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A B S T R A C T

In this work we construct novel solutions to the set-theoretical entwining Yang–Baxter equation. These solutions
are birational maps involving non-commutative dynamical variables which are elements of the Grassmann
algebra of order 𝑛. The maps arise from refactorisation problems of Lax supermatrices associated to a nonlinear
Schrödinger equation. In this non-commutative setting, we construct a spectral curve associated to each of the
obtained maps using the characteristic function of its monodromy supermatrix. We find generating functions
of invariants for the entwining Yang–Baxter maps from the moduli of the spectral curves. Moreover, we show
that a hierarchy of birational entwining Yang–Baxter maps with commutative variables can be obtained by
fixing the order 𝑛 of the Grassmann algebra, and we present the cases 𝑛 = 1 (dual numbers) and 𝑛 = 2. Then
we discuss the integrability properties, such as Lax matrices, invariants, and measure preservation, for the
obtained discrete dynamical systems.
1. Introduction

The first appearances of the Yang–Baxter (YB) equation can be
traced back to the study of quantum many-body systems and exactly
solvable models in statistical mechanics [1,2]. After that, the YB equa-
tion appeared in a broad range of different fields, from quantum field
theory and quantum inverse scattering method to gauge theory, and
quantum groups. See for example [3,4], and references therein, for
an introduction and a collection of the original papers in the field.
Naturally, an intensive focus on finding and classifying solutions to the
equation followed [5,6]. Originally, the focus was on finding solutions
of the YB equation

121323 = 231312 (1)

that are linear maps  ∶ 𝑉 ⊗ 𝑉 → 𝑉 ⊗ 𝑉 , where 𝑉 is a F-vector space.
Here, 13, for example, denotes the action of  on the first and third
copy of 𝑉 ⊗ 𝑉 ⊗ 𝑉 . The study of another class of solutions to the YB
equation was proposed by V. Drinfeld in [7], where now these solutions
are maps  ∶ 𝐴 × 𝐴 → 𝐴 × 𝐴 and 𝐴 can be any set. Such solutions
are often called set-theoretical solutions or Yang–Baxter maps, with the
latter term introduced by Veselov in [8] following [9].

A generalisation of (1) which is relevant to the current work origi-
nates in the study of quantum integrable systems (see for example [10–
12]) and is given by the following equation

1213 23 =  231312 (2)

∗ Corresponding author.
E-mail addresses: p.adamopoulou@hw.ac.uk (P. Adamopoulou), g.papamikos@essex.ac.uk (G. Papamikos).

which is known as entwining YB equation. A triplet of maps , , 
satisfying (2) were first derived in [13], inspired by the work in [14],
and other works on constructing such maps using e.g. classical star-
triangle relations [15], symmetries of YB maps [16], or scattering of
matrix solitons [17] followed.

A plethora of works on the YB equation and its generalisations
has appeared in various physical applications in the past few decades
such as in relation to collisions of relativistic particles [18,19], knot
theory [20], geometric crystals [21], discrete dynamical systems and
soliton theory [8,22]. See also [23–25] for related classifications of such
maps. In particular, there are deep connections between the theory of
nonlinear integrable partial differential and lattice equations and YB
maps [26–31]. For example, interactions of solitons, of vector or ma-
trix generalisations of known integrable PDEs, are described by maps
for the internal degrees (polarisations) which satisfy the Yang–Baxter
equation [32–36]. Moreover, higher dimensional analogues of the YB
equation (and its entwining version), known as n-simplex equations,
is an area of active research which has gained increased popularity,
see [5,37–41] and references therein.

In recent years different types of solutions of the YB equation have
been derived from various algebraic constructions. On one hand, com-
binatorial solutions of the YB and the associated braid equation have
been produced using certain algebraic structures such as braces, racks
and quandles, see for example [42,43]. On the other hand, birational
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solutions of the YB equation have been constructed using ideas from
he theory of integrable systems. In particular, the connection between
arboux and Bäcklund transformations for integrable PDEs and YB
aps has been explored recently (see e.g. [44,45]), and it is also

elevant to the current work. Further, birational solutions to the YB
quation in non-commutative settings having been studied in, for ex-
mple, [46–52]. YB maps containing bosonic and fermionic dynamical
ariables, related to a super extended integrable NLS equation, were
erived in [48] using the formalism of Grassmann algebras. Moreover,

in [53] the authors derived an extension of a YB map over Grassmann
algebras starting from the Darboux transformation associated to a super
KdV hierarchy [54], and which is linked to the discrete potential KdV
quation.

The integrability, in the sense of Liouville, of the YB maps and their
corresponding transfer maps requires the existence of sufficient number
f invariants, as well as a Poisson structure which is invariant under
he action of the map and under which all invariants commute. The
orresponding notion of integrability of maps over associative but not
ecessarily commutative algebras is a challenging open problem, see
or example the review paper [55]. A step towards the understanding

of the Liouville integrability for Grassmann extended YB maps was
resented in [53] where the integrability of the Adler map over the

complex dual numbers C[𝜃]∕
⟨

𝜃2
⟩

was shown. The approach followed
in [53] for extensions over the dual numbers can be used in the
same way for integrable maps of other types. Indeed, recently in [56],
the integrability properties of the Somos-4 sequences over the dual
numbers were studied.

In what follows, we extend the investigation of integrability prop-
rties of maps with Grassmann variables, this time to solutions of the

entwining YB equation (2). The structure of the paper is: Section 2
introduces notation and necessary background material in relation to
the Grassmann algebra 𝛤 (𝑛), the parametric entwining YB equation,
and the Lax triple for entwining YB maps. In Section 3 we derive
Grassmann entwining YB maps and their invariants. In Sections 4 and 5
we construct the first two members of a hierarchy of entwining YB maps
with commutative variables, and discuss their integrability properties.
inally, in Section 6 we offer some concluding remarks in relation to
his work and discuss some directions of future work. More specifically,
he main outcomes of this work are described below:

• We derive novel birational parametric entwining YB maps starting
from Lax matrices which in the commutative limit are Darboux
transformations associated to the nonlinear Schrödinger equation.

• We construct the characteristic rational functions for the mon-
odromy supermatrices associated to these maps, and we use them
to derive invariants from the moduli of the associated spectral
curves. To our knowledge, this is the first time that entwining YB
maps of this type and their associated spectral curves appear in
the literature.

• We obtain entwining YB maps with commutative variables in
dimensions 8 and 16 associated to the Grassmann algebras 𝛤 (1)
and 𝛤 (2), and we present their integrability properties such as Lax
representation, invariants, and measure preservation. This new
approach can be used to obtain entwining YB maps in dimensions
2𝑛+2 and their corresponding Lax matrices and invariants.

2. Preliminaries

2.1. Grassmann algebras

We denote by 𝛤 (𝑛) the Grassmann algebra of order 𝑛 over a field F
of characteristic zero (such as R or C). 𝛤 (𝑛) is an associative algebra
with unit 1 and 𝑛 generators 𝜃𝑖, 𝑖 = 1,… , 𝑛, satisfying

𝜃𝑖𝜃𝑗 + 𝜃𝑗𝜃𝑖 = 0 . (3)

The elements of 𝛤 (𝑛) that contain sums of products of only even (resp.
odd) number of 𝜃 ’s are called even (resp. odd) and are denoted by
𝑖

2 
𝛤 (𝑛)0 (resp. 𝛤 (𝑛)1). Even elements commute with all elements of 𝛤 (𝑛),
hile the odd elements anticommute with each other. The Grassmann
lgebra 𝛤 (𝑛), considered as a vector space, can be written as the direct
um of 𝛤 (𝑛)0 and 𝛤 (𝑛)1, namely 𝛤 (𝑛) = 𝛤 (𝑛)0 ⊕ 𝛤 (𝑛)1. Moreover, we
ave that 𝛤 (𝑛) has a natural Z2-grading, i.e. 𝛤 (𝑛)𝑖𝛤 (𝑛)𝑗 ⊆ 𝛤 (𝑛)(𝑖+𝑗) mod 2
nd therefore 𝛤 (𝑛)0 is a subalgebra of 𝛤 (𝑛). In what follows we denote
lements of 𝛤 (𝑛)0 by Latin letters, and elements of 𝛤 (𝑛)1 by Greek
etters, with the exception of 𝜆 which plays the role of the spectral
arameter and takes values in the field F. A Grassmann algebra is an
xample of a superalgebra, i.e. a super vector space with a Z2-grading.
or more details on superalgebras we direct the reader to [57–59].

We denote by F𝑘,𝑙𝑛 the (𝑘, 𝑙)-dimensional superspace consisting of
uples of 𝑘 even and 𝑙 odd variables of a Grassmann algebra of order 𝑛
ver F, namely

F𝑘,𝑙𝑛 ∶= {(𝒙,𝝌) |𝒙 ∈ 𝛤 (𝑛)𝑘0 , 𝝌 ∈ 𝛤 (𝑛)𝑙1} . (4)

In Sections 4, 5 we present examples of maps over Grassmann algebras
of order 𝑛 = 1 and 𝑛 = 2, respectively. Specifically, the 𝑛 = 1 case is the
lgebra of dual numbers (over F), where an element of the algebra is

of the form 𝑎 + 𝑏𝜃 with 𝜃2 = 0 and 𝑎, 𝑏 ∈ F. In the case 𝑛 = 2, a generic
lement of the algebra can be written in the form 𝑎+ 𝑏𝜃1 + 𝑐 𝜃2 + 𝑑 𝜃1𝜃2,
ith 𝜃1, 𝜃2 satisfying (3), and with 𝑎 + 𝑑 𝜃1𝜃2 ∈ 𝛤 (2)0, 𝑏𝜃1 + 𝑐 𝜃2 ∈ 𝛤 (2)1
nd 𝑎, 𝑏, 𝑐 , 𝑑 ∈ F.

We will be working with square matrices with elements in 𝛤 (𝑛)
such matrices are examples of supermatrices), of the block-form

𝑀 =
(

𝑃 𝛱
𝛬 𝐿

)

,

where 𝑃 , 𝐿 are 𝑝 × 𝑝 and 𝑞 × 𝑞 matrices with elements in 𝛤 (𝑛)0, while
𝛱 , 𝛬 are 𝑝 × 𝑞 and 𝑞 × 𝑝 matrices with elements in 𝛤 (𝑛)1. We say that,
or example, 𝑃 is an element of Mat𝑝(𝛤 (𝑛)0) and 𝛱 of Mat𝑝,𝑞(𝛤 (𝑛)1). We
lso assume that det (𝐿) and det (𝑃 ) are non-zero. We denote the set of
𝑝+𝑞) × (𝑝+𝑞) supermatrices, such as 𝑀 , by M𝑝,𝑞 . The superdeterminant
or 𝑀 ∈ M𝑝,𝑞 is defined by:

sdet (𝑀) = det (𝑃 −𝛱 𝐿−1𝛬) det (𝐿)−1 = det (𝑃 ) det (𝐿 − 𝛬𝑃−1𝛱)−1, (5)

and is multiplicative, meaning

sdet (𝑀1𝑀2) = sdet (𝑀1) sdet (𝑀2) , (6)

for 𝑀1, 𝑀2 ∈ M𝑝,𝑞 . It follows that the characteristic (rational) function

𝑓𝑀 (𝑘) = sdet (𝑀 − 𝑘𝐼𝑝,𝑞) (7)

for a matrix 𝑀 ∈ M𝑝,𝑞 , with 𝐼𝑝,𝑞 the unit supermatrix in M𝑝,𝑞 , is
invariant under similarity transformations 𝑀 → 𝑈 𝑀 𝑈−1 for 𝑈 ∈ M𝑝,𝑞 ,
see [60], i.e.

𝑓𝑈 𝑀 𝑈−1 (𝑘) = 𝑓𝑀 (𝑘) , (8)

which follows from (6) and the fact that sdet (𝑈−1) = sdet (𝑈 )−1.

2.2. Parametric entwining Yang–Baxter equation

In this section we introduce a type of solutions of the entwining YB
equation that depend on certain parameters in F. For consistency we
also assume that 𝐴 is F𝑑 for a positive integer 𝑑. In many examples
in the literature, the field F is C and the set 𝐴 is C𝑑 or CP𝑑 and the
esulting (entwining) YB maps are birational isomorphisms of 𝐴 × 𝐴.
or more exotic examples see [46,50].

We consider the maps

𝑎,𝑏, 𝑎,𝑏, 𝑎,𝑏 ∶ 𝐴 × 𝐴 → 𝐴 × 𝐴 ,
which depend on parameters 𝑎, 𝑏 ∈ F. Given for example map 𝑎,𝑏, we
denote by 𝑖,𝑗

𝑎,𝑏 with 𝑖 ≠ 𝑗 ∈ {1, 2, 3} the extended map which acts as
𝑎,𝑏 on the 𝑖 and 𝑗 copies of the triple Cartesian product of 𝐴 with itself,
and identically on the remaining copy of 𝐴. More precisely, we have

12 23 13 12 23 12
𝑎,𝑏 = 𝑎,𝑏 × 𝑖𝑑 , 𝑎,𝑏 = 𝑖𝑑 ×𝑎,𝑏 , 𝑎,𝑏 = 𝜋 ◦ 𝑎,𝑏 ◦ 𝜋 ,
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Fig. 1. Diagrammatic representation of entwining YB equation (9).

with 𝜋12 the extension of the permutation (flip) map 𝜋 ∶ (𝑥, 𝑦) →

𝑦, 𝑥) on 𝐴 × 𝐴, and 𝑖𝑑 the identity map on 𝐴. In this paper we will
be concerned with parametric ordered triplets of maps (𝑎,𝑏,𝑎,𝑏, 𝑎,𝑏)
which satisfy the parametric entwining YB equation

12
𝑎,𝑏 ◦ 13

𝑎,𝑐 ◦  23
𝑏,𝑐 =  23

𝑏,𝑐 ◦ 13
𝑎,𝑐 ◦ 12

𝑎,𝑏 . (9)

We call such maps entwining YB maps. Eq. (9) is to be understood as
equality of compositions of maps over the triple product 𝐴×𝐴×𝐴 (see
Fig. 1).

The entwining YB equation (9) can be represented by the following
diagram, where the lines are coloured to indicate that each crossing
orresponds to a different map, e.g. the red-blue crossing corresponds
o 12

𝑎,𝑏, etc. When all lines have the same colour, i.e. when 𝑎,𝑏 = 𝑎,𝑏 =
𝑎,𝑏, then Eq. (9) reduces to the parametric YB equation

12
𝑎,𝑏 ◦ 13

𝑎,𝑐 ◦ 23
𝑏,𝑐 = 23

𝑏,𝑐 ◦ 13
𝑎,𝑐 ◦ 12

𝑎,𝑏 . (10)

In general, a parametric YB map 𝑅𝑎,𝑏(𝑥, 𝑦) = (𝑢𝑎,𝑏(𝑥, 𝑦), 𝑣𝑎,𝑏(𝑥, 𝑦)) is called
non-degenerate if the maps 𝑢𝑎,𝑏(⋅, 𝑦) ∶ 𝐴 → 𝐴 and 𝑣𝑎,𝑏(𝑥, ⋅) ∶ 𝐴 → 𝐴 are
bijective [21,25]. More recently, non-degenerate YB maps which are
also birational have been referred to as quadrirational YB maps [23,24].
We use the same terminology for maps that satisfy the entwining YB
equation (9).

Following [13], we define a strong Lax triple for maps 𝑎,𝑏,𝑎,𝑏, 𝑎,𝑏
to be a triple of matrices 𝑎,𝑎,𝑎, each depending on a point 𝑥 ∈ 𝐴,
 parameter 𝑎 ∈ F and a spectral parameter 𝜆 ∈ F, such that the matrix

refactorisation problems

𝑎(𝑢)𝑏(𝑣) = 𝑏(𝑦)𝑎(𝑥) , (11a)

𝑎(𝑢)𝑏(𝑣) = 𝑏(𝑦)𝑎(𝑥) , (11b)

𝑎(𝑢)𝑏(𝑣) = 𝑏(𝑦)𝑎(𝑥) , (11c)

imply uniquely the maps 𝑎,𝑏,𝑎,𝑏, 𝑎,𝑏 ∶ (𝑥, 𝑦) → (𝑢, 𝑣), respectively. If
Eqs. (11a)–(11c) are satisfied for given 𝑎,𝑏,𝑎,𝑏, 𝑎,𝑏 maps, then the
triple of matrices is called simply a Lax triple. In general we omit
he dependence of the Lax matrices on the spectral parameter 𝜆 for
onvenience. It was proved in [13] that if 𝑎,𝑎,𝑎 is a strong Lax

triple for maps 𝑎,𝑏,𝑎,𝑏, 𝑎,𝑏 and the following equality

𝑎(𝑥)𝑏(𝑦)𝑐 (𝑧) = 𝑎(𝑥′)𝑏(𝑦′)𝑐 (𝑧′) (12)

implies that 𝑥 = 𝑥′, 𝑦 = 𝑦′ and 𝑧 = 𝑧′ then the maps are entwining YB
aps. If 𝑎 = 𝑎 = 𝑎, then the refactorisation problems (11a)–(11c)

oincide and 𝑎 is a strong Lax matrix for the parametric YB map 𝑎,𝑏.
In Section 3 we derive maps 𝑎,𝑏,𝑎,𝑏, 𝑎,𝑏 satisfying the parametric

ntwining YB equation (9) over the Grassmann algebra 𝛤 (𝑛). In this
ase, the set 𝐴 is the (𝑘, 𝑙)-dimensional superspace F𝑘,𝑙𝑛 for given positive
ntegers 𝑘, 𝑙, and the obtained entwining YB maps are birational maps
f F𝑘,𝑙𝑛 × F𝑘,𝑙𝑛 . We will consider the reduction 𝑎 ≡ 𝑎, hence the
ax triple will be  , , and each matrix will depend on a point
𝑎 𝑎 𝑎

3 
(𝒙,𝝌) ∈ F𝑘,𝑙𝑛 . The maps we construct are Grassmann extensions of the
ollowing entwining YB maps

𝚂𝑎,𝑏(𝑥1, 𝑥2, 𝑦1, 𝑦2) =
(

𝑦21
𝑏𝑥1

+
𝑦1
𝑏
(𝑦2 − 𝑎),

𝑏
𝑦1
, 𝑥1, 𝑎 + 𝑥1𝑥2 −

𝑦1
𝑥1

)

,

𝚁𝑎,𝑏(𝑥1, 𝑥2, 𝑦1, 𝑦2) =
(

𝑦1 −
𝑎 − 𝑏

1 + 𝑥1𝑦2
𝑥1, 𝑦2, 𝑥1, 𝑥2 + 𝑎 − 𝑏

1 + 𝑥1𝑦2
𝑦2

)

,

𝚃𝑎,𝑏(𝑥1, 𝑥2, 𝑦1, 𝑦2) =
(

𝑎
𝑦2
, 𝑏 + 𝑦1𝑦2 − 𝑎

𝑥1𝑦2
, 𝑥1, 𝑎

𝑥21𝑦2
+
𝑥2 − 𝑏
𝑥1

)

,

(13)

which admit a strong Lax triple and are Liouville integrable having
olynomial and rational invariants that Poisson-commute [61].

3. Grassmann entwining YB maps

In this section we derive birational, parametric, entwining YB maps
ver the Grassmann algebra 𝛤 (𝑛), starting from the refactorisation
roblems of certain Lax supermatrices. These Lax matrices are Darboux
atrices associated to a Grassmann generalisation of the NLS equa-

ion [62]. Refactorisation problems of certain Darboux matrices over
Grassmann algebras resulting to YB maps were also considered in [48].
Moreover, in [61] the parametric entwining YB maps given in (13)
were derived from the refactorisation problems of the Darboux matrices

hich were presented in [63]. The resulting entwining YB maps of this
section are generalisations of (13) involving non-commutative (Grass-
mann) variables. We note here that while the maps that we obtain in
his paper are birational, they are degenerate or non-quadrirational.

We consider the following supermatrices in M2,1

𝑎(𝒙,𝝌) =
⎛

⎜

⎜

⎝

𝑥1𝑥2 + 𝜒1𝜒2 + 𝑎 + 𝜆 𝑥1 𝜒1
𝑥2 1 0
𝜒2 0 1

⎞

⎟

⎟

⎠

,

𝑎(𝒙,𝝌) =
⎛

⎜

⎜

⎜

⎝

𝑥2 + 𝜆 𝑥1 𝜒1
𝑎
𝑥1

0 0
𝜒2 0 1

⎞

⎟

⎟

⎟

⎠

, (14)

with (𝒙,𝝌) = (𝑥1, 𝑥2, 𝜒1, 𝜒2) ∈ F2,2
𝑛 , 𝑎 ∈ F a parameter, and 𝜆 ∈ F a

pectral parameter. The 2 × 2 blocks of 𝑎 and 𝑎 with entries in
𝛤 (𝑛)0 constitute the Darboux matrices for NLS derived in [63]. The
refactorisation problems (11a)–(11c) for matrices (14), with 𝑎 ≡
𝑎, have unique solutions for

(

(𝒖, 𝝃), (𝒗, 𝜼)
)

in terms of
(

(𝒙,𝝌), (𝒚,𝝍)
)

.
hese give rise to eight-dimensional birational maps 𝑎,𝑏, 𝑎,𝑏, 𝑎,𝑏 with
ven–odd Grassmann variables which act as
(

(𝑥1, 𝑥2, 𝜒1, 𝜒2), (𝑦1, 𝑦2, 𝜓1, 𝜓2)
)

↦
(

(𝑢1, 𝑢2, 𝜉1, 𝜉2), (𝑣1, 𝑣2, 𝜂1, 𝜂2)
)

.

In particular, map 𝑎,𝑏 is defined by the following expressions

𝑎,𝑏 ∶

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑢1 = 𝑦1 −
(𝑎−𝑏)(1+𝑥1𝑦2−𝜒1𝜓2)

(1+𝑥1𝑦2)2
𝑥1 , 𝑣1 = 𝑥1 ,

𝑢2 = 𝑦2 , 𝑣2 = 𝑥2 +
(𝑎−𝑏)(1+𝑥1𝑦2−𝜒1𝜓2)

(1+𝑥1𝑦2)2
𝑦2 ,

𝜉1 = 𝜓1 −
𝑎−𝑏

1+𝑥1𝑦2
𝜒1 , 𝜂1 = 𝜒1 ,

𝜉2 = 𝜓2 , 𝜂2 = 𝜒2 +
𝑎−𝑏

1+𝑥1𝑦2
𝜓2 ,

(15)

and map 𝑎,𝑏 is given by

𝑎,𝑏 ∶

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑢1 =
𝑦21(1+𝜒1𝜓2)

𝑏𝑥1
+ 𝑦1(𝑦2−𝑎−𝜓1𝜓2)

𝑏 , 𝑣1 = 𝑥1 ,

𝑢2 =
𝑏
𝑦1
, 𝑣2 = 𝑎 + 𝑥1𝑥2 −

𝑦1
𝑥1

+ 𝜒1𝜒2 ,

𝜉1 = 𝜓1 −
𝑦1
𝑥1
𝜒1 , 𝜂1 = 𝜒1 ,

𝜉2 = 𝜓2 , 𝜂2 = 𝜒2 +
𝑦1
𝑥1
𝜓2 .

(16)

Finally, below we prove that map 𝑎,𝑏 is related to 𝑎,𝑏 by
−1
𝑎,𝑏 = 𝜋 ◦ 𝑏,𝑎 ◦ 𝜋 , (17)
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where now 𝜋 is the flip map in F2,2
𝑛 × F2,2

𝑛 , acting as 𝜋((𝒙,𝝌), (𝒚,𝝍)) =
((𝒚,𝝍), (𝒙,𝝌)). This is a direct consequence of the reduction 𝑎 ≡ 𝑎.

Theorem 3.1. The maps 𝑎,𝑏, 𝑎,𝑏, 𝑎,𝑏 ∶ F2,2
𝑛 ×F2,2

𝑛 → F2,2
𝑛 ×F2,2

𝑛 defined
in (15)–(17) admit a strong Lax triple 𝑎,𝑎,𝑎, with 𝑎,𝑎 given in
14), and they satisfy the parametric entwining Yang–Baxter equation (9).

Proof. The first part of the proof can be shown directly by solving the
following refactorisation problems

𝑎(𝒖, 𝝃)𝑏(𝒗, 𝜼) = 𝑏(𝒚,𝝍)𝑎(𝒙,𝝌) , (18a)

𝑎(𝒖, 𝝃)𝑏(𝒗, 𝜼) = 𝑏(𝒚,𝝍)𝑎(𝒙,𝝌) , (18b)

𝑎(𝒖, 𝝃)𝑏(𝒗, 𝜼) = 𝑏(𝒚,𝝍)𝑎(𝒙,𝝌) , (18c)

and showing that they admit a unique solution for (𝒖, 𝝃, 𝒗, 𝜼) in terms
f (𝒙,𝝌 , 𝒚,𝝍). The proof that the obtained maps satisfy the entwining
B equation is given in Appendix. □

Remark 3.2. The relation (17) between maps 𝑎,𝑏 and 𝑎,𝑏 can be
eadily deduced by observing that the refactorisation problems (18a)
nd (18c) are related by the transformation 𝑎 ↔ 𝑏, (𝒖, 𝝃) ↔ (𝒚,𝝍),

(𝒙,𝝌) ↔ (𝒗, 𝜼). This shows the birationality of maps 𝑎,𝑏 and 𝑎,𝑏.
Moreover, the invariance of (18b) under the above transformation
shows that 𝑎,𝑏 is also a birational map. In what follows we will only
consider the maps 𝑎,𝑏 and 𝑎,𝑏.

Map 𝑎,𝑏 is an extension over Grassmann algebras of the Adler–
amilov map [64]. This map and its corresponding matrix refactori-
ation problem (18b) were studied in [48], where it was shown that
𝑎,𝑏 is a birational Yang–Baxter map, and also reversible i.e. it satisfies
the relation −1

𝑎,𝑏 = 𝜋 ◦ 𝑏,𝑎 ◦ 𝜋. Taking the commutative limit in
maps 𝑎,𝑏 and 𝑎,𝑏, i.e. sending all the odd variables to zero, we obtain
the birational maps which were derived in [61]. Therefore, the maps
𝑎,𝑏,𝑎,𝑏, 𝑎,𝑏 in Theorem 3.1 form a generalisation over Grassmann
algebras of the entwining Yang–Baxter maps given in (13). We show
that invariants of these maps can be obtained using the invariance
of the superdeterminant under similarity transformations, see (8) in
ection 2. By invariant of a map, say 𝑎,𝑏, we mean a function 𝐼 such

that 𝐼 ◦ 𝑎,𝑏 = 𝐼 . Moreover, an anti-invariant 𝐼 is a function such
that 𝐼 ◦ 𝑎,𝑏 = −𝐼 . It follows that the product of two different anti-
invariants or the square of anti-invariants are all invariants of the given
map.

Theorem 3.3. The maps 𝑎,𝑏,𝑎,𝑏 ∶ F2,2
𝑛 × F2,2

𝑛 → F2,2
𝑛 × F2,2

𝑛 , given in
(15)–(16), admit the following , -sets of invariants, respectively:

1 = 𝑥1𝑥2 + 𝑦1𝑦2 , 2 = 𝜒1𝜒2 + 𝜓1𝜓2 , 3 = (𝑥1𝜓1 − 𝑦1𝜒1)(𝑥2𝜓2 − 𝑦2𝜒2) ,

4 = 𝑏(𝑥1𝑥2 + 𝜒1𝜒2) + 𝑎(𝑦1𝑦2 + 𝜓1𝜓2) + 𝑦1𝑦2(𝑥1𝑥2 + 𝜒1𝜒2) + 𝑥1𝑥2𝜓1𝜓2

+ 𝑥1𝑦2 + 𝑥2𝑦1 + 𝜒1𝜓2 + 𝜓1𝜒2 , 5 = 𝜒1𝜒2𝜓1𝜓2 ,

(19)

1 = 𝑦2 + 𝑥1𝑥2 + 𝜒1𝜒2 , 2 = 𝜒1𝜒2 + 𝜓1𝜓2 ,

3 = (𝑎 + 𝑥1𝑥2)𝜓1𝜓2 + (𝑏 + 𝑦2)𝜒1𝜒2 + (1 − 𝑥2𝑦1)𝜒1𝜓2 +
(

1 − 𝑏𝑥1
𝑦1

)

𝜓1𝜒2 ,

4 = 𝑏
𝑥1
𝑦1

+ 𝑦2(𝑎 + 𝑥1𝑥2 + 𝜒1𝜒2) + 𝑥2𝑦1 + 𝜒1𝜓2 + 𝜓1𝜒2 , 5 = 𝜒1𝜒2𝜓1𝜓2 .

(20)

Proof. The invariants of map 𝑎,𝑏 are obtained using the monodromy
supermatrix 𝑃 (𝒙,𝝌 , 𝒚,𝝍) = 𝑏(𝒚,𝝍)𝑎(𝒙,𝝌), with 𝑎,𝑏 given in
(14). From the refactorisation property (18a) we obtain the isospec-
trality property of the monodromy under the action of the map

−1
𝑃 (𝒖, 𝝃, 𝒗, 𝜼) = 𝑏(𝒗, 𝜼)𝑃 (𝒙,𝝌 , 𝒚,𝝍)𝑏 (𝒗, 𝜼) , (21)

4 
similarly to the commutative setting. It follows that the characteristic
(rational) function of the monodromy supermatrix 𝑓𝑃 (𝑘) = sdet (𝑃 −
𝐼2,1) generates invariants of the map 𝑎,𝑏.

The supermatrix 𝑃 − 𝑘𝐼2,1 can be written in the form

𝑃 − 𝑘𝐼2,1 =
(

A − 𝑘𝐼 B
C D(𝑘)

)

, (22)

with D(𝑘) = 𝜓2𝜒1+ 1 −𝑘 and A,B,C functions of 𝒙,𝝌 , 𝒚,𝝍 and 𝜆. Hence,
from (5) we have that

𝑓𝑃 (𝑘, 𝜆) =
det (A − 𝑘𝐼 − BD(𝑘)−1C)

det D(𝑘)
=

1 − 𝑘 − 𝜓2𝜒1
(1 − 𝑘)2 det (A − 𝑘𝐼 − BD(𝑘)−1C) .

Setting 𝜇 = 1 − 𝑘, and factoring 𝜇−2 outside the determinant, the
characteristic function takes the form

𝑓𝑃 (𝜇 , 𝜆) =
𝜇 + 𝜒1𝜓2

𝜇6
det (𝜇3𝐼 + 𝜇2(A − 𝐼) − 𝜇BC − 𝜒1𝜓2BC) . (23)

The equation 𝜇3𝑓𝑃 (𝜇 , 𝜆) = 0 defines the spectral curve associated to
map 𝑎,𝑏 and its moduli provides the  -set of invariants of the map.
Indeed, expanding the determinant and using the explicit forms of
𝐴,B,C, we obtain

𝜇3𝑓𝑃𝑆 (𝜇 , 𝜆) = 𝜇4 + 𝜇3𝑓3(𝜆) + 𝜇2𝑓2(𝜆) + 𝜇 𝑓1(𝜆) + 𝑓0(𝜆) , (24)

where the 𝑓𝑖(𝜆), with 𝑖 = 0,… , 3, are generating functions of the
nvariants of map 𝑎,𝑏 and have the following form
𝑓3(𝜆) = 𝜆2 + 𝜆(1 + 𝑎) + 4 ,

𝑓2(𝜆) = −𝜆(1 + 2 + 𝑎 + 𝑏) − (25 + 4 + 3 + 𝑎𝑏) ,

1(𝜆) = 3 ,

0(𝜆) = −25 .

(25)

Similarly, we define the monodromy matrix of 𝑎,𝑏 to be 𝑃(𝒙,𝝌 ,
𝒚,𝝍) = 𝑏(𝒚,𝝍)𝑎(𝒙,𝝌) and then it follows that the characteristic
function 𝑔𝑃 (𝜇 , 𝜆) associated with the map 𝑎,𝑏 can be written in the
form

𝜇3𝑔𝑃 (𝜇 , 𝜆) = 𝜇4 + 𝜇3𝑔3(𝜆) + 𝜇2𝑔2(𝜆) + 𝜇 𝑔1(𝜆) ,
with
𝑔3(𝜆) = 𝜆2 + 𝜆(1 + 2 + 𝑎 + 𝑏) + 5 + 4 + 𝑎𝑏 − 1 ,
2(𝜆) = −𝜆(1 + 2) − (35 + 4 + 3) ,

𝑔1(𝜆) = 25 + 3 ,

(26)

thus obtaining the −set of invariants of 𝑎,𝑏. □

Remark 3.4. The invariants 1,2,4,5 of map 𝑎,𝑏 were derived
in [48] using the supertrace of the monodromy. We notice that 2 and
5 are related by 25 = 2

2 . Here we obtain the new invariant 3 of the
map using the characteristic function.

Remark 3.5. One can verify that the quantities 𝜒1𝜓1 and 𝜒2𝜓2 are
anti-invariants of all maps 𝑎,𝑏,𝑎,𝑏, 𝑎,𝑏, and that the invariant 5
(and 5) can be obtained from the product of those anti-invariants.
Moreover, for map 𝑎,𝑏 the quantities 𝑥𝑖𝜓𝑖 − 𝑦𝑖𝜒𝑖 for 𝑖 = 1, 2 are
anti-invariants, and 3 is the product of these two anti-invariants.

Remark 3.6. Using Remark 3.2 we deduce that the invariants of map
𝑎,𝑏 can be obtained from the  -set using the reflection 𝑎 ↔ 𝑏, 𝒙 ↔ 𝒚,
𝝌 ↔ 𝝍 .

In the following two sections we derive entwining YB maps in
imensions 8 and 16 with commutative variables. To achieve this, we
onsider the derived maps 𝑎,𝑏,𝑎,𝑏, 𝑎,𝑏 in 𝛤 (1) and 𝛤 (2). This way,

we demonstrate how the first two members of a hierarchy of birational
entwining YB maps can be obtained, and we show how the integrability
properties of the hierarchy can be obtained from those of maps (15)–
17). The members of the hierarchy are maps of increasing dimension
8, 16,… , 2𝑛+2,… .
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4. The Grassmann algebra 𝜞 (𝟏)

The algebra 𝛤 (1) has unit 1 and one generator 𝜃 with 𝜃2 = 0.
This is the case of dual numbers (over F). We consider the maps
𝑎,𝑏,𝑎,𝑏, 𝑎,𝑏 in (15)–(17) over the Grassmann algebra 𝛤 (1), and in this
way we derive birational maps with commutative variables, denoted by
𝑆𝑎,𝑏, 𝑅𝑎,𝑏, 𝑇𝑎,𝑏, which satisfy the entwining YB equation (9). Moreover,
we study integrability properties of the obtained maps, such as Lax
representation, invariants, and measure preservation.

We expand all variables of the maps 𝑎,𝑏,𝑎,𝑏, 𝑎,𝑏 in (15)–(17) and
their images in terms of 1 and 𝜃. The Latin variables are in 𝛤 (1)0 and
re therefore proportional to 1, while the Greek variables are in 𝛤 (1)1
nd thus proportional to 𝜃. Comparing coefficients of 1 and 𝜃 on both
ides of Eqs. (15)–(17) we obtain maps 𝑅𝑎,𝑏, 𝑆𝑎,𝑏, 𝑇𝑎,𝑏 ∶ F4×F4 → F4×F4

ith

((𝑥1, 𝑥2, 𝜒1, 𝜒2), (𝑦1, 𝑦2, 𝜓1, 𝜓2)) ↦ ((𝑢1, 𝑢2, 𝜉1, 𝜉2), (𝑣1, 𝑣2, 𝜂1, 𝜂2)) .
These maps are given by the following expressions

𝑅𝑎,𝑏 ∶

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑢1 = 𝑦1 −
𝑎 − 𝑏

1 + 𝑥1𝑦2
𝑥1 , 𝑣1 = 𝑥1 ,

𝑢2 = 𝑦2 , 𝑣2 = 𝑥2 +
𝑎 − 𝑏

1 + 𝑥1𝑦2
𝑦2 ,

𝜉1 = 𝜓1 −
𝑎 − 𝑏

1 + 𝑥1𝑦2
𝜒1 , 𝜂1 = 𝜒1 ,

𝜉2 = 𝜓2 , 𝜂2 = 𝜒2 +
𝑎 − 𝑏

1 + 𝑥1𝑦2
𝜓2 ,

(27)

𝑆𝑎,𝑏 ∶

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑢1 =
𝑦21
𝑏𝑥1

+
𝑦1(𝑦2 − 𝑎)

𝑏
, 𝑣1 = 𝑥1 ,

𝑢2 =
𝑏
𝑦1
, 𝑣2 = 𝑎 + 𝑥1𝑥2 −

𝑦1
𝑥1
,

𝜉1 = 𝜓1 −
𝑦1
𝑥1
𝜒1 , 𝜂1 = 𝜒1 ,

𝜉2 = 𝜓2 , 𝜂2 = 𝜒2 +
𝑦1
𝑥1
𝜓2 ,

(28)

and 𝑇𝑎,𝑏 is related to 𝑆𝑎,𝑏 by (17). For simplicity, we have used the
same letters for the variables in (27)–(28) as in the case of 𝛤 (𝑛). From
Theorem 3.1 it follows that the above maps satisfy the entwining YB
quation (9).

The eight-dimensional birational maps 𝑅𝑎,𝑏, 𝑆𝑎,𝑏, 𝑇𝑎,𝑏 = 𝜋 ◦ 𝑆−1
𝑏,𝑎 ◦ 𝜋

efined by (27)–(28) admit a strong Lax triple 𝐿𝑎, 𝑀𝑎, 𝐿𝑎, with 𝐿𝑎, 𝑀𝑎
given by

𝐿𝑎(𝑥1, 𝑥2, 𝜒1, 𝜒2) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑥1𝑥2 + 𝑎 + 𝜆 0 𝑥1 0 0 𝜒1
0 𝑥1𝑥2 + 𝑎 + 𝜆 0 𝑥1 0 0
𝑥2 0 1 0 0 0
0 𝑥2 0 1 0 0
0 𝜒2 0 0 1 0
0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(29)

and

𝑀𝑎(𝑥1, 𝑥2, 𝜒1, 𝜒2) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑥2 + 𝜆 0 𝑥1 0 0 𝜒1
0 𝑥2 + 𝜆 0 𝑥1 0 0
𝑎
𝑥1

0 0 0 0 0
0 𝑎

𝑥1
0 0 0 0

0 𝜒2 0 0 1 0
0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (30)

where 𝑥𝑖, 𝜒𝑖 ∈ F for 𝑖 = 1, 2. Namely, each of the matrix refactorisations

𝐿𝑎(𝑢1, 𝑢2, 𝜉1, 𝜉2)𝐿𝑏(𝑣1, 𝑣2, 𝜂1, 𝜂2) = 𝐿𝑏(𝑦1, 𝑦2, 𝜓1, 𝜓2)𝐿𝑎(𝑥1, 𝑥2, 𝜒1, 𝜒2) ,
(31a)

𝐿𝑎(𝑢1, 𝑢2, 𝜉1, 𝜉2)𝑀𝑏(𝑣1, 𝑣2, 𝜂1, 𝜂2) =𝑀𝑏(𝑦1, 𝑦2, 𝜓1, 𝜓2)𝐿𝑎(𝑥1, 𝑥2, 𝜒1, 𝜒2) ,
(31b)

𝑀𝑎(𝑢1, 𝑢2, 𝜉1, 𝜉2)𝐿𝑏(𝑣1, 𝑣2, 𝜂1, 𝜂2) = 𝐿𝑏(𝑦1, 𝑦2, 𝜓1, 𝜓2)𝑀𝑎(𝑥1, 𝑥2, 𝜒1, 𝜒2) ,

(31c)

5 
leads to a system of polynomial equations which can be solved uniquely
for (𝑢1, 𝑢2, 𝜉1, 𝜉2, 𝑣1, 𝑣2, 𝜂1, 𝜂2) leading to maps 𝑅𝑎,𝑏, 𝑆𝑎,𝑏, 𝑇𝑎,𝑏, respectively.

The Lax matrices 𝐿𝑎 , 𝑀𝑎 in (29), (30) are obtained by using the
tensor product of Mat3(F) with a representation of 𝛤 (1). In particular,
first we express the Lax supermatrices 𝑎 and 𝑎 in (14) as elements in
Mat3(F)⊗ 𝛤 (1) by expanding their entries in terms of 1 and 𝜃, therefore

riting them as

𝑎(𝒙,𝝌) = 𝐿1 ⊗ 1 + 𝐿2 ⊗ 𝜃 , 𝑎(𝒙,𝝌) =𝑀1 ⊗ 1 +𝑀2 ⊗ 𝜃 , (32)

with

𝐿1 =
⎛

⎜

⎜

⎝

𝑥1𝑥2 + 𝑎 + 𝜆 𝑥1 0
𝑥2 1 0
0 0 1

⎞

⎟

⎟

⎠

, 𝑀1 =

⎛

⎜

⎜

⎜

⎝

𝑥2 + 𝜆 𝑥1 0
𝑎
𝑥1

0 0
0 0 1

⎞

⎟

⎟

⎟

⎠

,

𝐿2 =𝑀2 =
⎛

⎜

⎜

⎝

0 0 𝜒1
0 0 0
𝜒2 0 0

⎞

⎟

⎟

⎠

.

Then, we represent 1 and 𝜃 by 2 × 2 matrices using the algebra
omomorphism 𝜌 ∶ 𝛤 (1) → Mat2(F) defined by its action on the basis

of the algebra

1
𝜌
↦

(

1 0
0 1

)

, 𝜃
𝜌
↦

(

0 1
0 0

)

, (33)

and thus we obtain 𝐿𝑎, 𝑀𝑎 in (29) and (30) from

𝐿𝑎 = 𝐿1 ⊗ 𝜌(1) + 𝐿2 ⊗ 𝜌(𝜃) and 𝑀𝑎 =𝑀1 ⊗ 𝜌(1) +𝑀2 ⊗ 𝜌(𝜃) . (34)

Remark 4.1. The matrix refactorisation problems in (31) with

𝐿̃𝑎 = 𝜌(1)⊗ 𝐿1 + 𝜌(𝜃)⊗ 𝐿2 , 𝑀̃𝑎 = 𝜌(1)⊗ 𝑀1 + 𝜌(𝜃)⊗ 𝑀2 (35)

also imply the maps 𝑅𝑎,𝑏, 𝑆𝑎,𝑏, 𝑇𝑎,𝑏, since the Lax matrices 𝐿𝑎, 𝑀𝑎 in (34)
and 𝐿̃𝑎, 𝑀̃𝑎 in (35) are similar under a permutation matrix.

The expansion in the basis of 𝛤 (1) can also be performed for the
, families of invariants in (19), (20) of maps 𝑎,𝑏 and 𝑎,𝑏 leading
to invariants of 𝑅𝑎,𝑏, 𝑆𝑎,𝑏. This way, invariants 𝑖 and 𝑖, 𝑖 = 1,… , 5, are
xpressed in terms of 1 and powers of 𝜃. It is interesting to note that,
hile 𝜃𝑘 = 0 for 𝑘 ≥ 2, the coefficients of 𝜃𝑘 in the expansions can still
e invariant quantities. For example, the invariant 2 = 𝜒1𝜒2 + 𝜓1𝜓2
f 𝑎,𝑏 is expressed as 2 = 𝐼2𝜃2 in 𝛤 (1). While 𝜃2 = 0, it turns out
hat 𝐼2, which involves the commutative coefficients of 𝜒𝑖, 𝜓𝑖 ∈ 𝛤 (1),
s an invariant of map 𝑅𝑎,𝑏 (27). Following this idea, we obtain the

following sets of functionally independent invariants for 𝑅𝑎,𝑏 and 𝑆𝑎,𝑏,
respectively:

𝐼1 = 𝑥1𝑥2 + 𝑦1𝑦2 , 𝐼2 = 𝜒1𝜒2 + 𝜓1𝜓2 , 𝐼3 = (𝑥1𝜓1 − 𝑦1𝜒1)(𝑥2𝜓2 − 𝑦2𝜒2) ,

𝐼4 = 𝑏𝑥1𝑥2 + 𝑎𝑦1𝑦2 + 𝑥1𝑥2𝑦1𝑦2 + 𝑥1𝑦2 + 𝑥2𝑦1 ,

(36)

and

𝐽1 = 𝑦2 + 𝑥1𝑥2 , 𝐽2 = 𝜒1𝜒2 + 𝜓1𝜓2 ,

3 = (𝑎 + 𝑥1𝑥2)𝜓1𝜓2 + (𝑏 + 𝑦2)𝜒1𝜒2 + (1 − 𝑥2𝑦1)𝜒1𝜓2 +
(

1 − 𝑏𝑥1
𝑦1

)

𝜓1𝜒2 ,

𝐽4 = 𝑏
𝑥1
𝑦1

+ 𝑦2(𝑎 + 𝑥1𝑥2) + 𝑥2𝑦1 .

(37)

We note that the invariants 5 and 5 of 𝑎,𝑏,𝑎,𝑏 do not produce any
invariants for 𝑅𝑎,𝑏, 𝑆𝑎,𝑏.

Remark 4.2. The invariants 𝐼1, 𝐼4 of 𝑅𝑎,𝑏 can also be obtained from the
characteristic function of the monodromy matrix 𝑃𝑅 = 𝐿𝑏(𝑦1, 𝑦2, 𝜓1, 𝜓2)
𝐿𝑎(𝑥1, 𝑥2, 𝜒1, 𝜒2). Similarly, 𝐽1, 𝐽4 can be obtained from the character-
istic function 𝑃𝑆 = 𝑀𝑏(𝑦1, 𝑦2, 𝜓1, 𝜓2)𝐿𝑎(𝑥1, 𝑥2, 𝜒1, 𝜒2) associated to map
𝑆𝑎,𝑏.
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Maps 𝑅𝑎,𝑏, 𝑆𝑎,𝑏, 𝑇𝑎,𝑏 = 𝜋 ◦ 𝑆−1
𝑏,𝑎 ◦ 𝜋 in (27)–(28) can be written

in ‘triangular form’, meaning that each of them can be expressed as
the composition of a linear map which acts on (𝜒1, 𝜒2, 𝜓1, 𝜓2) with
coefficients being rational functions of (𝑥1, 𝑥2, 𝑦1, 𝑦2), and a map that
cts non-trivially only on the variables (𝑥1, 𝑥2, 𝑦1, 𝑦2). For example, for
𝑅𝑎,𝑏 we have the decomposition 𝑅𝑎,𝑏 = 𝑅̄𝑎,𝑏 ◦ 𝑅̂𝑎,𝑏, where
̂𝑎,𝑏 ∶ (𝑥1, 𝑥2, 𝜒1, 𝜒2, 𝑦1, 𝑦2, 𝜓1, 𝜓2) ↦ (𝑥1, 𝑥2, 𝜉1, 𝜉2, 𝑦1, 𝑦2, 𝜂1, 𝜂2)

with

(𝜉1, 𝜉2, 𝜂1, 𝜂2) =
(

𝜓1 +
𝑏 − 𝑎

1 + 𝑥1𝑦2
𝜒1, 𝜒1, 𝜒2 + 𝑎 − 𝑏

1 + 𝑥1𝑦2
𝜓2, 𝜓2

)

,

and 𝑅̄𝑎,𝑏 an extension of the Adler–Yamilov map [64]
̄𝑎,𝑏 ∶ (𝑥1, 𝑥2, 𝜒1, 𝜒2, 𝑦1, 𝑦2, 𝜓1, 𝜓2) ↦ (𝑢1, 𝑢2, 𝜒1, 𝜒2, 𝑣1, 𝑣2, 𝜓1, 𝜓2)

with

(𝑢1, 𝑢2, 𝑣1, 𝑣2) =
(

𝑦1 +
𝑏 − 𝑎

1 + 𝑥1𝑦2
𝑥1, 𝑦2, 𝑥1, 𝑥2 + 𝑎 − 𝑏

1 + 𝑥1𝑦2
𝑦2

)

.

In these decompositions of 𝑅𝑎,𝑏, 𝑆𝑎,𝑏, 𝑇𝑎,𝑏 the rational maps which
ct only on the variables (𝑥1, 𝑥2, 𝑦1, 𝑦2) are extensions of the maps
𝑎,𝑏, 𝚂𝑎,𝑏, 𝚃𝑎,𝑏 in (13), which were shown to be Liouville integrable

in [61].
Finally, regarding the dynamical properties of maps 𝑅𝑎,𝑏, 𝑆𝑎,𝑏, 𝑇𝑎,𝑏,

we show that these maps are measure preserving. This means that for
each of them there exists a function 𝑚 of the dynamical variables such
that the Jacobian determinant 𝐽 of the map can be written as [26]

𝐽 =
𝑚(𝑥1, 𝑥2, 𝜒1, 𝜒2, 𝑦1, 𝑦2, 𝜓1, 𝜓2)
𝑚(𝑢1, 𝑢2, 𝜉1, 𝜉2, 𝑣1, 𝑣2, 𝜂1, 𝜂2)

.

It can be verified that maps 𝑅𝑎,𝑏, 𝑆𝑎,𝑏, 𝑇𝑎,𝑏 are measure preserving with
(𝑥1, 𝑥2, 𝜒1, 𝜒2, 𝑦1, 𝑦2, 𝜓1, 𝜓2) equal to 1, 1

𝑦1
and 1

𝑥1
, respectively. In

particular, the YB map 𝑅𝑎,𝑏 is volume preserving.

5. The Grassmann algebra 𝜞 (𝟐)

In this section we derive 16-dimensional birational, parametric,
entwining YB maps 𝖱𝑎,𝑏, 𝖲𝑎,𝑏,𝖳𝑎,𝑏 ∶ F8 × F8 → F8 × F8 which act as

((𝑥11, 𝑥12, 𝑥21, 𝑥22, 𝜒11, 𝜒12, 𝜒21, 𝜒22), (𝑦11, 𝑦12, 𝑦21, 𝑦22, 𝜓11, 𝜓12, 𝜓21, 𝜓22)) ↦

((𝑢11, 𝑢12, 𝑢21, 𝑢22, 𝜉11, 𝜉12, 𝜉21, 𝜉22), (𝑣11, 𝑣12, 𝑣21, 𝑣22, 𝜂11, 𝜂12, 𝜂21, 𝜂22)) .

These maps are obtained from maps 𝑎,𝑏,𝑎,𝑏, 𝑎,𝑏 in (15)–(17)
or the case of the Grassmann algebra 𝛤 (2), following the ideas pre-

sented in Section 4. Unlike the case of maps 𝑅𝑎,𝑏, 𝑆𝑎,𝑏, 𝑇𝑎,𝑏 obtained
in the previous section, the maps presented here are not in ‘tri-
angular form’. More precisely, although the maps act linearly on
𝜒11, 𝜒12, 𝜒21, 𝜒22, 𝜓11, 𝜓12, 𝜓21, 𝜓22) with coefficients which are ratio-
al functions of only (𝑥11, 𝑥12, 𝑥21, 𝑥22, 𝑦11, 𝑦12, 𝑦21, 𝑦22), their action on
𝑥11, 𝑥12, 𝑥21, 𝑥22, 𝑦11, 𝑦12, 𝑦21, 𝑦22) has coefficients which are functions

of all the dynamical variables 𝑥𝑖𝑗 , 𝜒𝑖𝑗 , 𝑦𝑖𝑗 , 𝜓𝑖𝑗 for 𝑖, 𝑗 ∈ {1, 2}. Similar
to the case of the 8-dimensional birational maps which were derived
in Section 4, the 16-dimensional maps 𝖱𝑎,𝑏, 𝖲𝑎,𝑏,𝖳𝑎,𝑏 obtained in this
ection admit a strong Lax triple, are measure preserving, and each of
hem has a family of invariants.

The elements of the 𝛤 (2) Grassmann algebra can be written as
inear combinations of 1, 𝜃1, 𝜃2, 𝜃1𝜃2 with 𝜃𝑖𝜃𝑗 + 𝜃𝑗𝜃𝑖 = 0 for 𝑖, 𝑗 = 1, 2.
xpressing each of the components of a point (𝒙,𝝌) = (𝑥1, 𝑥2, 𝜒1, 𝜒2) ∈
2,2
2 in the basis of 𝛤 (2) we have

𝑥𝑖 = 𝑥𝑖1 + 𝑥𝑖2𝜃1𝜃2 , 𝜒𝑖 = 𝜒𝑖1𝜃1 + 𝜒𝑖2𝜃2 , (38)

and for even elements we have

𝑥−1𝑖 = 1 −
𝑥𝑖2 𝜃1𝜃2 , with 𝑥𝑖𝑗 , 𝜒𝑖𝑗 ∈ F for 𝑖, 𝑗 ∈ {1, 2} . (39)
𝑥𝑖1 𝑥2𝑖1

6 
Starting from maps 𝑎,𝑏,𝑎,𝑏, 𝑎,𝑏 that were derived in Section 3, we
express each of their variables as described above. By comparing coef-
ficients of 1, 𝜃1𝜃2 and 𝜃1, 𝜃2 on both sides of each of the Eqs. (15)–(17),

e obtain sixteen-dimensional maps which we denote by 𝖱𝑎,𝑏, 𝖲𝑎,𝑏,𝖳𝑎,𝑏,
espectively. The components of these maps are given in Box I,

𝖲𝑎,𝑏 ∶

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑢11 =
𝑦211
𝑏𝑥11

+ 𝑦11(𝑦21−𝑎)
𝑏

, 𝑣11 = 𝑥11 ,

𝑢12 = − 𝑥12𝑦211
𝑏𝑥211

+ 𝑦11(2𝑦12+𝑦11(𝜒12𝜓21+𝜒11𝜓22))
𝑏𝑥11

+ 𝑦12(𝑦21−𝑎)
𝑏

+ 𝑦11(𝑦22+𝜓12𝜓21−𝜓11𝜓22)
𝑏

, 𝑣12 = 𝑥12 ,
𝑢21 =

𝑏
𝑦11
, 𝑣21 = 𝑎 + 𝑥11𝑥21 −

𝑦11
𝑥11
,

𝑢22 = − 𝑏𝑦12
𝑦211

, 𝑣22 = 𝑥11𝑥22 + 𝑥12𝑥21
+ 𝑥12𝑦11

𝑥211
− 𝑦12

𝑥11

− 𝜒12𝜒21 + 𝜒11𝜒22 ,
𝜉11 = 𝜓11 −

𝑦11
𝑥11
𝜒11 , 𝜂11 = 𝜒11 ,

𝜉12 = 𝜓12 −
𝑦11
𝑥11
𝜒12 , 𝜂12 = 𝜒12 ,

𝜉21 = 𝜓21 , 𝜂21 = 𝜒21 +
𝑦11
𝑥11
𝜓21 ,

𝜉22 = 𝜓22 , 𝜂22 = 𝜒22 +
𝑦11
𝑥11
𝜓22 ,

(41)

and again 𝖳𝑎,𝑏 = 𝜋 ◦ 𝖲−1𝑏,𝑎 ◦ 𝜋.
Invariants of maps 𝖱𝑎,𝑏 and 𝖲𝑎,𝑏 can be obtained starting from the

amilies of invariants ,  of 𝑎,𝑏, 𝑎,𝑏, respectively. Following the
deas discussed in the previous section, we first express the variables

that appear in invariants 𝑖 and 𝑖 in terms of 1, 𝜃1𝜃2 and 𝜃1, 𝜃2. Then
he coefficients of 1, 𝜃1𝜃2 as well as those of powers of 𝜃1 and 𝜃2 can
ead to invariants for the 16-dimensional maps (40), (41). In particular,

using only invariants 1,2 and 4 from the list (19) we obtain the
following functionally independent invariants for map 𝖱𝑎,𝑏

𝖨1 = 𝑥11𝑥21 + 𝑦11𝑦21 , 𝖨2 = 𝑥11𝑥22 + 𝑥12𝑥21 + 𝑦11𝑦22 + 𝑦12𝑦21 ,

𝖨3 = 𝜒11𝜒22 + 𝜓11𝜓22 , 𝖨4 = 𝜒12𝜒21 + 𝜓12𝜓21 ,

𝖨5 = 𝜒11𝜒21 + 𝜓11𝜓21 , 𝖨6 = 𝜒12𝜒22 + 𝜓12𝜓22 , (42)
𝖨7 = 𝑏𝑥11𝑥21 + 𝑎𝑦11𝑦21 + 𝑥11𝑦21 + 𝑥21𝑦11 + 𝑥11𝑥21𝑦11𝑦21 ,

8 = 𝑏(𝑥11𝑥22 + 𝑥12𝑥21 + 𝜒11𝜒22 − 𝜒12𝜒21)

+ 𝑎(𝑦11𝑦22 + 𝑦12𝑦21 + 𝜓11𝜓22 − 𝜓12𝜓21)

+ 𝑥11𝑥21(𝑦11𝑦22 + 𝑦12𝑦21) + 𝑦11𝑦21(𝑥11𝑥22 + 𝑥12𝑥21)
+ 𝑦11𝑦21(𝜒11𝜒22 − 𝜒12𝜒21)

+ 𝑥11𝑥21(𝜓11𝜓22 − 𝜓12𝜓21) + 𝑥11𝑦22 + 𝑥22𝑦11 + 𝑥21𝑦12 + 𝑥12𝑦21 + 𝜒11𝜓22

+ 𝜒22𝜓11 − 𝜒12𝜓21 − 𝜒21𝜓12 .

Moreover, expanding the anti-invariants given in Remark 3.5 in the
basis of 𝛤 (2) we obtain the following six anti-invariants of map 𝖱𝑎,𝑏

𝖠𝑖𝑗 = 𝑥𝑖1𝜓𝑖𝑗 − 𝑦𝑖1𝜒𝑖𝑗 and 𝖡𝑖 = 𝜒𝑖1𝜓𝑖2 − 𝜒𝑖2𝜓𝑖1 , for 𝑖, 𝑗 = 1, 2 . (43)

The squares of 𝖠𝑖𝑗 and 𝖡𝑖, as well as any product of two of them
is an invariant of map 𝖱𝑎,𝑏. Obviously, not all of invariants (42) and
those obtained from combinations of the anti-invariants (43) form a
generating set for the ring of invariants of 𝖱𝑎,𝑏, since, for example, the
nvariants 𝖠2

𝑖𝑗 ,𝖡
2
𝑘 and 𝖠𝑖𝑗𝖡𝑘 satisfy the syzygy (𝖠𝑖𝑗𝖡𝑘)2 = (𝖠𝑖𝑗 )2(𝖡𝑘)2.

imilarly, we use the invariants 1-4 in (20) to find the following
functionally independent invariants of map 𝖲𝑎,𝑏

𝖩1 = 𝑦21 + 𝑥11𝑥21 , 𝖩2 = 𝑦22 + 𝑥11𝑥22 + 𝑥12𝑥21 + 𝜒11𝜒22 − 𝜒12𝜒21 ,

𝖩3 = 𝜒11𝜒22 + 𝜓11𝜓22 , 𝖩4 = 𝜒12𝜒21 + 𝜓12𝜓21 ,

𝖩5 = 𝜒11𝜒21 + 𝜓11𝜓21 , 𝖩6 = 𝜒12𝜒22 + 𝜓12𝜓22 ,

𝖩7 = (𝑎 + 𝑥11𝑥21)(𝜓11𝜓22 − 𝜓12𝜓21) + (𝑏 + 𝑦21)(𝜒11𝜒22 − 𝜒12𝜒21)

+ (1 − 𝑥21𝑦11)(𝜒11𝜓22 − 𝜒12𝜓21) +
(

1 − 𝑏𝑥11
𝑦11

)

(𝜒22𝜓11 − 𝜒21𝜓12) ,
(44)
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𝖱𝑎,𝑏 ∶

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑢11 = 𝑦11 −
𝑎−𝑏

1+𝑥11𝑦21
𝑥11 , 𝑣11 = 𝑥11 ,

𝑢12 = 𝑦12 −
(𝑎−𝑏)(𝑥12−𝑥11(𝑥11𝑦22+𝜒11𝜓22−𝜒12𝜓21))

(1+𝑥11𝑦21)2
, 𝑣12 = 𝑥12 ,

𝑢21 = 𝑦21 , 𝑣21 = 𝑥21 +
𝑎−𝑏

1+𝑥11𝑦21
𝑦21 ,

𝑢22 = 𝑦22 , 𝑣22 = 𝑥22 +
(𝑎−𝑏)(𝑦22−𝑦21(𝑥12𝑦21+𝜒11𝜓22−𝜒12𝜓21))

(1+𝑥11𝑦21)2
,

𝜉11 = 𝜓11 −
𝑎−𝑏

1+𝑥11𝑦21
𝜒11 , 𝜂11 = 𝜒11 ,

𝜉12 = 𝜓12 −
𝑎−𝑏

1+𝑥11𝑦21
𝜒12 , 𝜂12 = 𝜒12 ,

𝜉21 = 𝜓21 , 𝜂21 = 𝜒21 +
𝑎−𝑏

1+𝑥11𝑦21
𝜓21 ,

𝜉22 = 𝜓22 , 𝜂22 = 𝜒22 +
𝑎−𝑏

1+𝑥11𝑦21
𝜓22 ,

(40)

Box I.
𝖬

a

e
w
f

o

t

d

c
r

𝖩8 = (𝑎 + 𝑥11𝑥21)(𝜓11𝜓21 − 𝜓12𝜓22) + (𝑏 + 𝑦21)(𝜒11𝜒21 − 𝜒12𝜒22)

+ (1 − 𝑥21𝑦11)(𝜒11𝜓21 − 𝜒12𝜓22) +
(

1 − 𝑏𝑥11
𝑦11

)

(𝜓11𝜒21 − 𝜓12𝜒22) ,

𝖩9 = 𝑏
𝑥11
𝑦11

+ 𝑦21(𝑎 + 𝑥11𝑥21) + 𝑥21𝑦11 ,

𝖩10 = 𝑏

(

𝑥12
𝑦11

−
𝑥11𝑦12
𝑦211

)

+ 𝑦21(𝑥12𝑥21 + 𝑥11𝑥22 + 𝜒11𝜒22 − 𝜒12𝜒21)

+ 𝑦22(𝑎 + 𝑥11𝑥21)

+ 𝑥21𝑦12 + 𝑥22𝑦11 + 𝜒11𝜓22 − 𝜒12𝜓21 + 𝜒22𝜓11 − 𝜒21𝜓12 .

Additionally, from invariant 5 we find that 𝖡𝑖, for 𝑖 = 1, 2, in (43) are
nti-invariants of map 𝖲𝑎,𝑏.

Following the ideas in Section 4, we construct a strong Lax triple
𝑎,𝖬𝑎,𝖫𝑎 for maps 𝖱𝑎,𝑏, 𝖲𝑎,𝑏,𝖳𝑎,𝑏. We start by expressing the Lax matri-
es with Grassmann variables 𝑎,𝑎 in (14) in the basis of 𝛤 (2) as
𝑎(𝒙,𝝌) = 𝖫1 ⊗ 1 + 𝖫2 ⊗ 𝜃1𝜃2 + 𝖫3 ⊗ 𝜃1 + 𝖫4 ⊗ 𝜃2 ,
𝑎(𝒙,𝝌) = 𝖬1 ⊗ 1 +𝖬2 ⊗ 𝜃1𝜃2 +𝖬3 ⊗ 𝜃1 +𝖬4 ⊗ 𝜃2 ,

(45)

with the coefficients 𝖫𝑖 ,𝖬𝑖 given by

𝖫1 =
⎛

⎜

⎜

⎝

𝑥11𝑥21 + 𝑎 + 𝜆 𝑥11 0
𝑥21 1 0
0 0 1

⎞

⎟

⎟

⎠

, 𝖫3 =
⎛

⎜

⎜

⎝

0 0 𝜒11
0 0 0
𝜒21 0 0

⎞

⎟

⎟

⎠

,

𝖫4 =
⎛

⎜

⎜

⎝

0 0 𝜒12
0 0 0
𝜒22 0 0

⎞

⎟

⎟

⎠

, (46)

𝖫2 =
⎛

⎜

⎜

⎝

𝑥11𝑥22 + 𝑥12𝑥21 + 𝜒11𝜒22 − 𝜒12𝜒21 𝑥12 0
𝑥22 0 0
0 0 0

⎞

⎟

⎟

⎠

, (47)

and

𝖬1 =

⎛

⎜

⎜

⎜

⎝

𝑥21 + 𝜆 𝑥11 0
𝑎
𝑥11

0 0
0 0 1

⎞

⎟

⎟

⎟

⎠

, 𝖬2 =

⎛

⎜

⎜

⎜

⎝

𝑥22 𝑥12 0
− 𝑎𝑥12

𝑥211
0 0

0 0 0

⎞

⎟

⎟

⎟

⎠

,

3 = 𝖫3 , 𝖬4 = 𝖫4 . (48)

Then, using the algebra homomorphism 𝜌 ∶ 𝛤 (2) → Mat4(F) defined by

1
𝜌
↦

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎠

, 𝜃1
𝜌
↦

⎛

⎜

⎜

⎜

⎜

⎝

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

, 𝜃2
𝜌
↦

⎛

⎜

⎜

⎜

⎜

⎝

0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

,

(49)

a

7 
we obtain a strong Lax triple for maps 𝖱𝑎,𝑏, 𝖲𝑎,𝑏,𝖳𝑎,𝑏 with matrices 𝖫𝑎,𝖬𝑎
given by
𝖫𝑎 = 𝖫1 ⊗ 𝜌(1) + 𝖫2 ⊗ 𝜌(𝜃1)𝜌(𝜃2) + 𝖫3 ⊗ 𝜌(𝜃1) + 𝖫4 ⊗ 𝜌(𝜃2)
𝑎 = 𝖬1 ⊗ 𝜌(1) +𝖬2 ⊗ 𝜌(𝜃1)𝜌(𝜃2) +𝖬3 ⊗ 𝜌(𝜃1) +𝖬4 ⊗ 𝜌(𝜃2) ,

(50)

and 𝖫𝑖,𝖬𝑖, 𝑖 = 1,… , 4 given in (46), (47) and (48). The 16-dimensional
maps 𝖱𝑎,𝑏 and 𝖲𝑎,𝑏 in (40), (41) arise from the matrix refactorisation
problems of the 12 × 12 Lax matrices (50).

Finally, similar to the 𝛤 (1) case, each of the maps 𝖱𝑎,𝑏, 𝖲𝑎,𝑏,𝖳𝑎,𝑏
dmits an invariant measure 𝑚. These measures are 𝑚 = 1 for 𝖱𝑎,𝑏,
𝑚 = 1

𝑦211
for 𝖲𝑎,𝑏, and 𝑚 = 1

𝑥211
for 𝖳𝑎,𝑏. In particular, we observe that

the commutative consequences of map 𝑎,𝑏 for 𝑛 = 1 and 𝑛 = 2, that
is maps 𝑅𝑎,𝑏 and 𝖱𝑎,𝑏, are volume preserving maps. We conjecture that
in 𝛤 (𝑛) the map 𝑎,𝑏 is volume preserving for every 𝑛, while the maps
𝑆𝑎,𝑏 and 𝑇𝑎,𝑏 preserve measures of the form 𝑦−𝑛11 and 𝑥−𝑛11 , respectively,
with 𝑥11 and 𝑦11 defined similar to the cases 𝑛 = 1 and 𝑛 = 2.

6. Conclusions

We have constructed birational maps 𝑎,𝑏, 𝑎,𝑏, 𝑎,𝑏 with Grass-
mann variables given in (15)–(17), which satisfy the set-theoretical
ntwining YB equation (9). These maps admit a strong Lax triple, which
e used to derive invariants for the maps. The invariants that we

ind for map 𝑎,𝑏 are all polynomial, while those of maps 𝑎,𝑏 and
𝑎,𝑏 are Laurent polynomials with negative powers appearing only on
even variables of the Grassmann algebra. Reversing this point of view,
one could make connections with non-commutative algebraic geometry
by viewing the maps as birational automorphisms of non-commutative
algebraic varieties.

In Sections 4 and 5 we have shown how a hierarchy of birational
entwining YB maps in dimensions 2𝑛+2, where 𝑛 is the order of the
Grassmann algebra, can be obtained. The case 𝑛 = 0, i.e. when there
are no fermionic variables, was studied in [61]. Here, we considered
in detail the cases where 𝑛 = 1, 2, thus obtaining birational maps
ver F8 and F16 that satisfy the entwining Yang–Baxter equation. We

have derived sufficient number of independent invariants of these maps
o claim their Liouville integrability, however, we have not yet been

able to find a Poisson structure. Nevertheless, there are indications
which point towards the integrability of the maps with commutative
variables. We have found that these maps are measure preserving,
and some preliminary numerical experiments that we have conducted
show no existence of chaos. Moreover, we have written each of the 8-
imensional maps of Section 4 as a composition of a Liouville integrable

map with a linear map. More insight regarding the integrability of
the maps could be gained using other methods, such as singularity
onfinement or algebraic entropy. All 2𝑛+2-dimensional maps arise from
efactorization problems of Lax matrices, which we present for 𝑛 = 1
nd 𝑛 = 2. It would be interesting to study the associated transfer
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maps à la Veselov [8] for each 𝑛. Finally, defining appropriately the
concept of Liouville integrability in the setting of Grassmann-extended
entwining YB maps is an interesting open problem.
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Appendix. Proof of Theorem 3.1

The proof of Theorem 3.1 is based on Proposition 3.1 in [13]. To
prove that the maps (15)–(17) satisfy the entwining YB equation (9) we
have to show that the equation

𝑎(𝒙,𝝌)𝑏(𝒚,𝝍)𝑐 (𝒛, 𝜻) = 𝑎(𝒙′,𝝌 ′)𝑏(𝒚′,𝝍 ′)𝑐 (𝒛′, 𝜻 ′) , (51)

with 𝑎(𝒙,𝝌) and 𝑎(𝒙,𝝌) given in (14), implies (𝒙,𝝌)
 (𝒙′,𝝌 ′), (𝒚,𝝍) = (𝒚′,𝝍 ′) and (𝒛, 𝜻) = (𝒛′, 𝜻 ′). Here all the ordered

pairs, e.g. (𝒙, 𝝌) = (𝑥1, 𝑥2, 𝜒1, 𝜒2), are in F2,2
𝑛 .

Proof. We use the standard notation of 𝑒𝑖𝑗 denoting the matrix with 1
in the (𝑖, 𝑗) entry and 0 elsewhere. Then the Lax matrices 𝑎(𝒙,𝝌) and

𝑏(𝒚,𝝍) are of the form

𝑎(𝒙,𝝌) = 𝜆𝑒11 + 𝐴𝑎(𝒙,𝝌), 𝑏(𝒚,𝝍) = 𝜆𝑒11 + 𝐵𝑏(𝒚,𝝍)

where

𝐴𝑎(𝒙,𝝌) =
⎛

⎜

⎜

⎝

𝑥1𝑥2 + 𝜒1𝜒2 + 𝑎 𝑥1 𝜒1
𝑥2 1 0
𝜒2 0 1

⎞

⎟

⎟

⎠

and

𝑏(𝒚,𝝍) =
⎛

⎜

⎜

⎜

⎝

𝑦2 𝑦1 𝜓1
𝑏
𝑦1

0 0
𝜓2 0 1

⎞

⎟

⎟

⎟

⎠

.

For simplicity we also introduce the notation

𝑋𝑎 ∶= 𝑥1𝑥2 + 𝜒1𝜒2 + 𝑎, 𝑍𝑐 ∶= 𝑧1𝑧2 + 𝜁1𝜁2 + 𝑐 .
Moreover, we introduce the operators 𝐿𝑒11 and 𝑅𝑒11 acting on M2,1 by
left and right multiplication by 𝑒11, respectively. Since, 𝑒211 = 𝑒11, the
operators 𝐿𝑒11 and 𝑅𝑒11 are projections. More precisely, we have that

𝐿𝑒11 (𝑃 ) = 𝑒11𝑃 =
3
∑

𝑗=1
𝑝1𝑗𝑒1𝑗 , 𝑅𝑒11 (𝑃 ) = 𝑃 𝑒11 =

3
∑

𝑖=1
𝑝𝑖1𝑒𝑖1,

for any matrix 𝑃 = (𝑝𝑖𝑗 ) ∈ M2,1. It also follows that 𝐿𝑒11 ◦ 𝑅𝑒11 (𝑃 ) =
𝑒11 ◦ 𝐿𝑒11 (𝑃 ) = 𝑝11𝑒11.

We denote the left hand side of (51) by (𝜆) and expand it in powers
f 𝜆. We obtain that
(𝜆) = 𝜆3𝑒11 + 𝜆22 + 𝜆1 +0,

8 
with {𝑖}2𝑖=0 given by the following expressions
2 = 𝐿𝑒11 ◦ 𝑅𝑒11

(

𝐵𝑏(𝒚,𝝍)
)

+ 𝑅𝑒11
(

𝐴𝑎(𝒙,𝝌)
)

+ 𝐿𝑒11
(

𝐴𝑐 (𝒛, 𝜻)
)

,

1 = 𝐴𝑎(𝒙,𝝌)𝑅𝑒11
(

𝐵𝑏(𝒚,𝝍)
)

+ 𝐴𝑎(𝒙,𝝌)𝐿𝑒11
(

𝐴𝑐 (𝒛, 𝜻)
)

+𝐿𝑒11
(

𝐵𝑏(𝒚,𝝍)
)

𝐴𝑐 (𝒛, 𝜻)

0 = 𝐴𝑎(𝒙,𝝌)𝐵𝑏(𝒚,𝝍)𝐴𝑐 (𝒛, 𝜻).

Expanding the right hand side of Eq. (51) in 𝜆, we obtain similar
expressions which we denote by {′

𝑖}
2
𝑖=0. It follows that (51) implies

the matrix equations 𝑖 = ′
𝑖 , for 𝑖 = 0, 1, 2.

Matrix equation 2 = ′
2 results in nontrivial equations only for the

ntries in the first column and the first row. Comparing the coefficients
f the matrices 𝑒21 and 𝑒31 in 2 and ′

2 gives

𝑥2 = 𝑥′2, 𝜒2 = 𝜒 ′
2.

Similarly, from the coefficients of 𝑒12 and 𝑒13 we obtain

𝑧1 = 𝑧′1, 𝜁1 = 𝜁 ′1.

In the matrix equation 0 = ′
0 we focus on the equations that

e obtain from the coefficients of 𝑒22, 𝑒23 and 𝑒32. The equation that
orresponds to 𝑒22 reads
(

𝑥2𝑦2 +
𝑏
𝑦1

)

𝑧1 + 𝑥2𝑦1 =

(

𝑥2𝑦
′
2 +

𝑏
𝑦′1

)

𝑧1 + 𝑥2𝑦′1,

where we have used the fact that 𝑥2 = 𝑥′2 and 𝑧1 = 𝑧′1. The above
quation is polynomial in 𝑧1 and therefore it implies that

𝑦1 = 𝑦′1, 𝑦2 = 𝑦′2.

Similarly, using the equations obtained from the coefficients of 𝑒23 and
𝑒32 we have that

𝜓1 = 𝜓 ′
1, 𝜓2 = 𝜓 ′

2.

From the coefficient of 𝑒12 in 1 = ′
1 we obtain the equation

𝑋𝑎𝑧1 + 𝑦2𝑧1 + 𝑦1 = 𝑋′
𝑎𝑧1 + 𝑦2𝑧1 + 𝑦1 ,

where we have used the previously obtained equalities between primed
nd non-primed variables. The latter equation implies that 𝑋𝑎 = 𝑋′

𝑎.
imilarly, from the coefficients of 𝑒21 of the same matrix equation we

obtain 𝑍𝑐 = 𝑍′
𝑐 .

The coefficients of 𝑒21 and 𝑒31 in matrix equation 0 = ′
0 give two

quations involving 𝑧2, 𝑧′2 and 𝜁2, 𝜁 ′2. Using the fact that 𝑍𝑐 = 𝑍′
𝑐 these

two equations can be written as the following homogeneous system:
(

𝑦1 𝜓1
𝜒2𝑦1 1 + 𝜒2𝜓1

) (
𝑧′2 − 𝑧2
𝜁 ′2 − 𝜁2

)

=
(

0
0

)

.

Since the supermatrix of coefficients of the above system is invertible,
it follows that

𝑧2 = 𝑧′2, 𝜁2 = 𝜁 ′2.

Finally, from the equations that correspond to the elements 𝑒12 and 𝑒13,
and using the fact that 𝑋𝑎 = 𝑋′

𝑎, we obtain a similar linear system that
results to the remaining equalities

𝑥1 = 𝑥′1, 𝜒1 = 𝜒 ′
1. □
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