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ARTICLE INFO ABSTRACT

Communicated by Feng Bao-Feng In this work we construct novel solutions to the set-theoretical entwining Yang-Baxter equation. These solutions

are birational maps involving non-commutative dynamical variables which are elements of the Grassmann

11\/165-1?2:5 algebra of order n. The maps arise from refactorisation problems of Lax supermatrices associated to a nonlinear
15A75 Schrédinger equation. In this non-commutative setting, we construct a spectral curve associated to each of the

37J70 obtained maps using the characteristic function of its monodromy supermatrix. We find generating functions
of invariants for the entwining Yang-Baxter maps from the moduli of the spectral curves. Moreover, we show
that a hierarchy of birational entwining Yang-Baxter maps with commutative variables can be obtained by
fixing the order n of the Grassmann algebra, and we present the cases n = 1 (dual numbers) and n = 2. Then
we discuss the integrability properties, such as Lax matrices, invariants, and measure preservation, for the
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1. Introduction

The first appearances of the Yang-Baxter (YB) equation can be
traced back to the study of quantum many-body systems and exactly
solvable models in statistical mechanics [1,2]. After that, the YB equa-
tion appeared in a broad range of different fields, from quantum field
theory and quantum inverse scattering method to gauge theory, and
quantum groups. See for example [3,4], and references therein, for
an introduction and a collection of the original papers in the field.
Naturally, an intensive focus on finding and classifying solutions to the
equation followed [5,6]. Originally, the focus was on finding solutions
of the YB equation

R12R13R23 =R23R]3R12 (1)

that are linear maps R : VQV — V ® V, where V is a F-vector space.
Here, R!3, for example, denotes the action of R on the first and third
copy of V ® V ® V. The study of another class of solutions to the YB
equation was proposed by V. Drinfeld in [7], where now these solutions
are maps R : AXA — AX A and A can be any set. Such solutions
are often called set-theoretical solutions or Yang-Baxter maps, with the
latter term introduced by Veselov in [8] following [9].

A generalisation of (1) which is relevant to the current work origi-
nates in the study of quantum integrable systems (see for example [10-
12]) and is given by the following equation

512R13T23 :T23R13312 &)

* Corresponding author.

which is known as entwining YB equation. A triplet of maps S, R, T
satisfying (2) were first derived in [13], inspired by the work in [14],
and other works on constructing such maps using e.g. classical star-
triangle relations [15], symmetries of YB maps [16], or scattering of
matrix solitons [17] followed.

A plethora of works on the YB equation and its generalisations
has appeared in various physical applications in the past few decades
such as in relation to collisions of relativistic particles [18,19], knot
theory [20], geometric crystals [21], discrete dynamical systems and
soliton theory [8,22]. See also [23-25] for related classifications of such
maps. In particular, there are deep connections between the theory of
nonlinear integrable partial differential and lattice equations and YB
maps [26-31]. For example, interactions of solitons, of vector or ma-
trix generalisations of known integrable PDEs, are described by maps
for the internal degrees (polarisations) which satisfy the Yang-Baxter
equation [32-36]. Moreover, higher dimensional analogues of the YB
equation (and its entwining version), known as n-simplex equations,
is an area of active research which has gained increased popularity,
see [5,37-41] and references therein.

In recent years different types of solutions of the YB equation have
been derived from various algebraic constructions. On one hand, com-
binatorial solutions of the YB and the associated braid equation have
been produced using certain algebraic structures such as braces, racks
and quandles, see for example [42,43]. On the other hand, birational
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solutions of the YB equation have been constructed using ideas from
the theory of integrable systems. In particular, the connection between
Darboux and Béacklund transformations for integrable PDEs and YB
maps has been explored recently (see e.g. [44,45]), and it is also
relevant to the current work. Further, birational solutions to the YB
equation in non-commutative settings having been studied in, for ex-
ample, [46-52]. YB maps containing bosonic and fermionic dynamical
variables, related to a super extended integrable NLS equation, were
derived in [48] using the formalism of Grassmann algebras. Moreover,
in [53] the authors derived an extension of a YB map over Grassmann
algebras starting from the Darboux transformation associated to a super
KdV hierarchy [54], and which is linked to the discrete potential KAV
equation.

The integrability, in the sense of Liouville, of the YB maps and their
corresponding transfer maps requires the existence of sufficient number
of invariants, as well as a Poisson structure which is invariant under
the action of the map and under which all invariants commute. The
corresponding notion of integrability of maps over associative but not
necessarily commutative algebras is a challenging open problem, see
for example the review paper [55]. A step towards the understanding
of the Liouville integrability for Grassmann extended YB maps was
presented in [53] where the integrability of the Adler map over the
complex dual numbers C[0]/ (6?) was shown. The approach followed
in [53] for extensions over the dual numbers can be used in the
same way for integrable maps of other types. Indeed, recently in [56],
the integrability properties of the Somos-4 sequences over the dual
numbers were studied.

In what follows, we extend the investigation of integrability prop-
erties of maps with Grassmann variables, this time to solutions of the
entwining YB equation (2). The structure of the paper is: Section 2
introduces notation and necessary background material in relation to
the Grassmann algebra I'(n), the parametric entwining YB equation,
and the Lax triple for entwining YB maps. In Section 3 we derive
Grassmann entwining YB maps and their invariants. In Sections 4 and 5
we construct the first two members of a hierarchy of entwining YB maps
with commutative variables, and discuss their integrability properties.
Finally, in Section 6 we offer some concluding remarks in relation to
this work and discuss some directions of future work. More specifically,
the main outcomes of this work are described below:

» We derive novel birational parametric entwining YB maps starting
from Lax matrices which in the commutative limit are Darboux
transformations associated to the nonlinear Schrédinger equation.
We construct the characteristic rational functions for the mon-
odromy supermatrices associated to these maps, and we use them
to derive invariants from the moduli of the associated spectral
curves. To our knowledge, this is the first time that entwining YB
maps of this type and their associated spectral curves appear in
the literature.

We obtain entwining YB maps with commutative variables in
dimensions 8 and 16 associated to the Grassmann algebras I'(1)
and I'(2), and we present their integrability properties such as Lax
representation, invariants, and measure preservation. This new
approach can be used to obtain entwining YB maps in dimensions
2"*2 and their corresponding Lax matrices and invariants.

2. Preliminaries
2.1. Grassmann algebras

We denote by I'(n) the Grassmann algebra of order n over a field F
of characteristic zero (such as R or C). I'(n) is an associative algebra
with unit 1 and »n generators 6;, i = 1, ..., n, satisfying

66, +6;6,=0. 3

The elements of I'(n) that contain sums of products of only even (resp.
odd) number of §,’s are called even (resp. odd) and are denoted by
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I'(n), (resp. I'(n),). Even elements commute with all elements of I'(n),
while the odd elements anticommute with each other. The Grassmann
algebra I'(n), considered as a vector space, can be written as the direct
sum of I'(n), and I'(n);, namely I'(n) = I'(n)y @ I'(n);. Moreover, we
have that I'(n) has a natural Z,-grading, i.e. I'(n);I'(n); C I'(n) 4}y mod 2
and therefore I'(n), is a subalgebra of I'(n). In what follows we denote
elements of I'(n), by Latin letters, and elements of I'(n); by Greek
letters, with the exception of 4 which plays the role of the spectral
parameter and takes values in the field F. A Grassmann algebra is an
example of a superalgebra, i.e. a super vector space with a Z,-grading.
For more details on superalgebras we direct the reader to [57-59].

We denote by F*' the (k,I)-dimensional superspace consisting of
tuples of k even and / odd variables of a Grassmann algebra of order n
over I, namely

Fpl i={(x, x) | x € T(n)5, x € T(n)}}. “

In Sections 4, 5 we present examples of maps over Grassmann algebras
of order n = 1 and n = 2, respectively. Specifically, the n = 1 case is the
algebra of dual numbers (over F), where an element of the algebra is
of the form a + b9 with #> =0 and a,b € F. In the case n = 2, a generic
element of the algebra can be written in the form a + b0, + c0, + d6,0,,
with 6,, 0, satisfying (3), and with a + d6,0, € I'(2)y, b0, + c0, € I'(2),
and a,b,c,d € F.

We will be working with square matrices with elements in I'(n)
(such matrices are examples of supermatrices), of the block-form

P I
M= ,

where P, L are p X p and g X ¢ matrices with elements in I'(n),, while
I1, A are p X q and ¢ X p matrices with elements in I'(n);. We say that,
for example, P is an element of Mat,,(I'(n)y) and IT of Mat, ,(I'(n);). We
also assume that det(L) and det(P) are non-zero. We denote the set of
(p+q)X(p+q) supermatrices, such as M, by M,, .. The superdeterminant
for M € M, , is defined by:

sdet(M) = det(P — ITL™' A)det(L)™! = det(P)det(L — AP~ )™, (5)
and is multiplicative, meaning

sdet(M; M,) = sdet(M,) sdet(M,), (6)
for M|, M, € M,,. It follows that the characteristic (rational) function
Fr(k) = sdet(M — kI,,,) %)
for a matrix M € M, ,, with I,, the unit supermatrix in M, ,, is

invariant under similarity transformations M — UMU"! for U € M,
see [60], i.e.

fUMUfl(k) = fM(k), 8
which follows from (6) and the fact that sdet(U~!) = sdet(U)~!.

2.2. Parametric entwining Yang—Baxter equation

In this section we introduce a type of solutions of the entwining YB
equation that depend on certain parameters in F. For consistency we
also assume that A is F¢ for a positive integer d. In many examples
in the literature, the field F is C and the set A is C? or CP? and the
resulting (entwining) YB maps are birational isomorphisms of A x A.
For more exotic examples see [46,50].

We consider the maps

Raps Sap Tap + AXA— AXA,

which depend on parameters a, b € F. Given for example map R, ,, we
denote by R'H’h with i # j € {1,2,3} the extended map which acts as
R, on the i and j copies of the triple Cartesian product of A with itself,
and identically on the remaining copy of A. More precisely, we have

12 _ i 23 _ 13 _ 12 23 12
Ry =Rapxid, Ry =idXR,p, Ry=n"0Rox”,
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Fig. 1. Diagrammatic representation of entwining YB equation (9).

with z'? the extension of the permutation (flip) map z (x,y) —
(»,x) on A X A, and id the identity map on A. In this paper we will
be concerned with parametric ordered triplets of maps (S, ;, R, . 7,)
which satisfy the parametric entwining YB equation

12 13 23 _ 23 13 12
Sa.b ° Ra,c ° Tb,c - Th,c ° Ra,c ° Sa,b‘ (9)

We call such maps entwining YB maps. Eq. (9) is to be understood as
equality of compositions of maps over the triple product Ax A x A (see
Fig. 1).

The entwining YB equation (9) can be represented by the following
diagram, where the lines are coloured to indicate that each crossing
corresponds to a different map, e.g. the red-blue crossing corresponds
to S;i, etc. When all lines have the same colour, i.e. when S, , =R, =
T.»> then Eq. (9) reduces to the parametric YB equation

12 13 23 _ p23 13
Ra,b ORa,c oRb,E—R oR> oR

12
b,c a,c ab (10)

In general, a parametric YB map R, ;(x. ) = (i, (X, ¥), v, 5(x, y)) is called
non-degenerate if the maps u,,(-.y) : A - A and v,,(x,") : A — A are
bijective [21,25]. More recently, non-degenerate YB maps which are
also birational have been referred to as quadrirational YB maps [23,24].
We use the same terminology for maps that satisfy the entwining YB
equation (9).

Following [13], we define a strong Lax triple for maps S, ;. R, .7,
to be a triple of matrices £,, M,, N,, each depending on a point x € 4,
a parameter a € F and a spectral parameter 4 € I, such that the matrix
refactorisation problems

L, ()M(0) = ML ,(X), (11a)
LN ) = Ny(0L,(x), (11b)
M Ny (V) = Ny(WM,(x), (11c)

imply uniquely the maps S, ;. R, . T, : (x.y) = (u,v), respectively. If
Egs. (11a)~(11c) are satisfied for given S,;.R,,.7,, maps, then the
triple of matrices is called simply a Lax triple. In general we omit
the dependence of the Lax matrices on the spectral parameter A for
convenience. It was proved in [13] that if £, M,, N, is a strong Lax
triple for maps S, ,, R, ;. 7,, and the following equality

L,OMy(MN(2) = L,(xNM(IN(Z) 12)

implies that x = x’, y = )/ and z = 2z’ then the maps are entwining YB
maps. If £, = M, = N, then the refactorisation problems (11a)—(11c)
coincide and L, is a strong Lax matrix for the parametric YB map R, ;.

In Section 3 we derive maps S, ,, R, ,, 7, satisfying the parametric
entwining YB equation (9) over the Grassmann algebra I'(n). In this
case, the set A is the (k, /)-dimensional superspace F*/ for given positive
integers k,/, and the obtained entwining YB maps are birational maps
of F&' x F*!. We will consider the reduction N, = £,, hence the
Lax triple will be £,, M, L, and each matrix will depend on a point
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(x, y) € F*'. The maps we construct are Grassmann extensions of the
following entwining YB maps

2

LN b Y1
S.p(X1, X0, ¥1, =\ —+—= —a), —, X, a+xxp — — |,
a,b(l 2:Y1:2) <bx1 b()’z )Y1 1 1%2 X

a—>b
R, (X1, X5, Y1, = - X1y Vs X1, Xy + —— s 13
a (X1, X2, Y1, ¥2) <Y1 1 Y2, X1, X 1+x1y2Y2> 13

_a-b
1+x1»,

a a a x;—b
Tap(X1, X0, ¥1,¥2) = —,b+)’|)’2——sx1,2—+ ,
» X1¥2 X1¥2 X1
which admit a strong Lax triple and are Liouville integrable having
polynomial and rational invariants that Poisson-commute [61].

3. Grassmann entwining YB maps

In this section we derive birational, parametric, entwining YB maps
over the Grassmann algebra I'(n), starting from the refactorisation
problems of certain Lax supermatrices. These Lax matrices are Darboux
matrices associated to a Grassmann generalisation of the NLS equa-
tion [62]. Refactorisation problems of certain Darboux matrices over
Grassmann algebras resulting to YB maps were also considered in [48].
Moreover, in [61] the parametric entwining YB maps given in (13)
were derived from the refactorisation problems of the Darboux matrices
which were presented in [63]. The resulting entwining YB maps of this
section are generalisations of (13) involving non-commutative (Grass-
mann) variables. We note here that while the maps that we obtain in
this paper are birational, they are degenerate or non-quadrirational.

We consider the following supermatrices in M,

X\ X+ npta+i x; x

Lo(x,x)= xy 1 ol
b2 0 1
X+4 x n
M= &+ 0 0} as
1 0 1

with (x, ¥) = (x|, %2, ¥1.10) € ]Fﬁ’z, a € F a parameter, and 4 € F a
spectral parameter. The 2 x 2 blocks of £, and M, with entries in
I'(n), constitute the Darboux matrices for NLS derived in [63]. The
refactorisation problems (11a)-(11c) for matrices (14), with N, =
L,, have unique solutions for ((u,&),(v,m)) in terms of ((x, x), (y,y)).
These give rise to eight-dimensional birational maps R, , S, . 7, with
even-odd Grassmann variables which act as

a,b>

(1, %25 215 220> 15 V2o W1, W2)) = (g, 19,81, 8), (01, 09,11, 1)) -

In particular, map R, is defined by the following expressions

_ (d—b)(l"'xly'z—/l’lv/z)x

Uy =n (Tx10, - U1 =X,
_ _ (a=b)(1+x1y2—x1¥2)
R, : U=y, ) L =X+ a5 22
ab _ _ _a— =
¢1=v T X1 m=x
a=b
SH=yy, m=xt v
(15)
and map S, is given by
U = y%“*i’l"’Z) + Y1n—a-viys) vy = x
1 i 1 1»
Uy = kA vy=a+xx,— L+
S,y 3" e 2 1X2 = 3 T AL
&G=vi-2n, m=x.
X1
y
SH=vy, '12=)(2+jll/2-
(16

Finally, below we prove that map 7, is related to S, , by

Tap=mo0 S,;; o, aa7)
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where now z is the flip map in Fﬁ‘z X 1F§’2, acting as z((x, ), (y,w)) =
((y,w), (x, x)). This is a direct consequence of the reduction N, = L,.

Theorem 3.1. Themaps S, ;. R, Top - F>2 xF>? — F>? xF>? defined
in (15)-(17) admit a strong Lax triple L£,, M,. L,, with L£,, M, given in
(14), and they satisfy the parametric entwining Yang-Baxter equation (9).

Proof. The first part of the proof can be shown directly by solving the
following refactorisation problems

L,u, )M, 1) = My, w)L,(x, ), (18a)
L, )L, w,m) = Ly(y, W)L (x, %), (18b)
MW, )L, m) = Ly(y, Y)M,(x, ¥), (18¢)

and showing that they admit a unique solution for (u,&,v,n) in terms
of (x, x,y,w). The proof that the obtained maps satisfy the entwining
YB equation is given in Appendix. []

Remark 3.2. The relation (17) between maps S,, and 7,, can be
readily deduced by observing that the refactorisation problems (18a)
and (18c) are related by the transformation a < b, (u,&) < (y,y),
(x,x) < (v,m). This shows the birationality of maps S,, and T,,.
Moreover, the invariance of (18b) under the above transformation
shows that R, is also a birational map. In what follows we will only
consider the maps R, and S, ;.

Map R, is an extension over Grassmann algebras of the Adler-
Yamilov map [64]. This map and its corresponding matrix refactori-
sation problem (18b) were studied in [48], where it was shown that
R, is a birational Yang-Baxter map, and also reversible i.e. it satisfies
the relation R;}7 = 7 o R;, o z. Taking the commutative limit in
maps S, , and 7, ,, i.e. sending all the odd variables to zero, we obtain
the birational maps which were derived in [61]. Therefore, the maps
SapRap» Top in Theorem 3.1 form a generalisation over Grassmann
algebras of the entwining Yang-Baxter maps given in (13). We show
that invariants of these maps can be obtained using the invariance
of the superdeterminant under similarity transformations, see (8) in
Section 2. By invariant of a map, say R, ,, we mean a function I such
that I o R,, = I. Moreover, an anti-invariant I is a function such
that I o R,, = —I. It follows that the product of two different anti-
invariants or the square of anti-invariants are all invariants of the given
map.

Theorem 3.3. The maps R,;,S,, : F2? x F2? - F>2 x F>2, given in
(15)—(16), admit the following 1, J-sets of invariants, respectively:

Ii=x%+yy, Li=xnntwyivs, Ly=0yw —yx)xaw —nin).
Ly = b(x1x, + X1 22) + a1y, + W wo) + yi0a(x1 X, + X1 00) + X X0y,
+xi; ;o v iz, Is = v,

19
Jh=n+xx+ . h=nntvivs,
J3=(0+X1X2>W1‘I/2+(b+}’2)){1)(2+(1—Xzyl))m‘//z"'<1—by—xll>ll/1)(z,
'.74=b);—;+Y2(a+xlxz+)(1)(2)+XZY1+11‘I/2+W1)(25 Js = xiovvs -

(20)

Proof. The invariants of map S, are obtained using the monodromy
supermatrix Pg(x, x,y.¥) = My, )L, (x, x), with L, M, given in
(14). From the refactorisation property (18a) we obtain the isospec-
trality property of the monodromy under the action of the map

Ps(u, & v,m) = My, )Ps(x, x,y,9)M, ' (v,m), (1)
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similarly to the commutative setting. It follows that the characteristic
(rational) function of the monodromy supermatrix f pg (k) = sdet(Pg —
kI,,) generates invariants of the map S .

The supermatrix Pg — kI, can be written in the form

A—kI B
Ps -kl = < C D(k)> s

with D(k) = y, y; +1—k and A, B, C functions of x, y, y,y and 4. Hence,
from (5) we have that

det(A — kI —BD(k)"!C
Foyl )= et( (k)" C)

(22)

det D(k)

1—k-—

=272 Gey(A — kI —BD(K)"!C).
(1—ky?

Setting 4 = 1 — k, and factoring =2 outside the determinant, the
characteristic function takes the form

H+ v
Fp(u. ) = # det(u*T + p*(A - I) — uBC — ,y,BO). (23)

The equation 3 f P, 1) =0 defines the spectral curve associated to
map S,, and its moduli provides the [J-set of invariants of the map.
Indeed, expanding the determinant and using the explicit forms of
A, B, C, we obtain

1 Fp (1, 2) = it + 1 [ + 12 () + ufi (D) + fo(A), @24

where the f;(4), with i = 0,...,3, are generating functions of the
invariants of map S, , and have the following form

)=+ AT +a)+ Ty,

LA ==AT +Th+a+b)—QIs+ Ty + T3 +ab),
[y =5,

fo() = =25

(25)

Similarly, we define the monodromy matrix of R, to be Pr(x, x.
y.yw) = L,(y.w)L,(x,x) and then it follows that the characteristic
function &pp (1, 4) associated with the map R,, can be written in the
form

1 8p, (1 A) = W + 12 g3(A) + W gr (D) + gy (A),

with
G =+ AL +L+a+b)+Is+T,+ab—1,
&) =-MT, +1,)-BLs + 1, + 1), (26)

gD =215+ 15,

thus obtaining the Z—set of invariants of R, ;. [

Remark 3.4. The invariants ,,1,,1,,Zs of map R,, were derived
in [48] using the supertrace of the monodromy. We notice that Z, and
I are related by 275 = I;. Here we obtain the new invariant 7; of the
map using the characteristic function.

Remark 3.5. One can verify that the quantities y,y, and y,y, are
anti-invariants of all maps R,;.S,,.7,,, and that the invariant Zs
(and Js) can be obtained from the product of those anti-invariants.
Moreover, for map R,, the quantities x;y; — y; 7, for i = 1,2 are
anti-invariants, and I is the product of these two anti-invariants.

Remark 3.6. Using Remark 3.2 we deduce that the invariants of map
7., can be obtained from the [J-set using the reflection a < b, x < y,
X<y,

In the following two sections we derive entwining YB maps in
dimensions 8 and 16 with commutative variables. To achieve this, we
consider the derived maps R, ;,S, .7, in I'(1) and I'(2). This way,
we demonstrate how the first two members of a hierarchy of birational
entwining YB maps can be obtained, and we show how the integrability
properties of the hierarchy can be obtained from those of maps (15)-
(17). The members of the hierarchy are maps of increasing dimension
8,16,...,2"2, ..
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4. The Grassmann algebra I'(1)

The algebra I'(1) has unit 1 and one generator 6 with 6> = 0.
This is the case of dual numbers (over F). We consider the maps
R apsSap» Top in (15)=(17) over the Grassmann algebra I'(1), and in this
way we derive birational maps with commutative variables, denoted by
8,5 Ryps T,p, which satisfy the entwining YB equation (9). Moreover,
we study integrability properties of the obtained maps, such as Lax
representation, invariants, and measure preservation.

We expand all variables of the maps R, ;, S, .7, in (15)-(17) and
their images in terms of 1 and 6. The Latin variables are in I'(1), and
are therefore proportional to 1, while the Greek variables are in I'(1),
and thus proportional to #. Comparing coefficients of 1 and 6 on both
sides of Egs. (15)-(17) we obtain maps R, , S, ;. T, : F*XF* - F4xF*
with

((x15 %05 215 22)s V15 Yos Wi W) B (g, up, 81, 82), (U1, Ug, 1y, 1)) -

These maps are given by the following expressions

u1=y1—a;bx1, Uy =X,
14+xy,
Uy =1y, U2=x2+a;b)’2s
R - 1+x1p, @7
ab *
b a—b
Si=w Txlyzll’ m=x
a—>b
=y,, =y +
b=y, =) T+ .7,
2
U1 Sl .
1 b, 0 1 1>
uzzi, U2=H+XIXQ_ﬂ,
Syp 1 X1 (28)
: ~ » ~
fl—Wl—x—)(l’ m=2x,
1
Y1
SH=vy, '12=)(2+X—W2’
1

and T,, is related to S,, by (17). For simplicity, we have used the
same letters for the variables in (27)-(28) as in the case of I'(n). From
Theorem 3.1 it follows that the above maps satisfy the entwining YB
equation (9).

The eight-dimensional birational maps R, .S, ;.T,, = 7 © Sh‘; orx
defined by (27)-(28) admit a strong Lax triple L,, M,, L,, with L,, M,
given by

XXy +a+ A 0 x; 0 0 g
0 x;x,+a+4 0 x; 0 O
Xy 0 1 o 0 O
L 5 X2, X1s =
o(X1: X2, 115, 12) 0 % o 1 0 o0
0 b e o 0 1 0
0 0 0o 0 0 1
29
and
Xy + A 0 x3 0 0 gy
0 x,+4 0 x; 0 O
= 0 0 0 0 O
M, (xy, %, 215 X2) = 0] a 0 o o ol (30)
X1
0 1 0o 0 1 0
0 0 0o 0 0 1

where x;, y; € F for i = 1,2. Namely, each of the matrix refactorisations

L,(uy,up,81,8) L0109, m15m) = Lp(yy, 2, Wi W) La(X15 X0s X115 X2)
(31a)

L, (uy,up, 81, )My (01, 03,11, 1) = My(y1, y2. Wi W) Lo(X1, X0, 415 X2) »
(31b)

M, (uy,up, &1, 8) L0109, 11,M) = Lp(yy, 2, Wi, W) M (X1, X0, X115 X2)
(310)
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leads to a system of polynomial equations which can be solved uniquely
for (uy,up, &, &, v, 0y, 1y, 1) leading to maps R, ;. S, . T, > respectively.

The Lax matrices L,, M, in (29), (30) are obtained by using the
tensor product of Mat;(F) with a representation of I'(1). In particular,
first we express the Lax supermatrices £, and M, in (14) as elements in
Mat;(F)® I'(1) by expanding their entries in terms of 1 and 6, therefore
writing them as

Lx,)=LQ1+L,®0, M(x,x)=MQ1+M,Q80, (32)
with
X xp+a+iA x; 0 xp+4A x; 0

L = X, 1 0], M, = % 0 0],

0 0 1 0 1

0 0 n
L,=M,=[{0 0 0

»n 0 0

Then, we represent 1 and # by 2 x 2 matrices using the algebra
homomorphism p : I'(1) - Mat,(F) defined by its action on the basis
of the algebra

p (1 O p (0 1
l>—>(0 1>, 6‘»—><0 O)’ (33)

and thus we obtain L,, M, in (29) and (30) from
L,=L®@p)+L,®@p6) and M, = M| ® p(1)+ M, ® p(9). (€D)]

Remark 4.1. The matrix refactorisation problems in (31) with
Li=p(M)®Li+p0)®Ly, M,=p(1)®@M, +p(6) ® M, (35)

also imply the maps R, , S, 5, T, since the Lax matrices L,, M, in (34)

and ia, Ma in (35) are similar under a permutation matrix.

The expansion in the basis of I'(1) can also be performed for the
1,J families of invariants in (19), (20) of maps R,, and S, , leading
to invariants of R, S, ,. This way, invariants 7, and J;, i = 1, ..., 5, are
expressed in terms of 1 and powers of 6. It is interesting to note that,
while 6% = 0 for k > 2, the coefficients of 6 in the expansions can still
be invariant quantities. For example, the invariant I, = y;x, + y ¥,
of R,, is expressed as I, = 1,62 in I'(1). While 62 = 0, it turns out
that I,, which involves the commutative coefficients of y,,y; € I'(1),
is an invariant of map R,, (27). Following this idea, we obtain the
following sets of functionally independent invariants for R,, and S,
respectively:

I =xx+y1y, L=xnt+twyvs, I;=0w -y =),
I, = bx1xy +ayy, + X Xo)1 V2 + X1 V2 + X5); 5

(36)
and

Ji=wmtxix, Lh=xnntviv,,

bx
Jy=(a+x;x)pwr + b+ )i+ A —xy)xw, + <1 - y_]> VX2,
1
X1
Jy= by— +yy(a+x1x5) + X9 .
1
37
We note that the invariants Z5 and Js of R, S,, do not produce any

invariants for R, ;. S, -

Remark 4.2. The invariants I, I, of R, can also be obtained from the
characteristic function of the monodromy matrix Pg = L,(y|, ¥, ¥, ¥3)
L,(x1,%,, x1. x»)- Similarly, J;, J, can be obtained from the character-
istic function Pg = M,(y1, ¥, W, Wa)L,(x1, X5, 1, ¥») associated to map
S
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Maps R, S, Tpp = 7 © S‘a o rx in (27)—(28) can be written
in ‘triangular form’, meaning that each of them can be expressed as
the composition of a linear map which acts on (y, ys. v, y,) with
coefficients being rational functions of (x;,x,,y,,y,), and a map that
acts non-trivially only on the variables (x;, x,, Vi ). For example, for

R,; we have the decomposition R,, = R, o R, ,, where
R b L (X1 X0, X1 X5 V1 Y2 W W2) P (X1, X0, 61,605 Y15 Yo, 1 1)
with

&, &,m,m) = <

a
1+, Wz»Wz) s

and Ra,b an extension of the Adler-Yamilov map [64]

b_
T+ x )(1 XXt

Ry (epsxa, 21 2025 91 V2 Wi W) = (U, g, 215 225 U1 Vg W, W)

with

b—xl’yZaxl’XZ + Lh) .

I+x 1+xy,

In these decompositions of R,,,S,;.T,, the rational maps which
act only on the variables (x,x,,y;,y,) are extensions of the maps
Ryp»SaprTap in (13), which were shown to be Liouville integrable
in [61].

Finally, regarding the dynamical properties of maps R, ;. S, . T, s
we show that these maps are measure preserving. This means that for
each of them there exists a function m of the dynamical variables such
that the Jacobian determinant J of the map can be written as [26]

_ m(Xy, Xy, X15 X25 Y1, Y2, W1 W2)

m(uy, iy, &1, 82, 01, U211, M)

(uy,up, 01, 09) = ()’1

It can be verified that maps R, .S, ;.T,, are measure preserving with
m(X1, Xy, X15 X2 V1- Y2, W1, W) equal to 1, yl and —, respectively. In
X1

particular, the YB map R, is volume preserving.

5. The Grassmann algebra I'(2)

In this section we derive 16-dimensional birational, parametric,
entwining YB maps R, ;.S : F8 x F® — F8 x F® which act as

ab’
(Gey1s X125 X915 X025 X115 X125 X2l 1(22)9 (V115 Y125 Y215 Y22, V11> Wi2s Va1, W)

(Quy1s g, g1 4305 €115 €12 6215 §00)5 (U115 V12, Va1 Vo M1 12 M M) -

These maps are obtained from maps R,;,S,,.7,, in (15)-(17)
for the case of the Grassmann algebra I'(2), following the ideas pre-
sented in Section 4. Unlike the case of maps R,;,S,,.T,, obtained
in the previous section, the maps presented here are not in ‘tri-
angular form’. More precisely, although the maps act linearly on
(X115 X125 X215 X225 W11 Wias Wap» Wap) With coefficients which are ratio-
nal functions of only (x;,, X2, X321, X22, Y11, V12, Y21, ¥22), their action on
(X115 X125 X215, X202, Y11> Y12, Y21, ¥22) has coefficients which are functions
of all the dynamical variables Xijs Xij» Vijs Wi for i,j € {1,2}. Similar
to the case of the 8-dimensional birational maps which were derived
in Section 4, the 16-dimensional maps R, ;,S, . T, obtained in this
section admit a strong Lax triple, are measure preserving, and each of
them has a family of invariants.

The elements of the I'(2) Grassmann algebra can be written as
linear combinations of 1,6,,6,.6,0, with 6,0, + 6,6, = 0 for i,j = 1,2.
Expressing each of the components of a point (x, x) = (xy, Xy, ¥1, ¥2) €
Fi’z in the basis of I'(2) we have

X;p=X; +x2010y,  xi = X0 + xin0s, (38)

and for even elements we have
_ 1
= — - —e 105,

; - with X;js X €F for i,je{1,2}. (39)
il il
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Starting from maps R,;.S,;.7,, that were derived in Section 3, we
express each of their variables as described above. By comparing coef-
ficients of 1,6,6, and 6,, 6, on both sides of each of the Egs. (15)—(17),
we obtain sixteen-dimensional maps which we denote by R, ;.S ;. T, ;.
respectively. The components of these maps are given in Box I,

— yu Y11 —a) _
i = o M Ui = Xip»
Xl’yll Y yp+yn (v + 211 vn))
Uiy = EAIRca PRESTRYA PRSI IS VR #2150
12 bx + bxy;
Mz(yzl—ﬂ) YW +wi¥s —wi1 W) —
+ b + ) s Up =Xy,
b v
Uy = —, Uyp = a+ XXy — =,
J’nb X1
— Y12 —
Up =="75"> Uy = Xy X + XXy
11
Saiyb . +X122yl| _ Y
X1 X11
—XnXa t Xuitn
— i —
511—W11_x_”)(11s m1 = 21
Sn=vwn-— x—“)(12= M2 = X2
— — Ju
S = Vo a1 = X+ L Vs
— — Ju
=V, My = X+ W0

(41D

and again T,, =7 0 S} o 7.

Invariants of maps R,, and S,, can be obtained starting from the
families of invariants I, J of R,;, S,,, respectively. Following the
ideas discussed in the previous section, we first express the variables
that appear in invariants 7; and J; in terms of 1,6,0, and 6,,6,. Then
the coefficients of 1, 6,6, as well as those of powers of 6; and 6, can
lead to invariants for the 16-dimensional maps (40), (41). In particular,
using only invariants 7,,7, and 7, from the list (19) we obtain the
following functionally independent invariants for map R,

L =xpx +yndors Ly =x1X0 +X19X + 11V + Y12 da1»

L=xurn+tvuvn, Li=xpr +vpv,
Is = Xxn +vinvn, (42)

I = bxyx) + ayy yar + X901 + X Y11+ X1 X0 Y11Yar

Is = yuxa +vuva s

X12X01)
—¥ia¥a1)
+ X11%1 (V11 Y22 + Yi2Yar) + Vi ya (K11 X + X12X1)

Ig = b0xy Xp + X 15X + Y11 X220 —

+ a1y + Yiya t¥nvn

+ yuya (o = X221
+ X11% (W1 W = WinWar) + X1V + XY+ X0 Vo + XppYa1 + X1
+ X2V — XV — XV -

Moreover, expanding the anti-invariants given in Remark 3.5 in the
basis of I'(2) we obtain the following six anti-invariants of map R,

Ay =xpwi; —vax; and By = ywp — xpw . forij=12. 43

The squares of A;; and B;, as well as any product of two of them
is an invariant of map R, ,. Obviously, not all of invariants (42) and
those obtained from combinations of the anti-invariants (43) form a
generating set for the ring of invariants of R, since, for example, the
invariants Azl B2 and A;B, satisfy the syzygy (A;;By)? = (A )*(By).
Similarly, we use the invariants J;-J, in (20) to find the followmg
functionally independent invariants of map S,

Ji =y Hx0x, Jy =y + X1 X0 + X10X01 + Y1140~ X12221
b =rmxntwvnvn. J4=xor tvnva.

Is =i twnwar . Je = Xnan tvnvan.

Iy =(a+ x11 %) W11wn — W) + (b + ya) (X1 o2 — X12.X21)

bx
+ (= X0y — xi2va) + <1 - y—> (w11 — 121v12),
1

(44
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”11=Y11—mx11v Uip = X11»
Upy = Y1y — (a=b)(x1p— xnsialrlx};zlzy:?)nv/zz )(17'1121)) Uiy = X1ps
Uz = Ya1» Uyp = X1 + 75— 1+X11y21 T Y21
R, : Uyy = Vo » Uyy = X + (a=b)yz— YzlEfoY]z:;f)anz )(12'4/21)) (40)
511=W11—m111’ i =21
S =V~ mln’ M2 = X125
$a1 =V My = X2 + m%l ,
$2 =V, My =X+ ﬁ%zv
Box L.
Jg = (a+ x11 %) W11 —wiawa) + (0 + ) (X121 — X12X22) we obtain a strong Lax triple for maps R, .S, ;, T, , with matrices L,, M,

bx
+ (1= X0 y1Dmwar — xi2va) + <1 - y_> W11 —Vi2x22) s
1

Jo = b— + yar(a+ xp1x31) + X21 Y11 »
Y

Jo=b X2 X
=0T yT + 21 (X1p%a1 + X131 X0 + 11422 = X12X21)
11

+ ypla+xy1x51)

+ X01Y12 F X0V W — X2¥ar t XWXV -
Additionally, from invariant J5 we find that B;, for i = 1,2, in (43) are

anti-invariants of map S, .

Following the ideas in Section 4, we construct a strong Lax triple
L,.M,.L, for maps R, .S, . T,,. We start by expressing the Lax matri-
ces with Grassmann variables £,, M, in (14) in the basis of I'(2) as

L,x,)=LQ®1+L,®60,6,+L;860,+L,®86,, 45)
M) =M @1+M,®6,0, +M; @0, + M, ® 6,
with the coefficients L;, M; given by
Xy Xy +a+4 x;; 0 0 0 x
L = X5 1 olL=[o o o]
0 0 1 rm O 0
0 0 xp
L,=l0 0 o0} (46)
2 00
X11 X + X10Xo1 + X1d2 — X241 X2 O
L= X 0}, (47)
0 0 0
and
Xy +4 x;; O X2 xp 0
axyn
L B ] I
0 0 1 0 0 0
My=Ly, My=L,. (48)

1 0 0 O 01 0 O 0 0 1 O
»[0 1 0 O 10 0 0 O 10 0 0 -1
1 , 0~ , 0) > ,
0 0 1 O 0 0 0 1 0 0 0 O
0 0 0 1 0 0 0 O 0 0 0 O

(49

given by
L, =L ®p(1) + L, ® p(01)p(6,) + L3 ® p(6)) + L4y ® p(6,)
M, =M; ® p(1) + M, ® p(0))p(0;) + M3 ® p(8)) + My ® p(6,),

(50)

and L;,M;, i =1,...,4 given in (46), (47) and (48). The 16-dimensional
maps R,, and S, in (40), (41) arise from the matrix refactorisation
problems of the 12 x 12 Lax matrices (50).

Finally, similar to the I'(1) case, each of the maps R,;,S, T,
admits an invariant measure m. These measures are m = 1 for R ,,

m = % for S,;, and m = — for T,,. In particular, we observe that

11 . 11
the commutative consequences of map R,, for n = 1 and » = 2, that
is maps R, , and R, ,, are volume preserving maps. We conjecture that
in I'(n) the map R, is volume preserving for every n, while the maps
S, and T, , preserve measures of the form y‘” and xl‘l", respectively,
with x,; and y,, defined similar to the cases n =1 and n = 2.

6. Conclusions

We have constructed birational maps R, S,;, 7,, with Grass-
mann variables given in (15)-(17), which satisfy the set-theoretical
entwining YB equation (9). These maps admit a strong Lax triple, which
we used to derive invariants for the maps. The invariants that we
find for map R,, are all polynomial, while those of maps S,, and
7,5 are Laurent polynomials with negative powers appearing only on
even variables of the Grassmann algebra. Reversing this point of view,
one could make connections with non-commutative algebraic geometry
by viewing the maps as birational automorphisms of non-commutative
algebraic varieties.

In Sections 4 and 5 we have shown how a hierarchy of birational
entwining YB maps in dimensions 2"*2, where n is the order of the
Grassmann algebra, can be obtained. The case n = 0, i.e. when there
are no fermionic variables, was studied in [61]. Here, we considered
in detail the cases where n = 1,2, thus obtaining birational maps
over F® and F'° that satisfy the entwining Yang-Baxter equation. We
have derived sufficient number of independent invariants of these maps
to claim their Liouville integrability, however, we have not yet been
able to find a Poisson structure. Nevertheless, there are indications
which point towards the integrability of the maps with commutative
variables. We have found that these maps are measure preserving,
and some preliminary numerical experiments that we have conducted
show no existence of chaos. Moreover, we have written each of the 8-
dimensional maps of Section 4 as a composition of a Liouville integrable
map with a linear map. More insight regarding the integrability of
the maps could be gained using other methods, such as singularity
confinement or algebraic entropy. All 2"*2-dimensional maps arise from
refactorization problems of Lax matrices, which we present for n = 1
and n = 2. It would be interesting to study the associated transfer



P. Adamopoulou and G. Papamikos

maps a la Veselov [8] for each n. Finally, defining appropriately the
concept of Liouville integrability in the setting of Grassmann-extended
entwining YB maps is an interesting open problem.
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Appendix. Proof of Theorem 3.1

The proof of Theorem 3.1 is based on Proposition 3.1 in [13]. To
prove that the maps (15)-(17) satisfy the entwining YB equation (9) we
have to show that the equation

L, )OM @ WIL(2,8) = L, x )M W)L (2.8, (51)
with L,(x,y) and M,(x,y) given in (14), implies (x,y)

=Ly . yw) = ¢,y and (z,¢) = (z/,¢). Here all the ordered
pairs, e.g. (x, x) = (x|, x5, ¥, x»), are in F5’2~

Proof. We use the standard notation of e;; denoting the matrix with 1
in the (i, j) entry and 0 elsewhere. Then the Lax matrices £ ,(x, y) and
M, (y, ) are of the form

L,(x, x) = dey + A,(x, 1), My(y,w) = ey + By(y, w)

where
X1X2+,}’112+£l Xl /}’1
A(x, x) = X5 1 0] and
¥2) 0 1
)22 Y1
By(y, ) = o 0 0
v, 0 1

For simplicity we also introduce the notation

X, =x1%+nn+ta Z. .=zz;+{ +ec.

Moreover, we introduce the operators L, , and R, acting on M,; by

left and right multiplication by e, respectively. Since, 3%1 = ¢y, the

operators L, and R, are projections. More precisely, we have that
3 3

L, (P)=e P= Zl’ueu’ R, (P)= Pe; = leileils
=l i=1

1

for any matrix P = (p;;) € M, ;. It also follows that L., o R, (P)=
R, o L, (P)=piey-

We denote the left hand side of (51) by Q(4) and expand it in powers
of 1. We obtain that

QA) = Aej + 12Q, + 1Q, + Q.
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with {Ql-},_z=0 given by the following expressions
Q, = L, o Ry, (By3.w)) + Ry, (A,(x. ) + L, , (A(2.0).

Q= A %, R, (B3 ¥)) + Au(x, X)L, (Ac(2,0))
+Le11 (Bb(y9 V’))Ac(z’ C)

Qo = A,(x, x)By(y,¥)A.(2,0).

Expanding the right hand side of Eq. (51) in 4, we obtain similar
expressions which we denote by {Q”.}l_z=0. It follows that (51) implies
the matrix equations Q; = Qlf, fori=0,1,2.

Matrix equation Q, = Q’2 results in nontrivial equations only for the
entries in the first column and the first row. Comparing the coefficients
of the matrices e,; and e3, in Q, and Q) gives

! !
Xy =Xy 2= Ay

Similarly, from the coefficients of e, and e,; we obtain

& =C1,~

J—
z) =z},

In the matrix equation Q, = Q(J we focus on the equations that
we obtain from the coefficients of e,,, e,; and e3,. The equation that
corresponds to e,, reads

b b
<x2y2+—>zl+x2yl= xzy/2+—, zl+x2y'],
N1 Y1

where we have used the fact that x, = x}, and z; = z|. The above

equation is polynomial in z, and therefore it implies that

n=v,, n=j,
Similarly, using the equations obtained from the coefficients of e,; and
e3, we have that

Vi =y, v =y,

From the coefficient of e, in Q| = Q/l we obtain the equation
X,z +y2z1 +y1 = Xoz) + 9221 + ¥y,

where we have used the previously obtained equalities between primed
and non-primed variables. The latter equation implies that X, = X!.
Similarly, from the coefficients of e,, of the same matrix equation we
obtain Z, = Z/.

The coefficients of e;; and ey in matrix equation 9, = Qj give two
equations involving z,,z) and {,,¢). Using the fact that Z, = Z; these
two equations can be written as the following homogeneous system:

(e 1) (372)- )
ny 1+ nwy 45—52 0

Since the supermatrix of coefficients of the above system is invertible,
it follows that

OH= C2,~

Finally, from the equations that correspond to the elements e, and e,3,
and using the fact that X, = X/, we obtain a similar linear system that
results to the remaining equalities

!
zy = 7y,

! !
xp=x, n=x 0O
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