Biological
Psychiatry:
CNNI

Archival Report

A Functional Magnetic Resonance Imaging Meta-
Analysis of Childhood Trauma

Rebecca Ireton, Anna Hughes, and Megan Klabunde

ABSTRACT

BACKGROUND: Traumatic experiences during childhood significantly impact the developing brain and contribute to
the development of numerous physical and mental health problems. To date, however, a comprehensive under-
standing of the functional impairments within the brain associated with childhood trauma histories does not exist.
Previous functional magnetic resonance imaging (fMRI) meta-analytical tools required homogeneity of task types and
the clinical populations studied, thus preventing the comprehensive pooling of brain-based deficits present in children
who have trauma histories. We hypothesized that the use of the novel, data-driven Bayesian author-topic model
approach to fMRI meta-analyses would reveal deficits in brain networks that span fMRI task types in children with
trauma histories.

METHODS: To our knowledge, this is the first study to use the Bayesian author-topic model approach to fMRI meta-
analyses within a clinical population. Using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) guidelines, we present data-driven results obtained by combining activation patterns across
heterogeneous tasks from 1428 initially screened studies and combining data from 14 studies that met study
criteria (285 children with trauma histories, 297 healthy control children).

RESULTS: Altered brain activity was revealed within 2 clusters in children with trauma histories compared to control
children: the default mode/affective network/posterior insula and the central executive network. Our identified clusters
were associated with tasks pertaining to cognitive processing, emotional/social stress, self-referential thought,
memory, unexpected stimuli, and avoidance behaviors in youths who have experienced childhood trauma.
CONCLUSIONS: Our results reveal disturbances in children with trauma histories within the modulation of the default
mode and central executive networks —but not the salience network—regardless of whether children also presented

with posttraumatic stress symptoms.
https://doi.org/10.1016/j.bpsc.2024.01.009

In the United Kingdom, it is estimated that 1 in 5 people have
experienced trauma, particularly in the form of childhood
maltreatment, by the age of 16 years (1). During childhood, the
human brain undergoes rapid development, which makes it
vulnerable to the external world experienced by a growing
child. Childhood trauma produces severe stress on the brain,
and this can lead to significant changes such as depleted
functioning and lasting structural alterations (2). From a
physiological perspective, it has been documented that early
traumatic experiences disrupt the overall course of neuro-
development (3). Given previous research indicating that se-
vere exposure to trauma during childhood has negative
implications for the developing brain, there is a clear need to
understand the neural underpinnings of these effects (4-6).
Despite growing evidence from task-based functional
magnetic resonance imaging (fMRI) studies that have shown
the deleterious effects of childhood trauma on specific brain
regions (5,7-19), an overarching view of brain activation pat-
terns obtained by combining data from across all previously
collected whole-brain task-based fMRI studies associated with
childhood trauma does not yet exist. We aimed to close this
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gap in the literature by conducting the first known meta-
analysis to combine results from all previously collected
whole-brain task-based fMRI data in youths with previous
trauma. This is now possible given our ability to apply the data-
driven Bayesian author-topic model meta-analytic method
(never used before in a clinical population) to a clinical popu-
lation (20). Like other activation likelihood estimation—-based
fMRI approaches, this innovative approach allows for the
identification of common brain patterns from numerous
studies. It also allows for data-driven comparisons from across
clinical groups and comparisons across fMRI task types for the
first time. This allows for the identification of both homoge-
neous and heterogeneous clusters of brain activity, which can
assist with diagnostic classifications and identify unknown
functional overlaps that naturally occur across brain networks
for various tasks. For this study, we applied this approach,
which allowed us to combine all previously conducted task-
based whole-brain fMRI studies of children who have experi-
enced trauma or maltreatment and who may or may not
demonstrate posttraumatic stress disorder or symptoms (21) in
comparison to healthy control children (HCs). To perform this
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meta-analysis under the PRISMA (Preferred Reporting ltems
for Systematic Reviews and Meta-Analyses) guidelines, the
literature search strategy was adapted from PICOS (patient
population, intervention, comparison, outcomes, and setting)
to fit the requirements for this analysis. However, a previous
review of 12 structural MRI and fMRI network studies sug-
gests that impairment in the salience network (SN), central
executive network (CEN), and default mode network (DMN)
occurs in response to childhood trauma and severe early-life
stress. These findings are consistent with adult studies;
however, this has not yet been confirmed by neuroimaging
meta-analyses in children with trauma histories (22). We are
also unsure whether such activation patterns are consistent
across children who have experienced trauma or maltreat-
ment and who may or may not have trauma symptoms.
However, we hypothesized that when pooling activation
patterns from across all fMRI studies of children with trauma
histories, we would detect disturbances in the modulation of
the DMN, SN and CEN.

METHODS AND MATERIALS

Search Strategy

To identify all relevant studies, the online academic search
engines PubMed, Web of Science, and Psychinfo were
searched according to the PRISMA guidelines. Records
from 1994 until April 2021 were evaluated. The following
search parameters were used: 1) (children AND post-trau-
matic stress) AND fMRI, 2) (adolescents AND post-traumatic
stress) AND fMRI, 3) children AND PTSD AND fMRI, 4)
(adolescents AND PTSD) AND fMRI, and 5) (adolescents
AND childhood abuse) AND fMRI. A total of 1428 records
were found by these means, of which 847 were duplicates,
which left 581 records. Only studies involving human par-
ticipants were included.

Inclusion and Exclusion Criteria

The studies were evaluated according to a set of inclusion and
exclusion criteria. Original articles were included if they 1) were
published in a peer-reviewed journal, 2) had youth partici-
pants, and 3) had coordinates from a whole-brain analysis.
Diagnostic inclusion criteria included whether the study
included participants under the age of 18 who had a history of
trauma. We defined having a trauma history using the
following criteria: 1) experienced a traumatic event during
childhood (and may or may not necessarily report trauma
symptoms); 2) experienced maltreatment and developed sig-
nificant trauma symptoms, under the label of posttraumatic
stress symptoms; and 3) met full diagnostic criteria for post-
traumatic stress disorder (PTSD).

Regarding exclusion criteria, other brain scanning modal-
ities, such as structural MRI or electroencephalogram, were
excluded from analyses. Studies found using the search terms
also identified papers involving brain trauma such as traumatic
brain injury. These were also excluded because the primary
focus of this analysis was childhood traumatic stress. Other
exclusion criteria included 1) review papers, 2) case studies,
3) studies that included adult participants, and 4) studies that
did not include a control group.
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Screening Procedure

After an initial screening of abstracts, 482 of the initially
retrieved 581 records were excluded according to the criteria
listed above. The 99 remaining records underwent full-text
screening for eligibility. During the full-text screen, an addi-
tional 67 studies were excluded due to their use of resting-
state fMRI (n = 13), only region-of-interest coordinates (n =
14), adult studies (n = 11), structural MRI (n = 12), no control
group (n = 16), review (n = 1), and other psychiatric disorders
(n = 6), which left 14 studies for inclusion in the meta-analysis.
Details of the search procedure are presented in the PRISMA
diagram (Figure 1).

Data Extraction

The relevant data were extracted from the included studies
and briefly summarized. For this meta-analysis of case-
controlled studies, PICOS characteristics were modified for
its usage for a study of fMRI by removing typical PICOS
intervention characteristics; we also adapted outcomes to fit
and report MRI data (23). The quality of the studies was
assessed with a revised version of the items included in the
OHBM (Organization for Human Brain Mapping) COBIDAS
(Committee on Best Practice in Data Analysis and Sharing)
report (24). A detailed description of the quality assessment
criteria can be found in Figure 2, and the results of each rated
article can be found in Table 1.

Data Analysis

We used the author-topic model approach as described by
Ngo to discover coactivation patterns across the different
experiments (20). The basic premise is that we wanted to
identify underlying brain activation components that may be
common across studies that have investigated trauma in
children and adolescents and the brain regions that underpin
these components; we were interested in how the different
tasks used in different studies may cluster together in terms of
the brain areas activated. As described by Ngo, the author-
topic model approach is based on a method that is used for
identifying topics from a corpus of text documents. In the
current application to brain imaging, we took each experiment
selected from our screening process, extracted the relevant
experimental contrasts (from a whole-brain analysis), and
considered each contrast as its own unique task category (20).
Note that the method does not weight by the sample size of a
study; all task categories in the model are considered equal.
The model parameters estimated are the probability that an
experiment would recruit a coactivation pattern Pr(coactivation
pattern|experiment) and the probability that a voxel would be
involved in a coactivation pattern Pr(voxel|coactivation
pattern); the model uses the coreset variational Bayes algo-
rithm to estimate these parameters. We adapted the code
freely made available by Ngo to run the author-topic model
using our extracted fMRI coordinates (20). We ran the model
multiple times assuming 1, 2, 3, 4, or 5 coactivation patterns
and used the largest Bayesian inclusion criterion (BIC) value to
identify the optimal number of coactivation patterns. To inter-
pret the coactivation patterns, we inspected contrasts with
Pr(coactivation pattern|experiment) above 0.75 proportional
loading (from 0 to 1) and used GingerAle to develop z score
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Figure 1. PRISMA (Preferred Reporting Items for
[ Identification of studies via PubMed, Web of Science, and Psycinfo ] Systematic Reviews and Meta-Analyses) flowchart
—_— illustrating study identification, exclusion, and in-
Records removed before clusion in the meta-analysis. Included searches of
screening (1327): databases and registers only. fMRI, functional

Duplicate records removed magnetic resonance imaging; ROI, region of inter-
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maps of activation patterns for each cluster. These were then
visualized via MRICron software (https://www.nitrc.org/
projects/mricron/). We also considered whether we could
draw out common themes in terms of the types of tasks/ex-
periments that were grouped together in 1 coactivation
pattern, which would enable us to describe the processes that
may be associated with a given coactivation pattern.

RESULTS

A total of 1428 studies were identified during our initial search.
Of these studies, 14 met our inclusion criteria; they examined
the whole brain activated during task-based fMRI (Table 1).
Across the 14 studies included, the group-level contrasts
consisted of children with trauma histories compared to HCs.
The current analysis showed what contrasts loaded into
various regions of the brain during task-based fMRI for each
study. The 14 studies included a total of 582 child participants
(under age 18 years; range 8-20 years) (Table 1); 285 of the
child participants had trauma histories, and 297 child partici-
pants were categorized as HCs.

According to the BIC output, the best model fit was ach-
ieved with 2 components (i.e., coactivation patterns), which

demonstrated the largest BIC value of —1.0798 X 10 (Figure 3).
A higher BIC score indicates that the model has a better fit. As
can be seen from the z cluster maps (Figure 4), there were 2
main cluster regions. Components 1 and 2 activations are
highlighted in the red scale (hot). The types of tasks found to
load onto each component are illustrated (Figure 4, Table 2),
and the theta weight loading (between 0 and 1) is included
(Figure 4) to further demonstrate the task component loadings
and to highlight where children with trauma histories showed
alterations in brain activity.

Component 1: DMN, Affective Network, and
Posterior Insula

We found blood oxygen level-dependent activation differ-
ences between children with trauma histories and HCs within
regions associated with the DMN, posterior insula, and the
affective network (limbic system) (see Table 3 and Figure 4).
The first activation cluster peaked within the left lentiform nu-
cleus of the putamen (Brodmann area [BA] 13) and extended
into the claustrum, hippocampus, insula, thalamus, and the
amygdala. Another cluster peak was present within the right
lentiform nucleus of the putamen (BA 13) and extended into the
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Figure 2. Revised version of the items included in
the OHBM (Organization for Human Brain Mapping)
COBIDAS (Committee on Best Practice in Data
Analysis and Sharing) report (24). MRI, magnetic
resonance imaging; SES, socioeconomic status;
TOT, total.
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globus pallidus, thalamus, hippocampus, posterior cingulate,
caudate, insula, and claustrum. Participants with trauma his-
tories demonstrated increased activation in component
1 compared to HCs during tasks pertaining to emotion pro-
cessing (words and faces) and social tasks. However, HCs
activated this system more than children with trauma histories
during tasks pertaining to memory and reward processing (see
Tables 2 and 3 and Figure 4).
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Component 2: Central Executive Network

We also found blood oxygen level-dependent activation dif-
ferences between children with trauma histories within regions
associated with the CEN (see Tables 2 and 4 and Figure 4). The
first peak of the activation coordinates fell within the left middle
frontal gyrus (BA 8, 9) and extended into the left and right
hemispheres and the bilateral superior frontal gyri. The second
coordinate peak fell within the left superior temporal gyrus (BA
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Table 1. Description of Studies Included in the Meta-Analysis, Recruitment Criteria, Demographic Information, and Quality
Rating According to the OHBM COBIDAS Report Criteria

Author Participants, n Age, Years Task Contrast Quiality/84
PTSS
Carrion et al. (7) 16 PTSS and 11 HC 10-17 Verbal declarative memory Retrieval > control 60
task
Carrién et al. (8) 16 PTSS and 14 HC 10-16 Go/NoGo task NoGo > Go 63
Garrett et al. (9) 23 PTSS and 23 HC 10-16 Implicit emotional facial Phase X emotion 70
expressions task
CM
Crozier et al. (5) 29 CM and 45 HC 8-17 Emotional oddball task Fear > scrambled targets 68
Puetz et al. (10) 21 CM and 19 HC 10-14 Emotional Stroop task Rejection words > neutral 65
words
McCrory et al. (11) 34 CM and 33 HC 10-14 ABM recall Positive ABM recall > negative 67
ABM recall
Marusak et al. (12) 14 CM and 16 HC 9-16 Emotional conflict task Incongruent > congruent trials; 64
postincongruent
incongruent >
postcongruent incongruent
trials
Gerin et al. (13) 20 CM and 21 HC 10-15 Problematic passive avoidance Approached stimuli > 67
task expected value; avoided
stimuli > expected value;
punishment feedback >
prediction error
Hart et al. (14) 20 CM and 27 HC 12-20 Emotion discrimination task Fear > fixation; fear > happy 64
Hoffmann et al. (15) 41 CM and 34 HC 10-14 Balloon analog risk task Observed > alone; peer 68
pressure > observed; win >
loss
Lenow et al. (16) 14 CM and 16 HC 12-16 Trust learning task Unexpected take > expected 67
take
PTSD
Calderon-Delgado 22 PTSD and 22 HC 9-14 Emotional word processing Positive > neutral; negative > 61
etal (17) task neutral
Dégeilh et al. (18) 10 PTSD and 10 HC 13-18 Self-reference processing task self-negative > semantic; self- 70
positive > semantic
Yang et al. (19) 5 PTSD and 6 HC 12-14 Perception and imagery recall Perception earthquake > 52

task

perception neutral; imagery

earthquake > imagery
neutral

The number of criteria reported in each article from the COBIDAS report was totaled and is presented out of the total number of criteria.
ABM, autobiographical memory; CM, child maltreatment; COBIDAS, Committee on Best Practice in Data Analysis and Sharing; HC, healthy control children; OHBM,
Organization for Human Brain Mapping; PTSD, posttraumatic stress disorder; PTSS, posttraumatic stress symptoms.

22) and expanded into the left middle temporal gyrus, supra-
marginal gyrus, and insula (reaching BAs 22, 39, 13, 43, 40,
and 41). The last coordinate peak fell within the right middle
frontal gyrus (BA 8) and expanded into the superior frontal
gyrus and precentral gyrus (reaching BA 9). Component 2 was
activated more for child participants with trauma than for HCs
during reward tasks and trauma perception; HCs activated
component 2 more than participants with histories of trauma
on tasks pertaining to emotions (words and faces) and on
social tasks (see Tables 2 and 4 and Figure 4).

DISCUSSION

Our main findings revealed 2 clusters in the brain that were
associated with trauma histories. The first component acti-
vated included the DMN, posterior insula, and affective

networks (including the limbic system) while the second
component activated the CEN; these findings are consistent
with our hypotheses with the exception of not detecting acti-
vation within the SN. Largely, our study revealed that children
with trauma histories hyperactivated the DMN, posterior insula,
and affective networks during emotionally laden tasks and
tasks pertaining to the self. This differs from what we observed
in HCs, who activated the CEN for emotion and social tasks
more than children with a trauma history. HCs also activated
the DMN, posterior insula, and affective networks more for
memory and reward-processing tasks than children with
trauma histories, whereas the children with trauma histories
activated the CEN during reward processing more than HCs.
Interestingly, we also found that children with trauma histories
simultaneously activated the DMN, affective network, posterior
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Figure 3. Bayesian information criterion (BIC) estimate of cognitive
components. Better models are associated with a higher BIC. Our BIC
spiked at 2 components.

insula, and the CEN more than HCs during tasks that pertain to
active trauma recall. This suggests different activation patterns
in the brain during trauma-neutral tasks than during tasks that
incorporate the active processing of traumatic stimuli. It also
indicates that one’s brain and behavioral responses differ in
response to trauma triggers more than during neutral situations
that do not reference one’s trauma.

Our results are consistent with symptom profiles and pre-
vious review studies of brain networks conducted with children
with trauma histories. Previous studies have indicated that the
functional connectivity of the amygdala and the ventral medial

C1: Default Mode Affective Network and Posterior Insula

2L o
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Emotional Faces

'

1L

Social Tasks

Trauma
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Self Words

0 =——— { ()

Pr (Component | Task)
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prefrontal cortex are abnormal in children with PTSD (25,26).
This is consistent with our results, which indicate hyper-
activation of the DMN, limbic regions, and the posterior insula
during nontrauma-associated emotion-processing tasks and
decreased activation of the CEN. However, our findings take
these results further by specifying abnormalities in affective
processing in children with trauma histories and indicating
network patterns that characterize our results.

First, blunting within the CEN was observed for tasks per-
taining to all aspects of affective processing (including words and
emotional faces), and hyperactivation was found within the DMN,
posterior insula, and affective network. There were no differences
for contrasts of differing emotional states, but blunting was found
within limbic regions associated with memory in children with
trauma histories. Limbic blunting is consistent with previous
studies that have suggested less activation in the para-
hippocampal gyrus and hippocampus during memory tasks,
such as the verbal declarative memory task, in children with
trauma histories (7). They also show weaker activation than HCs
when retrieving words from memory.

Different effects were found during active trauma cue threat
processing within limbic regions. Adolescents with PTSD
showed greater activation in the parahippocampal gyrus and
hippocampus when performing the memory task during im-
agery recall of their own experienced trauma (19), and children
with trauma had greater activation in limbic regions when
processing emotional words than when processing neutral
words in situations where the child’s traumatic experience was
incorporated into the experimental task (17). Therefore, chil-
dren with trauma histories showed greater activation than HCs
in both the CEN and the DMN/affective network during tasks
that activated their experience of trauma; the brains of children
with trauma behaved differently when viewing traumatic threat-
related stimuli compared to when performing everyday
cognitive functions such as memory and affective processing.

We also found blunting in reward processing in children with
trauma histories within the DMN, posterior insula, and affective
network and increased processing within the CEN. Our results

DMN
Emotional Words
Reward (approach)
Social Tasks

Self Words

Trauma Perception
Memory

Emotional Faces

0.97 Trauma>Healthy
0.91 Healthy>Trauma
0.91 Healthy>Trauma
0.90 Trauma>Healthy
0.84 Trauma>Healthy
0.84 Healthy>Trauma
0.72 Trauma>Healthy

CEN

Emotional Words
Social Tasks
Emotion Faces
Reward

Trauma pi

0.95 Healthy>Trauma
0.93 Healthy>Trauma
0.81 Healthy>Trauma
0.89 Trauma>Healthy
0.79 Ti y

Pr (Voxel | Task)

Figure 4. Components of childhood trauma. Estimates for the 2-component model. Lines connect each task type to components based upon the strength
of the loading (a theta weight value between 0 and 1.0) of a particular task category onto each component. Each component is represented by a separate z
cluster map thresholded at 1.9 minimum to 4.3 maximum cluster correction. The loadings of different task categories, highest theta weights for each category,
and the group-level diagnostic contrasts are displayed on the right. C, component; Pr, probability.
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Table 2. Loading of Diagnostic Contrasts Onto Components

Healthy Trauma >
Component Children > Trauma Healthy Children
CEN Emotional words Trauma perception
Emotional faces Reward
Social tasks
DMN/Affect/pl Reward Emotional words
Memory Self-words

Trauma perception
Emotional faces

Affect, affective network; CEN, central executive network; DMN, default mode
network; pl, posterior insula.

are consistent with adult studies, which have indicated that
reward deficits are reported in adults with PTSD (27,28), and
with a study that found that reward-processing deficits were
associated with childhood neglect and threat during adoles-
cence (29). These findings suggest a potential pathway of in-
fluence for the development of anhedonia and demotivation
symptoms in children and young people who have experi-
enced trauma histories (30).

In contrast to decreased activation for memory and reward
processing within the DMN, limbic regions, and the posterior
insula in children with trauma, we found hyperactivity for
posterior insula activation in children during the processing of
emotionally laden and social tasks. The posterior insula is
involved in bottom-up processing of internal body cues
(interoceptive senses) directly from the body including heart
rate, breathing, the need to defecate and urinate, affective
(slow c fiber) touch, orgasm, hunger, and satiety (31). It re-
ceives connections from the periphery of the body through the
thalamus and shares connections with other regions involved
in sensory processing such as the intraparietal lobule. The
posterior insula also connects to and transmits stimuli per-
taining to the body to the mid-insula, which shares connec-
tions to limbic regions and regions of the DMN and influences
emotion, reward, self, and other processing (31). Disturbed
activation within the posterior to mid-insula on tasks that do
not directly and intentionally probe interoceptive senses sug-
gests that interoceptive disturbances in the detection and
processing of sensory cues directly from the body may
contribute to the disturbances in emotion, self, and social-
emotional processing commonly observed in children with
trauma histories. Thus, hyperactivation of the posterior insula

Table 3. Local Maxima Coordinates Generated for Cluster 1

MNI
Coordinates

Region Cluster Size Peak Z Side BA x y z

Left Globus Pallidus 15,880 5.53 L 183 -26 -14 -4
Claustrum - 4.09 R - =32 -2 10

Hippocampus 13,208 5.25 R 13 30 —-18 -10
Globus pallidus - 4.11 R - 22 —12 4
Putamen - 3.88 R - 22 -4 4
Posterior cingulate - 3.6 R 29 10 —-44 16

In regions with more than 1 cluster of activation, coordinates are listed for the
cluster with highest activation. Number of voxels and peak activation are listed only
for main clusters; activation is not listed for local maxima regions within clusters.

BA, Brodmann area; L, left; MNI, Montreal Neurological Institute; R, right.
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may be due to dampened internal bodily processing, and thus
the child’s developing brain may require more cognitive re-
sources to process their internal states. This assertion is
supported by a recent study that reported impaired intero-
ceptive detection in young adults with a history of childhood
trauma (32), a link between trauma exposure and reduced
heart rate variability (33), and a dampened startle response in
those with a history of childhood trauma (34,35).

Our results also indicate that children with trauma histories
demonstrated decreased activation of the CEN during affective
and social processing. In adolescents, empathy improves as
prefrontal capacities and associated cognitive empathy
develop with increasing age (36). Thus, a lack of recruitment of
CEN capacities during social processing may influence men-
talizing and empathy deficits noted in people who have
experienced trauma (37,38).

Our findings are consistent with adult studies that suggest a
decoupling of central executive and default mode activation in
adults with PTSD (39). However, the SN plays an active role in
the switching between central executive and default mode
activation (39), but we did not find abnormal activation of the
SN—namely the anterior insula and dorsal anterior cingulate
cortex—in our child participants who have trauma histories.
Developmental differences between children and adults may
explain why we detected deficits in the posterior insula but not
in regions of the SN. Substantial brain development occurs
during childhood and throughout adolescence. Several of the
brain regions encompassed within the DMN, posterior insula,
and limbic regions—especially those involved in bottom-up
sensory processing—primarily develop prenatally and during
early childhood (40,41). However, the prefrontal regions of the
CEN and the more anterior portions of the insula involve top-
down processing and substantially develop and change in
response to puberty and throughout adolescence and early
adulthood (41). Specifically, because the anterior insula and
dorsal cingulate cortex develop later during childhood than the
posterior insula, this could reflect developmental differences in
trauma symptom development. Our results indicating posterior
insula deficits but not deficits within the anterior insula suggest
that the detection of bodily cues—but not the awareness of
one’s interoceptive abilities—may be affected by childhood
trauma, which indicates that treatments that directly address
deficits in receiving information from the body may be more
effective than the cognitive processing of one’s awareness of
their own body and emotions in childhood PTSD.

Age also plays an important role in the way that childhood
trauma affects the brain. However, our study was unable to
specifically account for changes in age because we were
implementing a data-driven, machine learning meta-analytic
approach. It is possible that SN deficits may be present in
the older participants of the study compared to the younger
children. Additionally, the fact that we were unable to specif-
ically examine the influence of biological sex on the impact that
trauma plays on the developing brain may impact our results
because one of our previous studies showed opposite effects
within the brain for males and females who had experienced
child maltreatment, and specifically within the ventral anterior
insula, a key region of the insula for emotional processing and
interoceptive awareness (42,43). The fact that we were unable
to consider sex effects within the ventral anterior insula may
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Table 4. Local Maxima Coordinates Generated for Cluster 2

fMRI Meta-Analysis of Childhood Trauma

MNI Coordinates

Region Cluster Size Peak Z Side BA X y z
Medial Frontal Gyrus 10,536 5.20 L 8 0 46 42
Superior Temporal Gyrus 3888 4.01 L 22 —-52 —48 14
Middle Frontal Gyrus 2160 3.66 R 8 38 28 10

In regions with more than 1 cluster of activation, coordinates are listed for the cluster with highest activation. Number of voxels and peak activation are listed only for

main clusters; activation is not listed for local maxima regions within clusters.
BA, Brodmann area; L, left; MNI, Montreal Neurological Institute; R, right.

have contributed to our lack of SN recruitment. Additionally,
adult studies have also shown that brain activation within the
SN varies depending upon hypoactive and hyperactive PTSD
symptoms, meaning that dissociative symptoms (hypoactive)
and arousal/reappraisal symptoms (hyper) are associated with
more chronic and acute trauma symptoms, respectively, and
demonstrate different responses within the SN and the medial
prefrontal cortex (44,45). Thus, our sample may also include
children with both symptom types, which may cancel out any
activation deficits within the SN, thus further leading to our lack
of results.

Limitations

One key limitation is that of the 1428 studies that were initially
identified for this meta-analysis, only 14 were eligible for in-
clusion. This shows how limited the research is on childhood
trauma using whole-brain task-based fMRI. Another limitation
is that the type of trauma and maltreatment (i.e., interpersonal
vs. natural disaster) experienced by the participants, age of
trauma, trauma dosage, and chronicity were not measured and
were unable to be controlled for in our analyses. The type of
trauma that a person experiences, the age and pubertal stage
when a child experiences trauma, and the extent of one’s
stress (i.e., allostatic load of a high traumatic load verses a low
dose) differentially impact the brain (46-48). This could pose an
issue for our study because children and young people who
participated in the studies may have experienced different
levels and types of traumas because brain effects are likely to
differ depending on trauma dosage, age of the traumatic
experience, type of trauma, and the chronicity of the trauma
(48,49). Additionally, because we are implementing machine
learning analyses that are data driven, our approach does not
allow for covariates or the ability to control for specific factors,
such as age or sex effects. Age effects may be extremely
relevant to our results because substantial changes occur from
childhood throughout adolescence as our study expands from
school-age children to young adults (8-20 years), although
most of the studies included participants from the ages of 10
to 17. Lastly, our study examined activation patterns from
across various tasks, and some task types were examined
more than others, which may have affected some of the nu-
ances of our results. Nonetheless, our tool was designed to
identify convergence among more than 1 task type and across
varying brain areas, so our results need to be interpreted with
the understanding that they arose from the pooling together of
brain activation patterns from regions across the entire brain
and also varying task types.

568

Conclusions

The aim of this investigation was to find evidence of consistent
neural substrates in children who have experienced childhood
trauma. Our findings demonstrated that children with trauma his-
tories demonstrated hyperactivation in comparison to HCs within
brain regions associated with the DMN, posterior insula, and af-
fective network during tasks pertaining to affective, self-other
processing and decreased activation in these regions for mem-
ory processing and reward. Instead, the CEN was recruited during
reward tasks, and deficits were seen compared to HCs in emotion
and social-emotional processing; no abnormal activation patterns
were detected within the SN, a network that is associated with
trauma in adults and has been suggested to be associated with
trauma histories in child samples.

The results of our study appear to reveal a common neu-
rodevelopmental cognitive substrate that underlies having a
trauma history during childhood. It suggests a potential
imbalance in bodily and cognitive processes that may influ-
ence emotions, learning, memory, and problems with self-
other processing (50). Furthermore, activation patterns within
the brain appear different during trauma triggering; the non-
triggered brain state demonstrates evidence of activation
deficits for bodily processing (interoceptive sensory process-
ing) and self-other processing. Thus, the development and/or
implementation of treatments that target interoception, affec-
tive, and self-other processing in children with trauma histories
may be beneficial and should be explored in future studies.
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