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and survival time with heterogeneous random-effects distributions
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ABSTRACT
Biomarkers are measured repeatedly in clinical studies until a pre-defined 
endpoint, such as death from certain causes, is reached. Such repeated mea
surements may present a dynamic process for understanding when to expect 
the study’s endpoint. Joint modelling is often employed to handle such 
a model. Typically, shared random effects are assumed to be common to 
both the longitudinal component and the study’s endpoint. These shared 
random effects usually assume homogeneous and follow a normal distribution. 
However, identifying homogeneous subgroups is important when the under
lying population is heterogeneous. This issue has received little attention in the 
literature, particularly for multi-phase longitudinal responses. In this paper, we 
propose a joint modelling approach for longitudinal and survival models using 
a bent-cable mixed model for longitudinal measurements and a Weibull dis
tribution for the survival component. We also incorporate a finite mixture of 
normal distribution assumptions to account for the unobserved heterogeneity 
in the shared random effects model. A Bayesian MCMC is developed for 
parameter estimation and inferences. The proposed method is evaluated 
using simulation studies and the Tehran Lipid and Glucose Study dataset.
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1. Introduction

In many longitudinal clinical studies, repeated biomarker measurements are collected until a pre- 
defined endpoint occurs, such as death by some causes. In a Tehran, Lipid and Glucose Study (TLGS), 
for example, patients’ biomarkers such as total cholesterol, fasting blood sugar, etc., are collected over 
time wherein death, by cardiovascular disease (CVD) or diabetes or high blood pressure or cancer, etc., 
are considered as the study’s endpoint. These repeatedly measured response variables represent 
dynamic processes, which also help us understand when to expect the study’s endpoint. As such, 
a joint modelling of the response variable and time-to-event processes is preferable to handle such data 
instead of separately modelling the variables, as it may lead to inefficient or biased results (Guo and 
Carlin 2004; Viviani et al. 2014; Wu et al. 2010).

In the last two decades, studies that proposed several extensions of the joint modelling of long
itudinal measurements and survival time have become increasingly popular in the literature (Ariyo 
and Adeleke 2022; Baghfalaki and Ganjali 2015; Baghfalaki et al. 2014a,c; 2017; Ibrahim et al. 2010; 
Rappl et al. 2023; Rizopoulos 2012; Wulfsohn and Tsiatis 1997; Xu and Zeger 2001) and Alsefri et al. 
(2020), Papageorgiou et al. (2019), Sousa (2011), and Zhudenkov et al. (2022) gave methodological 
reviews of the joint modelling of longitudinal and time-to-event data.
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The standard approach for creating joint models assumes that some shared random effects are 
common to both the longitudinal component and the study’s endpoint. To model the response 
processes for the longitudinal part, linear mixed models (LMMs) are commonly used (Ariyo et al.  
2020, 2022; Baghfalaki et al. 2014b, 2017; Pusponegoro et al. 2017; Verbeke et al. 1997). LMMs can be 
limited when the longitudinal response exhibits multiphase trajectories over time. For instance, the 
fasting blood sugar concentration or cholesterol level of patients may decrease over time due to the 
effect of drugs or by improved healthy lifestyle of the patients up to a certain point and then start to 
increase again, indicating the development of resistance to treatment over time. These multiphase 
changes may occur gradually instead of abruptly. The bent-cable model offers a more realistic analysis 
for multi-phase data, capturing gradual changes over time (Chiu et al. 2006). It provides increased 
flexibility by fitting both linear trends before and after the transition, as well as the smooth inter
mediate phase (Kneib 2013). Additionally, it offers enhanced interpretability, allowing researchers to 
clearly identify the transition period and improve predictive accuracy compared to simpler linear 
models (Lin and Carroll 2001). Therefore, we consider using the bent-cable model for longitudinal 
response and a Weibull model for time-to-event analysis, linked through shared random effects.

In joint models that combine longitudinal measurements and time-to-event data, it is common to 
assume that the shared random effects follow a normal distribution. However, in cases where the 
underlying population is heterogeneous, it becomes crucial to identify homogeneous subsamples. This 
issue has received little attention in the literature on joint modelling. To address this, Baghfalaki et al. 
(2017) used a finite mixture of normal distributions as the random effects distribution in longitudinal 
mixed-effects models. Additionally, Elashoff et al. (2010) discussed heterogeneous random effects with 
a parameterization of the normal random effects. Another proposed solution is an alternative para
meterization for shared parameter models that evaluates the impact of misspecifying the random 
effects distribution on parameter estimates, as proposed by Rizopoulos et al. (2008). To our knowl
edge, this has not been addressed, especially in situations where the longitudinal response has multi
phase trajectories.

In this paper, we propose the joint modelling of longitudinal and survival models. We assume 
a bent-cable mixed model for the longitudinal measurement and Weibull distribution for the survival 
part using a finite mixture of normal distribution assumptions for the unobserved heterogeneity of the 
shared random effect model. We use a Bayesian approach to fit the model using the Markov Chain 
Monte Carlo (MCMC) methodology, implemented using JAGS (Plummer 2012; Plummer et al. 2003) 
and R2jags package (Su and Yajima 2015) as an interface between R platform and JAGS. We perform 
an extensive simulation study to evaluate the performance of the proposed models and finally we apply 
the model to Tehran Lipid and Glucose Study data sets.

The paper is organized as follows: Section 2 provides a detailed description of our proposed joint 
bent-cable model for longitudinal measurements with a heterogeneous random-effects distribution for 
random effects. We demonstrate the proposed model using simulation studies in Section 3. In 
Section 4, we apply the proposed model to Tehran Lipid and Glucose Study. Finally, we present 
some concluding remarks in Section 5.

2. Bent-cable model

2.1. Joint models and estimation

In this section, we present a joint model for longitudinal data that accounts for heterogeneous 
distribution of a random effect, where the longitudinal data contains a threshold or change point.

Let yi represents longitudinal response for subject i monitored over time sij. Here, 
i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; ni, where n is the total number of subjects. The true event 
time, denoted by T�i , when the study’s end point occurs. The censoring time is represented by 
Ci. The true event Ti is calculated as the minimum of the true event time T�i and the censoring 
time Ci. This represents the estimated survival time for the ith individual. The censoring 
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indicator δi is given by 1 when there is no censoring and 0 otherwise. Therefore, the observed 
data for the outcome consists of pairs Ti; δið Þ; i ¼ 1; 2; . . . ; nf g. The two processes are jointly 
modelled using a bent-cable mixed model (BCMM) for yi and a Weibull proportional hazard 
for ðTi; δiÞ:

2.2. Time-to-event sub-model

For the first part of the joint model, we use a Weibull proportional hazard model (due to its flexibility 
in modelling various hazard functions), which may be linked to the bent-cable model through shared 
random effects. As such, 

where φ is the p-dimensional vector containing all parameters of the fixed effects, wi is also the 
p-dimensional vector of independent variables, bi is the shared parameter between the models, Φ is 
a q-dimensional vector of association parameters, and r is the scalar shape parameter of the Weibull 
distribution. The proposed hazard function is expressed as 

where h0ðtiÞ is the baseline hazard function and the density function for survival time denoted by SðtiÞ

can be obtained using the relationship; SðtiÞ ¼ exp½� HðtiÞ�; where HðtÞ is the cumulative hazard 

function given by ò
t

0
hðuÞdu, which then leads to the expression of the survival function as; 

can be expressed as (Dobson and Barnett 2018): 

2.3. Longitudinal sub-model

We now describe the second part of the joint model, BCMM, to analyze longitudinal data. yij is 
assumed to follow a normal distribution; 

where μij is the bent-cable mixed-effects model given as follows; 

where xij the vector of time-varying covariates, 

qijðsij; τij; γijÞ ¼
ðsij� τijþγijÞ

2

4γij
Ifjsij � τijj � γijg þ ðsij � γijÞIfsij > γijg; Ið�Þ is an indicator function, τij > 0 

is the half-width of bend, γij is the change point. The β0ij and β1ij are the incoming random intercept 
and slope, respectively, β2ij is the change in slope between the incoming and outgoing linear phases 
and all the random coefficient parameters in the model as expressed below; 

For convenience’s sake, let θ be a vector containing all parameters of the fixed effects of the model such 
that; θ ¼ ðβ0; β1; β2; τi; γi; ηÞ

T
: Also, b is the vector of all the random effects (assuming homogeneity) 
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in the model, which is typically assumed to be normally distributed, i.e., bi ¼ ðb1; b2; b3; b4; b5Þ
T
;

bi,N5ð0;DÞ; where D is variance – covariance matrix with a dimension of 5.
Here, we will assume heterogeneity by replacing the normal assumption for bi in (1) and (2) by 

a finite mixture q dimensional normal distributions, i.e 

where πk ¼ Prðci ¼ kÞ is the assignment probability and the total number of the group is given by g 
ðk ¼ 1; . . . ; gÞ and q ¼ 5.

In a Bayesian analysis of finite mixture models, such as the heterogeneity model, parameter 
estimates by their posterior mean often lead to unreliable results due to the label-switching problem 
caused by the symmetry in the likelihood of the model parameter. This had been a significant setback 
to the heterogeneity model in the Bayesian framework and MCMC approach. One of the suggestions 
for this problem is to eliminate symmetry by introducing some constraints (Stephens 2000). Other 
authors have provided solutions to the label-switching problem (Jasra et al. 2005; Puolamäki and Kaski  
2009; Sperrin et al. 2010; Stephens 2000). To overcome this problem, we adopt the following 
constraints; (i) π1 � π2 � . . . ;� πg , (ii) 

Pg

k¼1
πkμk ¼ 0; where μk ¼ ðμk1; . . . ; μkqÞ

T (iii) 
Pg

k¼1 πk ¼ 1;

(iv) μgj ¼
�
Pg� 1

k¼1
πkμkj

πg
; j ¼ 1; 2; . . . ; q: As such, the expectation and the variance of bi are 

Pg
k¼1 πkμk 

and 
Pg

k¼1 μkμT
k ð1 � πkÞ þ D respectively.

2.4. Joint model and bayesian estimation

Under the distribution assumptions and constraints discussed in previous sections, the marginal 
distribution of ðYi;Ti; δiÞ is given by 

where θy ¼ ðβ; σ2
εÞ

T
; θt ¼ ðφ;Φ; rÞT ; θb ¼ ðπ1; . . . ; πg� 1; μ1; . . . ; μg� 1;DÞ

T , and θ ¼ ðθT
y ; θ

T
t ; θ

T
b Þ:

Hence, the likelihood function is given as 

The numerical computation of the likelihood is not straightforward; therefore, a Bayesian approach 
using MCMC is employed. In Bayesian modelling, the prior distribution for unknown parameters 
should be defined. We assume independent priors for all components of θ and the prior distributions 
are given as: 

where j ¼ 1; 2; . . . ; g � 1; IΓð�; �Þ; Γð�; �Þ, Con � Dirð�; �Þ, and IWð�; �Þ,
denote the inverse gamma distribution, the gamma distribution, Constrained-Dirichlet distribution 

(see Baghfalaki et al. 2017, for more details), and the inverse Wishart distribution, respectively. 
Assigning these priors is vital because they allow easy implementation in Bayesian software like 
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BUGS. The MCMC method was used for the posterior sampling via JAGS (Plummer et al. 2003). We 
present the code for one of the models in https://github.com/OludareAriyo/BentCable-Code.

3. Simulation studies

In the first simulation study, we generated a bent-cable model with a mixture of normal distribution 
for random effects. We consider the following longitudinal measurement model, 

where i ¼ 1; 2; . . . ; n, j ¼ 1; 2; 3; 4; 5, and εij,Nð0; 1Þ: The bent-cable parameter 

qijðsij; τij; γijÞ ¼
ðsij� τijþγijÞ

2

4γij
Ifjsij � τijj � γijg þ ðsij � γijÞIfti > γijg: We generated xij from a uniform 

distribution Uð� 1; 4Þ with β0i ¼ β0 þ b1i; β1i ¼ β1 þ b2i; β2i ¼ β2 þ b3i; τi ¼ τ þ b4i and 
γi ¼ γþ b5i: The random effect bi ¼ ðb1i; b2i; b3i; b4i; b5iÞ,

Pg
k¼1 πkN5ðμk;DÞ where 

D ¼

1 0:5 0:5 0:5 0:5
0:5 1 0:5 0:5 0:5
0:5 0:5 1 0:5 0:5
0:5 0:5 0:5 1 0:5
0:5 0:5 0:5 0:5 1

2

6
6
6
6
4

3

7
7
7
7
5

. The true values of the parameters are considered as η ¼ 2;

β0 ¼ 0:5; β1 ¼ � 1, β2 ¼ 0:5; τ ¼ 1:5, and γ ¼ 1: For the Weibull proportional hazard model, we 
considered the following model, 

where φ0 ¼ 1; φ1 ¼ � 0:5; ϕ1 ¼ ϕ2 ¼ . . . ¼ ϕ5 ¼ 2, and r ¼ 2. We used noninformative prior dis
tributions for the model parameters. Specifically, we assigned a normal distribution Nð0; 100Þ for each 
component of the population parameter vectors β, ϕ, and an inverse gamma prior distribution 
IGð0:01; 0:01Þ for σε and half-normal distributions with large variance for τ and γ: For the vector 
ðπ1; π2; . . . ; πgÞ, we used a Constrained-Dirichlet distribution with parameters ð1; 1; . . . ; 1Þ. We ran 
three parallel chains of 20; 000 iterations each, discarding the first 10; 000 to avoid correlation. We 
then thinned the chains to a spacing of 90. The chains showed rapid convergence, with all parameters 
displaying a R̂ (Brooks and Gelman 1998) around 1:0 within 10; 000 iterations. Furthermore, to 
evaluate the model’s performance under different scenarios, we used two criteria for θ: the relative 
bias (Rel. Bias) and the root mean square error (RMSE) as: 

where θ̂ is the estimate of θ for the ith samples and N ¼ 1000:
Under the simulation described above, we considered the following scenarios;

● Scenario 1: We generated data from homogeneous normal distributions for random effects with 
a mean vector of ð0; 0; 0; 0; 0ÞT . The analysis assumes that the random effects follow 
a heterogeneous distribution with two components (i.e., g ¼ 2), resulting in misspecification 
of the random effects distribution components.

● Scenario 2: The data is generated from heterogeneous random effects with two components, with 
(π1 ¼ 0:4 and π2 ¼ 0:6). The mean for the first component is μ1¼ ð2; 2; 2; 2; 2Þ

T and the mean 
for the second component is μ2 ¼ ð� 2; � 2; � 2; � 2; � 2ÞT . We analyzed the simulated data, 
assuming (i) homogeneous normality for the random effects (specification) and (ii) heteroge
neous normality with two components (correct specification) (i.e. g ¼ 2).
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● Scenario 3: Data generated from heterogeneous random effects with three components, such that 
π1 ¼ π2 ¼ 0:3; π3 ¼ 0:4; μ1 ¼ � μ2¼ ð2; 2; 2; 2; 2Þ

T and μ
3
¼ ð0; 0; 0; 0; 0ÞT ; and analysis with (i) 

homogeneous normal (ii) mixture of three components.

Table 1 presents the results of scenario 1, where the data is generated from a bent-cable with 
homogeneous random effects. The analysis assumes random effects as a mixture of two components. 
The results indicate that we lost nothing when we analyze the data using the heterogeneous joint 
model even though the data is coming from homogeneous random effects. This demonstrates that the 
performance of the heterogeneous joint model is reliable as the relative biases and the RMSE are small. 
Additionally, the table confirms that increasing the sample size reduces the relative biases and the 
RMSE.

The results of scenario 2 are presented in Table 2. In this scenario, data was generated using a bent 
cable with heterogeneous random effects having two components. The data was analyzed via homo
geneous joint modelling and a heterogeneous mixture model for random effects. The results show that 
misspecification of the number of components significantly affects the parameters of the covariance 
matrix of random effects components as the relative biases and the RMSE are very high. However, the 
impact of the fixed parameters is negligible. On the other hand, the heterogeneous joint model is 
reliable when analyzed with the correct number of components. If the component of random effects is 
incorrectly specified, we lose the parameter’s efficiency, especially the covariance parameters. This also 
confirmed the superior performance of the heterogeneous distribution for random effects.

Table 1. Simulation results for scenario 1 (est.: posterior mean, S.E.: standard error, Rel. Bias: relative bias and RMSE) for 1000 samples 
when the data generated from a bent-cable model with homogeneous random effects and analysis with a heterogeneous random 
distribution with two components.

n = 200 n = 500

Paratemer Real values Est S.E Rel. Bias RSME Est S.E Rel. Bias RSME

η 2.0000 2.0198 0.0308 0.0010 0.0247 2.0058 0.0099 0.0001 0.0012
β0 0.5000 0.4604 0.0926 −0.0920 0.1904 0.4999 0.0779 −0.1952 0.0898
β1 −1.0000 −0.9103 0.0853 −0.1403 0.1483 −1.0765 0.0676 −0.0098 0.0777
β2 0.5000 0.4620 0.0920 −0.0932 0.2835 0.4875 0.0457 −0.0932 0.2835
φ0 1.0000 0.9712 0.1647 −0.1062 0.2265 1.0124 0.0899 −0.0985 0.0357
φ1 −0.5000 −0.5575 0.0070 0.1111 0.5559 −0.5114 0.0057 0.0090 0.5559
γ 1.0000 1.4700 1.7531 0.8085 2.9896 1.2315 1.5679 0.6656 2.0330
τ 1.5000 1.8549 1.0644 0.4699 1.5424 1.6535 0.9878 0.4229 1.4455
r 2.0000 1.5110 0.0006 −0.0945 0.1890 1.7110 0.0004 −0.0945 0.1556
ϕ1 2.0000 1.6119 0.0354 −0.1059 0.2121 1.7119 0.0211 −0.1321 0.1342
ϕ2 2.0000 1.3379 0.0372 −0.1169 0.2352 1.6574 0.0246 −0.1679 0.1235
ϕ3 2.0000 1.8910 0.0317 −0.1051 0.2110 1.9679 0.0213 −0.1347 0.1121
ϕ4 2.0000 1.8150 0.0419 −0.0925 0.1887 2.0974 0.0219 0.0679 0.0776
ϕ5 2.0000 2.1013 0.0413 0.0095 0.1927 2.0987 0.0075 0.0089 0.1889
σ2 1.0000 1.0424 0.0007 0.0933 0.0303 1.0358 0.0006 0.0788 0.0223
λ1 0.0000 0.4103 0.0068 * 0.0057 0.4065 0.0011 * 0.0022
λ2 1.0000 0.5897 0.0048 0.5671 0.5935 0.4764 0.2011 0.5678 0.0045
µ11 1.0000 2.6857 0.3105 1.4359 1.7748 2.0009 0.3001 1.3390 1.1835
µ22 1.0000 1.9981 0.1197 1.2345 1.0479 1.6790 0.1155 1.2219 1.0123
µ33 1.0000 2.0009 0.4334 1.0794 1.2090 2.0010 0.4223 1.0668 1.2111
µ44 1.0000 2.6269 0.0861 1.1360 0.9690 2.0006 0.0768 1.0001 0.8977
µ55 1.0000 1.2222 0.1414 1.0359 1.1188 1.0123 0.0898 1.0099 1.0089
µ12 0.5000 0.9559 0.1813 0.4589 0.7685 0.7896 0.0987 0.3445 0.6897
µ13 0.5000 0.4331 0.3013 0.8769 0.9000 0.5111 0.3340 0.7657 0.7800
µ14 0.5000 0.4371 0.3213 0.8969 0.8990 0.5011 0.3234 0.7566 0.7580
µ15 0.5000 1.0924 0.0999 1.3593 0.9999 1.0766 0.0900 1.1136 0.9778
µ23 0.5000 0.5353 0.1253 0.0079 0.0346 0.5000 0.0999 0.0067 0.0035
µ24 0.5000 −0.9687 0.1969 0.0568 0.9877 −0.5569 0.1097 0.0437 0.7900
µ25 0.5000 0.5340 0.0720 0.0343 0.7654 0.5113 0.0665 0.0214 0.7347
µ34 0.5000 0.9430 0.0869 0.2360 0.8965 0.9212 0.0766 0.2111 0.7690
µ35 0.5000 0.5104 0.1137 0.0215 0.0433 0.5012 0.0768 0.0115 0.0323
µ45 0.5000 −0.4229 0.0828 −0.0137 0.1258 0.4789 0.0658 −0.0119 0.1232
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Table 3 presents the results of the significant impact on estimating covariance parameters and fixed 
parameters when data is generated from a mixture of a normal distribution with three components, 
but analyzed with a bent-cable with standard normal distribution and with a mixture of normal 
distributional assumption for the random effects with the correct number of components. Overall, the 
diverse joint model is reliable even when the random components are incorrectly specified.

4. Application: Tehran Lipid and Glucose Study

4.1. Data description

The data analyzed in this paper was obtained from the Tehran Lipid and Glucose Study (TLGS), which 
is a population-based cohort study that was initiated in 1999–2001. It consisted of 15,010 residents 
(aged 3 years and older) in 13 districts of Tehran, Iran. The participants were selected through a multi- 
stage stratified cluster random sampling (Tohidi et al. 2009). The present study received approval from 
the Ethics Committee of the Research Institute for Endocrine Sciences in Iran, and informed consent 
was obtained from all participants prior to their involvement in the study. For other analysis of this 
data, refer to Baghfalaki et al. (2020); Pahlavanzade et al. (2019)

For the purpose of this study, 4,440 participants aged 41 and above were examined at 
baseline between 1999 and 2001. For this group, lipid markers and several covariates (includ
ing BMI, gender, age, cholesterol, and fasting blood sugar, FBS) were measured every 3 years 

Table 2. Simulation results for scenario 2 (est.: posterior mean, S.E.: standard error, Rel. Bias: relative bias and RMSE) for 1000 samples 
when the data generated from a bent-cable model with a mixture of normal distribution random effects and analysis with (i) 
standard normal effects (one component) and (ii) a mixture of normal distribution with two components when $n ¼ 500.

g = 1 component g = 2 components

Paratemer Real values Est S.ERel. Bias RSME Est S.ERel. Bias RSME

η 2.0000 2.0080 0.6051 0.0004 0.1274 2.0014 0.0019 0.0003 0.0012
β0 0.5000 0.4617 0.6502 −0.0962 2.1112 0.4792 0.0087 −0.0960 0.0197
β1 −1.0000 2.2145 0.6186 −0.3365 1.8492 −0.9864 0.0088 −0.1864 0.0193
β2 0.5000 0.3970 0.6513 −0.0908 8.5644 0.1277 0.0091 −0.0957 0.0291
φ0 1.0000 −1.7555 0.6038 −0.1966 1.8492 −1.0290 0.0176 −0.1514 0.0318
φ1 −0.5000 −0.5955 0.5946 0.1272 7.1605 −0.5275 0.0009 0.0215 0.0608
γ 1.0000 1.6121 2.1198 1.4357 1.8492 0.8173 0.2034 −0.1987 0.3082
τ 1.5000 1.8967 1.2764 0.7865 1.7890 1.4682 1.0789 0.5789 1.4567
r 2.0000 1.6214 0.5872 −0.0935 3.2900 1.7214 0.0001 −0.0893 0.0179
ϕ1 2.0000 −0.1747 0.6242 −0.1138 1.8492 −0.1736 0.0037 −0.1087 0.0218
ϕ2 2.0000 −0.4716 0.6296 −0.1294 6.4808 −0.4487 0.0043 −0.1224 0.0248
ϕ3 2.0000 −0.1268 0.6189 −0.1113 1.8445 −0.1352 0.0036 −0.1068 0.0215
ϕ4 2.0000 0.0809 0.6312 −0.1005 1.6429 0.0464 0.0045 −0.0977 0.0198
ϕ5 2.0000 0.0531 0.6299 −0.1019 1.9524 0.0331 0.0044 −0.0983 0.0198
σ2 1.0000 0.1154 0.5878 −0.0926 1.9442 0.1168 0.0002 −0.0883 0.0078
λ1 0.4000 − − − − 0.4065 0.0011 0.0320 0.0022
λ2 0.6000 − − − − 0.5935 0.0011 0.0399 0.0023
µ11 1.0000 2.1391 0.7543 2.0323 183.0594 2.0770 0.0165 1.3390 1.1835
µ22 1.0000 1.0150 0.6449 1.2292 108.0825 1.0140 0.0059 1.2219 1.0123
µ33 1.0000 3.0704 0.7716 2.6789 124.6949 2.4371 0.0165 1.0668 1.2111
µ44 1.0000 0.7828 0.6648 −0.8930 99.9406 0.7634 0.0074 1.0001 0.8977
µ55 1.0000 0.8632 0.6765 −0.8447 115.3954 0.8918 0.0088 1.0099 1.0089
µ12 0.5000 −1.2165 0.6816 2.8045 79.2605 −1.1891 0.0095 0.3445 0.6897
µ13 0.5000 1.5256 0.7406 1.1802 92.8248 1.2873 0.0131 0.7657 0.7800
µ14 0.5000 −0.1290 0.6640 −2.2308 103.1309 0.1454 0.0089 0.0068 0.0035
µ15 0.5000 0.8751 0.6690 0.0822 3.5667 −0.1784 0.0077 1.1136 0.9778
µ23 0.5000 −1.1138 0.6775 0.5942 101.8692 0.1441 0.0084 0.0067 0.0035
µ24 0.5000 0.0918 0.6339 0.3587 78.9492 −0.9572 0.0081 0.0437 0.7900
µ25 0.5000 −0.0347 0.6367 2.4707 92.4628 0.1164 0.0049 0.0214 0.7347
µ34 0.5000 −0.1995 0.6680 0.2246 4.4650 −0.0668 0.0054 0.2111 0.7690
µ35 0.5000 0.2011 0.6749 −0.1431 12.9744 −0.1569 0.0071 0.0115 0.0323
µ45 0.5000 −0.3053 0.6519 −2.1802 92.8248 0.1773 0.0079 −0.0119 0.1232
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until 2015, resulting in a median follow-up of 12.4 years. Therefore, the number of visits is at 
most five. The first phase is from 1999 to 2001, the second phase is from 2001 to 2005, the 
third phase is from 2005 to 2008, the fourth phase is from 2008 to 2011, and the fifth phase is 
from 2011 to 2015.

The purpose of our study is to identify significant factors that contribute to the risk of 
death from cardiovascular disease (CVD). We consider systolic blood pressure (SBP) as 
a longitudinal response. Figure 1 shows the evolution of SBP for randomly selected subjects, 
separated by gender.

Out of 4440 patients, 229 patients died of CVD, while the remaining patients were 
considered as censoring data. Figure 2 presents the Kaplan-Meier survival curve estimates 
separated by gender. Table 4 presents a summary of the longitudinal response and the 
explanatory variables including body mass index (BMI), total cholesterol (TC), fasting blood 
sugar (FBS), gender, and age.

Table 3. Simulation results for scenario 3 (est.: posterior mean, S.E.: standard error, Rel. Bias: relative bias and RMSE) for 1000 samples 
when the data generated from a bent-cable model with a mixture of normal distribution random effects with three components and 
analysis with (i) standard normal effects (one component) and (ii) a mixture of a normal distribution with three components when 
n ¼ 500.

g = 1 component g = 3 components

Paratemer Real values Est S.E Rel. Bias RSME Est S.ERel. Bias RSME

η 2.0000 2.0080 0.0101 0.0042 0.0038 1.9989 0.0017 0.0000 0.0013
β0 0.5000 0.4617 0.0642 −0.9728 −0.8665 0.4983 0.0091 −0.0095 0.0193
β1 −1.0000 2.2145 0.0611 −3.4022 −3.0302 −0.9636 0.0084 −0.0082 0.0169
β2 0.5000 0.3970 0.0643 −0.9183 −0.8179 0.5406 0.0091 −0.0099 0.0298
φ0 1.0000 −1.7555 0.0596 −1.9874 −1.7701 0.8772 0.0200 −0.0088 0.0189
φ1 −0.5000 −0.5955 0.0587 1.2861 1.1454 −0.4631 0.0009 −0.0126 0.0632
γ 1.0000 1.6121 0.2094 14.5147 12.9276 1.1093 0.2900 0.2934 0.4575
τ 1.5000 2.4995 1.8717 9.9855 8.8937 1.4995 −0.1726 0.0852 0.2118
r 2.0000 1.6214 0.0580 −0.9450 −0.8417 1.7863 0.0001 −0.0087 0.0174
ϕ1 2.0000 −0.1747 0.0617 −1.1509 −1.0250 1.8719 0.0037 −0.0094 0.0156
ϕ2 2.0000 −0.4716 0.0622 −1.3080 −1.1650 1.6192 0.0043 −0.0132 0.0134
ϕ3 2.0000 −0.1268 0.0611 −1.1255 −1.0024 1.7892 0.0039 −0.0168 0.0124
ϕ4 2.0000 0.0809 0.0623 −1.0156 −0.9045 2.0037 0.0042 0.0135 0.0112
ϕ5 2.0000 0.0531 0.0622 −1.0303 −0.9176 2.0105 0.0039 0.0068 0.0078
σ2 1.0000 0.1154 0.0581 −0.9363 −0.8339 1.1510 0.0003 0.0009 0.0189
λ1 0.3000 − − − − 0.2132 0.0009 0.0079 0.0022
λ2 0.3000 − − − − 0.2116 0.0013 0.0097 0.0005
λ3 0.4000 - - - - 0.6989 0.0020 0.2032 1.8125
µ11 1.0000 2.1391 0.7469 31.6548 28.1936 1.2066 0.0394 0.1229 1.0701
µ22 1.0000 2.5556 0.6386 23.5361 20.9627 0.7152 0.0041 0.2679 1.2346
µ33 1.0000 3.0704 0.7640 38.1925 34.0165 1.1383 0.0085 −0.0893 0.9895
µ44 1.0000 1.7828 0.6583 2.0798 1.8524 0.6218 0.0064 −0.0845 1.1425
µ55 1.0000 1.8632 0.6698 2.5685 2.2877 0.7101 0.0065 0.2805 0.7848
µ12 0.5000 −1.2165 0.6748 39.4623 35.1475 0.7156 0.0059 0.1180 0.9191
µ13 0.5000 1.5256 0.7333 23.0408 20.5215 0.6042 0.0068 −0.2231 1.0211
µ14 0.5000 1.1290 0.6574 −11.4453 −10.1938 −0.5497 0.0048 0.0082 0.0353
µ15 0.5000 1.8751 0.6624 11.9401 10.6345 1.0678 0.5670 0.0594 1.0086
µ23 0.5000 2.1138 0.6708 17.1154 15.2440 −0.5347 0.0047 0.0359 0.7817
µ24 0.5000 0.9178 0.6277 14.7355 13.1243 0.0344 0.0033 0.2471 0.9155
µ25 0.5000 0.6780 0.6304 36.0869 32.1411 −0.5003 0.0036 0.0225 0.0442
µ34 0.5000 0.8999 0.6614 13.3791 11.9163 −0.1466 0.0049 −0.0143 0.1285
µ35 0.5000 0.9201 0.6682 9.6617 8.6053 0.4436 0.0051 −0.2180 0.9191
µ45 0.5000 0.3053 0.6455 −10.9338 −9.7383 −0.4568 0.0051 0.2032 1.8125
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Figure 1. The profile plot for SBP over time for a randomly selected subjects, separated by gender, in the TLGS data.

Figure 2. Kaplan-Meier plot of the survival data for all patients considering the gender, in the TLGS data.
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4.2. Specifying and fitting the model

In this study, we are interested in estimating longitudinal and survival data using a joint model. This 
model takes into consideration the gradual changes that occur over time, which may have been 
overlooked but can be captured by the bent-cable model. 

where “SAge” represents the standardized values of age at baseline, β0i, β1i, β2i, τi, and γi are defined in 
Equation (2). The random effects bi ¼ ðb1i; . . . ; b5iÞ represent individual variations in the bent-cable 
model and are shared parameters between the response and survival models.

For the time event model, we used a Weibull proportional hazard model Ti,Weibullðμ�i ; rÞ;
where μ�i ¼ φ0 þ φ1Genderi þ φ2SAgei þ ϕ1b1i þ ϕ2b2i þ ϕ3b3i þ ϕ4b4i þ ϕ5b5i.

For the Bayesian implementation of the model, we need to evaluate the hyperparameter 
values in the prior distribution. As such, the prior distributions for a fixed parameter are 
taken as Nð0; 1000Þ for each component of ðβ0i; β1i; β2iÞ and for the center parameter τ and 
width parameter γ of the bent-cable, half-normal distributions HNð0; 1000Þ and HNð0; 1000Þ
are used, respectively. For the scale parameter σ2

ε , we used a non-informative inverse gamma 
distribution IGð0:01; 0:01Þ. Additionally, φk; k ¼ 0; 1; 2 and ϕk; k ¼ 1; � � � ; 5 are drawn from 
a normal distribution with mean 0 and variance 100. The matrix D follows an inverse 
Wishart distribution IWð100I5; 5Þ, and ðπ1; π2; . . . ; πgÞ,constrained � Dirichletð1; 1; 1; . . . Þ

with π1 < . . . < πg .
We conducted two parallel MCMC chains with various starting points, each running for 150,000 

iterations, to account for the complex nature of the bent-cable model. After that, we retrained half of 
the iterations for the posterior analysis and discarded the first half as pre-convergence burn-in. 
A longer chain is necessary for convergence as the number of components increases. After thinning 
by 90, the autocorrelation was minimal, indicating effective mixing. The posterior standard deviation 
values for the parameters were less than 5%, and the Gelman-Rubin potential-scale reduction factors 
are close to 1.1, indicating good precision and convergence. The computational burden of running 
MCMC for a model with three components (g = 3), for example, was close to 11 h on an 11th Gen 
Intel(R) Core(TM) i5-1145G7 @ 2.60 GHz.

Table 4. Baseline and follow-up characteristics of participants at five phases (baseline +4 follow-ups). Summarizations for TLGS data 
are shown as mean, median, and SD for continuous variables or frequency (percentage) for categorical variables.

1st phase 
(1999–2001)

2nd phase 
(2002–2005)

3rd phase 
(2005—2008)

4th phase 
(2008–2011)

5th phase 
(2011–2015)

SBP Mean 12.8423 12.7573 12.7860 12.9951 13.1169
Median 12.5000 12.4000 12.5000 12.8000 12.9000
SD 2.1224 2.1234 2.1543 2.1830 2.2133

BMI Mean 27.9361 28.3055 28.4689 28.7699 28.7503
Median 27.6332 27.9431 28.0102 28.3039 28.3268
SD 4.5074 4.6562 4.7612 5.0040 5.1084

TC Mean 226.6007 208.8331 205.4705 201.2286 197.5017
Median 223.0000 206.0000 203.0000 199.0000 196.0000
SD 47.3688 42.0178 40.1508 43.5756 41.7350

FBS Mean 107.4236 109.2737 108.4634 113.9975 112.7628
Median 94.0000 95.0000 95.0000 100.0000 101.0000
SD 42.2859 42.1472 40.9945 41.3297 38.6007

Gender Male 1974(44.45)
Female 2466(55.54)

Age Mean 55.379
Median 54.068
SD 9.609
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The results for one, two, and three clusters are presented in Table 5. Based on the Deviance 
Information Criterion (DIC) values, the model with three clusters is the best fit. We should note that 
when running the joint model with more than three clusters, the values of DIC remain unchanged. 
Therefore, we have decided to keep the results with at most three clusters to save space. Based on these 
results, although none of the covariates are effective on time to event, age, BMI, total cholesterol, and 
fasting blood sugar are significant variables with a positive effect on SBP. To ensure that the data 

Table 5. The estimated parameters from the joint model on TLGS data. Est: posterior mean, SD: standard deviation, 2:5% CI: lower 
bound of credible interval and 97.5% CI: upper bound of credible interval.

Est SD 2:5% 97.5% Est SD 2:5% 97.5% Est SD 2:5% 97.5%

η1 −0.007 0.033 −0.069 0.060 −0.109 0.087 −0.270 0.063 −0.138 0.088 −0.302 0.029
η2 0.074 0.029 0.020 0.127 0.489 0.064 0.359 0.621 0.460 0.065 0.328 0.571
η3 0.285 0.010 0.266 0.303 0.281 0.009 0.263 0.296 0.293 0.009 0.275 0.310
η4 0.016 0.001 0.014 0.019 0.012 0.001 0.011 0.014 0.014 0.001 0.012 0.016
η5 0.006 0.001 0.003 0.008 0.005 0.001 0.002 0.007 0.005 0.001 0.002 0.007
β1 0.035 0.031 −0.022 0.095 0.355 0.096 0.193 0.557 0.399 0.105 0.184 0.594
β2 0.046 0.019 0.014 0.089 0.019 0.041 −0.058 0.098 0.050 0.019 0.011 0.083
β3 0.060 0.033 0.006 0.129 0.243 0.071 0.118 0.380 −0.011 0.091 −0.175 0.154
φ1 −0.048 0.030 −0.099 0.018 −0.312 0.090 −0.465 −0.110 −0.317 0.094 −0.524 −0.134
φ2 −0.014 0.035 −0.079 0.053 −0.101 0.097 −0.287 0.086 −0.109 0.081 −0.262 0.078
φ3 −0.025 0.031 −0.086 0.033 −0.131 0.076 −0.264 0.021 −0.126 0.088 −0.311 0.044
τ 9.988 0.031 9.930 10.046 10.038 0.103 9.832 10.213 5.036 0.097 4.858 5.229
γ 5.052 0.029 5.008 5.111 5.032 0.088 4.865 5.179 10.014 0.113 9.786 10.202
r 0.407 0.043 0.319 0.486 0.557 0.057 0.443 0.667 0.555 0.067 0.419 0.676
ϕ1 −0.019 0.029 −0.073 0.028 −0.104 0.060 −0.215 0.002 −0.095 0.057 −0.206 0.009
ϕ2 0.001 0.030 −0.060 0.057 −0.031 0.107 −0.227 0.200 −0.002 0.094 −0.181 0.165
ϕ3 −0.001 0.031 −0.059 0.065 −0.098 0.098 −0.291 0.085 0.011 0.092 −0.160 0.184
ϕ4 −0.002 0.029 −0.047 0.054 −0.046 0.080 −0.210 0.140 −0.007 0.087 −0.184 0.156
ϕ5 0.004 0.029 −0.052 0.058 0.003 0.088 −0.152 0.187 −0.003 0.089 −0.153 0.182
d11 4.439 0.454 3.634 5.216 4.340 0.540 3.299 5.505 2.581 0.293 2.079 3.197
d21 −0.229 0.070 −0.363 −0.100 −0.232 0.051 −0.338 −0.139 −0.089 0.024 −0.132 −0.048
d31 −1.053 0.258 −1.637 −0.628 −0.873 0.257 −1.500 −0.464 −0.226 0.686 −1.473 1.086
d41 −0.938 0.493 −1.912 0.009 −1.517 0.656 −3.126 −0.415 −0.320 0.879 −2.098 1.040
d51 0.455 0.304 −0.101 1.062 0.340 0.546 −0.705 1.331 0.434 0.883 −0.831 2.583
d22 0.307 0.021 0.270 0.347 0.070 0.007 0.058 0.083 0.058 0.005 0.050 0.067
d32 0.099 0.035 0.038 0.185 0.069 0.021 0.033 0.116 0.006 0.032 −0.054 0.070
d42 0.058 0.070 −0.075 0.190 0.119 0.052 0.037 0.244 0.012 0.039 −0.057 0.104
d52 −0.047 0.042 −0.121 0.025 −0.041 0.030 −0.096 0.014 −0.011 0.038 −0.103 0.049
d33 1.287 0.180 0.993 1.742 0.508 0.122 0.307 0.756 1.774 0.689 0.855 3.457
d43 0.497 0.191 0.194 0.856 0.430 0.165 0.153 0.775 0.404 0.697 −0.540 2.031
d53 −0.186 0.122 −0.437 0.018 −0.036 0.115 −0.231 0.188 −0.495 0.725 −2.240 0.458
d44 4.163 0.877 2.898 5.973 2.189 0.807 1.039 3.941 2.135 1.185 0.697 5.342
d54 0.747 0.367 0.022 1.428 −0.128 0.258 −0.678 0.339 −1.272 1.219 −4.412 −0.003
d55 1.980 0.284 1.545 2.620 0.929 0.254 0.513 1.422 2.124 1.396 0.760 5.450
σ2

ε 1.364 0.059 1.260 1.474 1.471 0.074 1.337 1.637 1.656 0.064 1.534 1.754
π1 − − − − 0.354 3.000 −4.657 4.479 0.334 0.037 0.287 0.427
π2 − − − − 0.646 3.000 −3.479 5.657 0.618 0.030 0.535 0.652
π3 − − − − − − − − 0.048 0.019 0.021 0.089
μ11 − − − − 0.396 0.098 0.223 0.584 0.134 0.094 −0.042 0.301
μ12 − − − − 0.093 0.039 0.023 0.163 −0.015 0.035 −0.086 0.053
μ13 − − − − 0.292 0.076 0.160 0.449 0.001 0.099 −0.162 0.187
μ14 − − − − 0.055 0.101 −0.122 0.235 −0.002 0.108 −0.216 0.186
μ15 − − − − 0.033 0.104 −0.162 0.243 0.002 0.099 −0.160 0.179
μ21 − − − − −0.377 3.098 −1.818 1.741 0.376 0.092 0.207 0.527
μ22 − − − − −0.091 0.700 −0.425 0.371 −0.022 0.007 −0.036 −0.009
μ23 − − − − −0.233 1.813 −1.390 1.364 −0.013 0.117 −0.237 0.199
μ24 − − − − −0.011 0.387 −0.471 0.276 0.053 0.078 −0.080 0.217
μ25 − − − − 0.047 0.443 −0.279 0.697 0.051 0.095 −0.129 0.221
μ31 − − − − − − − − 5.096 0.996 3.403 6.984
μ32 − − − − − − − − −0.311 0.128 −0.612 −0.096
μ33 − − − − − − − − −0.150 2.052 −4.734 3.926
μ34 − − − − − − − − 0.887 1.433 −1.076 4.589
μ35 − − − − − − − − 0.881 1.676 −2.120 4.488
DIC 10370.5 10071.4 9833.0
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“speak for itself,” we conducted a sensitivity analysis to examine the impact of prior choice on the 
posterior distributions. For example, we utilized a uniform prior distribution ðunif ð0; 100ÞÞ for σ2

ε 
(Gelman et al. 2013) instead of IGð0:01; 0:01Þ, and for the precision matrix of the random effect bi of 
dimension 5, we used IWð100I5; 7Þ with 7 degrees of freedom instead of 5. We observed that the 
change in prior distributions had an insignificant effect on the posterior mean of the parameters’ 
distributions. As a result, the final findings are reasonable and robust, and the conclusion of our 
analysis remains unchanged despite changes in prior distributions and initial values.

5. Discussion

Longitudinal clinical studies collect biomarkers until a specific endpoint is reached. Joint modelling of 
response variables and time-to-event processes is preferable, and researchers have been actively studying the 
extensions of joint modelling (Alsefri et al. 2020; Ariyo and Adeleke 2022; Baghfalaki and Ganjali 2015; 
Baghfalaki et al. 2014a,c; 2017; Ibrahim et al. 2010; Papageorgiou et al. 2019; Rappl et al. 2023; Rizopoulos  
2012; Wulfsohn and Tsiatis 1997; Zhudenkov et al. 2022). However, most studies have focused on survival 
data when multiphase trajectories were not identified. Only a few studies have used the bent-cable model 
when the longitudinal response exhibits multiphase trajectories (Dagne 2018a, 2018b). For those studies, 
a shared random assumption is made, assuming homogeneity and following a normal distribution. 
However, it is important to identify homogeneous subgroups when the underlying population is hetero
geneous. This issue has received little attention in the literature, particularly for multi-phase longitudinal 
responses.

This paper proposes a bent-cable mixed model for the longitudinal measurement and a Weibull 
distribution for the survival part. A finite mixture of normal distribution assumptions accounts for the 
unobserved heterogeneity of the shared random effect model. The model uses a Bayesian approach 
with the Markov Chain Monte Carlo (MCMC) methodology, using the JAGS and R2jags package as an 
interface between the R platform and JAGS. An extensive simulation study is performed to evaluate 
the performance of the proposed models. In this study, we generated a bent-cable model with 
a mixture of normal distributions for random effects, varying the number of components. Finally, 
the model is applied to the Tehran Lipid and Glucose Study data sets.

The results show that the heterogeneous joint model is reliable whether the response exhibits 
multiphase trajectories or not. Also, misspecification of the number of components significantly 
affects the parameters of the covariance matrix of random effects components, and the impact of 
the fixed parameters is negligible. The heterogeneous joint model performs well when analyzed with 
the correct component, but if the component of random effects is incorrectly specified, the parameter’s 
efficiency is lost especially for the covariance parameters. The study confirms the superior perfor
mance of the heterogeneous distribution for random effects in all scenarios considered in this study.

In Bayesian analysis, it is crucial to perform sensitivity analysis to determine if the posterior estimates 
change significantly when the priors vary. To this end, we conducted a sensitivity analysis using different sets 
of values for the hyper-parameters in the models and ran the MCMC sampling scheme. We found that the 
conclusion was similar to those presented in the article. However, the study has several limitations, even 
though the proposed model fits the Tehran Lipid and Glucose Study well. This article assumes that the 
shared parameter random effects follow a normal distribution. Nevertheless, the shared parameter model 
could assume other distributions. Another useful extension of this work is examining multivariate long
itudinal time-to-event, which is currently under examination. In the simulation study, we evaluated the 
performance of the proposed method under the assumption of a fixed shape parameter r ¼ 2, representing 
scenarios with increasing hazard rates. This approach facilitated consistency and computational feasibility 
but introduced a limitation by restricting the exploration of varying hazard dynamics. Future research could 
address this limitation by incorporating a broader range of shape parameters, enabling the assessment of the 
method’s robustness under diverse hazard scenarios. Despite this limitation, our findings demonstrate the 
method’s effectiveness and provide valuable insights into its applicability within the defined scope. These 
results lay a strong foundation for further exploration and refinement in subsequent studies.

12 O. ARIYO ET AL.



Acknowledgements

The authors would like to express their gratitude to the Research Institute for Endocrine Sciences, Shahid Beheshti 
University of Medical Sciences, Tehran, Iran, for their contributions to providing a portion of the data from the Tehran 
Lipid and Glucose Study. The authors also appreciate the insightful comments from the anonymous referees and the 
Associate Editor, which significantly enhanced the quality of this work.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The research presented in this study was conducted on the High-Performance Computing Cluster supported by the 
University Essex, United Kingdom.

ORCID

Oludare Ariyo http://orcid.org/0000-0003-3375-1831
Kehinde Olobatuyi http://orcid.org/0000-0002-4635-7895
Taban Baghfalaki http://orcid.org/0000-0002-2100-4532

References

Alsefri, M., M. Sudell, M. Garca-Fiñana, and R. Kolamunnage-Dona. 2020. Bayesian joint modelling of longitudinal and 
time to event data: A methodological review. BMC Medical Research Methodology 20 (1):1–17.

Ariyo, O., and M. Adeleke. 2022. Simultaneous Bayesian modelling of skew-normal longitudinal measurements with 
non-ignorable dropout. Computational Statistics 37 (1):303–325. doi: 10.1007/s00180-021-01118-y  .

Ariyo, O., E. Lesaffre, G. Verbeke, and A. Quintero. 2022. Bayesian model selection for longitudinal count data. Sankhya 
B 84 (2):516–547. doi: 10.1007/s13571-021-00268-9  .

Ariyo, O., A. Quintero, J. Muñoz, G. Verbeke, and E. Lesaffre. 2020. Bayesian model selection in linear mixed models for 
longitudinal data. Journal of Applied Statistics 47 (5):890–913. doi: 10.1080/02664763.2019.1657814  .

Baghfalaki, T., and M. Ganjali. 2015. A Bayesian approach for joint modeling of skew-normal longitudinal measure
ments and time to event data. REVSTAT-Statistical Journal 13 (2):169–191.

Baghfalaki, T., M. Ganjali, and D. Berridge. 2014a. Joint modeling of multivariate longitudinal mixed measurements and 
time to event data using a Bayesian approach. Journal of Applied Statistics 41 (9):1934–1955. doi: 10.1080/02664763. 
2014.898132  .

Baghfalaki, T., M. Ganjali, and D. Berridge. 2014b. Joint modeling of multivariate longitudinal mixed measurements and 
time to event data using a Bayesian approach. Journal of Applied Statistics 41 (9):1934–1955. doi: 10.1080/02664763. 
2014.898132  .

Baghfalaki, T., M. Ganjali, and R. Hashemi. 2014c. Bayesian joint modeling of longitudinal measurements and time-to- 
event data using robust distributions. Journal of Biopharmaceutical Statistics 24 (4):834–855. doi: 10.1080/10543406. 
2014.903657  .

Baghfalaki, T., M. Ganjali, and G. Verbeke. 2017. A shared parameter model of longitudinal measurements and survival 
time with heterogeneous random-effects distribution. Journal of Applied Statistics 44 (15):2813–2836. doi: 10.1080/ 
02664763.2016.1266309  .

Baghfalaki, T., S. Kalantari, M. Ganjali, F. Hadaegh, and B. Pahlavanzadeh. 2020. Bayesian joint modeling of ordinal 
longitudinal measurements and competing risks survival data for analysing Tehran lipid and glucose study. Journal of 
Biopharmaceutical Statistics 30 (4):689–703. doi: 10.1080/10543406.2020.1730876  .

Brooks, S. P., and A. Gelman. 1998. General methods for monitoring convergence of iterative simulations. Journal of 
Computational and Graphical Statistics 7 (4):434–455. doi: 10.1080/10618600.1998.10474787  .

Chiu, G., R. Lockhart, and R. Routledge. 2006. Bent-cable regression theory and applications. Journal of the American 
Statistical Association 101 (474):542–553. doi: 10.1198/016214505000001177  .

Dagne, G. A. 2018a. Bayesian two-part bent-cable Tobit models with skew distributions: Application to AIDS studies. 
Statistical Methods in Medical Research 27 (12):3696–3708. doi: 10.1177/0962280217710679  .

Dagne, G. A. 2018b. Heterogeneous growth bent-cable models for time-to-event and longitudinal data: Application to 
AIDS studies. Journal of Biopharmaceutical Statistics 28 (6):1216–1230. doi: 10.1080/10543406.2018.1489407  .

Dobson, A. J., and A. G. Barnett. 2018. An introduction to generalised linear models. New York: Chapman and Hall/CRC.

JOURNAL OF BIOPHARMACEUTICAL STATISTICS 13

https://doi.org/10.1007/s00180-021-01118-y
https://doi.org/10.1007/s13571-021-00268-9
https://doi.org/10.1080/02664763.2019.1657814
https://doi.org/10.1080/02664763.2014.898132
https://doi.org/10.1080/02664763.2014.898132
https://doi.org/10.1080/02664763.2014.898132
https://doi.org/10.1080/02664763.2014.898132
https://doi.org/10.1080/10543406.2014.903657
https://doi.org/10.1080/10543406.2014.903657
https://doi.org/10.1080/02664763.2016.1266309
https://doi.org/10.1080/02664763.2016.1266309
https://doi.org/10.1080/10543406.2020.1730876
https://doi.org/10.1080/10618600.1998.10474787
https://doi.org/10.1198/016214505000001177
https://doi.org/10.1177/0962280217710679
https://doi.org/10.1080/10543406.2018.1489407


Elashoff, R. M., X. Huang, and G. Li. 2010. A joint model of longitudinal and competing risks survival data with 
heterogeneous random effects and outlying longitudinal measurements. Statistics and Its Interface 3 (2):185–195. doi:  
10.4310/SII.2010.v3.n2.a6  .

Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. 2013. Bayesian data analysis. New York: CRC 
press.

Guo, X., and B. P. Carlin. 2004. Separate and joint modeling of longitudinal and event time data using standard 
computer packages. American Statistician 58 (1):16–24. doi: 10.1198/0003130042854  .

Ibrahim, J. G., H. Chu, and L. M. Chen. 2010. Basic concepts and methods for joint models of longitudinal and survival 
data. Journal of Clinical Oncology 28 (16):2796. doi: 10.1200/JCO.2009.25.0654  .

Jasra, A., C. C. Holmes, and D. A. Stephens. 2005. Markov chain monte carlo methods and the label switching problem 
in bayesian mixture modeling. Statistical Science 20 (1):50–67. doi: 10.1214/088342305000000016  .

Kneib, T. 2013. Beyond mean regression. Statistical Modelling 13 (4):275–303. doi: 10.1177/1471082X13494159  .
Lin, X., and R. J. Carroll. 2001. Semiparametric regression for clustered data using generalized estimating equations. 

Journal of the American Statistical Association 96 (455):1045–1056. doi: 10.1198/016214501753208708  .
Pahlavanzade, B., F. Zayeri, T. Baghfalaki, O. Mozafari, D. Khalili, F. Azizi, and A. Abadi. 2019. Association of lipid 

markers with coronary heart disease and stroke mortality: A 15-year follow-up study. Iranian Journal of Basic Medical 
Sciences 22 (11):1325. doi: 10.22038/ijbms.2019.35617.8775  .

Papageorgiou, G., K. Mauff, A. Tomer, and D. Rizopoulos. 2019. An overview of joint modeling of time-to-event and 
longitudinal outcomes. Annual Review of Statistics and Its Application 6 (1):223–240.

Plummer, M. 2003. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Proceedings of the 
3rd international workshop on distributed statistical computing, vol. 124, 1–10, Vienna, Austria.

Plummer, M. 2012. JAGS version 3.3. 0 user manual [Computer software manual]. International agency for research on 
cancer. Lyon: France. https://sourceforge.net/projects/mcmc-jags/files/Manuals/3.x/jags_user_manual.pdf/download .

Plummer, M., et al. 2003b. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. 
Proceedings of the 3rd international workshop on distributed statistical computing, vol. 124, 1–10, Vienna, Austria.

Puolamäki, K., and S. Kaski. 2009. Bayesian solutions to the label switching problem. In International symposium on 
intelligent data analysis, 381–392. Springer.

Pusponegoro, N. H., K. A. Notodiputro, B. Sartono, and B. Sartono. 2017. Linear mixed model for analyzing longitudinal data: 
A simulation study of children growth differences. Procedia Computer Science 116:284–291. doi: 10.1016/j.procs.2017.10.071  .

Rappl, A., T. Kneib, S. Lang, and E. Bergherr. 2023. Spatial joint models through bayesian structured piece-wise additive 
joint modelling for longitudinal and time-to-event data. Statistics and Computing 33 (6). doi: 10.1007/s11222-023- 
10293-5  .

Rizopoulos, D. 2012. Joint models for longitudinal and time-to-event data: With applications in R. New York: CRC press.
Rizopoulos, D., G. Verbeke, and G. Molenberghs. 2008. Shared parameter models under random effects 

misspecification. Biometrika 95 (1):63–74. doi: 10.1093/biomet/asm087  .
Sousa, I. 2011. A review on joint modelling of longitudinal measurements and time-to-even. REVSTAT-Statistical 

Journal 9 (1):57–81.
Sperrin, M., T. Jaki, and E. Wit. 2010. Probabilistic relabelling strategies for the label switching problem in Bayesian 

mixture models. Statistics and Computing 20 (3):357–366. doi: 10.1007/s11222-009-9129-8  .
Stephens, M. 2000. Dealing with label switching in mixture models. Journal of the Royal Statistical Society: Series 

B (Statistical Methodology) 62 (4):795–809.
Su, Y.-S., and M. Yajima. 2015. R2jags: Using R to run ‘JAGS’. R package version 0.5-7. 34.
Tohidi, M., F. Hadaegh, H. Harati, and F. Azizi. 2009. C-reactive protein in risk prediction of cardiovascular outcomes: 

Tehran lipid and glucose study. International Journal of Cardiology 132 (3):369–374. doi: 10.1016/j.ijcard.2007.11.085  .
Verbeke, G., G. Molenberghs, and G. Verbeke. 1997. Linear mixed models for longitudinal data (pp.63–153). New York: 

Springer.
Viviani, S., M. Alfó, and D. Rizopoulos. 2014. Generalized linear mixed joint model for longitudinal and survival 

outcomes. Statistics and Computing 24 (3):417–427. doi: 10.1007/s11222-013-9378-4  .
Wu, L., W. Liu, and X. Hu. 2010. Joint inference on HIV viral dynamics and immune suppression in presence of 

measurement errors. Biometrics 66 (2):327–335. doi: 10.1111/j.1541-0420.2009.01308.x  .
Wulfsohn, M. S., and A. A. Tsiatis. 1997. A joint model for survival and longitudinal data measured with error. 

Biometrics 53 (1):330–339.
Xu, J., and S. L. Zeger. 2001. Joint analysis of longitudinal data comprising repeated measures and times to events. 

Journal of the Royal Statistical Society: Series C (Applied Statistics) 50 (3):375–387.
Zhudenkov, K., S. Gavrilov, A. Sofronova, O. Stepanov, N. Kudryashova, G. Helmlinger, and K. Peskov. 2022. 

A workflow for the joint modeling of longitudinal and event data in the development of therapeutics: Tools, statistical 
methods, and diagnostics. CPT: Pharmacometrics & Systems Pharmacology 11 (4):425–437. doi: 10.1002/psp4.12763.

14 O. ARIYO ET AL.

https://doi.org/10.4310/SII.2010.v3.n2.a6
https://doi.org/10.4310/SII.2010.v3.n2.a6
https://doi.org/10.1198/0003130042854
https://doi.org/10.1200/JCO.2009.25.0654
https://doi.org/10.1214/088342305000000016
https://doi.org/10.1177/1471082X13494159
https://doi.org/10.1198/016214501753208708
https://doi.org/10.22038/ijbms.2019.35617.8775
https://sourceforge.net/projects/mcmc-jags/files/Manuals/3.x/jags_user_manual.pdf/download
https://doi.org/10.1016/j.procs.2017.10.071
https://doi.org/10.1007/s11222-023-10293-5
https://doi.org/10.1007/s11222-023-10293-5
https://doi.org/10.1093/biomet/asm087
https://doi.org/10.1007/s11222-009-9129-8
https://doi.org/10.1016/j.ijcard.2007.11.085
https://doi.org/10.1007/s11222-013-9378-4
https://doi.org/10.1111/j.1541-0420.2009.01308.x
https://doi.org/10.1002/psp4.12763

	Abstract
	1. Introduction
	2. Bent-cable model
	2.1. Joint models and estimation
	2.2. Time-to-event sub-model
	2.3. Longitudinal sub-model
	2.4. Joint model and bayesian estimation

	3. Simulation studies
	4. Application: Tehran Lipid and Glucose Study
	4.1. Data description
	4.2. Specifying and fitting the model

	5. Discussion
	Acknowledgements
	Disclosure statement
	Funding
	ORCID
	References

