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Abstract—Supernumerary Robotic Limb (SRL) is recognized
as being at the forefront of robotics innovation, aimed at
augmenting human capabilities in complex working environ-
ments. Despite their potential to significantly enhance operational
efficiency, the integration of SRL for dynamic and intricate
tasks presents challenges in teleoperation, precise positioning,
and dynamic balance control. To address challenges in initiating
control when targets or the SRL’s end-effector are outside
the camera’s visual range, a coarse teleoperation strategy is
implemented. This strategy utilizes Inertial Measurement Unit
(IMU) and the Extended Kalman Filter (EKF), enabling basic
orientation and movement toward the target area without re-
liance on visual cues. Challenges in achieving fine-tuned control
for accurate task completion, particularly in visual navigation
and precise positioning of the SRL’s end-effector, are addressed
by integrating object detection via YOLOX with the Tangential
Artificial Potential Field (T-APF) method for exact path planning.
This integration significantly enhances the system’s ability to fine-
tune end-effector placement. The challenge of conducting balance
tasks without force sensors is tackled by adopting a dual-spring
model combined with Autoregressive (AR) predictive modeling,
enabling effective balance support through anticipatory motion
adjustments. Experiments have demonstrated the system’s en-
hanced positional accuracy and maintained synchronization with
human movements, underscoring the effectiveness of the integrat-
ed approach in facilitating complex human-robot collaborative
tasks.

Index Terms—Supernumerary Robotic Limbs, Teleoperation,
Vision-Enhanced Positioning, Human-Robot Collaboration.

I. INTRODUCTION

IN recent years, the robotics landscape has undergone trans-
formative advancements, most notably in the specialized

area of Supernumerary Robotic Limbs (SRL) [1]. These inno-
vative robotic systems are engineered to augment and emulate
human limb movements without supplanting them, thereby
unlocking new possibilities in diverse fields such as assistive
technologies and advanced manufacturing [2]. SRL possess the
unique capability to function in synchrony with human limbs,
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Fig. 1: The cartoon showcase of the human-SRL system. The
designed SRL is mounted at the right waist side of the operator,
establishing a rigid connection with the operator via attachment points
on the leg and a waist belt. To capture the operator’s teleoperation
intentions and monitor the real-time posture changes of the SRL, two
IMU are positioned on both the operator’s dorsum of the foot and
the base of the SRL. Additionally, a Kinect V1 is mounted on a desk
within proximity to the operation area, whose field of view covers
the operator’s working zone.

achieving seamless integration of human intuition and robotic
precision.

Initial research in the field of SRL primarily focused on
mechanical design and preliminary control algorithms, as
highlighted by Bonilla et al. [3]. Early explorations, such as
those by Abdi et al., investigated the use of foot movements
to control a third robotic hand in virtual reality, emphasizing
the potential of SRL as extensions of the human body with
key design principles of safety, transparency, and ergonomic
comfort [4]. With the evolution of SRL technology, there is
an increasing emphasis on advanced control mechanisms that
integrate human intentions with robotic actions, although the
technology remains largely experimental [5]. Hussain et al.
introduced an electromyographic (EMG) control interface for
a supernumerary robotic finger’s motion and joint compliance,
exemplifying such advancements [6]. Wu et al. presented
a control algorithm for human fingers and supernumerary
robotic fingers to share loads [29]. Hao et al. designed an
SRL system with robotic legs for walking assistance, reducing
user load through autonomous gait alignment [30]. Kurek
et al. introduced a wearable device with two robotic legs
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for ground-level tasks, eliminating the need for arm support
through impedance control for stability [31]. The evolution
of SRL from mechanical designs to advanced control systems
showcases a broadening of applicationsfrom enhancing dex-
terity with robotic fingers and hands, facilitating load sharing,
to improving mobility with robotic legs. Each development
iteratively refines SRL’ integration with human capabilities,
distinguishing between augmenting upper body tasks for
manual assistance and lower body support for mobility and
balance.

SRL have significantly evolved from augmenting basic
human functions to addressing complex biomechanical chal-
lenges, as highlighted in early works such as the wearable
additional arms developed by Davenport et al. [18]. The focus
of SRL development has expanded from foundational con-
cepts and biomechanics to multipurpose use and wearability,
evidenced by the shape-changing SRL by Leigh et al. [19]
and the serpentine robot by Al-Sada et al. [20]. However, a
critical area for further exploration in SRL is advanced target
detection, vital for performing complex tasks. While the field
has made strides in human augmentation and implications on
body schema, as explored by Tsakiris et al. through the rubber
hand illusion [22], and in soft wearable assistive robotics
for operator comfort, as demonstrated by Iwaki et al. [24]
and Treers et al. [25], integrating advanced functionalities
like precise target detection remains an uncharted territory.
This gap highlights the necessity for continued research to
not only enhance the mechanical and ergonomic aspects of
SRL but also to incorporate sophisticated technologies for
their effective application in varied and complex operational
environments. However, a significant ongoing challenge is the
precise prediction and replication of human motion, where
conventional methods often lack the finesse and real-time
responsiveness required for more complex tasks [26].

In addressing the precision challenges inherent in robotics
and SRL, the integration of Inertial Measurement Unit (IMU)
and Extended Kalman Filter (EKF) emerges as a prominent so-
lution within the research community [7], [8]. IMU, celebrated
for their compact size and high accuracy in capturing motion
data, is crucial for estimating spatial orientation and position
despite susceptibility to drift errors over extended periods.
EKF counters these inaccuracies, offering dynamic system
state estimation from noisy IMU data, thereby enhancing
motion estimation accuracy. This approach is augmented by
sensor fusion techniques, where IMU data is combined with
other sensors like Ultra-Wideband (UWB) and 3D Lidar, to
achieve robust localization and control [9]–[12]. Such integra-
tions underscore the potential of sophisticated computational
algorithms and diverse sensor modalities in advancing the op-
erational efficiency and accuracy of complex robotic systems,
including SRL [27], [28].

Despite these significant strides, a gap persists in enabling
SRL to proactively adapt to abrupt changes in human mo-
tion. Lehrmann et al. applied Autoregressive (AR) model
prediction in human motion [13]. These models facilitate
real-time trajectory adjustments by forecasting human mo-
tion, thereby ensuring synchronized robotic operations. For
example, Maurice et al. compiled a dataset of human motions

in industrial-like settings, providing a valuable resource for
algorithm development in human motion prediction [14]. Luo
et al. formulated a human motion intention prediction method
based on an AR model for teleoperation, allowing for real-time
trajectory updates [15].

In the dynamic context of SRL applications, essential func-
tionalities such as target detection have become imperative for
executing complex services. For instance, in grasp-oriented
tasks, the operator needs to accurately identify and interact
with target objects, necessitating advanced detection mecha-
nisms by the external limbs. However, current research on
target detection and related functionalities within the SRL
domain remains limited [5]. This gap highlights the necessity
for focused research and development in areas critical to the
operational effectiveness of SRL, such as sensor integration,
motion prediction, and real-time adaptability to complex sce-
narios. This study, therefore, assumes significant relevance, as
it seeks to address these challenges and extend the scope of
SRL technology. By integrating enhanced control mechanisms
and predictive models, this work aims to facilitate a more
intuitive and efficient human-robot interaction, marking a step
towards revolutionizing SRL applications and integrating them
seamlessly into real-world scenarios.

Recognizing the challenges in enhancing the functionality
and applicability of SRL in complex service scenarios, par-
ticularly in target detection and interaction tasks, this study
proposes several innovative solutions to bridge these gaps.
To address the pressing need for advanced detection and
interaction mechanisms in SRL applications, our research
contributions are summarized as follows:

1) Development of a target detection and tracking system:
Advanced sensor technology and deep learning algorithms
are leveraged to enhance the SRL’s object identification and
interaction in various environments, boosting task efficiency.

2) Integration of predictive modeling for dynamic inter-
action: Incorporating AR predictive models allows the SRL
system to foresee human movements and adapt in real-time,
improving human-robot collaboration.

3) Real-time adaptive control mechanism: IMU inputs and
vision feedback are used to dynamically adapt to changing
operational conditions, ensuring precise and responsive ma-
nipulation.

The structure of this paper is organized as follows: Related
work is reviewed in Section II. Then, an overview of the
methodologies utilized is provided in Section III, detailing the
innovative approaches for controlling SRL. The methodology
comprises: EKF and IMU-Based coarse teleoperation in Sec-
tion IIIA, vision-based fine positioning in Section IIIB, and
deformation estimation for object balance detailed in Section
IIIC. Experimental results and comprehensive discussion are
presented in Section IV. The paper is concluded in Section VI.

II. RELATED WORK

A. IMU-Based Position Prediction

IMU play a key role in enhancing teleoperation and SRL
control through real-time orientation and position measure-
ment, especially for precise control and synchronization. Zhu
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et al. developed an IMU-based system to attenuate arm tremors
in teleoperation [41], while kulj et al. introduced a wearable
IMU system for industrial robot teleoperation, focusing on
real-time orientation data [33]. Expanding upon real-time data
utilization, Li et al. combined vision and IMU techniques
for accurate anthropomorphic hand joint angle predictions
[34]. Weigend et al. used IMU data from a smartwatch for
human arm pose deductions, offering accessible robot control
solutions [35]. Girbs-Juan et al. integrated haptic feedback
with IMU-based motion capture for remote dual-arm robot
control [36]. Tortora et al. combined EMG with IMU data for
enhanced human-robot synchronization [37].

These studies underscore the potential of IMU-based sys-
tems in enhancing the precision and reliability of teleoperation
systems, especially in scenarios where real-time feedback and
synchronization are paramount. Inspired by these advance-
ments, our work focuses on applying IMU-based teleoperation
methods to the SRL platform. Our aim is to validate the
feasibility of these methods on SRL and to address the unique
challenges or optimizations required for this specific task.

B. Advanced Path Planning: Integrating Object Detection
with Artificial Potential Field

The integration of object detection with artificial potential
fields (APF) has recently become a key advancement in path
planning for SRL, addressing challenges like local minima
and target inaccessibility. Yuan et al. enhanced APF for UR5
mechanical arm planning with a novel node selection method
to overcome these issues [38], while Yingqi et al. successfully
integrated the rapidly exploring random tree star (RRT*) with
APF, proving its effectiveness in constrained spaces [39].
Luo et al. presented work on a six-degree-of-freedom (DOF)
serial harvesting robot combining energy optimization with
APF for collision-free navigation in dynamic environments
[40]. Muhammad et al. applied APF in differential drive
robots for enhanced maneuverability in dynamic settings [42].
Jiangs team improved APF for obstacle avoidance in a 5-
DOF bending robot [43], complemented by the integration of a
perturbation observer-based detection with APF for navigating
unstructured environments by Salman et al. [44].

These pioneering studies have proven successful in their
respective domains, primarily focusing on standalone appli-
cations or traditional SRL. However, the direct application to
the relatively nascent field of SRL presents unique challenges,
given the lack of established methods and theories specific to
SRL. Nonetheless, these developments offer valuable insights
for addressing issues within the SRL domain, providing a
reference point for our research. In our work with the SRL
platform, we aim to draw upon these integrative techniques,
adapting and refining them to fit the specific demands and
dynamic nature of SRL operations. The potential of these
methods, as demonstrated in previous studies, lays a robust
foundation for innovative applications in SRL, promising to
enhance their functionality and adaptability in diverse real-
world scenarios.

C. Balance Control Strategies for SRL

In the landscape of human-robot collaboration, the challenge
of maintaining balance during interaction tasks has prompted
innovative control strategies across diverse platforms. Kim et
al. developed a Model Predictive Control (MPC) framework
for humanoid robots that enhances balance through the integra-
tion of ankle, hip, and stepping strategies [45]. Building upon
the foundation laid by predictive control, Li et al. introduced
a combination of modified model predictive and impedance
control that effectively minimizes disturbances induced by
human interaction during object manipulation tasks [46]. Ex-
tending the concept of dynamic collaboration, Amirshirzad et
al. showed that shared control between humans and adaptive
robots enhances task performance and speeds learning in ball
balancing tasks [47]. However, these methods struggle to
dynamically adapt to the variable nature of human movements
and the precise demands of SRL in balance tasks, underscoring
the need for control strategies that are responsive, predictive,
and seamlessly integrated with human biomechanics.

Addressing these limitations, research in SRL for balance
control offers a fresh perspective. Luo et al. introduced a QR
decomposition-based balance controller for SRL, enhancing
safety and operational stability in overhead tasks [48]. Tu et al.
furthered the field with a finite state machine and admittance
control for dynamic SRL task transitions, proving the concept
with prototype tests [49]. Gonzalez et al. innovated with a
hybrid control architecture for SRL, improving human-robot
balance in transition tasks, tested in nuclear decommissioning
scenarios [50]. Despite these advancements, existing strategies
primarily enhance task performance or augment human move-
ment without addressing the dynamic collaborative balance
required for tasks involving direct interaction between the SRL
and human operators, such as jointly supporting an object. This
oversight underscores the challenge of integrating SRL into
activities needing real-time, adaptive cooperation to maintain
the balance and coordination of a shared load. The reliance
on predefined kinematic models fails to accommodate the
unpredictable variability of human motion, highlighting the
necessity for more adaptable, predictive control strategies.

III. METHODOLOGY

The methodology unfolds in three stages to enhance control
and precision in SRL operations. The teleoperation strategy
begins with IMU-based coarse control for initial maneuvering,
progresses to vision-based fine positioning for precise task
execution, and concludes with balance control through defor-
mation estimation. Subsequent sections will detail the process,
starting with IMU-based teleoperation.

A. IMU-Based Coarse Teleoperation

In SRL teleoperation, the integration of the EKF with IMU
emerges as a robust solution for precise state estimation, a
process underpinned by the EKF’s adeptness at fusing noisy
IMU sensor data to refine the SRL’s position and orientation in
real-time [51], [52]. This strategic combination is essential for
teleoperation where accuracy and immediate responsiveness
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are paramount. IMU, with their accelerometers and gyro-
scopes, encounter inherent measurement noise and biases that
can cause drift over time. The EKF, specifically designed
for nonlinear systems, effectively minimizes the squared error
between estimated and actual states through iterative updates,
ensuring enhanced state estimation critical for the nuanced
demands of SRL teleoperation [53].

For the SRL teleoperation, the state vector xk is composed
of the end-effector’s position, velocity, and quaternion orien-
tation:

xk =
[
pk, vk, qk

]
(1)

This vector’s evolution is dictated by the system model, ac-
counting for dynamics influenced by acceleration, gravitational
forces, and quaternion-based orientation updates:

pk = pk−1 + vk−1 · dt+ 0.5 · (ak−1 − g) · dt2

vk = vk−1 + (ak−1 − g) · dt
qk = qk−1 ⊗ q(ωk−1 · dt)

(2)

where pk and vk correspond to the position and velocity of
the end-effector at time k, while qk indicates its quaternion
orientation. The term dt denotes the elapsed time between
consecutive estimates, ak−1 is the prior step’s acceleration, and
g signifies constant gravitational acceleration. Angular velocity
at the previous step is represented by ωk−1, and quaternion
multiplication, denoted by ⊗, updates the orientation based
on this angular velocity.

The state estimate and covariance matrix are updated as
follows:

Gk = Sk|k−1F
T
k

(
FkSk|k−1F

T
k + Qk

)−1
x̂k|k = x̂k|k−1 +Gk

(
zk − h

(
x̂k|k−1

))
Sk|k = (I −GkFk) Sk|k−1

(3)

Eq. (3) outlines the EKF’s update mechanism, where Gk
calculating the Kalman gain to assimilate discrepancies be-
tween observed and predicted states into the updated estimate.
The term x̂k|k represents the adjusted state estimate incorpo-
rating this gain, while Sk|k signifies the updated covariance
matrix, reflecting the certainty of the new estimate. Fk denotes
the Jacobian matrix of the state transition function, capturing
the dynamics of the system’s model relative to the state
variables, and Qk represents the process noise covariance
matrix, accounting for the uncertainty in the model dynamics.
zk represents the real-time observation from the Kinect V1
camera, serving as a critical input for correcting the state
estimate. h(x̂k|k−1) maps predicted states to measurements,
allowing for precise adjustment by comparing with actual
observations zk.

A homogeneous transformation 44 matrix T, consisting of
a rotation 33 matrix R and a translation vector t, is used to
translate the state vector xk from the IMU coordinate frame
to the SRL’s end-effector frame.

T =

[
R t
0 1

]
(4)

To achieve this, the position pk is extended to homogeneous
coordinates phk, transformed via T to obtain p′hk = Tphk,
and then reverted to standard coordinates as p′k. Similarly, the
orientation qk is transformed using R, the rotation component
of T, to yield a new orientation q′k, and the velocity vk is
adapted to the end-effector frame as v′k = Rvk, effectively
facilitating the conversion of position, orientation, and velocity
to align with the SRL’s end-effector frame dynamics.

Through these transformations, the updated state vector is
achieved as x′k = [p′k, v

′
k, q
′
k] in the end-effector frame. This

facilitates the streamlining of further control or processing
tasks within the robotic system.

B. Vision-Enhanced Fine Positioning

Integrating IMU-based coarse teleoperation with vision-
based fine control, the system described herein employs a dual-
stage control mechanism to guide the end-effector efficiently
to its target. Initially, the IMU sensors facilitate rapid, broad
movements for preliminary positioning within the target area.
Subsequently, the control paradigm seamlessly transitions to
a vision-based mode, utilizing high-resolution imagery from
a Kinect V1 sensor for detailed object detection, depth infor-
mation retrieval, and precision manipulation. This approach
not only enhances the accuracy of the end-effector in varied
task environments but also capitalizes on the strengths of
both sensor modalities to ensure adaptive and precise control
throughout the operation phases, as depicted in Fig. 2.

1) Target State Detection and Estimation: Object detection
utilizes the YOLOX [54] algorithm, generating bounding
boxes Bi = (xc,i, yc,i, wi, hi, Ci, Li) for each detected object.
These bounding boxes contain the center coordinates xc,i, yc,i,
dimensions wi, hi, confidence score Ci, and class label Li.

Depth information from the Kinect V1 is then used to
calculate the average depth Di within each bounding box,
essential for determining the object’s 3D position:

Di =
1

wihi

xc,i+wi∑
i=xc,i

yc,i+hi∑
j=yc,i

D(i, j) (5)

Subsequently, the 3D coordinates Pi in the camera frame
are determined using the camera’s intrinsic parameters and the
computed depth:

Pi =

(
Di · (xc,i − cx)

fx
,
Di · (yc,i − cy)

fy
, Di

)
(6)

where fx and fy are the camera’s focal lengths along the x
and y axes, respectively, and cx and cy are the coordinates of
the principal point in the camera’s image sensor.

Finally, the transformation of these coordinates into the
world frame is achieved by applying the homogeneous trans-
formation matrix T, which yields the world coordinates
(X,Y, Z) of the object as Pworld = T · [Pi, 1]T, seamlessly
converting the local coordinates to a global context.

The fine control of the SRL is a critical aspect of achiev-
ing precise alignment and manipulation. In this section, we
propose an integrated approach that combines the Artificial
Potential Field (APF) method with the Tangential Artificial
Potential Field (T-APF) method. This approach takes into
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Fig. 2: Integrating perception with T-APF for SRL path planning and navigation

consideration not only the position and velocity information
but also directional factors, obstacle velocity, and tangential
velocity.

Tangential Artificial Potential Field Model: The Vision-
based Artificial Potential Field (VAPF) method models the
environment as a field of forces, exerting attractive forces
towards the goal and repulsive forces away from obstacles.
The T-APF method extends this concept by incorporating
tangential components to mitigate the limitations posed by
local minima in VAPF models.

The attractive potential field is defined as a quadratic
function of the distance to the goal, ensuring that the force
decreases as the robot approaches its target. It is mathemati-
cally represented as:

Uatt(q) =
1

2
katt‖q − qgoal‖2 (7)

where q is the position vector of the robot’s end-effector, qgoal
is the position vector of the target, and katt is a positive scaling
constant.

The repulsive potential field, in the presence of an obstacle,
is traditionally calculated based on the distance to the nearest
point on the obstacle surface. For the T-APF, this field is
enhanced by including a tangential component, which becomes
active in scenarios where traditional methods fail due to local
minima. The repulsive potential field is defined as a piecewise
function:

Urep(q) =



1
2krep

(
1

‖q−qobs‖
− 1

ρ0

)2
,

if ‖q− qobs‖ ≤ ρ0
and nobs · tobs = 0

ktan

(
1

‖q−qobs‖
− 1

ρ0

)
tobs,

if ‖q− qobs‖ ≤ ρ0
and nobs · tobs 6= 0

0, otherwise
(8)

where qobs denotes the position vector of the closest point on
the obstacle, nobs is the normal vector at the closest point,
tobs is the tangential unit vector along the obstacle edge, krep
and ktan are positive constants representing the strengths of
the repulsive and tangential forces, respectively, and ρ0 is the
influence range of the obstacle. Considering non-orthogonal
nobs and tobs accommodates irregular surface features and
strategic navigation adjustments, enhancing flexibility in com-

Algorithm 1 FSM-based Planning Model with T-APF

Uatt(q) = 1
2
katt‖q − qgoal‖2

while not at qgoal do
Initialize position adjustment ∆q(q)← 0
for each obstacle o in O do

d← ‖q − qobs‖
if Lo ∈ Oplane and d ≤ ρplane then

nobs ← GetNormalVector(Po, wo, ho)
tobs ← GetTangentVector(Po,nobs)

Urep(q, o)← 1
2
kplane

(
1
d
− 1

ρplane

)2

else if Lo ∈ Osphere and d ≤ ρsphere then
nobs ← q−Po

‖q−Po‖
r← RandomNonParallelVector(nobs)
tobs ← nobs×r

‖nobs×r‖

Urep(q, o)← 1
2
ksphere

(
1
d
− 1

ρsphere

)2

end if
if d ≤ ρ0 and nobs · tobs 6= 0 then

Urep(q, o)← ktan

(
1
d
− 1

ρ0

)
tobs

else
Urep(q, o)← 0

end if
∆q(q, o)← −∇Urep(q, o)
∆q(q)← ∆q(q) + ∆q(q, o)

end for
Compute total adjustment ∆q(q)← ∆q(q)−∇Uatt(q)
Update position q ← q + ∆q(q)

end while

plex environments. Finally, the total potential field is expressed
as U total = Urep(q) + Uatt(q).

In Algorithm 1, a finite state machine (FSM) is employed
to categorize and manage different types of obstacles. For
planar obstacles, the model calculates normal and tangent
vectors using geometric methods. The GetNormalVector
computes the normal vector using three non-collinear points,
which defines the perpendicular direction to the obstacle
surface based on its width wo, height ho, and central position
Po. The GetTangentVector computes the tangent vector,
crucial for enabling sliding motions along obstacles and free-
ing the robot from local minima caused by the equilibrium of
forces on flat surfaces. For spherical obstacles, it simplifies
the process to accommodate their standard spherical char-
acteristics. The RandomNonParallelVector generates a
random vector that is not parallel to the normal vector nobs,
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ensuring that the computed tangent vector can effectively guide
the robot around the curved surfaces of spherical obstacles.

By incorporating tangential and normal components into
repulsive potentials, the T-APF method enhances interaction
with obstacles by enabling tangential navigation and minimiz-
ing the risk of encountering local minima. This approach re-
duces the likelihood of the system encountering local minimaa
common limitation in traditional potential field methodsthere-
by enhancing the safe and efficient path planning capabili-
ties of SRL. However, to achieve harmonious, synchronized
interaction between the operator and the SRL, anticipating
the operator’s movements is crucial, especially in dynamic
environments where intentions can change rapidly.

C. Balance Control Based on Deformation Estimation

In this section, the methodology employed for balance
control in SRL operations is elaborated upon. The process
involves translating real-time feedback from the SRL’s end-
effector’s pose into meaningful deformation estimates. These
estimates are then utilized to predict and adjust the SRL’s
movements, ensuring effective balance support, even when the
hand is in motion.

Fig. 3 illustrates the estimation of deformation using the
Dual-Spring model and the prediction of motion in the SRL.
This framework intricately combines deformation estimation
with human motion prediction, leveraging the dual-spring
model to analyze and quantify both translational and rotational
deformations resulting from pose changes. Fig. 4 illustrates the
control methodology for the SRL, integrating the principles
of variable impedance control with a dual-spring model. This
framework is designed to leverage the predicted movements
of the hand, facilitating a dynamic and responsive control
mechanism. By employing the dual-spring model, the frame-
work adeptly simulates and responds to both translational and
rotational forces, ensuring a balanced interaction between the
SRL and the operator.

Deformation Estimation from Pose Data: The pose of the
SRL’s end-effector is represented in the Special Euclidean
Group SE(3), encapsulating both translational and rotational
components. Real-time changes in the pose are captured and
translated into deformation estimates, which are crucial for
dynamic control.

The pose M of the end-effector and its change between
two instances can be efficiently represented by a homogeneous
transformation matrix and its differential change, respectively:

M =

[
R p
0 1

]
, ∆M = M2M

−1
1 =

[
∆R ∆p

0 1

]
(9)

where R ∈ SO(3) is the rotation matrix, p is the translation
vector specifying the end-effector’s position, ∆R captures the
rotational change, and ∆p the translational change, succinctly
combining both aspects of movement within the SE(3) space.

The transformation of the pose change ∆M to the corre-
sponding Lie algebra SE(3) provides a compact and efficient
representation of the end-effector’s motion. Through a loga-
rithmic map, ∆M is converted into a rotational and linear
velocity vectors in the Lie algebra [55]:

[
ω
v

]
= Log (∆M) (10)

where ω and v correspond to the rotational and translational
velocities, respectively. These velocity components are crucial
for dynamically adjusting the Hook’s law constants Ktrans and
Krot in the dual-spring model.

To facilitate smoother interactions, the spring model’s s-
tiffness is dynamically adjusted in real-time, responsive to
the deformation velocity. Assuming logarithmic relationships
between the velocity components and the spring constants, the
dynamic adjustment of Ktrans and Krot is adjusted as follows:

Ktrans = γtrans log (1 + |v|)
Krot = γrot log (1 + |ω|)

(11)

where the scaling factors γtrans and γrot dynamically modulate
the stiffness of Ktrans and Krot based on translational and rota-
tional velocities, respectively. The logarithmic scaling ensures
that the spring constants respond smoothly to velocity changes,
increasing sensitivity and responsiveness at lower speeds and
providing greater stability and robustness at higher velocities,
which is essential for balance tasks. Notably, the logarithmic
function log() applied here specifically adjusts spring con-
stants for velocity responsiveness and is conceptually distinct
from the Lie algebra’s Log().

Translational deformation is approximated as p = ∆p.
For rotational deformation, understanding and quantifying it
requires decomposing the rotation matrix ∆R into its con-
stituent elementsrotation angle θ and rotational axis u.

The rotation angle θ is derived from the trace of the rotation
matrix ∆R:

θ = arccos

(
tr(∆R)− 1

2

)
(12)

where tr(∆R) denotes the trace of ∆R, representing the sum
of its diagonal elements. This formulation is based on the
properties of rotation matrices within the special orthogonal
group SO(3).

Following the determination of θ, the rotational axis u is
computed from the skew-symmetric part of ∆R:

u =
1

2 sin(θ)

∆R32 −∆R23

∆R13 −∆R31

∆R21 −∆R12

 (13)

This approach extracts u by utilizing the properties of skew-
symmetric matrices, where the elements of ∆R outside the
main diagonal are instrumental.

With θ and u established, the Rodrigues’ rotation formula
can be applied to reconstruct or validate the rotation matrix
R. The skew-symmetric matrix K formed from u is:

K =

 0 −uz uy
uz 0 −ux
−uy ux 0

 (14)

Using K, the Rodrigues’ rotation formula is expressed as:

R = I + (sin θ)K + (1− cos θ)K2 (15)
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where Iis the identity matrix. This formula provides a method
to convert the rotation vector, characterized by θ and yellow
u, into a rotation matrix.

The rotational deformation vector yellow θ, which rep-
resents the rotational change in the end-effector’s pose, is
computed as θ = θ · u, where θ is the rotation angle and
u is the rotation axis. The rotation matrix R, derived from
θusing Rodrigues’ rotation formula, is then utilized to adjust
the orientation of the end-effector’s vectors accordingly.

After estimating the deformation vectors p and θ, it is
crucial to adjust these estimates to accurately reflect the hand’s
real-world position and orientation, ensuring the SRL and hand
maintain their requisite spatial relationship for synchronized
movement and task execution.

The position and orientation of the hand, denoted by mhuman,
are determined through the formula:

mhuman = αp+ βR (θ) · toffset (16)

where R (θ) denotes the rotation matrix calculated from the
rotational deformation vector θ, which adjusts the offset vector
toffset to align with the current orientation of the SRL’s end-
effector. The coefficients α and β are scaling factors that adjust
the contribution of positional and orientational components,
respectively, ensuring mhuman accurately reflects the hand’s
position and orientation in relation to the SRL’s end-effector.

Then mhuman is fed into the AR predictive model. The AR
model utilizes the current and historical data of the deforma-
tion estimates to forecast the future position and orientation
of the SRL’s end-effector.

To elevate the synchronization between the human and the
SRL, we harness the predictive power of the AR model, which
has been demonstrated to effectively predict human motion in
interactive robotic applications [15]. An AR model of order p

is employed to forecast the human arm’s trajectory:

mpred (t) = c+

p∑
i=1

φimhuman (t− i) + εt (17)

where xpred(t) denotes the predicted motion at time t, c is a
constant term, φi are the AR coefficients, and εt represents
the error term. The parameters c, φi, andεtare estimated using
statistical techniques that fit the AR model to historical data
of human motion. Specifically, the least squares method is
employed to optimize these parameters, ensuring that the
predicted trajectory xpred(t) closely matches the observed
movements, thus minimizing the error term εt.

The AR coefficients φi are estimated using the method of
least squares. The update law for the coefficients is given by:

φ =
(
XTX

)−1
XTy (18)

where X is the matrix of lagged observations, and y is the
vector of observations.

Closed-Loop Control for SRL: Based on the predicted
motion obtained from the AR model, a closed-loop strategy is
implemented to control the SRL, by integrating a dual-spring
model controller with numerical inverse kinematics.

The control process begins with the dual-spring model con-
troller, which takes the estimated translational and rotational
deformations as inputs. These deformations, denoted as p and
θ, are derived from the real-time pose data of the SRL’s end-
effector. The controller then computes the desired end-effector
position and orientation using the following equations:

Btransṗ+ Ktransp = ptarget

Brotθ̇ + Krotθ = θtarget
(19)

where Btrans and Brot are the damping matrices for translational
and rotational movements, respectively, while Ktrans and Krot
represent the stiffness matrices. The target positions, ptarget and
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θtarget, are the outputs of the controller that guide the SRL
towards the desired pose.

It is noted that human tremor brings high-frequency noise
into p and θ [56]. This noise potentially affects the accuracy
of the deformation inputs to the control system. The control
system described by Eq. (19) effectively mitigates these dis-
turbances through its structural components. Specifically, the
damping matrices Btrans and Brot, along with the differential
components ṗ and θ̇, function analogously to a low-pass filter.
This filtration mitigates the impact of low-frequency noise by
dampening its influence before it can affect the control outputs.
Hence, the system maintains robustness against the kind of
noise predominantly introduced by human tremors, ensuring
the accuracy and stability of the SRLs movements towards the
target positions ptarget θtarget.

This methodology is anchored on a closed-loop control
system that is integral to the precision and adaptability in SRL
operations. Initially, the system employs inverse kinematics to
convert the target pose into specific SRL joint angles, crucial
for achieving the desired position. Following the execution
of movement, the system engages in a feedback loop where
the SRL’s end-effector pose is re-evaluated. This updated
information, combined with data from the AR predictive
model, informs new deformation estimates, which are then
fed back into the dual-spring model controller.

IV. EXPERIMENT AND RESULTS

A. Experiment Setup

In designing the six degrees of freedom SRL mounted on the
right side of the human body, safety was paramount. The SRL’s
base is strategically positioned at the waist on the right side
to optimize movement range and comfort while minimizing
unwanted contact with the user’s front and left sides. Advanced
safety features integrated into the system include joint force
feedback and collision detection mechanisms, which actively
monitor interactions and adjust or halt movements if necessary.
Additionally, operators are equipped with safety goggles and
helmets to enhance safety during operations.

As shown in Fig. 1 and Fig. 5, two IMU sensors play a
pivotal role in this setup. The first IMU sensor is ingeniously
affixed to the dorsum of the foot. To ensure stability and
reliability, the first IMU is attached using a specially designed
connector that snugly clips onto the shoe, ensuring minimal
movement and optimal data accuracy. The second IMU is
mounted at the base of the SRL, functioning as a vital element
for the real-time updating of the SRL’s base pose, which in
turn refines the end-effector’s position. This setup facilitates
the operator’s left hand in supporting the object while the
right hand is engaged in other tasks or holding another object.
For vision-based control, a Kinect V1 camera is positioned
on a nearby table, calibrated to have a clear field of view
encompassing both the SRL and the object of operation.
This placement ensures real-time visual feedback, crucial for
precise robotic movements.

The SRL’s base is firmly anchored to the operator using
a specially designed harness, ensuring stability during opera-
tions. The entire prototype, including the SRL and the sensing

system, weighs approximately 5 Kg. A 3D-printed end-effector
is integrated into the SRL, designed to ensure effective and
stable interactions with a variety of objects.

The software system for the SRL operates on a desktop
computer running Ubuntu 20.04, equipped with a GTX 3060
GPU and configured with the CUDA environment. The Robot
Operating System (ROS) serves as the interface between the
SRL and the sensing system, managing the controller codes
and ensuring seamless integration and operation.

Two male subjects with varying physical attributes (Subject
1: height 180 cm, weight 73 Kg; Subject 2: height 175 cm,
weight 70 Kg) were recruited to participate in the experiment.
Before the main experiment, participants were briefed about
the task and the collaboration mechanism between the human
and the SRL. A preliminary session was conducted to famil-
iarize the participants with the SRL system, where they wore
the prototype to adjust to its weight and collaborated with
the SRL multiple times to understand the task. The subjects
collaborated with the SRL to balance and move an object
(e.g., a sphere or a cube) in free space without letting it fall.
The success of the task was determined by the stability and
duration for which the object remained balanced and airborne.

B. IMU-Based Coarse Teleoperation Experiment

In the experiment depicted in Fig. 5, the SRL’s precision
and responsiveness to IMU control were evaluated. These tests
involved guiding the SRL to follow predetermined trajectories
and orientations based on operator-generated IMU data, fo-
cusing on the system’s ability to translate these inputs into
accurate and stable end-effector movements. Fig. 6 further
visualizes and quantitatively analyzes a specific teleoperation
trajectory, comparing the SRL’s actual position to the control
inputs, thus enabling a detailed assessment of the system’s per-
formance and accuracy in replicating human-intended paths.

Quantitative Error Assessment: The position errors were
quantitatively analyzed by calculating the Euclidean distance
between corresponding points on the actual position and
control input trajectories throughout the experiment. The mean
positional error was 0.553 mm, indicating the average devi-
ation. Furthermore, when considering the standard deviation,
the upper bound of error (mean + STD) was found to be 1.553
mm. Such a level of accuracy is often considered acceptable
for a wide range of teleoperated tasks. The inclusion of
standard deviation in this analysis also provides insight into the
variability of the system’s performance, further affirming the
reliability of the IMU-based approach in replicating human-
intended trajectories.

Temporal Analysis of Errors: During the experiment, a
notable observation was the emergence of peaks in the moving
average of positional errors, specifically between 1.3 seconds
and 2.5 seconds. These peaks indicated significant deviations
between the original and smoothed trajectories of the SRL’s
end-effector. A critical factor contributing to these error peaks
was identified as the sudden changes in the movement di-
rection of the SRL. Such abrupt directional shifts introduce
inertia, which in turn causes compensatory human body move-
ments. This result may lead to a reduction in control precision,
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Fig. 5: Screenshots of the IMU-Based teleoperation experiment.
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Fig. 6: (a) displays the SRL’s actual position versus desired trajectories during IMU-Based teleoperation. It arrows on trajectories indicate
orientation control, showcasing precise orientation adjustments alongside positional tracking. (b) illustrates positional discrepancies between
actual and desired trajectories, providing insights into the IMU-Based system’s accuracy.

especially in a system where human movements directly
influence the teleoperation of robotic limbs. In instances of
rapid directional changes, the inertia generated by the SRL
can impact the operator’s stability and control precision. This
interaction is a potential reason for the observed peaks in
position errors.

C. Vision-Enhanced Fine Positioning Experiment

In this experiment, the initial phase involved using IMU-
based control to bring the target within the camera’s field of
view, a prerequisite for the subsequent phase of the experimen-
t. Once the target was visually acquired, the focus shifted to a
vision-based servo control mechanism, which was employed
to guide the SRL’s end-effector with greater precision to its in-
tended location. To enhance the precision and effectiveness of
the T-APF used in guiding the SRL, parameters were selected
based on optimization trials that aimed to minimize potential
conflicts and ensure smooth navigation around obstacles. The
attraction constant katt was set at 0.84, while the repulsive
constants for planar and spherical obstacles were determined
as kplane = 6.25 and ksphere = 4.14, respectively, with an
influence range ρ0 of 4 cm to effectively balance attraction and
repulsion forces within the systems operational environment.

Comparative Performance Analysis: A comparison of tra-
jectories generated by the VPF and T-APF methods within
a multi-obstacle setting, as shown in Fig. 7(a), reveals the

T-APF’s notably smoother path, minimizing detours and re-
ducing travel time. Smoothness analysis, detailed in Fig. 7(b),
underscores the T-APF method’s efficiency with a significantly
higher mean velocity, indicating a more direct approach to
the destination. The stability and consistency of the T-APF’s
obstacle avoidance strategy, evident in its line graph, ensure
smooth movements essential in cluttered environments. This
smoother navigation, characterized by reduced erratic accel-
erations, is crucial for the comfort and safety of wearable
robotic systems like SRL. The T-APF method’s adeptness at
maintaining steady movements while effectively navigating
around obstacles demonstrates its suitability for SRL platform-
s, highlighting its potential to enhance wearable robotics.

The comparative analysis of repulsive forces between the
T-APF and VPF methods, illustrated in Fig. 7(c), revealed
distinct behavioral patterns, with both methods experiencing
an increase in repulsive force as obstacles approached the
target. However, the T-APF method exhibited a more consis-
tent and controlled repulsive force profile, indicating a more
balanced approach to obstacle avoidance. Unlike VPF, T-APF
maintained generally lower repulsive forces, even in scenarios
with closer obstacles, suggesting its nuanced operation that
enhances smoother human-robot integration and minimizes
abrupt movements. This lower repulsive force magnitude,
alongside efficient obstacle navigation, highlights T-APF’s
superiority in ensuring safety and comfort for the operator.
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Fig. 7: (a) displays paths by VPF and T-APF methods, visually comparing their trajectories and obstacle avoidance efficiency. (b) shows the
impact of each iteration on path smoothness. (c) compares the differences in repulsive forces over time for VPF and VPF methods, indicating
their responses to obstacles and avoidance strategies. (d) dispalys scenarios with large plane obstacles, comparing T-APF and VPF methods’
effectiveness in escaping local minima caused by the force counteraction.

Performance Metrics: The experimental series was de-
signed to assess the resilience and adaptability of the T-APF
and VPF methods within simulated SRL system scenarios,
mirroring potential real-world applications by varying obstacle
configurations while maintaining constant start and end points.
Performance evaluation, as summarized in Table 1, focused on
total time, total displacement, and average minimum distance
from obstacles, key indicators of efficiency, accuracy, and
safety in dynamic path planning.

Results demonstrated the T-APF method’s consistent supe-
riority over VPF, particularly in reducing total time, thereby
indicating faster navigation through diverse obstacle layouts.
Although the T-APF method resulted in slightly higher total
displacement, this reflects its dynamic pathfinding approach.
Notably, the T-APF method’s average minimum distance from
obstacles is marginally smaller than that of VPF, showcasing
a more deliberate strategy in handling obstacles, which is an
essential balance for SRL applications.

The conducted experiments have unequivocally established
the T-APF method’s superiority in SRL operations, attributable
to its enhanced performance in path smoothness, target-
reaching efficiency, and obstacle avoidance stability. The T-
APF method’s ability to achieve targets quickly and with
smooth trajectories sets a benchmark in SRL operations,
crucial for tasks where time is of the essence. Notably, a higher
path smoothness mean value signifies stable and predictable
movements, essential for the precise operation of SRL in
environments demanding accurate navigation. Furthermore,
compared to the VPF method, the T-APF method demonstrates
a lower, more controlled repulsive force profile, facilitating
smoother integration with human movements and minimizing

the risk of sudden destabilizing actions. This capability of
maintaining minimal repulsive forces while adeptly navigating
around obstacles underscores the T-APF method’s alignment
with key SRL operational requirementsbalance, safety, and
comfort. These findings underscore the T-APF method’s suit-
ability for SRL applications, advancing wearable robotics and
enhancing the potential for SRL use in precision-critical real-
world scenarios.

TABLE I: Key metrics for the performance comparison

Parameters T-APF VPF
Total Time(ms) 8660 9875

Total Displacement(cm) 46.421 44.670
Average Minimum Distance 7.6235 8.2546

D. Balance Experiment with Deformation Estimation and AR
Prediction

Building upon the precision attained through vision-
enhanced fine positioning, the third phase of the experiment
focused on the balance support task using the SRL, as shown in
Fig. 8. In this experiment, the SRL’s end-effector and the hand
cooperatively held an object. The parameters γtrans = 0.812,
γrot = 0.5044, Btrans = 1.2 Ns/m, Ktrans = 2.5 N/m, Brot =
0.6 Ns/rad, α = 0.8869, β = 1.28, and Krot = 1.1 Nm/rad
were empirically tuned and validated against the requirements
of the balance task and the dynamics of the system. This
selection process ensures an optimal balance between respon-
siveness and stability across varying velocity ranges.

The extraction of translational and rotational deformation
vectors from the positional data of the SRL’s end-effector is
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key to this experiment. These variables were fed into an AR
model for predicting the robot’s next actions. The predictions,
combined with the accumulated potential energy from the
spring model, provided the next predicted pose of the SRL’s
end-effector, which was then used for control inputs. This
methodology ensured that even if the hand moved, the SRL
and the object could maintain a dynamic balance within a
certain range.

Analysis of Deformation Estimation: The comprehensive
analysis conducted on deformation estimation within SRL
operations aimed to validate the feasibility and accuracy of
the proposed method for deformation extraction. This section
presents an in-depth examination of the data from the first
set of experiments, encompassing four critical graphs: Fig.
9(a) deformation translations vs. control inputs, Fig. 9(b)
deformation rotations vs. control inputs, Fig. 9(c) translation
deformations over time, and Fig. 9(d) rotation deformations
over time.

The data presented in Figs. 9(a)- 9(b) demonstrated the
accuracy of our dual-spring model for estimating deformation
in SRL operations. In Fig. 9(a), the congruence of cumulative
translational deformation trends in the X and Y axes with
the control inputs underscores the precision of our method.
Overall, deformation trends across all axes align with expected
trajectories; however, the Z-axis exhibits a consistent 0.17
m deviation due to object handling activities between the
hand and the SRL end-effector. Fig. 9(b), depicting cumulative
rotational deformations, shows a similar pattern of alignment
with control inputs. Notable errors during larger changes
suggest the influence of sliding friction between the hand and
the object, leading to minor miscalculations in deformation
estimates. These observations validate the effectiveness of the
dual-spring model in estimating deformations accurately.

Further analysis from Figs. 9(c)-9(d) reinforces the reliabil-
ity of our method. These graphs display real-time changes in
translational and rotational deformations. The overall stability
in deformation changes is evident, with minor fluctuations
such as the sudden increase in Y-direction translation at
approximately 1.6 s (0.024 m unit deformation) and a similar
perturbation in the X-axis at 3.1 s. These instances, likely
caused by external disturbances, correlate with noticeable jitter
in the corresponding curves. Additionally, rotational deforma-
tions in the Yaw direction exhibit significant fluctuations at
around 1.7 s and 3 s, reaching up to 0.096 rad. These findings
highlight the models capacity to maintain steady deformation
estimates despite occasional external perturbations.

Analysis of AR Prediction for Balance Control: The ex-
ploration of the AR predictive model within SRL opera-
tions involved meticulously designed experiments and analyses
to evaluate the model’s efficacy in enhancing balance and
precision in human-robot interaction tasks. The six graphi-
cal representationsencompassing 3D deformation translations
and rotations in response to control inputs, along with their
predictions and respective prediction errorswere not merely
illustrative but served a deeper analytical purpose as depicted
in Fig. 10.

The experiments involving 3D deformation translations and
rotations versus control inputs (Figs. 10(a)-10(b)) aimed to es-

tablish a foundational understanding of how SRL movements
correlate with the control inputs, thereby affirming the model’s
responsiveness and accuracy. The subsequent predictions for
translations and rotations (Figs. 10(c)-10(d)) are critical in
assessing the AR model’s capability to anticipate the future
movements of the SRL based on current and historical data,
a key aspect in maintaining dynamic balance in collaborative
tasks. Furthermore, the analysis of prediction errors for both
translations and rotations (Figs. 10(e)-10(f)) provided insights
into the precision and reliability of the AR model.

In these experiments, the roles of deformation estimation
and AR predictive modeling in enhancing balance support
tasks using SRL are rigorously evaluated. The results demon-
strate the effectiveness of the deformation estimation method
in capturing the intricate interactions of SRL with supported
objects, crucial for precise operation in dynamic environments.
This method quantifies translational and rotational deforma-
tions, enabling real-time adaptation of the SRL’s movements
to maintain stability and alignment. Furthermore, the incorpo-
ration of AR predictive modeling augments SRL operations by
forecasting movements, allowing the SRL to adjust its support
proactively. This predictive capability facilitates smoother and
more compliant human-robot interactions, as evidenced by low
prediction errors, thereby enhancing the success rate of balance
support tasks. Overall, the data-driven analysis confirms that
both deformation estimation and AR predictive modeling are
integral to achieving precise and synchronized movements in
SRL applications, particularly in tasks requiring close human-
robot collaboration.

V. CONCLUSION

In this study, we present a comprehensive control strategy
for SRL, integrating IMU-based coarse teleoperation refined
by the EKF, a dual-spring model for dynamic balance, and
vision-based techniques for enhanced object detection and
path planning. The synergy between IMU and EKF facil-
itates initial coarse movement control, setting a foundation
for subsequent tracking. The dual-spring model, essential for
mimicking natural limb dynamics, improves the intuitive op-
eration of SRL. Concurrently, vision-based technology refines
the system’s accuracy in object detection and navigation within
complex environments. The proposed control strategy has been
experimentally validated on a prototype SRL, showcasing
advancements in task execution precision and adaptability,
alongside improved human-SRL coordination.

However, we also identified key limitations that impact the
systems performance and reliability. The dual-spring model
exhibits high sensitivity to parameter tuning, leading to po-
tential deviations under dynamic conditions. Additionally, the
EKF struggles with rapid dynamic changes, affecting response
times and accuracy. These issues underscore the need for
more adaptive algorithms that can manage sudden changes
effectively. Moreover, while vision-based positioning performs
well in controlled settings, variable environmental factors like
lighting changes and physical obstructions compromise its
efficacy, particularly in outdoor or unstructured settings.

Future work will focus on integrating machine learning for
real-time parameter adjustment to improve the adaptability and
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Fig. 8: Screenshots of the balance control experiment.
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Fig. 9: (a) and (b) depicted the correlation between the control inputs and the deformation translations and rotations, respectively. The control
inputs were derived by integrating the changes in the SRL’s end-effector position with the support distance (the width of the object).

robustness of SRL systems. This approach will utilize dynamic
tuning mechanisms to optimize system parameters continu-
ously based on real-time feedback. Furthermore, expanding
the range of sensory inputs to include thermal imaging and
LIDAR will address the limitations of vision-based position-
ing, enabling more reliable and accurate navigation and object
detection across various environments. These advancements
are expected to refine SRL performance in demanding ap-
plications such as disaster response, advanced manufacturing,
and medical surgeries, where precision and adaptability are
paramount.
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Fig. 10: (a)-(b) depict the 3D relationship between control inputs and the SRL’s end-effector deformations in translation and rotation. (c)-(d)
detail the breakdown of translational and rotational deformation predictions against control inputs, with dashed lines representing original
inputs and solid lines indicating predictions. (e)-(f) analyze prediction errors over time for both translation and rotation.
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