜕 𝑓
𝜕 ⃗𝑢

)

𝑡

(

𝜕 𝑅
𝜕 ⃗𝑥

)

𝑡+1

)

+ 𝛾
(

𝜕 𝑅
𝜕�⃗�

)

𝑡+1

In the notation used in the equation above, parentheses with a
subscripted 𝑡 indicates that the partial derivatives are all evaluated at
the quantities �⃗�𝑡 and 𝑢𝑡 associated with the time step 𝑡. When a vector
is differentiated with respect to another vector, e.g. 𝜕 𝑓∕𝜕 ⃗𝑢, this denotes
the transpose of the usual Jacobian notation.

Expanding this recursion gives,
(

𝜕 𝑅
𝜕�⃗�

)

0
=

𝑇𝐹−1
∑

𝑡=0
𝛾 𝑡
(

𝜕 𝐴
𝜕�⃗�

)

𝑡

((

𝜕 𝑈
𝜕 ⃗𝑢

)

𝑡
+
(

𝜕 𝑓
𝜕 ⃗𝑢

)

𝑡

(

𝜕 𝑅
𝜕 ⃗𝑥

)

𝑡+1

)

(7)

This equation refers to the quantity 𝜕 𝑅∕𝜕 ⃗𝑥 which can be found
recursively by differentiating (6) and using the chain rule, giving

(

𝜕 𝑅
𝜕 ⃗𝑥

)

𝑡
=

⎧

⎪

⎨

⎪

⎩

(

𝐷 𝑈
𝐷 ⃗𝑥

)

𝑡
+ 𝛾

(

𝐷 𝑓
𝐷 ⃗𝑥

)

𝑡

(

𝜕 𝑅
𝜕 ⃗𝑥

)

𝑡+1
if 𝑡 < 𝑇𝐹

0⃗ if 𝑡 = 𝑇𝐹
(8)

where 𝐷
𝐷 ⃗𝑥 is shorthand for

𝐷 ≡ 𝜕 + 𝜕 𝐴 𝜕 . (9)

𝐷 ⃗𝑥 𝜕 ⃗𝑥 𝜕 ⃗𝑥 𝜕 ⃗𝑢
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Fig. 5. How the cost-function’s gradients are affected by the tanh wrapper in a navigable environment. In these examples, an agent with state �⃗� = (𝑥, 𝑦) explores a 2D plane. A
soft-barrier function 𝐶(𝑥penet r at ion) is used following (2), where 𝑥penet r at ion is the perpendicular distance that the agent �⃗� penetrates beyond the red sides of the white curved road,
nd 𝑘r epel = (r oad widt h)∕4, 𝑘pow = 8 and 𝑘scale = 1. The cyan arrows give the direction of 𝜕 𝐶∕𝜕 ⃗𝑥. These arrows are drawn with magnitudes log(|𝜕 𝐶∕𝜕 ⃗𝑥| + 1). Note that all arrows

with negligible magnitude, including all arrows on the white road, are not drawn. In the left figure, without the tanh wrapper, the gradient arrows are huge in inappropriate
locations of the trajectory, making the learning algorithm concentrate most on those time steps with the largest arrows. This is analogous to trying to stop a car from falling off
 steep-sided mountain road, by concentrating most on correcting those steering actions taken after the car has already departed the road; which is obviously a terrible strategy

for improvement. Due to the log scale used, the largest arrow drawn dwarfs all other arrows in true magnitude. In the right-hand diagram, with the tanh wrapper, C is used in
lace of 𝐶, and the gradient arrows are largest, and give the most significant learning, at the most relevant time steps for steering; and also avoid exploding gradient magnitudes.
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Eq. (8) can be understood to be backpropagating the quantity
(

𝜕 𝑅
𝜕 ⃗𝑥

)

𝑡+1
through the action network, model and cost functions to obtain

(

𝜕 𝑅
𝜕 ⃗𝑥

)

𝑡
, and giving the BPTT algorithm its name.

3.3. Using gradient clipping with back-propagation through time

Suppose we have a clipping function clip𝜖(𝑎) which clips the magni-
tude (or largest components) of a vector 𝑎 to be bounded above by 𝜖.
Although there are two possibilities here for implementing this function
(clip-by-magnitude or clip-by-component), we only concentrate on the
former in this paper:

clip𝜖(𝑎) =
{

𝑎 if |𝑎| < 𝜖
𝜖 ⃗𝑎∕|𝑎| Otherwise

(10)

In the most obvious approach, we could apply gradient clipping to
he accumulated trajectory weight update, by modifying the learning
q. (4) into:

𝛥�⃗� = 𝛼clip𝜖

(

𝜕 𝑅(�⃗�0, �⃗�)
𝜕�⃗�

)

(11)

However, an alternative, which is more targeted for BPTT, is to put
the clipping around the 𝜕 𝑅

𝜕 ⃗𝑥 recursion, by changing (8) to:
(

𝜕 𝑅
𝜕 ⃗𝑥

)

𝑡
= clip𝜖

⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

(

𝐷 𝑈
𝐷 ⃗𝑥

)

𝑡
+ 𝛾

(

𝐷 𝑓
𝐷 ⃗𝑥

)

𝑡

(

𝜕 𝑅
𝜕 ⃗𝑥

)

𝑡+1
if 𝑡 < 𝑇𝐹

0⃗ if 𝑡 = 𝑇𝐹 .

⎞

⎟

⎟

⎟

⎠

. (12)

If training batches were being used, then (12) would be applied sepa-
ately to each trajectory within the batch.

We find that clipping by (12) shows superior performance compared
o (11) in the experiments of Section 4. A reason for this improve-
ent is because if the cost function produces the largest gradients at

nappropriate time steps of the trajectory (such as time steps when the
control of the agent has already been irrecoverably lost), then when
Eq. (11) is used, those time steps with largest gradients will dominate
he learning gradient after magnitude clipping; and the gradients at the
ime-steps which are important will be dwarfed to almost zero. Hence
he irrecoverable time steps will dominate in the calculation of 𝜕 𝑅∕𝜕�⃗�.
n contrast, the clipping method (12) will still back-propagate gradients

from those irrecoverable time-steps, but it will never allow them to
dominate the whole gradient calculation of 𝜕 𝑅∕𝜕�⃗�.

It should be noted that gradient clipping via (12) is actually a cor-
ruption of the true BPTT computation given by (7) and (8); hence this
5 
form of clipping does not yield true ascent on 𝑅. This is a theoretical
drawback of this method, although in practice the method works well
in the experiments of Section 4. This theoretical drawback is in contrast
o the tanh-wrapper method, which does produce true gradient ascent.
his can be understood because the tanh-wrapper method is merely
eplacing Eq. (1) by something like 𝑅 =

∑

𝑡 𝛾
𝑡 t anh(−𝐶𝑡); and then

gradient ascent takes place on that quantity by (4) using the exact
erivative calculations.

4. Experiments

We describe three simulated environments: car driving, pole bal-
ancing and a grid-connected converter control task. Since in all cases,
trajectory length 𝑇𝐹 is fixed and finite, we use discount factor 𝛾 = 1.

In all our experiments, the action network used is a multi-layer per-
ceptron (MLP) with tanh activation functions on every layer (including
the output layer). While the number of inputs and outputs the MLP
has is problem dependent, in all experiments there were two hidden
layers of 6 nodes each (with all short-cut connections present). The
tanh activation function on the final layer restricts the magnitude of
each component of the action vector 𝑢 to be less than 1.

Shading in neural-network training graphs represents the 95% con-
idence intervals for the mean of multiple training trials.

4.1. Car driving experiment

In this experiment we propose a simplified driving-agent physics
odel. This environment is purposefully as simple as possible, with a
erfectly circular track, which is sufficient to demonstrate the learning
ifficulties addressed by this paper. The car moves on the x-y plane,
ith state vector �⃗� ∶= (𝑥, 𝑦, 𝜃). The car moves in the direction 𝜃, and

onstant speed 𝑣car = 1. There is no accelerator control for the car; this
s a fixed-speed driving problem.

At each time step, the agent chooses a steering action 𝑢 = 𝑎 ∈ [−1, 1].
The environment’s model function (5) is described by the update:
⎛

⎜

⎜

⎝

𝑥
𝑦
𝜃

⎞

⎟

⎟

⎠

←
⎛

⎜

⎜

⎝

𝑥
𝑦
𝜃

⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

sin(𝜃)
cos(𝜃)
𝑎𝑘st eer

⎞

⎟

⎟

⎠

𝑣car𝛥𝑇 (13)

which is applied at every discrete time step 𝑡. Here 𝑘st eer = 1 is the
steering rate of the car (which indicates that the radius of the smallest
turning circle of the car is approximately 1∕𝑘 ), and 𝛥𝑇 = 0.25 s
st eer
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Fig. 6. Car on road, with cross-track error xt e. The car is the red dot, moving in
the direction of the red arrow, with length 𝑣car𝛥𝑇 , and angle 𝜃. The road centreline
(dashed arc) has radius of curvature 𝑟, and direction 𝜃r oad given by the green arrow.
The car’s position on the road has lateral displacement (cross-track error) xt e, with its
positive direction defined as shown. The amount of centreline swept out by the car’s
displacement is given by the green solid arrow, of length 𝑣car𝛥𝑇 cos(𝜃r oad − 𝜃) 𝑟

𝑟+xt e .

is the time-interval used for integrating the motion. The car starts at
state (−10, 0, 0), i.e. initially facing in the direction of the positive 𝑦-
axis, and the trajectory is expanded for 𝑇𝐹 = 240 time steps before
terminating. The road track used is a fixed circle of radius 𝑟 = 10,
with fixed ‘‘road half-width’’ r hw = 3. The two sides of the track are
shown by the two thick black circles in Fig. 8(a), which also shows
ome sample trajectories.

An action network MLP with 3 inputs, 2 hidden layers, and 1 output
was used. The input to the action network is an observation vector 𝑔(�⃗�)
defined by

𝑔(�⃗�) ∶=
(

sin(𝜃r oad − 𝜃), cos(𝜃r oad − 𝜃), xt e
r hw

)

, (14)

where xt e is the ‘‘cross track error’’, which is defined to be the perpen-
icular component of the car’s displacement vector from the centreline
f the road (see Fig. 6). 𝜃r oad is the orientation of the road at the car’s
urrent position. Hence the action network operates as follows:

𝑢𝑡 = 𝐴(𝑔(�⃗�𝑡), �⃗�) (15)

so that the output of the action network is the car’s steering angle
∈ (−1, 1).

The use of the observation vector (14) provides a car-centric set
of input variables to the action network (analogous to the information
a human driver receives when viewing the road), making the driving
decision much easier than if the input to (15) were �⃗�.

For convenience, we define a ‘‘flat-bottomed soft barrier’’ (FBSB)
function by:

𝑓FBSB(𝑥, 𝑘widt h, 𝑘pow) ∶= max
(

|𝑥|
0.5𝑘widt h

− 1, 0
)𝑘pow

(16)

This FBSB function is illustrated in Fig. 7. It creates two soft barriers:
one at 𝑥 > 𝑘widt h and the other at 𝑥 < −𝑘widt h (shown in light grey
in Fig. 7). There is a flat zone in between the two barriers, in the
range [−𝑘widt h∕2, 𝑘widt h∕2] of zero cost. This ‘‘flat bottom’’ lets the agent
explore freely within this area, without any cost. If the term 𝑘pow is
fairly high, then in practice the flat bottom approximately widens right
up to the soft barriers (as shown in Fig. 7).

The FBSB function is a special case of the previous barrier function
(2), since 𝑓FBSB(𝑥, 𝑘widt h, 𝑘pow) ≡ 𝐶(|𝑥|−𝑘widt h) with 𝑘r epel = 𝑘widt h∕2 and
𝑘scale = 1. The FBSB function is useful, e.g. for keeping an agent with
coordinate 𝑥 constrained within −𝑘widt h < 𝑥 < 𝑘widt h; for example to
keep a car between the two sides of a road.

The utility function used in this car-driving experiment (with a tanh
wrapper included here) is:
𝑈𝑡 =20 t anh

[

1
20

(

−𝑓FBSB(|xt e|, r hw, 8) − 𝑓FBSB(||𝜃r oad − 𝜃|
|

, 𝜋∕2, 8)
)]

𝛥𝑇

+𝑣car𝛥𝑇 cos(𝜃r oad − 𝜃) min
(

𝑟
𝑟 + xt e ,

|𝑟|
|𝑟| − r hw

)

(17)

where 𝑓 is defined by (16).
FBSB c

6 
Fig. 7. Illustration of the flat-bottomed soft-barrier (FBSB) function (16), with 𝑘widt h =
10 and 𝑘pow = 8. The soft-barrier is defined to be at |𝑥| ≥ 𝑘widt h, shown here in grey.

etween the grey barriers, the cost function is zero in the region |𝑥| ≤ 5 and non-zero
in the regions 5 < |𝑥| < 10. The latter regions are shown in yellow here, forming a
repelling incentive for the agent, with 𝑘r epel = 𝑘widt h∕2.

The first 𝑓FBSB penalty term in (17) aims to stop the car going off
the sides of the road. This flat-bottomed penalty term allows the car to
drive laterally across the road freely, but to encounter a steep penalty,
rising rapidly once the road sides are approached.

The second 𝑓FBSB aims to stop the car driving backwards (anti-
lockwise) around the track. The constant 𝜋∕2 allows the car to freely
rive up to 90 degrees in either direction from 𝜃r oad. But then the FBSB
enalty function for car orientation will penalise the car heavily if it
tarts facing the wrong way around the track. This term assumes that 𝜃
nd 𝜃r oad do not reset to zero when the car completes a lap of the track,
ut keep accumulating smoothly indefinitely.3

The final term in (17) rewards the distance driven (projected onto
the road’s centreline) by the car, in each time step. This term and
projection is explained in Fig. 6. This progress reward is defined to be
ositive when the car drives forwards (clockwise) around the track, and

negative if it drives backwards. Because the projection is made onto the
road’s centreline, it encourages the car to sweep out as much arc-length
as possible, which is achieved most when the car hugs the inside lane.
This encourages the car to choose a shortest-path route, aiming to drive
as many laps as possible within the given 𝑇𝐹 time steps. Without the
factor 𝑟∕(𝑟 + xt e), this would not happen. The min term in (17) is to
prevent the car from gaining any unfair benefit by taking a shortcut
cross the central barrier of the road (e.g. driving across the point (0,0),

which would instantly sweep out a massive road arc length).
In each experiment below, we trained the action network in (15) on

a single trajectory, in 10 independent trials, for 800 training iterations.
For each training iteration, BPTT was used to compute the gradient
𝜕 𝑅∕𝜕�⃗� on the whole trajectory, and then this gradient was applied as a
weight update (and accelerated as appropriate) by Adam (with learning
ate 0.001).

4.1.1. Car-driver results (without gradient clipping or utility truncation)
In this initial experiment, we omitted the t anh function from (17)

(i.e. replaced the t anh in (17) by the identity function), and also omitted
ny gradient clipping. The purpose of this initial experiment, for this
ery-simple looking car driving problem, is to show the problems
hat can occur when fixed-length trajectories and soft-barriers are

combined.
The results are shown in the left-hand diagrams of Fig. 8. In

Fig. 8(a), each coloured line starting at the blue square at (−10, 0)

3 This detail is obviously relevant to the construction of (17), in that if the
car does a 360◦ spin, then it will be forever penalised by (17) until the car
an figure out how to unspin itself.
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Fig. 8. Results on car-driver problem, with and without the tanh-wrapper. Without the tanh wrapper, each car has driven off the road, but learning only makes tediously slow
progress. Learning seems to get jammed up after huge gradients explode the denominator in Adam. The trajectories seem to get stuck in a largely un-recoverable position, with
huge negative rewards. With tanh wrapper, the car learns to drive round the track as efficiently as possible (i.e. it takes the inside lane to maximise its progress). When tanh is
used, the car has learned to hug the inside lane perfectly (upper diagram), and learning is stable and robust.
l
u
d

shows a trajectory produced by an individual trial. The corresponding
oloured curves in Fig. 8(b) show the learning progress as measured by

versus training iteration, for that particular trial.
From this we can see that, without the tanh-wrapper, no individual

trial solves the task. In each case, the total rewards obtained are hugely
negative, and learning progress is minimal (according to Fig. 8(b) left);
but in each case, the corresponding trajectories shown (in Fig. 8(a) left)
how the car either driving off the road, or getting stuck to the sides of
he road.

For the trajectories in Fig. 8(a) (left) that do not show tangled loops,
it is at first very puzzling why those trajectories have not been by bent
by continuous deformation (and monotonic upward progress on 𝑅) into
trajectories that hug the inner lane tighter, as this is exactly what the
gradient-ascent on 𝑅 (via the BPTT + Adam iterative weight update)
is defined to do. It seemed as if these trajectories are stuck to the
outside of the track by a mysterious ‘‘glue’’. The explanation for this
puzzling behaviour is because the large gradients encountered earlier
on in learning have caused the denominator in Adam to explode and
thus learning to grind to a virtual halt.

4.1.2. Car driver results (with tanh-wrapper)
In this experiment we show what happens when the tanh-wrapper

in (17) is included. In this case, results are much better, and are shown
n the right-hand diagrams of Fig. 8.
7 
This shows all 10 trials working well. In each case the reward
increases monotonically, upwards to roughly the same level. Also, in
each case, the car has learned to hug the inside lane to make maximum
track progression.

Comparison between the rewards attained in Fig. 8(b) between the
eft and right graphs is not directly possible, because the cost function
sed is different between them (i.e. one has a tanh in it and the other
oes not).

Hence, Fig. 9 is provided to verify the effect of the tanh-wrapper
using a more objective measurement, i.e. how far the car has driven
around the track in each case. This shows that the tanh wrapper enables
the problem to be solved consistently, and without it, it is virtually
impossible.

We also show results in Fig. 9 with a different optimiser, namely
RPROP by Riedmiller and Braun (1993). RPROP does not have a
denominator like Adam does which grows hugely when gradients ex-
ploded. Instead, RPROP’s acceleration rate is sensitive to the rapidity
with which individual components of 𝜕 𝑅∕𝜕�⃗� flip signs, over each
different training iteration.

The results show that RPROP also benefits from using the tanh-
wrapper. This indicates that the problem is not merely the large de-
nominators that were growing in Adam. A key explanation for this is
that the locations of the largest value-gradients are in unhelpful places
(as illustrated in Fig. 5), and these dominate the learning gradients.
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Fig. 9. Car driving problem: Training the network with and without the tanh wrapper around the cost functions, with two different optimisers (Adam and RPROP). Results show
that in both cases, the tanh wrapper seems to help a lot.
Fig. 10. A comparison of clipping with 𝜕 𝑅∕𝜕�⃗� versus clipping with 𝜕 𝑅∕𝜕 ⃗𝑥, in the car-driver problem. These graphs show that the latter clipping method is much better, i.e. it
makes learning feasible; whereas the other clipping method (11) does not.
c
r

𝜖

4.1.3. Car driver with gradient clipping
The results for using gradient clipping are shown in Fig. 10, which

ompares the effectiveness of clipping on the backpropagated value
radient 𝜕 𝑅∕𝜕 ⃗𝑥 via (12), versus the effectiveness of clipping on 𝜕 𝑅∕𝜕�⃗�
y (11). The results show that the former method is robust over a wide
ange of clipping parameters 𝜖 ∈ {0.01, 0.1, 1, 10, 100}, but the latter
ethod performs significantly worse in all cases of 𝜖. This is consistent
ith the explanation given in the penultimate paragraph of Section 3.3.

4.1.4. Magnitudes of learning gradients during training
Fig. 11 shows how the magnitude of the 𝜕 𝑅∕𝜕�⃗� vector is reduced

uring training when either the tanh-wrapper, or the 𝜕 𝑅∕𝜕 ⃗𝑥 gradient-
lipping method (with 𝜖 = 0.1), is used. This figure shows the huge
earning gradients that can arise with soft-barriers, and how these
re reduced by many orders of magnitude by the tanh-wrapper and
radient clipping.

4.1.5. Car driver results on non-circular track
To illustrate a more complicated track shape, we consider a track

with centreline given by the polar equation:

𝑟′ = 8 + 4𝑐 𝑜𝑠(2𝜃′) (18)

and a road half-width r hw = 1, where (𝑟′, 𝜃′) are standard polar
coordinates. See Fig. 12 for an illustration of this track. In this problem
the car starts from position (−12, 0), and it needs to learn to swap sides
of the track during the chicane bend, in order to maximise the distance
driven within the 240 time steps.

The neural input vector given by (14) was augmented to include
an extra input, t anh(6∕𝑟), where 𝑟 is the signed radius of curvature of
the track (defined to be positive when the road bends to the right;
 R

8 
Fig. 11. Gradient magnitudes during learning for the car-driving problem.

and negative when it bends to the left) taken at the position of the
ar, and the t anh(6∕𝑟) function is used to rescale this input into the
ange [−1, 1]. This extra input lets the neural network know which

bend of the track the car is currently at, so that it can change lanes
as appropriate. The hidden layers and outputs of the neural network,
and all other experimental parameters, remained unchanged from the
previous experiments.

We trained a neural network with gradient clipping by (12), with
= 1, and also with the tanh wrapper, with the gradient clipping

method working significantly better than the tanh wrapper method.
esults of 10 independent trials are shown in Fig. 12.
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Fig. 12. Results for a non-circular track. Left diagram shows trajectories from 10 trials, trained with gradient clipping with 𝜖 = 1. Each trajectory learns to find an approximation
to the shortest path around the track and through the chicane bends. Right diagram shows that the results for gradient clipping were consistent, but the results with the tanh
wrapper were not as good.
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4.2. Pole-balancing experiment

We consider the classic cart–pole problem, defined by Florian
(2007). This problem has been extensively studied in the control-theory
and reinforcement learning literature (Barto, Sutton, & Anderson, 1983;
Sutton & Barto, 1998). Prior solutions using BPTT/ADP were pro-
ided by Fairbank, Prokhorov, and Alonso (2014), Lendaris and Paintz

(1997), Schaefer, Udluft, and Zimmermann (2007) and Wiedemann
t al. (2023).

In this classic problem, the cart’s position is 𝑥 and its pole angle
s 𝜃. The system has Markovian state vector �⃗� = (𝑥, �̇�, 𝜃 , �̇�). In the
onventional version of this problem, with hard-barriers, the control
ontinues until either the final time-step 𝑇𝐹 = 300 is reached (indicating
uccess), or until the pole topples such that |𝜃| > 𝜋∕15, or the cart runs
ff the end of its track such that |𝑥| > 2. However, in our experiment,
ince soft-barriers are required, we remove these two latter constraints
uring training, such that the trajectory is run for 𝑇𝐹 = 300 time
teps whatever happens; and allow 𝜃 and 𝑥 to grow arbitrarily large
n magnitude.4 To provide a fair comparison to hard barriers in our
esults, we report on how long the trajectory would have lasted before

violating |𝑥| > 2 or |𝜃| > 𝜋∕15 or 𝑇𝐹 = 300.
For the cart–pole differentiable physics, we follow the equations

given by Florian (2007). The physics is integrated with the Euler
method with time-step duration 𝛥𝑇 = 0.002s. The neural-network con-
troller has 4 inputs, corresponding to the 4 components of �⃗� (without
any rescaling), and 1 output with a t anh activation function to ensure
that the control action 𝑢 ∈ [−1, 1]. The control action is rescaled by
a factor of 10, giving a maximum force magnitude on the cart of 10
Newtons. For each weight update of BPTT, we averaged the weight
update over 4 full trajectories from a set of 4 fixed random starting
positions.

For the cart–pole problem, much of the existing RL literature uses
 discounted total reward, with each step reward given by:

𝑈𝑡 =

{

0 if |𝜃𝑡| < 𝜋∕15 and |𝑥𝑡| < 2
−1 Otherwise

(19)

The above step reward amounts to a total trajectory reward of
= −𝛾𝑇 , where 𝑇 is the total balancing duration, and 𝛾 ∈ (0, 1)

is the discount factor. In RL and critic-based ADP algorithms, it is a
ritic which closes the loop between the approximate reward and the
ontroller since (19) is not differentiable to enable application of BPTT.

4 Note that this allows the pole to swing below the horizontal. Also, we let
he angle 𝜃 accumulate without bound (i.e. with |𝜃| > 𝜋 if the pole swings
eyond one revolution).
9 
Fig. 13. Variations in cart–pole utility functions, with 𝑘max = 1. Only the dependence
on 𝑥 is shown here, with fixed 𝜃 = 0 for this graph.

To side-step this problem to allow BPTT to work with cart–pole,
rior publications have used a quadratic cost function of the form
𝑡 = −(𝑘1𝜃𝑡 + 𝑘2𝑥𝑡)2, (Lendaris & Paintz, 1997; Schaefer et al., 2007;

Wiedemann et al., 2023). Likewise, we also use a polynomial cost
function, however the utility function we use at time 𝑡 is:

𝑈𝑡 = −𝑘max t anh
⎛

⎜

⎜

⎜

⎝

𝑓FBSB(|𝑥𝑡|, 2, 𝑘pow) + 𝑓FBSB
(

|𝜃𝑡|,
𝜋
15 , 𝑘pow

)

𝑘max

⎞

⎟

⎟

⎟

⎠

(20)

The above two FBSB terms in (20) are defined in (16), and are an
almost-literal translation of the traditional cart–pole termination con-
ditions (i.e. |𝑥| < 2 and |𝜃| < 𝜋∕15) into FBSB functions. Also, choosing
𝑘max = 1 means that Eq. (20) can be viewed as a smoothed version of
the traditional RL cart–pole reward function, i.e. (19), as can be seen
n Fig. 13. This figure also illustrates how increasing 𝑘pow just makes

the utility function more like the square wave of (20).
Results are shown in Fig. 14. These results show that with the

 anh wrapper, or with gradient-clipping via (12), convergence to a
valid balancing solution is consistently and significantly stronger than

ithout the tanh-wrapper or gradient clipping, over a range of 𝑘pow
alues; with the gradient-clipping method being the strongest. The
esults are generally better for the lower values of 𝑘pow used, which is
resumably explained by the curves shown in Fig. 13 with lower 𝑘pow
alues having gentler gradients more suited for gradient ascent.

Even though soft-barriers were used during training, i.e. allowing
emporary violation of |𝜃| < 𝜋∕15 and |𝑥| < 2, the results reported in

Fig. 14 for those trials which show a balancing duration of 300 indicate
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Fig. 14. Results on the cart–pole problem, using step-utility function given (20), with
𝑘max = 1 and various 𝑘pow (with the tanh-wrapper removed in two of the curves plotted
here). Despite the soft-barriers, the ‘‘balancing duration’’ reported here is defined to be
the first time step 𝑡 at which |𝜃𝑡| > 𝜋∕15 or |𝑥𝑡| > 2 or 𝑡 = 𝑇𝐹 , i.e. is equivalent to a
hard-barrier criterion.

that those final trained neural networks would be classified as a success
under the original hard-barrier criteria.

4.3. Controller for a grid-connected converter

In this experiment we use the neurocontrol of a simulated electrical
grid-connected converter (GCC) control problem. At any time 𝑡, the
tate of the GCC system is �⃗�𝑡 = (𝑑𝑡, 𝑞𝑡), where 𝑑 and 𝑞 are the GGC’s
-axis and 𝑞-axis currents. The objective is to make the system solve a
racking problem, i.e. to maximise a reward function 𝑅 given by:

𝑅(�⃗�0, �⃗�) ∶= −
𝑇𝐹−1
∑

𝑡=0

|

|

�⃗�𝑡 − �⃗�∗𝑡 ||
𝑘pow (21)

where �⃗�𝑡 is the actual state of the system at time 𝑡, and �⃗�∗𝑡 = (𝑑∗𝑡 , 𝑞∗𝑡 )
s the reference (target) state of the system at time 𝑡. As before, 𝑘pow
efines the severity of the polynomial cost.

After the simulated physics of the system has been discretised (with
 sampling period of 1 ms), the system state �⃗�(𝑡) evolution equation is:

�⃗�𝑡+1 =
(

0.9242 0.3659
−0.3659 0.9242

)

�⃗�𝑡

+
(

−357.7 −68.17
68.17 −357.7

)

𝑢𝑡 +
(

335.9
−64.01

)

(22)

This state-evolution equation is equivalent to Equation 4 by Fairbank
i, Fu, Alonso, and Wunsch (2014), to 4 significant figures. 𝑢𝑡 is the

control action at time 𝑡 (a length-2 vector, with each component 𝑢𝑖

restricted to |𝑢𝑖| ≤ 1).
The action network has 4 inputs (t anh(�⃗�𝑡∕1000), t anh((�⃗�∗𝑡 − �⃗�𝑡)∕100)

nd 2 outputs (𝑢𝑡). This allows the neural network to directly control
the GCC system. All training results in this section refer to having
completed 3000 epochs of training with Adam with default learning
rate 0.001.

The trajectory duration used for training was 𝑇𝐹 = 100 time steps
(i.e. 0.1 s of real time). When training the neural network, a fixed
eference sequence �⃗�∗𝑡 was used, for 𝑡 = 0, 1,… , 𝑇𝐹 − 1, where �⃗�∗𝑡 was
hanged every 20 time steps, as shown in Fig. 15.

We define the mean absolute settling error (MASE) as the average
alue of 1

2

(

|𝑑𝑡 − 𝑑∗𝑡 | + |𝑞𝑡 − 𝑞∗𝑡 |
)

over all time-steps lying within the
second half of any of the reference plateaus along the whole trajectory
shown in Fig. 15 (i.e. over all time steps 𝑡 such that 10 ≤ (𝑡 mod 20) ≤
19). Under this metric, the tracking solution shown in Fig. 15 has a

ASE of 1.3.
 h

10 
For this experiment it was necessary to modify the tanh wrapper il-
lustrated in Fig. 4 so that it did not have an entirely horizontal plateau.

his was because in the GCC problem, when the system state �⃗� is far
rom the tracking target �⃗�∗, the horizontal plateaus of the tanh-wrapper
ose all useful gradient information. This can cause learning to cease
p in any tracking problem where even far-distant tracking objectives
till need actively seeking. This was not a problem for the previous two
xperiments, where soft barriers were used to represent hard barriers,
eyond which control of the system is already irrecoverably lost.

To address this, we use a modified tanh-wrapper system shown in
Fig. 16, which has inclined tangent half-line arms.

The straight inclined arms in Fig. 16 are implemented simply as
extra piece-wise functions, analogous to a Huber loss function (Huber,
1992). These straight arms are attached a user-chosen points A and B,
uch that they are tangent half-lines to the central curve, according to:

C(𝑥) =
⎧

⎪

⎨

⎪

⎩

𝑘max t anh
(

|𝑥|𝑘pow
𝑘max

)

if |𝑥| < 𝑥𝐵
𝑚|𝑥 − 𝑥𝐵| + 𝑦𝐵 if |𝑥| ≥ 𝑥𝐵

(23)

with 𝑥 = |�⃗�𝑡 − �⃗�∗𝑡 |, the tracking error; 𝑦𝐵 = 𝑘max𝑘hr and 𝑘hr ∈ (0, 1] is a
ser-chosen parameter.

Since the straight half-lines are defined to be tangents to the central
urve, the variables 𝑚, 𝑥𝐵 and 𝑦𝐵 in (23) are uniquely determined by

the user-choice of the single variable 𝑘hr . We refer to this single variable
choice as a height ratio. In the example curve in Fig. 16, we chose
𝑘hr = 0.99, so the angled straight lines start when the tanh curve has
eached 99% of its vertical way up towards the old asymptote. This
ave a gradient 𝑚 = 0.112 and 𝑥𝐵 = 2.82, to 3 s.f.

The action network was trained with and without the tanh-wrapper
iven by (23), for various values of 𝑘pow ∈ {1, 2, 4}, and with 𝑘max = 200.

The tanh-wrapper with angled sides was used with various values of
𝑘hr .

Results are shown in Fig. 17. Firstly, this figure shows the problem
does not appear solvable for 𝑘pow > 1 with a reasonable MASE, unless
an appropriate tanh-wrapper is used. When no tanh-wrapper is used,
the MASE shown in Fig. 17 for 𝑘pow = 4 is approximately 75. This is why
prior published work (Fairbank, Li, et al., 2014) only used 𝑘pow = 1.
However the use of an appropriate tanh-wrapper allows the solution for
𝑘pow ∈ {2, 4} (the MASE then drops to approximately 1.0 for 𝑘pow = 4).

When the tanh-wrapper with angled sides is used, the values of
𝑘hr value used are {0.9, 0.95, 0.99}; and all work well with all powers
𝑘pow. Without the angled sides though, the tanh-wrapper does not
perform well (see Fig. 17). This is because for an initially-randomised
neural network, the trajectory generated is far away from the reference
sequence shown in Fig. 15, and thus for the majority of time steps the
cost function is on the horizontal asymptote of the tanh function with
no gradient information. Having the sloping sides to the tanh function
s in Fig. 16 addresses this problem.

Having just a raw polynomial cost function (of the form of (21)),
with no tanh-wrapper at all and 𝑘pow = 4, produces gradients that
are too steep and explode/focus learning on the wrong parts of the
rajectory. This is also shown in Fig. 17, where the final MASE is

approximately 2 orders of magnitudes larger than compared to when
an appropriate tanh wrapper is used.

Gradient clipping also works well and allows the MASE to be
successfully made small in this problem, over the full range of 𝑘pow
values; as shown in Fig. 18. The graph shows the results working over
a range of 𝜖 values, with best results for the two smallest values of 𝜖
used.

5. Conclusions

In this paper we have introduced and motivated soft-barrier func-
ions, and ways to smoothly truncate their associated potentially-
nfinite gradients, to ease the learning task within neurocontrol. We
ave shown that soft barriers have some advantages over hard-barriers,
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Fig. 15. The two thick dashed curves show the reference-current trajectories (𝑑∗ , 𝑞∗)𝑡 used in GCC tracking problem. The solid curves are the trained neuro-controller behaviour.
s this is a tracking problem, the aim is for the solid curves to match the dashed curves as closely as possible (which is successfully performed here). This was trained using
pow = 1 and a tanh-wrapper with 𝑘max = 200 and 𝑘hr = 0.9.
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Fig. 16. Tanh-wrapper with angled extension. In this example, a simple quadratic
function 𝐶(𝑥) = 𝑥2 is used with a tanh wrapper with 𝑘max = 3. The function is defined
piece-wise to artificially attach the angled sloping sides (according to (23)).

in that the Oscillating Corner-Avoidance problem (Fig. 1) and Deliber-
ate Early Suicide problem (Fig. 2) are avoided with soft barriers. Soft
barriers and fixed trajectory lengths also ensure that the parameter 𝑇𝐹
appearing in (1) is constant, and so simplifies the derivative of 𝑅(�⃗�0, �⃗�)
n (1).

We have shown that without a tanh wrapper, or appropriate gra-
dient clipping via (12), simple soft-barrier environments can become
urprisingly troublesome for gradient ascent methods. A key reason to
xplain why soft-barriers are troublesome is the huge learning gradi-
nts, which causes learning to focus on the wrong steps of a trajectory
s illustrated in Fig. 5.

We have demonstrated the effectiveness of the two methods pro-
osed in this paper on the three different neurocontrol tasks. We find
hat out of the two methods, clipping of value-gradients seems to work
he most robustly, over quite a large range of clipping magnitudes.

However the gradient clipping loses the convergence guarantees of true
radient ascent. The second method, of truncating the magnitudes of
teep-sided cost functions with a tanh-wrapper, also works effectively,
nd maintains true gradient ascent, but seems to work over a narrower
ange of its hyper parameter, and it struggled with the non-circular

track experiment.
The ideas presented in this paper are applicable to environments

which naturally have soft barriers (such as a tracking problem), or
here a simulation is available of the environment which can be
djusted to include soft barriers. The introduction of soft-barriers
an potentially benefit all ADP/RL and Neurocontrol algorithms, as
ll learning algorithms could otherwise suffer from the oscillating
11 
corner-avoidance or deliberate early-suicide problems. It is anticipated
that the smooth gradient-truncation methods proposed in this paper
would mostly benefit learning algorithms that explicitly manipulate
gradients based on 𝜕 𝑅∕𝜕 ⃗𝑥, such as BPTT, Dual Heuristic Program-
ming (Prokhorov et al., 1995), and Value-Gradient Learning (Fairbank
& Alonso, 2012b) since for scalar-based value function methods (such
s Q-learning methods or TD-learning methods or HDP) simpler reward
runcation schemes are possible (Mnih et al., 2015).

For many situations, soft barriers are only possible in simulated
nvironments. It is usually not possible for an agent to travel straight
hrough a physical barrier, but in two of the simulations considered
n this paper, we have allowed that to happen. This modification is
llowed if training an agent off-line, in a simulated environment. In

some noteworthy environments through, such as a tracking problem
(like the one in Section 4.3), soft barriers are the only natural choice.

When considering future limitations of using soft-barriers, it seems
that soft-barriers may cause problems if they allow an agent to take
a shortcut through a soft-barrier wall, for example in a maze environ-
ment. In our experiments we made some effort to prevent this kind
f behaviour by letting the angles 𝜃 in the cart–pole and car-driver be
easured cumulatively, and increase beyond 2𝜋. This meant the agents

were permanently penalised if the car or pole did unwanted ‘‘shortcuts’’
through disallowed regions of the state space, e.g. no credit would be
iven if the car’s trajectory included an off-road spin followed some
ood road-following behaviour.

BPTT is supposedly one of the truly convergent ADP/RL algorithms,
yet prior work has indicated that getting convergence can be trouble-
some. For example, (Freeman et al., 2021) wrote about Analytic Policy
Gradients (i.e. BPTT) that it ‘‘does not currently produce locomotive
gaits, and instead seems prone to being trapped in local minima on the
nvironments we provide’’. Wiedemann et al. (2023) wrote that BPTT is

‘‘is prone to get trapped in local minima’’. Lendaris and Paintz (1997)
noted that getting convergence for cart pole ‘‘was tedious’’ (but they
used a critic-based ADP method which adds extra difficulty).

We have tried to make learning more robust and less dependent on
he exact design choice of the reward functions used. Other works have

used ad-hoc input vector rescalings, and reward functions to enhance
convergence. We have used the same neural network architecture for all
experiments, with minimal state-space rescalings for the input vector of
the action network. Previous work has covered ‘‘tricks of the trade’’ to
enable RL to work more robustly (Duell, Udluft, & Sterzing, 2012), and
we are confident that the tricks proposed in this paper will be useful
for the community.



M. Fairbank et al.

s

A

d
F

c
i

Neural Networks 184 (2025) 107034 
Fig. 17. Effect of using the Tanh Function on the GCC problem with different values of 𝑘pow ∈ {1, 2, 4}; results showing the MASE after 3000 training iterations (with Adam).
These results show that without any wrapper applied to the polynomial cost function, or when the tanh-wrapper with horizontal sides is used, the problem becomes very hard to
olve with a reasonable settling error when 𝑘pow ≥ 2. But when the tanh wrapper is used with angled sides, the problem is solved over the full range of 𝑘pow values.
Fig. 18. Effect of using the Gradient clipping (via (12)) on the GCC problem with different values of 𝑘pow ∈ {1, 2, 4}; results showing the MASE after 3000 training iterations (with
dam). The clipping threshold is the value of 𝜖 in (10). The results show that gradient clipping enables the problem to be solved well for the values of 𝜖 ≤ 0.01.
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