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A B S T R A C T

In the pursuit of enabling the unprecedented capabilities of the sixth-generation (6G) technol-
ogy, this paper endeavours to advance the state-of-the-art in the direction of arrival (DOA)
estimation techniques for dynamic scenarios. This work introduces an innovative adaptive
compressive sensing (CS) technique, termed the BS weighted-CSKF algorithm. This approach
integrates CS principles with a CS-oriented Kalman filter (KF), providing enhanced adaptability
to fluctuating and moving source signals. Comparative analysis against existing CS-based DOA
estimation methods demonstrates the superior performance of the proposed algorithm, particu-
larly in low signal-to-noise ratio (SNR) environments. Notably, the BS weighted-CSKF algorithm
operates effectively even in unknown noise field scenarios, eliminating the requirement for
orthogonality between the signal and subspace noise or singular value decomposition. This
capability enables accurate DOA estimation without prior knowledge of the number of signal
sources. Additionally, investigations into rank-one updates of the covariance matrix highlight
the algorithm’s ability to estimate a higher number of sources than sensors employed without
imposing constraints on source properties. The algorithm’s versatility extends to coherent and
spatially correlated sources, further enhancing its applicability in diverse scenarios. Moreover,
employing BS CS-based DOA estimation techniques yields a significant computational load
reduction, exceeding 35% compared to the conventional element-space (ES) CS-based approach.
Leveraging the proposed technique, fluctuating moving source signals can be efficiently detected
and tracked using fewer snapshots, facilitating real-time monitoring and analysis in dynamic
environments.
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1. Introduction

The internet-of-things (IoT) has revolutionised interactions with the surrounding environment, from smart homes to advanced
ndustrial systems, by introducing a network of interconnected devices. Central to many IoT applications is the need for precise

localisation and tracking of devices, a task where direction of arrival (DOA) estimation plays a pivotal role. In environments such
as smart buildings and factories, accurate DOA estimation is critical for optimising operations. For instance, in a smart factory, real-
time tracking of sensors and autonomous robots ensures synchronised workflows, enhancing both efficiency and safety. Similarly, in
emergency scenarios, pinpointing the location of IoT devices can be lifesaving, especially in areas where conventional positioning
systems are ineffective [1–3].

The rising integration of aerial IoT platforms, such as unmanned aerial vehicles (UAVs), introduces additional complexities,
ncluding maintaining reliable connectivity and mitigating interference in dynamic conditions. Super-resolution DOA estimation is

achievable through subspace approaches like MUSIC [4] and ESPRIT [5]. However, these methods require a high signal-to-noise
atio (SNR) and sufficient snapshots to perform accurately. To address limitations in challenging conditions, several sparse signal

recovery (SSR) techniques for DOA estimation have been developed [6–11]. These techniques have been shown to outperform
subspace methods in scenarios with few snapshots, low SNR, and closely spaced signals by leveraging SSR theory and the sparsity
of the spatial domain. The primary SSR-based DOA estimation approaches can be categorised into four main types: matching pursuit
(MP) [12,13], 𝓁𝑝-norm-based methods [14], covariance-based methods [15], and sparse Bayesian learning (SBL) methods [16,17].

The lack of super-resolution in MP techniques is attributed to the problem of error propagation [18]. In contrast, 𝓁𝑝-norm
methods transform the DOA estimation into a convex optimisation problem, yielding more precise estimates than those obtained by
MP approaches. However, the effectiveness of 𝓁𝑝-norm-based approaches depends on the penalty operation, and determining the
regularised values can be challenging [19]. Covariance-based methods, unlike 𝓁𝑝-norm methods, do not require difficult parameter
selection and can perform DOA estimation without predetermined grids [20]. Nonetheless, these methods necessitate solving
emidefinite programming problems, which involve high computational complexity. SBL techniques address the signal recovery
roblem by constructing a probabilistic Bayesian framework with sparse priors [21] and iteratively updating the hyperparameters.

These techniques avoid the need to select regularised parameters by learning the hyperparameters from the data. Despite this
advantage, SBL methods still face challenges in real-world applications due to their significant computational complexity [22].

To increase the sensor array aperture virtually and enhance array performance, sparse arrays have been introduced [23]. A
irtual sensor array is a technique that enables DOA estimation using a simulated array of sensors rather than a physical one. This

approach is particularly effective in scenarios where deploying a physical sensor array is not feasible or is prohibitively expensive.
nstead of relying on an actual array of sensors, a virtual sensor array employs algorithms to replicate the behaviour of an array
sing data from a limited number of sensors. This technique exploits the spatiotemporal properties of signals, making it possible to
stimate the DOA effectively. The adoption of virtual sensor arrays has significantly expanded the capabilities of DOA estimation,
roving to be a valuable tool in signal-processing applications where spatial localisation is critical [24–30].

Source signal tracking is a signal processing technique that involves the real-time localisation and tracking of a source signal,
as shown in Fig. 1. The primary goal is to compute the source signal’s direction of arrival (DOA) and continuously track this DOA
as the signal moves. This information is crucial for locating the source and identifying any changes in the signal. Source signal
tracking is an essential tool in various fields, including acoustic signal processing, radar systems, and wireless communications. A
wo-step semi-supervised learning-based range estimation approach for source signal tracking is proposed in [31]. Additionally, an

adaptive grid refinement (AGR) sparse Bayesian learning (SBL) method has been developed to enhance efficiency and performance
when using coarse initial grid points [32]. Furthermore, a trajectory-oriented Poisson Multi-Bernoulli mixture approach has been
introduced for matched field tracking, ensuring trajectory continuity of the flickering target and correcting localisation defects in
matched field processing [33].

It should be noted that most of the aforementioned tracking techniques are learning-based and rely heavily on a substantial
amount of labelled data to achieve acceptable performance. This reliance not only limits their adaptability to dynamic environments
but also increases the computational complexity, rendering these methods unsuitable for real-time applications. Additionally, these
techniques are predominantly developed using element-space data, which further compounds their computational burden, particu-
larly in scenarios involving high-density IoT deployments. Addressing these challenges, this paper proposes a novel technique for
DOA estimation using a sparse linear array in the beamspace (BS). By leveraging the beamspace domain, the computational efficiency
of the proposed method is significantly enhanced, making it suitable for real-time operations in dynamic and interference-prone
environments.

The core contribution of this study lies in introducing an adaptive beamspace compressed sensing (BS CS)-based DOA estimation
technique, capable of handling fluctuating and moving source signals. The proposed method enables the estimation and tracking of
a greater number of source signals than the physical sensors present in the array, a critical advancement for dense IoT networks and
next-generation 6G applications. Additionally, the algorithm’s spatial filtering capabilities effectively mitigate interference, ensuring
optimal performance in crowded environments. Notably, the technique achieves a 35% reduction in computational load compared to
traditional methods, extending IoT device battery life and promoting sustainable network operations. These advancements position
the proposed method as a robust and scalable solution, with transformative implications for diverse applications such as smart cities,
healthcare, and agriculture, bridging the gap between theoretical innovation and practical deployment. The significant contributions
of this work are as follows:

1. Latency reduction: To minimise latency, the proposed algorithm applies a rank-one update of the covariance matrix, making
it a single snapshot method.
2 
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Fig. 1. The system architecture of the proposed DOA estimation technique for flying ad-hoc networks (FANET).

2. Computational efficiency : The DOA estimation problem is reformulated in the BS domain with calculations transformed into
real numbers, significantly reducing the computational load.

3. Enhanced tracking : The tracking task is carried out by a Kalman filter utilising the real data obtained through BS transforma-
tion. The Kalman filter’s subprocesses—prediction, measurement update, and output—are all reformulated in the CS domain
to ensure effective DOA estimation.

4. Realistic signal handling : The proposed technique is tested with multiple fluctuating source signals, various moving scenarios,
and different BS methods, contrasting with other works that only consider constant amplitude signals. This ensures the
method’s effectiveness in practical environments.

Furthermore, the proposed DOA estimation method, operating at the physical layer, processes RF signals independently of higher-
layer protocols, ensuring flexibility and seamless integration into diverse network architectures. By directly interfacing with the
physical layer and transmitting estimated DOA information to higher layers via standard interfaces, this modular design enables
effortless incorporation into existing IoT and 6G infrastructures without significant protocol modifications. Additionally, it maintains
real-time processing capabilities, ensuring robust performance in dynamic, resource-constrained environments.

The rest of this paper is structured into four main sections. Section 2 provides a brief introduction to element-space compressed
sensing (CS)-based direction of arrival (DOA) estimation. In Section 3, we introduce the novel adaptive BS CS Kalman filter (CSKF).
The performance evaluation of our method is conducted through simulations in Section 4. Finally, conclusions are given in Section 5.

Note: The superscript {}𝐻 denotes the conjugate transpose operation, while {}∗ represents conjugation without transpose, and
{}𝑇 signifies the transpose operation. Additionally, the symbol ⊙ indicates the Khatri–Rao (KR) product [34] between two matrices
of appropriate dimensions.

2. Compressive sensing framework

Given that the source signals are far-field sources, they can be treated as point sources, which leads to sparsity in space.
Leveraging this sparsity property from a CS perspective, the mathematical representation of the sensor array output, 𝐲 ∈ C𝑀×1,
is as follows.

𝐲(𝑡) = 𝛷𝐬(𝑡) + 𝐧(𝑡) (1)

where 𝛷 ∈ C𝑀×𝑁 represents the over-complete steering matrix, denoted by
𝛷 = [𝐚(𝜃1) 𝐚(𝜃2) … 𝐚(𝜃𝑛) … 𝐚(𝜃𝑁 )]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑒𝑗 𝑘𝑜𝑑(−(𝑀−1)∕2) cos 𝜃1 ⋯ 𝑒𝑗 𝑘𝑜𝑑(−(𝑀−1)∕2) cos 𝜃𝑁
⋮ ⋮
1 ⋱ 1
⋮ ⋮

𝑒𝑗 𝑘𝑜𝑑((𝑀−1)∕2) cos 𝜃1 ⋯ 𝑒𝑗 𝑘𝑜𝑑((𝑀−1)∕2) cos 𝜃𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(2)

and 𝐧 ∈ C𝑀×1 is the additive white Gaussian noise (AWGN). Here, 𝐚(𝜃𝑛) ∈ C𝑀×1 denotes the steering vector of the virtual array
associated with the angle of arrival (AOA) of (𝜃𝑛). In (2), {𝜃𝑛}𝑁𝑛=1 indicates a grid covering the set of all conceivable positions, 𝛺
and 𝑁 ≫ 𝐿. Therefore, the vector of source signal 𝐬 ∈ C𝑁×1 is provided by

𝐬(𝑡) = [𝜎1 𝜎2 … 𝜎𝑛 … 𝜎𝑁 ]𝑇 (3)

where the 𝑛th element of 𝐬(𝑡), 𝑠𝑛(𝑡), is non-zero only if (𝜃𝑛 = 𝜃𝑙) where 1 ≥ 𝑙 ≥ 𝐿 is the source signal number and, in that case,
𝜎 = 𝜎 . In the case of CS, the concern lies in the estimation of s given the sensor array output, y. In a noise-free scenario, sparsity
𝑛 𝑙
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in s can be investigated by minimising the 𝓁0-norm, which determines the number of non-zero elements in the vector s. This is
formulated as:

min
𝐬

‖𝐬‖0 subject to 𝐲 = 𝛷𝐬 (4)

However, it is known that reducing this problem is NP-hard [35], making it computationally intractable even for problems of
moderate dimensions. Consequently, CS has explored various methods to approximately solve the 𝓁0-norm problem [35–38]. It
has been demonstrated that for sensing matrices with sufficiently incoherent columns and sufficiently sparse signals, [39,40], the
𝓁0-norm problem is equivalent to the 𝓁1-norm one [41–43] where 𝓁1 minimisation is determined as

min
𝐬

‖𝐬‖1 subject to 𝐲 = 𝛷𝐬 (5)

Furthermore, the 𝓁2-norm could be employed as an alternative strategy to address the 𝓁0-norm problem by relaxing the 𝓁0-norm
nto the 𝓁2-norm. This is expressed as:

min
𝐬

‖𝐬‖2 contingent upon 𝐲 = 𝛷𝐬 (6)

Being convex in nature, this problem can be analytically resolved by

𝐬̂ = 𝛷𝐻 (𝛷 𝛷𝐻 )−1𝐲 (7)

However, the 𝓁1-norm problem tends to favour sparse signals more than the 𝓁2-norm. Additionally, the relaxation of the 𝓁1-norm
is a convex optimisation that converges to the global minimum and is most similar to the 𝓁0-norm [44].

In practical applications, CS can be extended to accommodate scenarios involving measurements corrupted by noise. The
ormulation of the 𝓁1-norm problem for noisy measurements can be presented as follows.

min
𝐬

‖𝐬‖1 subject to ‖𝛷𝐬 − 𝐲‖2 ≤ 𝛽 (8)

where 𝛽 represents the tolerance error (𝛽 > 0). The 𝓁2-norm is utilised for error evaluation 𝛷𝐬 − 𝐲, although it can be substituted
with any other norm, such as 𝓁∞ or 𝓁𝑝, 0 < 𝑝 ≥ 1. The selection of 𝛽 is assumed to be related to the residuals of the solution, known
as the discrepancy principle [45,46]. An 𝓁1-norm constrained form of Eq. (8) is commonly known as the least absolute shrinkage
and selection operator (LASSO) [47]. The LASSO minimisation problem can be formulated as:

min
𝐬

‖𝐲 −𝛷𝐬‖22 + 𝜏 ‖𝐬‖1 (9)

In the context of regularisation, the parameter 𝜏 is a non-negative value used for regularisation. The 𝓁1 penalisation strategy is
lso known as basis pursuit [48]. A modified version of LASSO called minimum variance distortionless response adaptable LASSO

(MVDR A-LASSO) is proposed in [10]. The study demonstrated that MVDR A-LASSO outperforms both traditional DOA estimation
techniques and LASSO-based DOA estimation, as described in [10].

𝐬̂(𝑘) = min
𝐬

‖𝐲 −𝛷𝐬‖22 + 𝜏𝑘
𝑁
∑

𝑛=1
𝑤̂𝑛|𝑠𝑛| (10)

where 𝑘 represents the iteration number, 𝑤̂𝑛 denotes the 𝑛th element of the weight vector, and 𝐰̂ and 𝐰̂ is obtained by MVDR at
= 1.

3. Adaptive weighted-CSKF

By understanding the system dynamics and the measurement device, along with statistical insights into system noises, measure-
ment errors, uncertainties in dynamic models, and initial conditions of variables, the Kalman filter (KF) facilitates the estimation
of the present value of the desired variable. The KF is an optimal recursive data processing technique that effectively integrates all
available information to generate estimates of desired variables while minimising statistical errors. From a Bayesian perspective,
the KF advances the conditional probability density of the desired quantities by incorporating information obtained from observed
measurement data. It is important to note that the system is assumed to be described by a linear model, with all noises and errors
considered white and characterised as Gaussian processes [49].

Assume a random discrete-time process
{

𝐠𝑘 ∈ R𝑁
}∞
𝑘=1 that is sparse in some known orthonormal sparsity basis 𝜓 ∈ R𝑁×𝑁 , that

is 𝐬𝑘 = 𝜓𝑇 𝐠𝑘, #{supp(𝐬𝑘)} < 𝑁 , where supp(𝐬𝑘) denotes the support of 𝐬𝑘 and #{supp(𝐬𝑘)} is the number of non-zero elements of 𝐬𝑘.
Consider 𝐬𝑘 is evolving as

𝐬𝑘+1 = 𝐀𝐬𝑘 + 𝐰𝑘, 𝐬0 ∼  (𝜇0, 𝑃0) (11)

where 𝐀 ∈ R𝑁×𝑁 is the state transition matrix and {𝐰𝑘}∞𝑘=1 is a zero-mean white Gaussian process with covariance 𝐐𝑘 ⪰ 0. The
process 𝐲𝑘 is measured by

𝐲𝑘 = 𝐇𝐠𝑘 + 𝐧𝑘 = 𝛷𝐬𝑘 + 𝐧𝑘 (12)

where 𝐇 ∶= 𝛷 𝜓𝑇 ∈ R𝑀×𝑁 . In order to estimate 𝐬̂ using the system defined by (11) and (12), KF can be expressed as

min 𝐸 𝑘

[

‖𝐳 − 𝐳̂ ‖

2
]

(13)

𝐬̂𝑘

𝐳𝑘|𝐲 ‖ 𝑘 𝑘‖2

4 
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which can be reformulated as

min
𝐬̂𝑘

𝐸𝐳𝑘|𝐲𝑘
[

‖

‖

𝐳𝑘 − 𝐳̂𝑘‖‖
2
2

]

subject to ‖

‖

𝐳̂𝑘‖‖1 ≤ 𝜏′ (14)

Eq. (14) can be solved using the classical KF framework. Yet, since our CS problem is ill-posed, as illustrated in Section 4,
applying an ordinary KF is useless. However, it can be solved using the pseudo-measurement (PM) technique [50]. ‖

‖

𝐳̂𝑘‖‖1 ≤ 𝜏′ can
be adopted for ill-posed problems using PM technique by introducing a dummy measurement 0 = ‖

‖

𝐳̂𝑘‖‖1− 𝜏′, which can be rewritten
as follow [51].

0 = 𝛷̄𝐳𝑘 − 𝜏′, 𝛷̄ ∶=
[

sign(𝑧𝑘(1)),… , sign(𝑧𝑘(𝑁))
]

(15)

where sign(𝑧𝑘(𝑛)), 𝑛 = {1,… , 𝑁} denotes the sign function of the 𝑛th element of 𝐳𝑘 where

sign(𝑧𝑘(𝑛)) =
{

1 if 𝑧𝑘(𝑛) ≥ 0
−1 otherwise

(16)

Building upon the framework established by A-LASSO [10], we propose a novel approach for the DOA estimation termed
‘adaptive weighted-CSKF’’. This variant of CSKF allows for adaptability through the adjustment of initial weights, in alignment
ith the methodology outlined in A-LASSO [10]. Algorithm 1 illustrates the implementation of the adaptive weighted CSKF in a

ingle iteration. Notably, the adaptive weighted CSKF is utilised within the context of the CS, as follows.

𝛷′ = 𝛷∗, 𝐲𝑘 = 𝐲𝑒𝑠 (17)

where 𝛷′ represents a modified version of the matrix 𝛷, and it is equivalent to the conjugate transpose of 𝛷, denoted as 𝛷∗. In
addition, 𝑦𝑘 is equal to 𝑦𝑒𝑠, suggesting that the measurement vector 𝑦𝑘 at time step 𝑘 is identical to the expected (or estimated)

easurement vector 𝑦𝑒𝑠. In the adaptive weighted-CSKF simulations, a multi-beam beamspace approach is employed, where the
umber of beams in the fan beam for each source, denoted as 𝑁𝑏𝑠, is set to 3. Following each iteration of the adaptive weighted-
SKF, the beamspace projection matrix 𝐁𝐻𝑏𝑠,𝑡𝑜𝑡𝑎𝑙 is updated using the estimated DOA of the source signals, with each estimated angle
f arrival (AOA) serving as the centre beam, 𝜃𝑐 , of the fan beams. Fig. 2 outlines the steps involved in the proposed adaptive
eighted-CSKF method. Consequently, the estimated signal 𝐬̂ is utilised to compute the new weight vector 𝐰 for the subsequent

teration of the adaptive weighted-CSKF algorithm.

Algorithm 1 The adaptive weighted-CSKF
1: Initialisation

Let the initial estimate for 𝑠 be 𝑠̂.
Find ŵ, where the 𝑛-th element of ŵ, 𝑤̂𝑛, is given by 𝑤̂𝑛 = 1∕ ||𝑠̂𝑛||𝛾 , 𝑛 = 1,… , 𝑁 .
Define 𝛷 ∈ C𝑀×𝑁 matrix, such that its (𝑚, 𝑛)-th element is given by 𝜙𝑚𝑛∕𝑤̂𝑛, where 𝑚 = 1,… , 𝑀 and 𝑛 = 1,… , 𝑁 .

2: Beamspace transformation
𝛷′ = B𝐻𝑏𝑠𝛷 (𝛷′ ∈ R𝑁𝑏𝑠×𝑁 ) (18a)

y𝑘 = y𝑏𝑠 = B
𝐻
𝑏𝑠y𝑒𝑠 (y𝑏𝑠 ∈ R𝑁𝑏𝑠×1) (18b)

3: Prediction

ŝ𝑘+1|𝑘 = Aŝ𝑘|𝑘 (19a)

P𝑘+1|𝑘 = AP𝑘|𝑘A𝑇 +Q𝑘 (19b)

4: Measurement Update
K𝑘 = P𝑘+1|𝑘𝛷′𝑇 (

𝛷′P𝑘+1|𝑘𝛷
′𝑇 + R𝑘

)−1 (20a)

ŝ𝑘+1|𝑘+1 = ŝ𝑘+1|𝑘 + K𝑘
(

y𝑘 −𝛷′ ŝ𝑘+1|𝑘
) (20b)

P𝑘+1|𝑘+1 =
(

I − K𝑘𝛷′)P𝑘+1|𝑘 (20c)

5: CS Pseudo Measurement: Let P1 = P𝑘+1|𝑘+1 and ŝ1 = ŝ𝑘+1|𝑘+1
6: for 𝜁 = 1, 2,… , 𝑁𝜁 − 1 iterations do

𝛷̄𝜁 =
[

sign(𝑠̂𝜁 (1)),… , sign(𝑠̂𝜁 (𝑛))
] (21a)

K𝜁 = P𝜁 𝛷̄𝑇
𝜁

(

𝛷̄𝜁P𝜁 𝛷̄𝑇
𝜁 + 𝑅𝜖

)−1
(21b)

ŝ𝜁+1 =
(

I − K𝜁 𝛷̄𝜁
)

ŝ𝜁 (21c)

P𝜁+1 =
(

I − K𝜁 𝛷̄𝜁
)

P𝜁 (21d)
7: end for
8: Calculate ŝ𝑁𝜁 = 𝑠̂𝑁𝜁

𝑛 ∕𝑤̂𝑛 , 𝑛 = 1,… , 𝑁
9: Set P𝑘+1|𝑘+1 = P𝑁𝜁 and ŝ𝑘+1|𝑘+1 = ŝ

𝑁𝜁
5 
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Fig. 2. Block diagram of the weighted-CSKF for estimating the DOA of moving signal sources.

Fig. 3. An array with two levels of nesting, containing 7 elements.

The algorithm begins with an initialisation step, where the initial estimate for the signal 𝑠̂ is computed based on available
information. Subsequently, the algorithm performs a beamspace transformation, converting the measurement vector 𝐲𝑘 into a
beamspace representation 𝐲𝑏𝑠. Next, the algorithm predicts the state of the system using the Kalman filter prediction equations,
updating the state estimate 𝐬̂ and the error covariance matrix 𝐏. Following the prediction step, a measurement update is performed,
incorporating the observed measurements and refining the state estimate based on Kalman filter measurement update equations.
Additionally, the algorithm employs a compressed sensing pseudo-measurement (CS PM) technique to address the ill-posed nature
of the compressive sensing problem, iteratively refining the estimates through multiple iterations. Finally, the algorithm concludes
by calculating the final state estimate 𝐬̂𝑘+1|𝑘+1 and error covariance matrix 𝐏𝑘+1|𝑘+1 for the next time step, completing the iteration
process. Overall, the algorithm integrates the principles of compressed sensing and Kalman filtering to iteratively estimate the state
of the system, demonstrating adaptability and robustness in the face of sparse signals and noisy measurements. Note that the
Cramer–Rao lower bound (CRLB) for the proposed algorithm, namely the adaptive weighted-CSKF, is derived in Appendix A.1.

4. Simulation results

Consider a sparse linear, two-level nested array comprising 𝑀 elements, where 𝑀 is odd. This array is structured with 3 elements
in the first level and 4 elements in the second level, as depicted in Fig. 3. Upon analysing the array and isolating the unique virtual
elements from the virtual array manifold (𝐀∗⊙𝐀), it becomes evident that the virtual array forms a uniform linear array consisting of
𝑀 = 31 elements. The sampling grid 𝜃𝑛 ∈ [1◦ ∶ 180◦], covering 𝛺, is selected with a 1◦ step size. The signal sources are modelled as
𝑒𝑗2𝜋 𝑓𝑑 𝑡, where 𝑓𝑑 represents the Doppler frequency. Furthermore, it is assumed in the simulation that the source signals are heading
towards the array. For both fixed and moving source signals, 10 snapshots are assumed for the initial covariance matrix calculation,
denoted as 𝑅̂𝑥𝑥. This is followed by the rank-one update of Eq. (20).

For beamspace processing [11], in multiple-beam beamspace (MBS) simulations, the number of beams, denoted as 𝑁𝑏𝑠, is set to
𝑁𝑏𝑠 = 1 for each source signal in fixed source signal simulations, whereas 𝑁𝑏𝑠 = 3 is used for scenarios involving moving source
signals. In all simulations, except for the last three, a single iteration of MVDR A-LASSO [10] is utilised. Furthermore, during the
simulations, it is with each other and the noise, except in the third simulation where the sources are intentionally correlated. The
value of 𝜖, is set to 0.1 in all the simulations except for the first simulation. In addition, the total number of trials, 𝑁𝑠𝑖𝑚, is set to
𝑁𝑠𝑖𝑚 = 100 for each observation point. For each experiment, the regularisation parameter, 𝜏, is selected based on the idea of the
L-curve [52,53] and by using the identical method outlined in [10].

The performance evaluation of the proposed beamspace algorithms is conducted using the CVX toolbox [54,55], a software
package designed for convex optimisation that seamlessly integrates with the MATLAB environment. To obtain the global solution
6 
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Fig. 4. LS, SPICE, SLIM, LASSO, SR-LASSO, and A-LASSO performance for source signal at DOA of 70◦, SNR = 10 dB and one iteration.

Fig. 5. LASSO, SR-LASSO, and A-LASSO performance for source signal at DOA of 60◦, SNR = −10 dB and five iterations.

for the optimisation problem, the CVX toolbox utilises semi-definite quadratic–linear programming (SDPT3) [56]. The root mean
square error (RMSE) is employed as the performance metric, formulated as

𝑅𝑀 𝑆 𝐸 = 1
𝐿

𝐿
∑

𝑙=1

√

√

√

√
1

𝑁𝑠𝑖𝑚

𝑁𝑠𝑖𝑚
∑

𝑛=1
(𝜃𝑙 ,𝑛 − 𝜃𝑙)2 (22)

where 𝜃𝑙 ,𝑛 is the estimate of the DOA angle 𝜃𝑙 of the 𝑛th Monte Carlo trial.

4.1. Investigation of the proposed algorithm with various CS-based DOA estimation

In the initial simulation, the performance of the proposed method is compared with several other algorithms, including least
squares (LS), sparse iterative covariance-based estimation (SPICE) [57,58], sparse learning via iterative minimisation (SLIM) [59],
LASSO [47], square-root LASSO (SR-LASSO) [58], and A-LASSO [10]. The array configuration utilised in the simulation, depicted in
Fig. 3, comprises seven elements. The scenario involves a source signal arriving at the sparse array from a DOA of 70◦. The results,
presented in Fig. 4, illustrate the performance of these algorithms under a high signal-to-noise ratio (SNR) of 10 dB with a single
iteration. Notably, A-LASSO, SR-LASSO, and LASSO outperform LS, SPICE, and SLIM even at high SNR levels. Additionally, it is
observed that increasing the number of iterations enables A-LASSO to achieve superior performance compared to both SR-LASSO
and LASSO.
7 
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Fig. 6. The rank-one updated covariance matrix error for different values of 𝜖. SNR = (a) −10 dB, (b) 0 dB, (c) 10 dB, and (d) 30 dB.

Fig. 7. Performance of the two source signals for the ES CS-based DOA estimate when the SNR is changed at DOAs of 60◦ and 120◦, 𝑁𝑖𝑛 = 0 and 50, using
different Swerling source signals.

In the second simulation, the performance of the proposed A-LASSO algorithm, along with LASSO and SR-LASSO algorithms, is
evaluated under more realistic conditions, with a SNR reduced to −10 dB. In this scenario, the source signal impinges on the sparse
array from a DOA of 60◦. Results obtained with a SNR of −10 dB and five iterations of A-LASSO are depicted in Fig. 5, illustrating
the superior performance of A-LASSO. Conversely, both the SR-LASSO and LASSO methods fail to accurately estimate the DOA,
with the LASSO-based approach exhibiting sparsity leakage and false source signals, leading to the fusion of source signals. These
findings highlight the limitations of using LASSO or SR-LASSO algorithms in such scenarios.
8 
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Fig. 8. Performance of full-dimension beamspace CS-based DOA estimate for two source signals when SNR is changed at DOAs of 60◦ and 120◦, 𝑁𝑖𝑛 = 0 and
50, utilising various Swerling source signals.

Fig. 9. Performance of MBS CS-based DOA estimate for two source signals when SNR is changed at DOAs of 60◦ and 120◦, 𝑁𝑖𝑛 = 0 and 50, utilising various
Swerling source signals.

4.2. Investigation of the rank-one updated covariance matrix

The third simulation focuses on analysing the rank-one update of the covariance matrix, as described in (20), for real-time
updates of the estimated covariance matrix, 𝐑̂𝑥𝑥. Fig. 6 illustrates the covariance matrix error norm, ‖𝐑̂𝑥𝑥(𝑛𝑜𝑟𝑚𝑎𝑙) − 𝐑̂𝑥𝑥(20)‖2, as 𝐑̂𝑥𝑥
is updated using new incoming snapshots for different values of 𝜖 (subscripts denote the equation used to calculate 𝐑̂𝑥𝑥). With 100
snapshots, 𝜖 = 0.01, 0.1, and 0.5, and SNRs of −10, 0, 10, and 30 dB, the covariance matrix error is depicted. It is observed that
increasing the SNR minimises the covariance matrix error for all values of 𝜖. For low and moderate SNRs, 𝜖 = 0.1 results in the
minimum error compared to 𝜖 = 0.01 and 𝜖 = 0.5. Furthermore, at high SNRs, Fig. 6 indicates that the error corresponding to 𝜖 = 0.1
is more stable and saturates compared to that of 𝜖 = 0.01, while the error using 𝜖 = 0.5 is considerably higher. Considering the
results of the first simulation, 𝜖 was set to 0.1 for all subsequent simulations.

4.3. Investigation of fluctuating source signals

In the following simulations, we explore the impact of various Swerling source signals. In the fourth simulation, we assess the
performance of ES CS-based DOA estimation while varying the SNR. The nested array is subjected to two source signals arriving
from DOA angles of 60◦ and 120◦, respectively. The SNR is changed across a range from −5 dB to 10 dB. Additionally, in line with
conventional approaches for addressing Swerling source signal detection, we aggregate the outputs of the virtual array, where the
number of integrated snapshots, 𝑁𝑖𝑛, is set to be 0 and 50. Four different Swerling source signals are assumed. Element-space DOA
estimation error for the figures includes Swerling-V as a reference where 𝑁𝑖𝑛 is set to 0 in this case. The performance of the ES
CS-based DOA estimation algorithm is illustrated in Fig. 7. From this figure, it is evident that augmenting the number of integrated
snapshots, 𝑁𝑖𝑛, leads to better DOA estimation, where increasing 𝑁𝑖𝑛 to be 50 snapshots reduced the DOA estimation error by almost
50% for all Swerling source signals for low SNR.
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Fig. 10. Performance of CS-based DOA estimate for two source signals when SNR is changed at DOAs of 60◦ and 120◦, 𝑁𝑖𝑛 = 0 and 50, Swerling-I and -III
source signals, using ES, FBS, and MBS.

We investigate the performance of full-dimension beamspace CS-based DOA estimation across varying SNRs in the fifth
simulation. Following the methodology employed in the fourth simulation, a fully-dimensioned beamspace (FBS) configuration with
31 beams is utilised. The study encompasses four potential Swerling source signals. Figures portray the element-space DOA estimate
error for Swerling-V as a reference, with 𝑁𝑖𝑛 set to 0 in this context. The efficacy of the FBS CS-based DOA estimation algorithm
is elucidated in Fig. 8, highlighting that augmenting 𝑁𝑖𝑛 to 50 snapshots reduces the DOA estimation error by approximately 50%
compared to 𝑁𝑖𝑛 = 0. Particularly noteworthy is the observation, evident from Fig. 8(a), that at low SNRs, even with 𝑁𝑖𝑛 = 0, the
DOA estimation error for Swerling-IV source signals using the proposed method surpasses that of other Swerling sources, excluding
Swerling-V. Additionally, as depicted in Fig. 8(b), the DOA estimation error for Swerling-IV source signals consistently outperforms
that of other Swerling sources across all SNRs.

The sixth simulation investigates the performance of MBS CS-based DOA estimation in detecting various Swerling source signals
across different SNRs, following the same methodology as in the fifth simulation. Each source signal is subjected to a single beam,
with 𝑁𝑏𝑠 set to 1. Four distinct Swerling source signals are considered, with element-space DOA estimation error for Swerling-V
included in the figures as a reference, where 𝑁𝑖𝑛 is set to 0. Fig. 9 presents the results of the DOA estimation error. It is evident
from this figure that setting 𝑁𝑖𝑛 to 50 reduces the DOA estimation error by approximately 66% for all Swerling source signals
compared to 𝑁𝑖𝑛 = 0. Moreover, as observed in Fig. 9(b), the DOA estimation error for Swerling-IV is consistently lower than that
for other Swerling source signals.

In the seventh simulation, we evaluate the performance of ES, FBS, and multiple-beam beamspace (MBS) compressive sensing
(CS)-based direction of arrival (DOA) estimation as the signal-to-noise ratio (SNR) varies for different Swerling source signals. Two
source signals are assumed to impinge on the sparse array from DOAs of 60◦ and 120◦. The SNR is varied from −5 dB to 10 dB, with
the number of integrated snapshots, 𝑁𝑖𝑛, set to both 0 and 50. Element-space DOA estimation error for Swerling-V is included in the
figures as a reference, with 𝑁𝑖𝑛 set to 0 in this case. The results are presented in Figs. 10 and 11. It is evident that increasing 𝑁𝑖𝑛
to 50 snapshots enhances DOA estimation accuracy by at least 50% compared to 𝑁𝑖𝑛 = 0 for all Swerling source signals. Moreover,
the proposed MBS CS-based DOA estimation technique consistently outperforms both ES and FBS techniques, reducing the DOA
estimation error by over 66% with 𝑁 = 50 compared to 𝑁 = 0, across all Swerling source signals.
𝑖𝑛 𝑖𝑛
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Fig. 11. Performance of CS-based DOA estimate for two source signals when SNR is changed at DOAs of 60◦ and 120◦, 𝑁𝑖𝑛 = 0 and 50, Swerling-II and -IV
source signals, using ES, FBS, and MBS.

In the seventh simulation, the performance of the ES, FBS, and MBS CS-based DOA estimation is evaluated as the SNR varies
for different Swerling source signals. Two source signals are assumed to impinge on the sparse array from DOAs of 60◦ and 120◦.
The SNR is varied from −5 dB to 10 dB, with the number of integrated snapshots, 𝑁𝑖𝑛, set to both 0 and 50. Element-space DOA
estimation error for Swerling-V is included in the figures as a reference, with 𝑁𝑖𝑛 set to 0 in this case. The results are demonstrated
in Figs. 10 and 11. It is notable that increasing the number of integrated snapshots, 𝑁𝑖𝑛, to 50 enhances DOA estimation accuracy
by at least 50% compared to 𝑁𝑖𝑛 = 0 for all Swerling source signals. Furthermore, the proposed MBS CS-DOA estimation technique
outperforms both ES and FBS techniques for all Swerling source signals, reducing the DOA estimation error by more than 66% with
𝑁𝑖𝑛 = 50 compared to 𝑁𝑖𝑛 = 0.

The impact of altering the angular spacing among the various Swerling source signals is examined in the eighth simulation.
Consideration is given to two source signals for examination, with the first source signal maintained at a constant DOA of 60◦,
while the DOA of the second source signal varies from 62◦ to 90◦ in 2◦ increments. The SNR is set to 20 dB, and 10 snapshots are
considered for the simulation, with 100 trials conducted for each observation point. Fig. 12 illustrates the angular separation versus
the RMSE for various Swerling source signals, with the RMSE versus the angular separation of the Swerling-V source signal provided
as a reference. From this figure, it is evident that the error of DOA estimation for angular separations < 10◦ is higher compared to
that for separations ≥ 10◦ for ES, FBS, and MBS techniques. Notably, the DOA estimation error for Swerling-I and -III with angular
separations < 10◦ using the ES technique is higher than that for FBS or MBS. It should be highlighted that the DOA estimation error
for applying the MBS technique for all Swerling source signals with angular separations ≥ 10◦ is < 0.2◦, while that using ES or FBS
is ≤ 0.5◦.

In the ninth simulation, the probability of detection (𝑃𝑑) has been investigated for various Swerling source signals utilising
CS-based DOA estimation techniques such as ES, FBS, and MBS. Specifically, consideration is given to two source signals arriving
at the sensor array from angles of 60◦ and 120◦. The number of snapshots is fixed at 10, while the SNR is varied. The measurement
scenario for 𝑃𝑑 is defined as follows: in each iteration, the measured peak heights of the estimated source signals are recorded. If
the peak height is ≥ −50 dB, the peak is considered for possible source signal detection; otherwise, the peak is considered as false.
This process is repeated 100 times for each SNR value. The 𝑃 obtained for various Swerling source signals, considering various
𝑑
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Fig. 12. The estimation error in DOA computation for two sources as a function of separation among the two Swerling source signals, SNR = 20 dB, 10 snapshots,
using beamspace and ES algorithms.

integration values, is depicted in Fig. 13. It is notable from this figure that Swerling-I and -III sources require a higher number
of signals to be integrated to achieve a higher detection probability than that needed for Swerling-II and -IV source signals using
ES or beamspace algorithms. For Swerling-I and -III source signals, by setting the number of integrated signals, 𝑁𝑖𝑛, to be 100, a
satisfactory detection probability can be achieved using the ES technique, as shown in Fig. 13(a, b). However, 𝑁𝑖𝑛 = 200 leads to
a higher detection probability using the FBS technique, as illustrated in Fig. 13(c, d). The situation is not the same for the MBS
technique; to achieve a higher detection probability for Swerling-I sources, 𝑁𝑖𝑛 is set to be 200, while for Swerling-III, 𝑁𝑖𝑛 = 50
yields higher detection probability, as evident from Fig. 13(e, f).

4.4. Investigation of moving source signals

Following Swerling moving source signals are investigated. ES, FBS, and MBS algorithms are utilised to study the effect of
fluctuating source signals using each of the proposed techniques. All different types of Swerling sources, including the Swerling-V
type, are considered to examine the proposed CS-based DOA estimation methods. The simulations aim to investigate two important
aspects. The first one is the computational cost of each proposed technique, while the second aspect is the capability of each proposed
method to track moving source signals in different scenarios. Accordingly, we consider two uncorrelated equi-power moving source
signals. In the forthcoming simulations, we examine three distinct scenarios. The first scenario assumes that the two sources are
moving in the same direction, this scenario is noted as same. In the second scenario, the two source signals are moving in opposite
directions, which is mentioned as opp. In the third scenario, one of the source signals is fixed while the other one is moving, denoted
as one & one. The trajectory of each moving source signal is partitioned into four sections. The first section corresponds to a sinusoidal
trajectory followed by the source signal, while the second section represents a stationary source. In the last two sections.

In the tenth simulation, the rank-one update of (20) is used for all moving source signals simulations where the first 10 snapshots
are being used for the initial covariance matrix estimate, 𝑅̂𝑥𝑥, and SNR is chosen to be 10 dB. For Swerling-II fluctuating source
signals simulations, 𝑁𝑖𝑛 is chosen to be 10. Fig. 14 illustrates the trajectory of the assumed two fluctuating moving source signals
using the three proposed techniques along with different Swerling source signal types. We have omitted the presented results to
be only as shown in this figure. However, the same results can be obtained using the different proposed techniques applied to any
Swerling source signals model. From the figure, the observed results indicate that the various DOA estimation techniques based
12 
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Fig. 13. Probability of detection (POD) for distinct Swerling source signals, specifically two source signals with DOA of 60◦ and 120◦, 10 snapshots, utilising
ES, FBS, and MBS algorithms.

on CS exhibit the capability to detect and track the moving fluctuating source sources. Also, it is clear that non-fluctuating source
signals can be detected and tracked without any signal integration. Furthermore, in order to be able to detect and track the different
Swerling source signals, the received signals must be integrated. From our simulations, it was found that for Swerling-II and -IV
𝑁𝑖𝑛 = 10 is enough to accomplish the tracking while for Swerling-I and -III, 𝑁𝑖𝑛 should be set to 100 in order to be able to successfully
perform the tracking task.

In the eleventh simulation, we investigate the computational intricacies of DOA estimation techniques based on CS. Specifically,
we focus on the ES, FBS, and MBS methods. To quantify this complexity, we employ CPU time as a metric for measurement.
13 
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Fig. 14. Trajectory of two fluctuating source signals using ES CS-based DOA estimation technique. Swerling-II (a) same direction, ES, Swerling-II, 𝑁𝑖𝑛 = 10, SNR
= 10 dB, (b) opposite direction, FBS, Swerling-I, 𝑁𝑖𝑛 = 10, SNR = 100 dB, and (c) one fixed and one moving, MBS, Swerling-IV, 𝑁𝑖𝑛 = 10, SNR = 10 dB.

Fig. 15 illustrates the CPU time for ES, FBS, and MBS for different Swerling sources using the three assumed moving source
signals trajectories. As can be seen from this figure, the ES technique is the most time-consuming while MBS is the least. To be
more clear, Fig. 16 presents the CPU time for Swerling-V source signals using ES, FBS, and MBS. From this figure, it is clear that,
for the first trajectory scenario, the MBS technique’s computational difficulty is reduced by more than 35% than that of the ES
technique (The theoretical computational complexity analysis is also derived in Appendix A.2). The theoretical analysis reveals that
the percentage reduction in computational complexity aligns closely with the results observed in the experimental analysis. . For
the second trajectory scenario, it is reduced by around 30%, and for the third scenario, it is reduced by around 25%.

According to the findings from the preceding simulations, it is evident that the MBS method for DOA estimation, based on CS,
exhibits superior performance compared to the ES and FBS techniques. This observation can be deduced from Figs. 10, 11, 12, 15,
and 16. Consequently, for the remainder of the paper, the ES and FBS DOA estimation techniques will be excluded from further
consideration.

4.5. Limitations and practical considerations

While the proposed BS weighted-CSKF algorithm exhibits robust performance in DOA estimation and tracking, several limitations
warrant consideration. The algorithm’s reliance on sufficient SNR levels restricts its efficacy in high-noise or interference-prone
environments, with notable performance degradation below specific SNR thresholds. Additionally, the number of sources that can
be reliably tracked is constrained, especially in scenarios involving closely spaced or rapidly moving targets. Movement dynamics
impose further constraints on angular velocity and acceleration, limiting the algorithm’s applicability in highly dynamic settings.
Real-time operation demands significant computational resources and strict adherence to specific signal model assumptions, such as
far-field sources and independent signals, which may not hold in all scenarios. Moreover, the beamspace transformation introduces
a trade-off between computational efficiency and angular resolution. These constraints define the operational boundaries of the
algorithm, presenting opportunities for future research to explore adaptive techniques, improved motion models, and hybrid
processing methods to address these challenges and expand its applicability.
14 
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Fig. 15. The computational difficulty of the proposed CS-based DOA computation techniques for the various Swerling-V source signals can be assessed using
CPU time as a metric. (a) Element-space; (b) Full beamspace; and (c) Multi-beam beamspace.

Fig. 16. The computational difficulty of the proposed CS-based DOA computation techniques for the Swerling-V source signal can be assessed using CPU time
as a metric. (a) CPU time versus the proposed techniques; and (b) CPU time versus the source signal trajectory.

5. Conclusions

This paper introduces innovative methods within a compressive sensing framework applied to a sparsely arranged linear
array. The study presents three distinct techniques in the beamspace domain: full beamspace, reduced-dimension beamspace, and
15 
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multiple-beam beamspace. Extensive analysis and comparison have been conducted to evaluate the performance of these suggested
lgorithms in comparison to the conventional element-space technique. Additionally, a rank-one update approach is employed in

the compressive sensing framework to update the on-time covariance matrix for DOA estimation. The suggested techniques in this
study do not rely on any pre-existing information regarding the number of source signals. These algorithms can accurately estimate
the DOA even with a reduced number of snapshots. They can also be utilised to estimate source signals with spatial linkages and
associated signals. Using the developed algorithms, we can achieve high-resolution source signal identification with an array of
sensors of order 𝑂(𝑀2). Specifically, our methods can recognise source signals with a high accuracy of 𝑂(𝑀). Furthermore, utilising
the proposed techniques, we can effectively estimate fluctuating source signals. Experimental results indicate that the performance
f the multiple-beam beamspace technique, as proposed, surpasses both the full beamspace and element-space techniques in terms
f DOA estimation. Besides, using the multiple-beam beamspace technique, the computational load has been reduced by more than
5% than that of the classical element-space technique. Special moving source signals trajectories are studied, and it is shown that

the proposed BS weighted-CSKF can distinguish the different source signals for which paths are intersected with each other.
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Appendix

The appendices referenced in this manuscript are detailed below.

A.1. Cramér-Rao lower bound analysis for beamspace compressed sensing scenarios

To establish the theoretical performance limits of the proposed DOA estimation method, we derive the Cramér-Rao Lower Bound
CRLB) for our beamspace compressed sensing scenario. The CRLB provides a lower bound on the variance of any unbiased estimator,
erving as a benchmark for evaluating estimator efficiency.

• Step 1 (Signal model in beamspace domain): Consider our beamspace measurement model as follows.

𝐲𝑏𝑠 = 𝐁𝐻𝐲 = 𝐁𝐻𝐀(𝜃)𝐬 + 𝐁𝐻𝐧 (23)

where 𝐁𝐻 is the beamspace transformation matrix, 𝐀(𝜃) is the array steering matrix, 𝐬 contains the source signals, and 𝐧 is
complex Gaussian noise.

• Step 2 (Fisher information matrix): For our scenario with 𝐿 sources and 𝐾 snapshots, the Fisher Information Matrix (FIM)
elements for the unknown parameters 𝜃𝑖 and 𝜃𝑗 are given by:

[𝐅]𝑖,𝑗 = 2𝐾 ⋅ 𝑅𝑒
{

𝑡𝑟
[

𝐑−1
𝑏𝑠
𝜕𝐑𝑏𝑠
𝜕 𝜃𝑖

𝐑−1
𝑏𝑠
𝜕𝐑𝑏𝑠
𝜕 𝜃𝑗

]}

(24)

where 𝐑𝑏𝑠 is the beamspace covariance matrix:

𝐑𝑏𝑠 = 𝐁𝐻𝐀(𝜃)𝐑𝑠𝐀𝐻 (𝜃)𝐁 + 𝜎2𝐁𝐻𝐁 (25)

The partial derivatives in the beamspace domain are:
𝜕𝐑𝑏𝑠
𝜕 𝜃𝑖

= 𝐁𝐻
[

𝜕𝐀(𝜃)
𝜕 𝜃𝑖

𝐑𝑠𝐀𝐻 (𝜃) + 𝐀(𝜃)𝐑𝑠
𝜕𝐀𝐻 (𝜃)
𝜕 𝜃𝑖

]

𝐁 (26)
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• Step 3 (CRLB for beamspace DOA estimation): The CRLB for the 𝑖th source DOA estimate is given by:

𝐶 𝑅𝐿𝐵(𝜃𝑖) = [𝐅−1]𝑖,𝑖 (27)

For high SNR conditions, this can be approximated as:

𝐶 𝑅𝐿𝐵(𝜃𝑖) ≈ 𝜎2

2𝐾
[

𝐏𝐻𝑖 𝐁𝐁𝐻𝐏𝑖
]−1 (28)

where 𝐏𝑖 =
𝜕𝐚(𝜃𝑖)
𝜕 𝜃𝑖 is the derivative of the steering vector with respect to 𝜃𝑖.

• Step 4 (Effect of compressed sensing): The compressed sensing framework modifies the CRLB through the measurement matrix
𝛷:

𝐶 𝑅𝐿𝐵𝐶 𝑆 (𝜃𝑖) = 𝐶 𝑅𝐿𝐵(𝜃𝑖) ⋅ 𝑡𝑟
[

(𝛷𝐻𝛷)−1
]

(29)

• Step 5 (Impact of Kalman filtering): The recursive nature of the Kalman filter affects the bound through temporal correlation.
For our tracking scenario, the modified CRLB becomes:

𝐶 𝑅𝐿𝐵𝐾 𝐹 (𝜃𝑖) =
[

𝐅 +𝐐−1]−1
𝑖,𝑖 (30)

where 𝐐 is the process noise covariance matrix from the Kalman filter state model.
• Step 6 (Combined bound for BS weighted-CSKF): The final CRLB for our proposed BS weighted-CSKF algorithm combines all

these effects:

𝐶 𝑅𝐿𝐵𝑡𝑜𝑡𝑎𝑙(𝜃𝑖) = 𝐶 𝑅𝐿𝐵𝐾 𝐹 (𝜃𝑖) ⋅ 𝛾𝑖 (31)

where 𝛾𝑖 is the beamspace efficiency factor:

𝛾𝑖 =
𝑡𝑟
[

𝐁𝐻𝐁
]

𝑡𝑟 [𝐈]
⋅ 𝑡𝑟

[

(𝛷𝐻𝛷)−1
]

(32)

This combined bound provides a theoretical lower limit on the achievable estimation accuracy of our algorithm, accounting
for the effects of beamspace transformation, compressed sensing, and Kalman filtering.

A.2. Computational complexity analysis

The computational complexity of the proposed BS weighted-CSKF algorithm can be analysed by examining its major components,
as follows.

• Beamspace transformation: The beamspace transformation involves the multiplication of the input signal by the beamspace
transformation matrix:

𝐲𝑏𝑠 = 𝐁𝐻𝐲 (33)

For an M-element array with 𝑁𝑏𝑠 beams, the matrix multiplication cost is 𝑂(𝑀 𝑁𝑏𝑠). This operation is performed for each of
the 𝑁 snapshots. Accordingly, the total complexity for beamspace transformation is 𝑂(𝑀 𝑁𝑏𝑠𝑁).

• Covariance matrix computation: For the rank-one update of the covariance matrix:

𝐑𝑥𝑥(𝑛) = 𝜆𝐑𝑥𝑥(𝑛 − 1) + (1 − 𝜆)𝐲(𝑛)𝐲𝐻 (𝑛) (34)

The computation cost of the matrix update operation is 𝑂(𝑀2), performed once per snapshot. Accordingly, the total complexity
for covariance update is 𝑂(𝑀2𝑁).

• Kalman filter operations: The Kalman filter involves several matrix operations:

1. Prediction step:
𝐬̂𝑘+1|𝑘 = 𝐀𝐬̂𝑘|𝑘 (35)

𝐏𝑘+1|𝑘 = 𝐀𝐏𝑘|𝑘𝐀𝑇 +𝐐 (36)

2. Update step:
𝐊𝑘 = 𝐏𝑘+1|𝑘𝜱′𝑇 (𝜱′𝐏𝑘+1|𝑘𝜱′𝑇 + 𝐑𝑘)−1 (37)

For grid size 𝐾, the matrix multiplications are 𝑂(𝐾2). while the matrix inversion and update operations costs 𝑂(𝐾3)
and 𝑂(𝐾2), respectively. Note that the use of beamspace processing reduces these operations by working with a smaller
matrix size.

3. Total complexity : By combining the cost associated with each component (i.e., Beamspace transformation of order
𝑂(𝑀 𝑁𝑏𝑠𝑁), Covariance update of order 𝑂(𝑀2𝑁), and Kalman filter operations of order 𝑂(𝐾 log𝐾)), we get the total
computational complexity of order 𝑂(𝑀2𝑁 +𝑀 𝐾 log𝐾). where 𝑀 is the number of array elements, 𝑁 is the number
of snapshots, and 𝐾 is the grid size.
17 
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• Comparison with element-space processing : In conventional element-space processing, the computational complexity is 𝑂(𝑀3𝑁+
𝐾3). In contrast, our beamspace approach achieves a significant reduction in complexity by leveraging the reduced dimension-
ality of the processed data, efficient matrix operations within the beamspace domain, and an optimised implementation of the
Kalman filter. The 35% reduction in computational load compared to element-space processing can be verified by comparing
the complexity terms when typical values are substituted:

𝑂(𝑀2𝑁 +𝑀 𝐾 log𝐾)
𝑂(𝑀3𝑁 +𝐾3)

≈ 0.65 (38)

for practical values of 𝑀 , 𝑁 , and 𝐾 in typical array processing scenarios.

Data availability

No data was used for the research described in the article.
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