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Abstract: This paper presents an autonomous collision avoidance method that integrates path
planning and control for articulated steering vehicles (ASVs) operating in underground tunnel
environments. The confined nature of tunnel spaces, combined with the complex structure of ASVs,
increases the risk of collisions due to path-tracking inaccuracies. To address these challenges, we
propose a DWA-based obstacle avoidance algorithm specifically tailored for ASVs. The method
incorporates a confidence ellipse, derived from the time-varying distribution of tracking errors, into
the DWA evaluation function to effectively assess collision risk. Furthermore, the execution accuracy
of DWA is improved by integrating a kinematic-based Model Predictive Control. The proposed
approach is validated through simulations and field tests, with results demonstrating significant
enhancements in collision avoidance and path-tracking accuracy in confined spaces compared to
conventional DWA methods.

Keywords: articulated steering vehicles; collision avoidance; coordinated planning and control;
dynamic window approach; model predictive control

1. Introduction

Articulated steering vehicles (ASVs) steer by rotating their front and rear bodies
relative to each other, offering a smaller turning radius and enhanced maneuverability.
These advantages make ASVs widely used for material loading and transportation tasks in
underground mines [1]. As mining depths increase, temperature and humidity levels in
subterranean environments rise, significantly raising collapse risks and exposing operators
to more hazardous conditions. Consequently, developing autonomous driving systems for
ASVs has become essential to improve operational safety and efficiency.

Autonomous collision avoidance is a crucial capability for enabling automated driving
and ensuring operational safety. Significant advancements have been made in robotic
autonomous collision avoidance across various scenarios [2–5]. Typically, these systems
consist of two main components: path planning and path tracking. First, the vehicle
generates a feasible local avoidance path based on its surroundings, which is then executed
by a tracking controller to enable autonomous navigation and collision avoidance.

Collision-avoidance path planning aims to generate a local path that prevents collisions
by following a global path, incorporating real-time environmental data, and considering the
vehicle’s kinematic constraints. Key collision-avoidance algorithms include the Dynamic
Window Approach (DWA) [6], Artificial Potential Field (APF) [7], and Timed Elastic Band
(TEB) [8]. DWA, widely used as the default local planning method in the Robot Operating
System (ROS) [9], is one of the most representative methods in local path planning. This
approach optimizes obstacle distance, velocity, and heading toward the target by leveraging
the robot’s mathematical model. Its effectiveness depends on carefully selected weights for
obstacle avoidance, speed, and other parameters in the evaluation function.
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Several studies have enhanced the performance of global path planning by integrating
A* or Dijkstra algorithms with DWA [10–13]. In addition, other research has focused on
improving the adaptability of DWA in complex environments by incorporating intelligent
algorithms like fuzzy control and reinforcement learning [14–17]. Despite the considerable
attention DWA has received, its application is typically limited to differential steering
vehicles. This limitation stems from the velocity space used in DWA, which consists
of both linear and angular velocities—movements that differential steering vehicles can
perform effectively. Although ASVs exhibit rotational behaviors similar to differential
steering vehicles when turning, their segmented body structure introduces additional
control challenges, making them more complex to handle.

Additionally, a path-tracking controller is essential to achieve closed-loop control for
accurate path tracking [18]. For ASVs, geometry-based controllers like the pure pursuit
controller [19] are often preferred due to their simplicity and ease of implementation. Be-
yond these, researchers have developed various advanced controllers, including feedback
linearization [20,21], sliding mode control [22], and linear quadratic regulator (LQR) ap-
proaches [23], to enhance path-tracking performance. More recently, Model Predictive
Control (MPC) has gained significant attention for its superior control capabilities [24].
MPC effectively handles multi-input and multi-constraint vehicle control challenges and
enhances system robustness by incorporating predictions of future vehicle states into the
optimization process.

Several studies have applied MPC for path tracking of ASVs under diverse operat-
ing conditions [25–29]. However, tracking errors are inevitable, and in confined tunnel
environments, even minor deviations from the planned path can significantly increase
the risk of collisions, potentially resulting in vehicle damage or even casualties. Previous
research [30–32] has highlighted the critical impact of tracking errors on autonomous ve-
hicle safety by incorporating collision constraints into the MPC optimization process to
minimize tracking errors and avoid collisions. Nonetheless, as the number of constraints
grows, achieving a globally optimal solution in real-time becomes increasingly challenging,
particularly for complex articulated steering vehicles.

In conclusion, achieving autonomous collision avoidance for articulated steering
vehicles (ASVs) in narrow underground tunnels remains a significant challenge, mainly
due to two factors: (1) limited space, where the confined tunnel environment imposes
stringent demands on vehicle maneuverability; and (2) difficulties in maintaining path-
tracking accuracy, as the articulated structure of the vehicle introduces control model
uncertainties, leading to inevitable tracking errors. To enhance the safety of autonomous
collision avoidance for ASVs in underground mines, this paper proposes a collaborative
planning and control method. The main contributions of this study are as follows:

(1) Development of a novel DWA–MPC algorithm: This approach adapts the Dynamic
Window Approach (DWA) for ASVs, enhancing path-planning flexibility. By inte-
grating DWA with Model Predictive Control (MPC) based on the vehicle’s kinematic
model, the proposed method ensures effective execution of the optimal velocity space
generated by DWA.

(2) Introduction of a collision risk indicator: A new collision risk indicator that accounts
for tracking errors is proposed to mitigate collision risks caused by path-tracking
inaccuracies. This indicator is incorporated into the DWA evaluation function during
the planning process.

(3) Validation of the proposed algorithm: The collision avoidance performance of the
algorithm was verified through co-simulations using MATLAB/SIMULINK 2023 and
ADAMS 2020, as well as field tests, demonstrating its effectiveness in enhancing safety.

The structure of this paper is as follows: Section 2 provides an overview of the
proposed DWA–MPC framework. Section 3 describes the design of the DWA, including the
integration of the collision risk indicator. Section 4 details the MPC design. Experimental
results and analysis of the DWA–MPC algorithm are presented in Sections 5 and 6. Finally,
Section 7 offers a brief conclusion and discusses potential directions for future research.
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2. Overview of the Proposed DWA–MPC Approach

To mitigate the risk of obstacle avoidance failure caused by path tracking errors, we
propose a coordinated path planning and control method incorporating DWA and MPC, as
illustrated in Figure 1.
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First, a Dynamic Window Approach (DWA) algorithm is tailored for ASVs, generating
an optimal path based on factors such as obstacle proximity, vehicle orientation toward the
target, velocity, and a collision risk indicator. To account for the inherent uncertainties in
path tracking, a confidence ellipse is constructed using the distribution of tracking error
data over time. The area of this ellipse increases with greater tracking error, reflecting
the growing uncertainty. The collision risk is then quantified by measuring the distance
between the ellipse’s closest point and the obstacle, and this risk metric is integrated into
the DWA evaluation function to reduce collision risks due to tracking uncertainties. Finally,
a kinematics-based Model Predictive Control (MPC) is implemented for closed-loop path
tracking, ensuring that the ASV accurately follows the planned trajectory, rather than
directly applying the control inputs calculated by the DWA to the vehicle.

3. Design of DWA Incorporating Collision Risk Indicator
3.1. DWA Algorithm for ASV

DWA is a common algorithm for local path planning. Firstly, DWA generates the
vehicle’s longitudinal velocity and steering angular velocity within defined constraints to
form a velocity space. Then, it predicts a motion path in a specified future time by using
the vehicle model. These paths are evaluated via an evaluation function so that the path
and velocity with the highest score are selected for execution.

3.1.1. Velocity Space

The DWA algorithm needs to account for constraints such as vehicle speed, steering
limitations, and braking performance to sample the velocity space and generate combi-
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nations of longitudinal velocity and steering angular velocity. The vehicle’s speed and
acceleration are constrained according to its specified performance, as illustrated below:

0 ⩽ v(k) ⩽ vmax
v(k)− av∆t ⩽ v(k + 1) ⩽ v(k) + av∆t
−ωmax ⩽ ω(k) ⩽ ωmax
ω(k)− aω∆t ⩽ ω1(k + 1) ⩽ ω1(k) + aω∆t

(1)

where v(k) represents the longitudinal velocity at time step k, and ω(k) represents the
articulated angular velocity at time stepk. The maximum accelerations corresponding to
v(k) and ω(k) are av and aω, respectively. ∆t is the forward simulation time interval.

3.1.2. ASV Model

Based on the generated velocity space, the future states of the vehicle are predicted. To
adapt the DWA algorithm for articulated steering vehicles, a kinematic prediction model
specific to such vehicles was established. Figure 2 shows its kinematic geometry.
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By referring to the kinematic modeling approach described in [29], a kinematic model
with the front axle center

(
x f , y f

)
as the reference point is derived in Equation (2). For

simplicity in notation, the subscript f, representing variables x f , y f , θ f , γ f , v f associated
with the front body, is omitted to x, y, θ, γ, v.

.
x
.
y
.
θ
.
γ

 =


cos θ 0
sin θ 0
sin γ

l f cos γ+lr
lr

l f cos γ+lr
0 1


[

v
ω

]
(2)

When the vehicle’s initial state is (xk−1, yk−1, θk−1, γk−1), and the velocity space is
(vk, ωk), assuming the vehicle moves at a constant speed over an infinitesimal time interval
∆t, the next state of the vehicle (xk, yk, θk, γk) can be derived as follows:

xk = xk−1 + vk cos(θk−1)∆t
yk = yk−1 + vk sin(θk−1)∆t
θk = θk−1 +

(vk sin(γk−1)+lrω)∆t
l f cos(γk−1)+lr

γk = γk−1 + ωk∆t

(3)

where (x, y) represents the center of the front axle; θ is the heading angle of the front body
relative to the global coordinate system; γ is the articulation angle, which denotes the
relative angle between the front and rear bodies.
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3.1.3. Evaluation Function

To enable effective obstacle avoidance path planning, it is essential to evaluate the
generated future states and select an optimal path, utilizing its speed, steering angle, and
coordinate information as reference data for the path-tracking controller. The proposed
DWA algorithm includes the same evaluation objectives as the traditional DWA algorithm,
such as the vehicle’s heading, speed, and distance from the vehicle’s center to obstacles.
Additionally, it introduces a collision risk value, which expands the vehicle’s body based
on tracking errors to assess the risk. The calculation of this risk value will be elaborated
upon in Section 3.2. The evaluate function is shown as:

G(v, ω) = a · heading(v, ω) + b · dist(v, ω) + c · vel(v, ω)− d · risk (4)

where heading represents the angular difference between the final direction of the predicted
path and the target point; dist indicates the distance between the vehicle’s reference center
and nearby obstacles; vel is the evaluation function for speed, expressed as the absolute
value of the speed; risk accounts for the vehicle’s collision risk value after considering
tracking errors. The parameters a, b, c, and d correspond to the weighting coefficients for
each respective component. In different application scenarios, achieving optimal results
may require adjusting the parameters of various factors. For instance, in scenarios with
numerous obstacles or limited space, the weights of b and d should be increased, while
those of a and c should be reduced. Conversely, in open driving environments where
efficiency is prioritized, the weights of a and c should be increased, while the weights of b
and d should be decreased.

3.2. Tracking Error–Informed Collision Risk Indicator

In traditional path planning, vehicles are often assumed to accurately follow the
prescribed path. However, due to modeling inaccuracies and external disturbances, the
planned path is frequently not executed as intended. For mining articulated vehicles
navigating narrow tunnels, neglecting tracking errors in path planning increases the risk of
collision. To address this, this section incorporates tracking errors into the planning process
by introducing an error-based confidence ellipse.

3.2.1. Tracking Error Calculation

Tracking errors are composed of heading errors eh and lateral errors ed, as illustrated in
Figure 3. The lateral error is a main contributor to vehicle collisions, namely displacement
errors. It is defined as the difference in global coordinate position between the nearest point
on the reference path and the vehicle’s actual point and is expressed as follows:

el = (x − xr) cos θr − (y − yr) sin θr (5)

where (xr, yr) represent the coordinates of the reference point, (x, y) are the coordinates of
the actual position, and θr is the heading angle of the reference point.

Machines 2025, 13, x FOR PEER REVIEW 6 of 19 

collision. To address this, this section incorporates tracking errors into the planning pro-
cess by introducing an error-based confidence ellipse. 

3.2.1. Tracking Error Calculation 

Tracking errors are composed of heading errors ݁௛ and lateral errors ݁ௗ, as illus-
trated in Figure 3. The lateral error is a main contributor to vehicle collisions, namely dis-
placement errors. It is defined as the difference in global coordinate position between the 
nearest point on the reference path and the vehicle’s actual point and is expressed as fol-
lows: 

( ) cos ( )sinl r r r re x x y y     (5)

where (ݔ௥ , ,ݔ) ,௥) represent the coordinates of the reference pointݕ  are the coordinates (ݕ
of the actual position, and ߠ௥ is the heading angle of the reference point. 

Figure 3. Diagram of tracking error. 

3.2.2. Tracking Error Prediction 

The tracking error at the current moment may not fully represent the tracking error 
at future moments. Given the tracking errors are unlikely to change significantly over a 
short period, the range of future tracking errors can be inferred from the distribution of 
past tracking errors. Assuming the tracking error data follows a normal distribution, it 
can be characterized by its mean and standard deviation to describe the probability den-
sity, as illustrated in Figure 4. For instance, the probability that the error falls within 
,ߪ0.5−) ,ߪis 38%, and the probability that the error data falls within (−1.5 (ߪ0.5  is (ߪ1.5
87%. To consider the effects of tracking errors during path planning, the mean and stand-
ard deviation of tracking error data from time ݇ − ݊ to ݇ are calculated to estimate the 
probability density of future tracking errors. The equations for calculating the mean and 
standard deviation are as follows: 

1

2

1

1 ( )

n
i

i

n

i
i

e
x

n

e x
n







 


  




(6)

where ݊ is the sample size and ݁௜ is the tracking error for the i-th sample. 

Figure 3. Diagram of tracking error.



Machines 2024, 12, 939 6 of 18

3.2.2. Tracking Error Prediction

The tracking error at the current moment may not fully represent the tracking error
at future moments. Given the tracking errors are unlikely to change significantly over a
short period, the range of future tracking errors can be inferred from the distribution of
past tracking errors. Assuming the tracking error data follows a normal distribution, it can
be characterized by its mean and standard deviation to describe the probability density, as
illustrated in Figure 4. For instance, the probability that the error falls within (−0.5σ, 0.5σ)
is 38%, and the probability that the error data falls within (−1.5σ, 1.5σ) is 87%. To consider
the effects of tracking errors during path planning, the mean and standard deviation of
tracking error data from time k − n to k are calculated to estimate the probability density of
future tracking errors. The equations for calculating the mean and standard deviation are
as follows: 

x =
n
∑

i=1

ei
n

σ =

√
1
n

n
∑

i=1
(ei − x)2

(6)

where n is the sample size and ei is the tracking error for the i-th sample.
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3.2.3. Confidence Ellipse-Based Vehicle Expansion

We expand the vehicle’s body based on the distribution density of tracking error
data at specific step sizes. This expansion enables the calculation of distances to obstacles,
ensuring adequate space is maintained between the vehicle and potential obstacles. The
confidence ellipse method is employed to represent the distribution of two-dimensional
data, where the lengths of the semi-major and semi-minor axes correspond to the standard
deviations along different dimensions [33].

Drawing from this method, we treat the body of the articulated steering vehicle as
an inscribed rectangle within an ellipse. By combining the vehicle’s dimensions with
the standard deviations of the tracking errors, we generate expansion areas at different
confidence levels for collision risk detection. The semi-major axis llong and semi-minor axis
lshort of the vehicle’s confidence ellipse are, respectively, represented as follows:

llong = α · l f 1 + (x + β · σ)
lshort = α · l f 2 + (x + β · σ)

(7)

where l f 1 and l f 2 represent the length and width of the vehicle; α is the coefficient of the
inscribed rectangle; β is the coefficient of the standard deviation, which can be adjusted to
obtain different probability densities.

Figure 5 shows the generated collision risk areas, in which 1⃝, 2⃝, and 3⃝ are the
confidence regions for β = 0.5, 1.5, and 2.5, respectively. Based on the probability density
distribution, it is estimated that the vehicle has probabilities of (38%)2, (50%)2, and (90%)2

of being located in the different regions at the next moment. By adjusting the standard
deviation coefficient β, the size of the confidence region can be dynamically tailored to suit
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planning tasks with different objectives. Additionally, reducing the extent of the confidence
region helps to lower the computational complexity of the algorithm.
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3.2.4. Risk Indicator Calculation

To quantitatively describe collision risk in greater detail, we divide the collision risk
detection area into three non-overlapping regions. Based on the distribution probabilities
within each region, the probabilities of the vehicle’s future position falling within these
areas are 0.144, 0.613, and 0.233, respectively. The proximity of an obstacle to the vehicle
directly correlates with an increased collision risk. Consequently, we inversely adjust the
vehicle’s collision risk indicator based on the probability density. The Risk indicator can be
expressed as follows:

Risk =


0 P /∈ 1⃝, 2⃝, 3⃝

0.233 P ∈ 1⃝
0.233 + 0.613 P ∈ 2⃝

0.233 + 0.613 + 0.144 P ∈ 3⃝

(8)

where P is the region in which the nearest obstacle is located.

4. Design of MPC for Tracking DWA Planned Path

Differential steering vehicles can achieve the linear and angular velocities required by
the DWA algorithm by controlling the speed differential between the wheels on each side.
However, for ASVs, the fixed relative position between the body and wheels, combined
with the split-body structure, leads to more complex dynamic responses. Using open-loop
control, where the DWA algorithm solely drives the vehicle forward and steers, often
results in significant tracking errors. To address this, we propose a lower-level MPC
algorithm tailored for the DWA algorithm when applied to ASVs. By incorporating the
same kinematic model used in the DWA, we establish a cohesive link between the planning
and control layers.

Let the state variable be defined as χ =
[
x, y, θ, γ]T and the control variable as

u =
[
v, ω]T . The kinematic model presented in Equation (2) directly aligns with the

path state and velocity space of the DWA planning algorithm described in Section 3. The
kinematic model is expressed as follows:

.
χ = f (χ, u) (9)

To enhance the computational efficiency of the predictive model, a first-order Taylor
expansion is performed on Equation (9) at the desired path point (χd, ud), linearizing the
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kinematic model. The model is then discretized by the forward Euler method, resulting in
a linearized discrete kinematic model:

χ(k + 1) = Akχ(k) + Bku(k) (10)

where Ak =


1 0 −vd sinθdT 0
0 1 vd cosθdT 0

0 0 1
vd(l f+lr cosγd)+ωdl f lr sinγd

(l f cosγd+lr)
2 T

0 0 0 1

, Bk =


cosθdT 0
sinθdT 0
sinγr

l f cosγr+lr
T lr

l f cosγr+lr
T

0 T

,

u(k) =
[

v(k)− vd(k)
ω(k)− ωd(k)

]
, χ(k) =


x(k)− xd(k)
y(k)− yd(k)
θ(k)− θd(k)
γ(k)− γd(k)

.

To predict the state variables at future time steps, a new state variable is defined

as ξ(k) =
[

χ(k)
u(k − 1)

]
. Using the linearized discrete kinematic model (10), the following

equation is derived as follows:

ξ(k + 1) = Aξ(k) + B∆u(k) (11)

η(k) = Cξ(k) (12)

where A =

[
Ak Bk

0m×n Im

]
, B =

[
Bk
Im

]
, C =

[
In 0

]
, ∆u = u(k)− u(k − 1), n and m denote

the dimensions of the state variable and the control variable, respectively.
Let Np be the prediction horizon and Nc be the control horizon, we can derive the

predictive equation for the state variables at future time steps, expressed as follows:

Y =
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Finally, based on the predictive equation, we construct a cost function shown in 
Equation (14). By solving it, we obtain UΔ that minimizes the error between the state 
values and the desired values within the prediction horizon Np, while also minimizing the 
variation in the input: 

22 2
1 1

min ( ( ), ( 1), )) ( ) ( ) ( )p cN N
d Qi i R

J k u k U k i k i U k iξ η η τ
= =

− Δ = + − + + Δ + +   

min max

min max

min max

( )

( 1) ( )

( ) ( )

U U k U

U U k U k U

Y k U k Yτ ψξ Θ τ

Δ ≤ Δ ≤ Δ

  ≤ − + Δ ≤

  − ≤ + Δ ≤ +

s.t. (14)

where the relaxation factor τ can prevent the controller from encountering infeasible so-
lutions; dη is provided by the optimal path generated by the DWA; [ ]min max,U UΔ Δ  is 
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5. Simulation Experiments
To assess the performance of the proposed algorithm, a path-tracking experiment

was initially conducted to evaluate the stability of the control system. Confidence ellipses 
were constructed based on the tracking error, providing further validation of the method. 
Additionally, the algorithm’s obstacle avoidance capabilities were tested in both narrow 
alley turns and obstacle avoidance scenarios to comprehensively evaluate its effective-
ness. A co-simulation was conducted using MATLAB/SIMULINK 2023 and ADAMS 2020 

(k) + Θ∆U (13)

where Ψ =



CA
CA2

. . .
CANc

. . .
CANp


, Θ =



CB 0 0 · · · 0
CAB CB 0 · · · 0

· · · · · · · · · . . . · · ·
CANc−1B CANc−2B CANc−3B · · · CA0B

· · · · · · · · · . . . · · ·
CANp−1B CANp−2B CANp−3B · · · CANp−Nc B


,

∆U =


∆u(k)

∆u(k + 1)
∆u(k + 2)

. . .
∆u(k + Nc − 1)

, Y =


η(k + 1)
η(k + 2)
η(k + 3)

. . .
η(k + Np)

.

Finally, based on the predictive equation, we construct a cost function shown in
Equation (14). By solving it, we obtain ∆U that minimizes the error between the state
values and the desired values within the prediction horizon Np, while also minimizing the
variation in the input:

minJ(
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Finally, based on the predictive equation, we construct a cost function shown in 
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were constructed based on the tracking error, providing further validation of the method. 
Additionally, the algorithm’s obstacle avoidance capabilities were tested in both narrow 
alley turns and obstacle avoidance scenarios to comprehensively evaluate its effective-
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(k), u(k − 1), ∆U)) = ∑
Np
i=1∥η(k + i)− ηd(k + i)∥2

Q + ∑Nc
i=1∥∆U(k + i)∥2

R + τ2

s.t.∆Umin ≤ ∆U(k) ≤ ∆Umax
Umin ≤ U(k − 1) + ∆U(k) ≤ Umax
Ymin − τ ≤
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Finally, based on the predictive equation, we construct a cost function shown in 
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where the relaxation factor τ can prevent the controller from encountering infeasible so-
lutions; dη is provided by the optimal path generated by the DWA; [ ]min max,U UΔ Δ  is 
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for the control input. 

5. Simulation Experiments
To assess the performance of the proposed algorithm, a path-tracking experiment

was initially conducted to evaluate the stability of the control system. Confidence ellipses 
were constructed based on the tracking error, providing further validation of the method. 
Additionally, the algorithm’s obstacle avoidance capabilities were tested in both narrow 
alley turns and obstacle avoidance scenarios to comprehensively evaluate its effective-
ness. A co-simulation was conducted using MATLAB/SIMULINK 2023 and ADAMS 2020 

(k) + Θ∆U(k) ≤ Ymax + τ

(14)

where the relaxation factor τ can prevent the controller from encountering infeasible
solutions; ηd is provided by the optimal path generated by the DWA; [∆Umin, ∆Umax] is the
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constraint range for the control input increments; [Umin, Umax] is the constraint range for
the control input.

5. Simulation Experiments

To assess the performance of the proposed algorithm, a path-tracking experiment
was initially conducted to evaluate the stability of the control system. Confidence ellipses
were constructed based on the tracking error, providing further validation of the method.
Additionally, the algorithm’s obstacle avoidance capabilities were tested in both narrow
alley turns and obstacle avoidance scenarios to comprehensively evaluate its effectiveness.
A co-simulation was conducted using MATLAB/SIMULINK 2023 and ADAMS 2020 dy-
namic analysis software to verify the proposed algorithm. An ADAMS model of ASV acted
as the control object, providing real-time kinematic responses of the vehicle, as shown in
Figure 6. The simulation was executed on a high-performance computer equipped with an
Intel Core i7-13700 CPU and 32 GB RAM.
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The simulation architecture is depicted in Figure 7. Within the MATLAB/SIMULINK
environment, modules were developed to handle error calculation, the DWA planner with
risk indicators, and MPC algorithms. The DWA planner module incorporated virtual
obstacle scenarios to dynamically compute the distances between obstacles and the vehicle.
Simultaneously, an ASV model was created in ADAMS, with constraints and parameters
referenced from [34]. The geometric parameters of the model are listed in Table 1. The
SIMULINK and ADAMS environments were synchronized with a sampling interval of
0.01 s.
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Table 1. The model parameters.

Parameter and Unit Description Value

la (m) Total length of the vehicle 1.18
l f 1 (m) Front body length 0.46
l f 2 (m) Front body width 0.6
lr1 (m) Rear body length 0.62
lr2 (m) Rear body width 0.55

5.1. Path Tracking Experiment

A path comprising both straight and turning segments was designed to assess the
stability of the control algorithm. The tracking path, represented by the gray dashed line
in Figure 8, consists of two semi-circles with a radius of 2 m and two straight sections,
each 8 m long. To simulate uncertainty during tracking, a steering angle pulse disturbance
of 0.1 radians amplitude and 0.1 s duration was introduced during the first turn. The
controller parameters are provided in Table 2.
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Figure 8. The tracking result.

Table 2. The controller parameters.

Parameters Np Nc Q R τ vmax ωmax

Value 50 20 10 5 0.01 2 m/s 0.25 rad/s

The tracking results shown as the blue solid line in Figure 8, together with the lateral
error data in Figure 9, indicate that the proposed MPC path tracking algorithm can accu-
rately follow the desired path. Under external disturbances, the system remained stable,
achieving a root mean square (RMS) lateral error of 0.02 and a maximum error of 0.11.
Using the vehicle expansion method described in Section 3.2, we computed the tracking
error data over 500 timesteps (5 s prior tracking moment) and constructed the expanded
region based on the error confidence ellipses. This expanded region was subsequently
visualized, as illustrated in Figure 9.
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To improve clarity, we visualized selected sample points distributed along the entire
path. The results show that when the tracking error is small, the risk region is the same size
as the vehicle body, with the deep blue and green confidence ellipses almost overlapping
the red region. This occurs because the area of the elliptical risk region is determined
by the standard deviation of the tracking error. When the error is small, the data are
more concentrated over a specific time period, resulting in lower dispersion and a smaller
standard deviation, which causes the three ellipses to nearly overlap.

As the error increased, the data dispersion within a specific period also rose, resulting
in a larger standard deviation and varying areas for the three ellipses. For instance, during
the first turn, external disturbances caused the tracking error to increase, leading to an
expansion of the risk region. This demonstrates that the proposed method for constructing
collision risk effectively captures the uncertainty introduced by tracking errors, thereby
offering valuable guidance for path planning.

5.2. Collision Avoidance Experiment

To further evaluate the obstacle avoidance performance of the proposed DWACR-
MPC algorithm, we conducted tests in both narrow alley turning and obstacle avoidance
scenarios. We compared the results with other algorithms: DWA and TEB that directly
apply the optimal velocity space for vehicle control and the DWA–MPC algorithm, which
does not account for collision risks. Both DWA and MPC utilized the same kinematic
model and velocity constraints. Moreover, the forward simulation time in DWA was set to
50 steps, aligning with the Np in MPC.

5.2.1. Narrow Alley Turning Scenario

Figure 10 depicts a narrow alley turning scenario with a lane width of 1 m by black
bold lines. The vehicle needs to navigate this narrow road and successfully reaches the
target point at (10, 10). A front-wheel steering vehicle can complete the turn in this
space if its length is less than a specific multiple of the lane width. In comparison, the
ASV has a smaller turning radius than the front-wheel steering vehicle. With a length of
1.18 m, the test vehicle model demonstrates that the designed scenario meets the necessary
turning requirements.
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Figure 11 illustrates the results of controlling the ADAMS model using the DWA and 
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solid line and the yellow vehicle body denote the trajectory generated by the DWA algo-
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produced by the TEB algorithm. While the vehicle successfully follows the planned path 
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Figure 11 illustrates the results of controlling the ADAMS model using the DWA
and TEB algorithms. The gray dashed line represents the global planning path. The light
blue solid line and the yellow vehicle body denote the trajectory generated by the DWA
algorithm, while the dark red dotted line and the red vehicle body represent the trajectory
produced by the TEB algorithm. While the vehicle successfully follows the planned path
during straight-line motion, both algorithms encounter difficulties during turns, leading to
significant tracking errors. These errors cause the vehicle to collide with the inner corner
of the curve, resulting in task failure. Analysis reveals that although ASVs share some
similarities with differential steering vehicles, such as maintaining a fixed position between
the wheels and the body, the articulated steering vehicle’s segmented body structure results
in a more complex kinematic model. When using only DWA or TEB, the system behaves
as an open-loop control, making precise tracking challenging. As a result, there is a high
probability of the vehicle deviating from the planned path, increasing the risk of task failure.
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Figure 12 illustrate the collision avoidance results obtained using the DWA–MPC
algorithm. Figure 12a presents the driving results when the vehicle collision risk indicator
is not considered. The enlarged view shows the vehicle’s front body contacting the edge of
the corridor, while the collision risk visualization indicates that the vehicle occupies the
highest risk region, highlighted in red. The root mean square (RMS) tracking errors are
0.03 m for both algorithms, regardless of whether the collision risk indicator is considered,
as shown in Figure 12b.
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Compared to using DWA alone, integrating the DWA planning algorithm with the
MPC algorithm improves the vehicle’s execution accuracy. In Figure 12c, the green and
yellow vehicles represent the tracking control results with and without consideration of
the collision risk indicator, respectively. In the high-risk turning area, the green vehicle
demonstrates a larger safety margin compared to the yellow vehicle. Figure 12d further
illustrates the variation in the minimum distance between the vehicle and obstacles. When
the collision risk indicator is considered, the minimum distance from obstacles increases by
0.03 m. In contrast, when the collision risk indicator is ignored, the minimum distance is
reduced to 0 m, leading to contact with the corridor during turns.

5.2.2. Obstacle Avoidance Scenario

Next, we evaluated the performance of the proposed algorithm in a more open obstacle
avoidance scenario, with the vehicle’s target point set at coordinates (10, 10). Figure 13
illustrates this setup, featuring 15 circular obstacles, each with a radius of 0.5 m, randomly
distributed throughout the environment. In Figure 13, the obstacles are represented by bold
solid red lines. To ensure the vehicle navigates through the obstacles rather than bypassing
them, a barrier was placed 0.2 m from the vehicle’s perimeter.

The results of using only the DWA or TEB algorithms are presented in Figure 14.
Similarly to the outcomes observed in alley turning scenario relying solely on the DWA
or TEB algorithm for planning and control proves insufficient for safely reaching the
target point, as the vehicle collides with obstacles in narrow spaces. Figure 15 shows the
result of the DWA–MPC algorithm. Figure 15a presents the driving path of DWA–MPC
without the vehicle collision risk indicator. The vehicle body is expanded and visualized
based on the method in Section 3.2.3. The planned path displays continuously varying
curvature, which leads to increased tracking error. In comparison to the narrow alley
turning scenario, the vehicle’s risk region expands larger. The lateral tracking error curve
in Figure 15b indicates that the DWACR–MPC algorithm, which accounts for collision risk
areas, effectively reduces the tracking error, decreasing the RMS value of the lateral error
from 0.08 to 0.05.



Machines 2024, 12, 939 14 of 18

Machines 2025, 13, x FOR PEER REVIEW 14 of 19 

(c) (d) 

Figure 12. The result of the proposed algorithm in the alley turning scenario. (a) The driving path 
of DWA–MPC and vehicle expansion visualization; (b) The lateral tracking errors; (c) Result of ve-
hicle turning in a narrow alley; (d) The minimum distance variations 

5.2.2. Obstacle Avoidance Scenario 

Next, we evaluated the performance of the proposed algorithm in a more open ob-
stacle avoidance scenario, with the vehicle’s target point set at coordinates (10, 10). Figure 
13 illustrates this setup, featuring 15 circular obstacles, each with a radius of 0.5 m, ran-
domly distributed throughout the environment. In Figure 13, the obstacles are repre-
sented by bold solid red lines. To ensure the vehicle navigates through the obstacles rather 
than bypassing them, a barrier was placed 0.2 m from the vehicle’s perimeter. 

Figure 13. Obstacle avoidance scenario. The red solid circles represent obstacles. 

The results of using only the DWA or TEB algorithms are presented in Figure 14. 
Similarly to the outcomes observed in alley turning scenario relying solely on the DWA 
or TEB algorithm for planning and control proves insufficient for safely reaching the tar-
get point, as the vehicle collides with obstacles in narrow spaces. Figure 15 shows the 
result of the DWA–MPC algorithm. Figure 15a presents the driving path of DWA–MPC 
without the vehicle collision risk indicator. The vehicle body is expanded and visualized 
based on the method in Section 3.2.3. The planned path displays continuously varying 
curvature, which leads to increased tracking error. In comparison to the narrow alley turn-
ing scenario, the vehicle’s risk region expands larger. The lateral tracking error curve in 
Figure 15b indicates that the DWACR–MPC algorithm, which accounts for collision risk 
areas, effectively reduces the tracking error, decreasing the RMS value of the lateral error 
from 0.08 to 0.05. 

Figure 13. Obstacle avoidance scenario. The red solid circles represent obstacles.

Machines 2025, 13, x FOR PEER REVIEW 15 of 19 

Figure 14. The result of DWA and TEB in obstacle avoidance scenario. 

(a) (b) 

(c) (d) 

Figure 15. The result of the DWA–MPC algorithm in obstacle avoidance scenario. (a) The driving 
path of DWA–MPC and vehicle expansion visualization; (b) The lateral errors in obstacle avoid-
ance; (c) Result of vehicle obstacle avoidance; (d) The minimum distance variations. 

In Figure 15c, the green and yellow vehicle trajectories represent the results of motion 
with and without consideration of the collision risk indicator, respectively. The DWA–
MPC algorithm, which did not incorporate collision risk assessment, resulted in minor 
vehicle scraping during tight turns in constrained spaces. As shown in Figure 15d, this led 
to instances where the distance to the obstacle became negative. In contrast, the DWACR–
MPC algorithm successfully navigated through the obstacles, maintaining a minimum 
clearance of 0.25 m and reaching the target point, thereby demonstrating its superior per-
formance. 

6. Field Experiment 

Figure 14. The result of DWA and TEB in obstacle avoidance scenario.

Machines 2025, 13, x FOR PEER REVIEW 15 of 19 

Figure 14. The result of DWA and TEB in obstacle avoidance scenario. 

(a) (b) 

(c) (d) 

Figure 15. The result of the DWA–MPC algorithm in obstacle avoidance scenario. (a) The driving 
path of DWA–MPC and vehicle expansion visualization; (b) The lateral errors in obstacle avoid-
ance; (c) Result of vehicle obstacle avoidance; (d) The minimum distance variations. 

In Figure 15c, the green and yellow vehicle trajectories represent the results of motion 
with and without consideration of the collision risk indicator, respectively. The DWA–
MPC algorithm, which did not incorporate collision risk assessment, resulted in minor 
vehicle scraping during tight turns in constrained spaces. As shown in Figure 15d, this led 
to instances where the distance to the obstacle became negative. In contrast, the DWACR–
MPC algorithm successfully navigated through the obstacles, maintaining a minimum 
clearance of 0.25 m and reaching the target point, thereby demonstrating its superior per-
formance. 

6. Field Experiment 

Figure 15. The result of the DWA–MPC algorithm in obstacle avoidance scenario. (a) The driving
path of DWA–MPC and vehicle expansion visualization; (b) The lateral errors in obstacle avoidance;
(c) Result of vehicle obstacle avoidance; (d) The minimum distance variations.



Machines 2024, 12, 939 15 of 18

In Figure 15c, the green and yellow vehicle trajectories represent the results of motion
with and without consideration of the collision risk indicator, respectively. The DWA–MPC
algorithm, which did not incorporate collision risk assessment, resulted in minor vehicle
scraping during tight turns in constrained spaces. As shown in Figure 15d, this led to
instances where the distance to the obstacle became negative. In contrast, the DWACR–MPC
algorithm successfully navigated through the obstacles, maintaining a minimum clearance
of 0.25 m and reaching the target point, thereby demonstrating its superior performance.

6. Field Experiment

To evaluate the performance of the proposed algorithm, we conducted field tests in an
indoor corridor using a 1:4 scale articulated vehicle prototype. The prototype shown in
Figure 16 features a steering mechanism identical to that of a mining articulated vehicle,
with dimensions of 1250 mm in length, 710 mm in width, and 410 mm in height. The
test platform integrates a 16-line LiDAR and a high-precision inertial navigation system,
employing the Faster-LIO algorithm [35] for indoor positioning and environmental per-
ception. An industrial control computer, equipped with an Intel I7-6700 processor and
32 GB of memory, serves as the computing platform, with the algorithm running on the
ROS1 framework.
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tion aligns the field test results with the simulation outcomes. In Figure 18b, the yellow 
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lides when turning near the end. However, DWACR–MPC introduces a vehicle body 

Figure 16. The platform used in field experiment.

Figure 17 displays the point cloud image and photos of the indoor corridor scene. This
scene resembles the environment of underground mine car driving, with limited space
relative to the vehicle size. The corridor width is 2100 mm, narrowing to just 1600 mm
at its narrowest point. The test prototype must safely navigate from the starting point
to the endpoint autonomously. We conducted performance tests on the DWA–MPC and
DWACR–MPC algorithms, with the results presented in Figure 18.
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To clearly illustrate the algorithm results, we proportionally simplified the corridor
environment in Figure 18. The simplified corridor, represented by the bold black line, was
constructed based on point cloud coordinates. Figure 18a presents the driving path of
DWACR–MPC and the visualized result of the vehicle expansion. During the turn, the
tracking error increases, causing the vehicle body’s expanded area to grow. This observation
aligns the field test results with the simulation outcomes. In Figure 18b, the yellow vehicle
body and the gray dotted line represent the motion path of DWA–MPC, while the green
vehicle body and the blue solid line represent the motion path of DWACR–MPC. Combining
the obstacle-vehicle distance in Figure 18c, it is evident that DWA–MPC collides when
turning near the end. However, DWACR–MPC introduces a vehicle body expansion
method based on tracking errors, preventing collisions and successfully completing the
driving task. This experimental result demonstrates the algorithm’s effectiveness.

7. Conclusions

In this paper, we present a coordinated planning and control algorithm, called DWA–
MPC, tailored for autonomous collision-avoidance navigation in underground mining
articulated steering vehicles. First, a DWA algorithm customized for ASVs was developed,
incorporating a collision risk indicator to select optimal paths. This DWA algorithm is then
integrated with a kinematics-based MPC to improve tracking accuracy. Collision risk is
assessed by analyzing tracking error distribution over a specified period and is factored into
the DWA evaluation function. Experimental results demonstrate that the proposed method
significantly enhances both collision-avoidance capabilities and path-tracking precision.
By modifying the vehicle model within the framework, this method can also be applied to
vehicles with different steering mechanisms, thereby enhancing collision avoidance safety
during operation.

To ensure the algorithm’s effective operation, it is essential to store the tracking error
over a defined period and compute the minimum distance between the expansion vehicle
and obstacles. This process imposes significant demands on the device’s computational
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capacity. In future research, efforts will focus on further optimizing the algorithm’s com-
plexity by adaptively adjusting it to compute and store error frequencies. Additionally, as
DWA parameter selection affects planning outcomes, we plan to incorporate reinforcement
learning and other intelligent algorithms for adaptive parameter tuning, improving the
adaptability and robustness of the planning algorithm.
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