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ARTICLE INFO ABSTRACT

Keywords: Supply chains are experiencing a major transition driven by changing customer expectations, environmental
Multi-objective optimization problem concerns, and technological development. Considering the surge in e-commerce since the pandemic, the path
Robot

forward for affordable, responsive supply chains is autonomous last-mile delivery. Drone and robot technologies
complement the last-mile delivery’s operational requirements and hence should be incorporated to assist truck
deliveries. This study develops a bi-objective optimization framework for the integrated planning of Drone-
And-Robot-assisted Truck (DART) delivery operations to minimize total delivery cost and maximize customer

Drone
Last mile delivery
E-commerce

Logisties satisfaction considering a soft time window. Three models, including DART, drone-, and robot-assisted trucks
are compared considering different operational situations. The results show that the DART delivery mode
outperforms with an increase in the number of demand points. DART is particularly preferred when there is a
moderate combination of high-density and distant demand points in last-mile delivery. Numerical experiments
confirmed that the robot-assisted delivery model brings about cost-effectiveness in heavily populated areas.
On the other hand, the drone-assisted truck model stands out in situations where there is a small number of

demand points with high dispersity.
1. Introduction of fast delivery, the challenges of reaching remote areas, particularly
during emergencies, the need for replacing face-to-face interactions
The surge in online shopping and e-commerce has accelerated the in special conditions, like that in the pandemic limit the advantages
adoption of new technologies in Last-Mile Delivery (LMD). Autonomous of using trucks. Adopting autonomous technologies in LMD addresses
technologies offer solutions to many of the old and emerging logistics these challenges and has implications for pursuing sustainability in
challenges. The consumer acceptance of autonomous vehicles, aerial smart cities (Andreas, 2024). Robot-based delivery is quite efficient
drones, sidewalk and bipedal robots for delivery services is raising (Kim and eco-friendly for delivering parcels in dense areas but suffers from
& Hur, 2024; Said, Aeschliman, & Stathopoulos, 2023). In this situation, battery power and load capacity limitations. Besides, robots travel

major logistics service providers are investing heavily in the adoption
of these technologies to reduce operational costs and delivery time in
LMD (Kitjacharoenchai, Ventresca, Moshref-Javadi, Lee, Tanchoco, &
Brunese, 2019). The market for autonomous LMD was valued at USD
8.78 billion in 2020 and is expected to reach a high of 51 billion U.S.
dollars in 2028. Statista (2022) has projected an even sharper growth
rate late in the 2030s, surpassing 85 billion U.S. dollars.

The traditional delivery system uses trucks, which offer a large
load capacity and high endurance in LMD. However, environmental
footprint, and growing urbanization with dense urban areas are chal-
lenging truck deliveries. Besides, the increasing customer expectation

slowly, making them inefficient for long-distance delivery tasks (Jingi
& Yang, 2023). Drones, on the other hand, can deliver goods in remote
or hard-to-reach areas; drone adoption reduces traffic congestion, and
carbon emissions, offering an efficient solution for emergency delivery
needs. The downside of using drones is that they usually have limited
battery endurance and are incapable of multiple deliveries at a time at
the current technology maturity level. Table 1 summarizes The Table 1
summarizes the pros and cons of these delivery modes.

There are many studies on implementing drone-assisted (Das, Se-
wani, Wang, & Tiwari, 2021; He, He, Li, Zhang, & Xiao, 2022; Ramos
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Table 1
Comparison of Truck, Drone and Robot.

Characteristics Delivery mode
Truck Drone Robot
Load Capacity many one few
Endurance unlimited short short
Travel Speed medium high low
Carbon Emission  high low low
Route along road network  flexible 3D moving  pedestrian walk

& Vigo, 2023; Wang, Pesch, Kress, Fridman, & Boysen, 2022) and
robot-assisted truck delivery systems for LMD (Chen, Demir, & Huang,
2021; Heimfarth, Ostermeier, & Hiibner, 2022; Jingi & Yang, 2023;
Ostermeier, Heimfarth, & Hiibner, 2023; Simoni, Kutanoglu, & Claudel,
2020; Yu, Puchinger, & Sun, 2022). For a comprehensive review of
the relevant literature, interested readers are referred to the surveys
on autonomous LMD using robots (Alverhed, Hellgren, Isaksson, Ols-
son, Palmqvist, & Flodén, 2024), innovative solutions for LMD using
new technologies (Mohammad, Diab, Elomri, & Triki, 2023), and the
existing operations research methods in the same context (Boysen,
Fedtke, & Schwerdfeger, 2021). Having described the advantages and
disadvantages of the truck-, robot-, and drone-based delivery modes,
integrating them is of interest to overcome their limitations.

The studies that combine drone and robot technologies to assist
truck deliveries are quite limited. In the most relevant study, (Morim,
Campuzano, Amorim, Mes, & Lalla-Ruiz, 2024) investigated the drone-
assisted vehicle routing problem with robot assistance in the stations.
Their approach starts with planning the delivery operations to a sin-
gle local depot where the logistics operations inside the stations are
separately optimized considering different fleets. These operations are
interrelated and planning them simultaneously results in more effective
and feasible solutions. The present study offers a twofold contribution
to address this research gap. First, a new model for integrated plan-
ning of Drone-And-Robot-assisted Trucks (DART) for last-mile parcel
delivery is introduced. The problem is formulated using an origi-
nal Mixed-Integer Linear Programming (MILP) formulation for the
bi-objective optimization of truck delivery operations. The proposed
model uniquely considers customer local depots along with the au-
tonomous delivery modes, which is quite practical. Second, Analyzing
the impacts of geographical location and density of demand nodes in
the DART delivery operations, DART is compared with the basic robot-
assisted trucks and drone-assisted trucks. For this purpose, the Adaptive
Multi-Objective Genetic Algorithm (AMOGA) is developed to solve the
problem of minimizing total delivery cost and maximizing customer
satisfaction, which are conflicting in nature.

The rest of this manuscript is organized into five sections. An
analysis of the relevant literature is presented in Section 2. In Section 3,
the drone-and-robot-assisted truck operations in LMD is described and
a mathematical formulation is proposed to represent the optimization
problem. The solution algorithm is explained in Section 4. The com-
putational experiments and results analysis are presented in Section 5,
followed by some concluding remarks in Section 6.

2. Literature review

The cluster analysis method is used to objectively analyze the
literature and draw the big picture. The Web of Science database is
used for data collection; [(robot* OR dron*) AND truck] searched in
the title, abstract, and keywords of the published articles. Fig. 1 shows
the network visualization of the keywords considering a total of 973
papers, including conference proceedings and research articles. In this
figure, the node size shows the number of keyword occurrences, and the
proximity between the nodes indicates the keywords’ co-occurrences.
In this definition, proximity between the nodes and clusters indicates
higher simultaneity of the related studies in the literature.
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The right cluster (red) is focused on the path planning of au-
tonomous vehicles with robot-assisted operations. The upper-left clus-
ter (green) is mostly about developing metaheuristics for the routing
and scheduling of LMD services. The other three clusters in the bottom
left are formed around optimizing drone operations for parcel delivery.
There is a clear divide between the studies on robot- and drone-assisted
truck deliveries. The most relevant methods are reviewed as follows.

From the studies on robot-assisted trucks in LMD, (Boysen, Schwerd-
feger, & Weidinger, 2018) stated that the integrated planning of truck
and robot delivery operations with a single objective is an NP-hard
optimization problem, and developed a general heuristic to minimize
the weighted number of late deliveries. In one of the first attempts to
implement the integrated trucks and robots system for industry-scale
delivery problems, Simoni et al. (2020) developed a set improvement
neighborhood search algorithm to minimize total costs. Chen et al.
(2021) developed an adaptive large neighborhood search heuristic to
solve a vehicle routing problem for delivery robots. Aiming to minimize
the summation of all routes’ duration, they used the dispatch-wait
collect policy, by which all robots are retrieved at the same locations
where they are dispatched and served only one customer. Despite the
simplicity element, the approach increased the overall route duration.
Heimfarth et al. (2022) introduced a novel concept for mixed truck and
robot delivery where robots are employed in depots. They developed
a general variable neighborhood search to minimize the total costs
including costs of truck time, truck distance, robot travel time, and
delayed deliveries. Ostermeier et al. (2023) studied the multi-vehicle
robot-assisted truck delivery problem with a robot depot aiming to
minimize the total costs. Their numerical experiments showed that
using an integrated multi-vehicle routing and robot scheduling ap-
proach can reduce the overall costs of transportation by up to a quarter
compared with the sequential cluster-first-route-second approach. The
most relevant study, Jingi and Yang (2023) investigated the robot-
assisted truck delivery problem, considering the customer’s local depot,
aiming to minimize the truck travel time. They developed a mixed
integer mathematical model and solved small-scale instances using an
exact method and a heuristic algorithm.

Compared with robots, drones can travel faster and to areas where
other means of transportation cannot. However, the drone’s limited
capacity results in that only one customer can be served at each depar-
ture time. Chang and Lee (2018) developed a nonlinear programming
model to facilitate wider drone-delivery areas along a shorter truck
route. Their approach consisted of clustering the delivery locations
into areas within drone delivery ranges; finding the optimal route for
the depot and the centers in the clusters; and adjusting the centers
of the clusters for wider drone-delivery coverage. From other studies
on drone-assisted trucks in LMD, Agatz, Bouman, and Schmidt (2018)
developed an integer programming model based on a traveling sales-
man problem for planning drone-assisted truck deliveries. They tested
several fast route-first, cluster-second heuristics based on local search
and dynamic programming to solve the problem. Bouman, Agatz, and
Schmidt (2018) proposed an exact solution method based on dynamic
programming to solve the integrated truck-drone delivery problem.
Tu, Dat, and Dung (2018) developed an adaptive large neighborhood
search heuristic to optimize the problem of combining a single truck
with multiple drones for LMD operations. Kitjacharoenchai et al.
(2019) extended the traveling salesman problem for drone-assisted
truck delivery; they employed commercial software to solve the prob-
lem for small instances and developed an adaptive insertion heuristic
to address the larger instances, minimizing the travel route time of
both trucks and drones. The collaborative truck and drone routing using
Non-dominated Sorting Genetic Algorithm II (Das et al., 2021; Liu, Yan,
Pu, Wang, & Kaisar, 2021) and the polynomial-time approximation
algorithm of for a special case of transporting drones launched from a
flying warehouse (Wang et al., 2022) are other seminal examples. There
also are general optimization models for planning delivery operations
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Fig. 1. Cluster analysis of the keywords in drone/robot-assisted truck deliveries.

using either drones or robots to assist truck deliveries (Kloster, Moeini,
Vigo, & Wendt, 2023).

From the limited existing works that simultaneously consider drone
and robot technologies for studying LMD, Lemardelé, Estrada, Pages,
and Bachofner (2021) explored the strategies to combine these tech-
nologies considering the practical needs and characteristics of LMDs.
Figliozzi (2020) estimated CO2 emissions of drone-, sidewalk au-
tonomous delivery robots, and road autonomous delivery robots, com-
paring them with electric-, and conventional internal combustion en-
gine vans-based LMD. In the most relevant study, Morim et al. (2024)
investigated the drone-assisted vehicle routing problem with robot
stations and developed a metaheuristic, the General Variable Neigh-
borhood Search (GVNS) algorithm, to solve the routing problem. This
study tackles the two problems separately, where the stations and a
main depot are to be served using two different fleets. Besides, they are
merely focused on optimizing costs, which is not the case in real-world
practices. Table 2 summarizes the most relevant studies, comparing
their optimization approach with the present study’s development.
Except for the study of Morim et al. (2024), the rest considered
either drone- or robot-assisted truck deliveries. To the authors’ best
knowledge, there are no multi-objective optimization approaches for
optimizing the DART delivery operations.

3. Mathematical formulation

This section introduces the MOVRP_DR problem and the related
assumptions. The mathematical model developed by Jingi and Yang
(2023) is extended to integrate drones for covering remote areas.
However, to assimilate today’s real world concern, we designed the
objective functions as minimizing overall cost of delivery and maximiz-
ing the customer satisfaction, which the later objective is inspired from
Luo, Wu, Ji, Wang, and Suganthan (2022) with some modification for
this specific problem.

3.1. Mixed integer programming formulation of MOVRP_DR
The MOVRP_DR is defined on a directed graph G = (V, A), where

V is the set of n nodes representing customers with p local depots
and one main depot and A is the set of arcs. Given a fleet of K

identical delivery vans, each equipped with subset of D drones and
R self-driving robots, aiming to serve N customers by delivery of
their small to medium parcels. There are P local depots from which
customers can select those points that suit them for collecting their
orders. Trucks which are loaded with drones, robots and customer
orders starts from the distribution center, which in some real cases is
far from the residential area. Drones in comparison could serve areas
with some road restrictions that are not accessible by trucks and robots
to travel. However, due to technology limitations, they usually can
only deliver light-weight packages and rarely more than one package.
On the other hands, although a robot can deliver multiple packages,
it is often restricted by battery limit and low-speed traveling. In this
research work, customers who require door delivery could be served
by either truck, drone or robot, however, local depots with positive
demands are only visited by truck. Drones and robots are launched or
collected from trucks at suitable customer or local depot nodes. Trucks
return to the distribution center with the collection of all drones and
robots after visiting the assigned nodes (customers and local depots).

The important assumptions of the proposed model are summarized
below:

1. It is assumed that there are homogeneous K trucks, D drones
and R robots, each of which with limited order capacity of Q,
Q, and Q,, which are starting and finishing at the distribution
center or main depot. In addition, it is assumed that there are
P local depots equipped with certain capacity of Q, to service
local customer orders.

2. There are N customers to be served, each with known location,
preferred delivery time window, order size g; and service time
o0;. Also, the delivery location either at customer door or local
depot is known in advance.

3. Each customer who selects door delivery is served either by a
truck, a drone or a robot carried on a truck.

4. The drop-off and pick-up locations of drones and robots launched
from trucks can be different to allow the trucks, drones and
robots to serve customers simultaneously, rather than have one
vehicle wait while the others are servicing.
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Table 2
The shortlist of the relevant studies and methods.
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Reference Drone- Robot- Synch. Customer  No. of Objective(s) Proposed algorithm
assisted assisted Pick-up Obj.
point
Chen et al. (2022) v X X X Single Number of customers Deep Q-learning
served
Cheng Chen et al. (2021) X v v X Single Minimize travel time Adaptive Large Neighborhood Search
Heimfarth et al. (2022) X vk v X Single Minimize total costs General Variable Neighborhood Search
Agatz and Bouman (2018) v X v X Single Minimize travel time Dynamic programming
Bouman and Agatz (2018) v X v X Single Minimize travel time Exact solution approach based on DP
Chang et al.(2018) v X v X Single Minimize travel time Non-linear programming
Tu et al. (2018) v X v X Single Minimize travel time an adaptive large neighborhood search heuristic
Kitjacharoenchai et al.(2019) v X v X Single Minimize travel time Exact solution approach
Kitjacharoenchai et al.(2019) vk X v X Single Minimize travel time Adaptive Insertion Heuristic
Simoni et al. (2020) X v v X Single Minimize travel time Adaptive Insertion Heuristic
Ostermeier et al.(2022) X v v X Single Minimize total costs Set Improvement Neighborhood Search
Boysen et al.(2018) X v v X Single Minimizes the weighted A heuristic solution approach
number of late
deliveries
Jingi and Yang (2023) X v v v Single Minimize truck travel Exact and heuristic solution approaches
time
Liu et al. (2021) X v v X Multi Minimize economic e-constraint and hybrid artificial immune algorithm
costs and
environmental impacts
while maximizing
customer satisfaction
Das et al. (2021) v X v X Multi Minimize travel costs Pareto Ant Colony Optimization algorithm
and maximize customer
service level
Lue et al. (2022) v X v X Multi Minimize total delivery = MOGA+Local Search
costs and maximize
customer satisfaction
Morim et al. (2024) v v v X Single Minimize makespan GVNS
and operational cost
distinctly
This study v v v 4 Multi Minimize total delivery = AMOGA

costs and maximize
total customer
satisfaction

5. Drones and robots carried by trucks are identical, however robot
storage is separated into compartments, which allows for multi-
ple deliveries with respect to their battery charge limit. Drones

allow single delivery.

6. Multiple drones and robots can be launched and retrieved at the

same customer node.

7. The drones and robots must be picked up by the truck from

which they are dropped.

8. The location of local depots, their coverage areas and service

capacity are known.

Variables and Notations
Sets:

C ={l1,...,c} - set of all customer nodes.

C? - Subset of customers select local depot for delivery, with C? C C.
C° - Subset of customers require door delivery, with C° C C.

P=1{1,...,p} - set of local depot nodes.
DC = {1,n+ p+2} - distribution centre.

N =(CuUPuUDC) - all nodes.

N’ = N\ (C? U {1}) Subset of customers and local depots require

delivery.
K ={1,...,k} - set of trucks.
D ={1,...,d} - set of drones.
R={1,...,r} - set of robots.
Parameters:

o~ S

q; - order size of customer node, i € C.
o7 - service time of truck k at node i, i € (C° U P).
0% - service time of drone d at node i, i € (C° U P).

1
o - service time of robot r at node i, i € (C°U P).
e; - early desired time window of customer i.

I; - late desired time window of customer i.

E; - early tolerable time window of customer i.

L, - late tolerable time window of customer i.

d; ; - distance between node i and node j Vi, j € N.

0, - maximum capacity that can be served by the local depot.
s, - capacity occupation of a robot.

s4 - capacity occupation of a drone.

RB - maximum robot battery limit, r € R.

DB - maximum drone battery limit, d € D.

Q, - capacity of truck.

Q, - capacity of drone.

Q, - capacity of robot.

vy - speed of truck.

v, - speed of drone.

v, - speed of robot.

h - setup time of robot which include time to fill the robot with

orders, setup its traveling routes and pick up location.

1 - setup time of drone which include time to fill the drone with

orders, setup its traveling routes and pick up location.

vcy, - variable cost of truck per time unit.
ve, - variable cost of drone per time unit.
ve, - variable cost of robot per time unit.
fe, - fixed cost of using depot.
p, - selected local depot p.
1, if customer i is covered by depot j, i € C,j € P
i 0, otherwise

1, if node i is served by depot j, i€ C,j € P
0, otherwise
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Decision Variables

—

, if truck k travel (i,)), i #j € N\ C°, k€ K
X, ., =
ik 0, otherwise

1, if drone d travel (i, ), i # j € C°,d € D
0, otherwise

1, if robot r travel (i, ), i # j € C°,r € R
Vijr = .
0, otherwise

1, if drone d is placed on truck &, k € K,d € D
Ora = .

0, otherwise

1, if robot r is placed on truck k, k € K,r € R
§k,r = .

0, otherwise

1, if drone d is launched from truck k at node i,
Bika = keK,de D,ie C°UP

0, otherwise

1, if robot r is launched from truck k at node i,
ke K,re R,ie C°UP
0, otherwise

J/[,k,r = {

1, if drone d is collected by truck k at node i,
keK,de D,ieC°UP
0, otherwise

1, if robot r is collected by truck k at node i,
Nikr = ke K,reR,ieC’UP
0, otherwise

ar,, = the truck capacity occupied by all orders that are to be
delivered by robot r, if robot r is to be dispatched from truck k, Vk €
K,Vr € R.

ad, ; = the truck capacity occupied by all orders that are to be
delivered by drone d, if drone d is to be dispatched from truck k,
Vk € K,Vd € D.

b; , = the truck capacity occupied by all orders that are to be served
by depot j, if depot j is to be visited by truck k, Vk € K,Vj € P.

t;; = the visiting time at node i by truck k, Vi € C°U P,Vk € K.

v; 4 = the visiting time at node i by drone d, Vi € C°U P,Vd € D.

7, = the visiting time at node i by robot r, Vi € C°U P,Vr € R.

w; = waiting time of robot r at node i to be collected by truck,
Vie C°UP.

w,?‘ = waiting time of drone d at node i to be collected by truck,
Vie C°UP.

Customer satisfaction is defined as the fulfillment of expectations,
significantly influenced by the timeliness of vehicle arrivals. It is
posited that the satisfaction level, ctw;(f), achieves a maximum of 1
when a vehicle arrives within the desired time frame [e;, /;], decreasing

linearly to O for arrivals outside this window.
1=,

o L <t<L,,
1, e; <t<I,
i) =9 -, E <t<e
e;—E;’ r= e
0, otherwise.
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A MILP formulation of the proposed MOVRP_DR is presented as

follows based on the notations and variables:

d; ;

. J

min TRC = vc;, x E <t‘.+p+2‘k —th) + E E E vey E Zijd
i jod

+222vc % Vi
+ Zvcr wi+Zvcd w; +chp Pp
ir id p

max TCS = Z X jrctw; ;) + Z 2 j.aCtw;(0; 4)

ij.k ij.d
+ Z yi,j,rctwj(‘rj,r)

ij.r

Y xp=1, Vkek

JEN'

2 xi$c+p+2,k =1, Vk € K

ieN’

Y xx= Y x.ux. VieN.kekK

JEN'U{1} JEN'U{1}

Z Vijr+ Z Mikr = Z Yijir+ Z Yikr » vVie N'.,reR

jEN’ kek JEN' keK

2V SO+ D Xk, VKEKreRieN
JEN'U{1}

204y S8+ D, Xk, VKEKreERiEN
JEN'U(1)

Z O < Vr e R

keK

Z Zjjat Z oy = Z Zjid
JEN' keK JEN'
+ Zﬁ,-’k,,, vie N',de D
kek

2Ppa<Oa+ Q. Xk, VKkEKdeEDieN

JEN'U{1}

20400+ Y Xk, Vk€KdeDieN

JENTU(1}

Y 6 <1, VdeD
keK

2 Zx,jk_ Yad,, Vier
ieN'U{1} keK IGC

Z 2 Xijk ¥ 2 Z Zijat Z Zyur"'zgu
JEN'U{1} keK JEN' deD JEN' reR JjerP
Gij < i VieC,\VjeP
Yad,<0,, ViePr
ieC

dy;
> —= i SRB, VreR
ieN’ jeN' T
d;;

> Y 2z,,<DB, VdeD
ieN’ jeN' v
Z ‘L‘( z yi,j,r - Z 7i,k,r) < Qr ’ Vr € R
iece JEN' kek
Z qi( z Zijd ~ z ﬁi,k.d) <Q,, VdeD
iece JEN' kek
2 Z g Xijkt 2 ar, + Z Sy Ot 2 ady 4
ieC jeN'’ reR reR deD

+ ) saOat 2 b, <O, VKEK

deD JjEP

(€8]

(2)

3

C)

()
(6)
@)

®

9

(10)

(€8]

12

13)

14

VieC

(15)

(16)

@a7)

18)

19)

(20)

2D

(22)
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ar . > Z q,.< Z YVijor — Yi,k;)

ieC? JEN'
-M(1-6,). VkeK\VreR (23)
adg, > Y q,.< DA —ﬁ,-yk,d> -M(1-6,,), VkekyNYdeD (24)
iece JjEN'
b, = Z ey
iecp
- M(I—ZX,-’]-J(>, VkeK,VjeP (25)
ieEN
Gzt +of+—=+h Z Vigr 1 Z Bia
Uk reR deD
- M (1-x;,). i#jVijeN' VkekK (26)
Vj4 2 0iq+ ol.d(l —Pika)t+ -
Vg
- M (1-z;,)., i#j¥i,jeC°UPNdeDVkeK 27)
, di,
Tjr > Tir + Oi(l - yi,kA,r) + U_
.

- M (1-y,;,), i#j¥ijeC’UPVreRVkeK (28)
Lie=vg—-M(A-a,,), VieC°UP,Vd € D,VkeK (29)
27, —M(I—=n,,), VieC’UPNVreRVkeK (30)
Vg2t ti—M(1 =B, ), VieC’UPNVdeDVkeK 3D
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The objective function (1) minimizes total routing costs (TRC). The
first term specifies the time-dependent usage costs of all trucks, i.e., for
each truck the total time is calculated from the departure to arrival
at the main depot. The second term sums up the total distance costs
of all distances traveled by trucks. The third term calculates the costs
of drone travel from truck stops to customers, including the drones’
return time from the serving customer to the collection node. The
fourth term calculates the costs of robots travel from truck stops to
customers, including the robots’ return time from the serving customer
to the collection node. The fifth and sixth terms are considering the
waiting time of drones and robots at collection node respectively, when
they arrive earlier than the truck and wait to be collected. The last
term adds the operation costs of selected depots for those customers
who have chosen local depots for collecting their parcels. The second
objective function, (2), maximize the total customer satisfaction (TCS).

Constrains (3),(4) and (5) represent the network flow constraints
of the truck. Constraint (6) defines the network flow constraint of the
robot. Constrains (7) and (8) ensure that a robot can be launched from
or collected at a node only if it is carried by a truck which visits the
node. Constraint (9) ensures that a robot cannot be carried by more
than one truck. Constraint (10) represents the network flow constraint
of the drone. Constrains (11) and (12) ensure that a drone can be
launched from or collected at a node only if it is carried by a truck
which visits that node. Constraint (13) ensures that a drone cannot
be carried by more than one truck. Constraint (14) determines that
all local depots with positive customer demands are visited by truck.
Constraint (15) guarantees that all customers are either served by truck,
drone/robot launched from the truck or by a local depot. Eq. (16)
guarantees that a customer’s node must be encompassed by a depot
prior to receiving service from said depot. Constraint (17) ensures that
the local depot capacity must be respected. Constraints (18) and (19)
determine that a robot and a drone do not exceed their total battery
endurance, respectively. Constraints (20) and (21) ensure that total
capacity of shipments carried on each robot and each drone does not
exceed the capacity of the robot and the drone, respectively. Constraint
(22) ensures that total capacity of shipments and capacity occupation
of all robots and drones carried on truck does not exceed the capacity
of each truck, with (23),(24) and (25) calculating the truck capacity
occupied by orders to be serviced by on-truck robots, on-truck drones
and orders to be serviced by local depot(s), respectively. Constraints
(26), (27) and (28) calculate the visiting time at nodes by trucks, drones
and robots respectively and Constraints (29), (30), (31) and (32) link
them together. Finally, Constraints (33), (34), (35) and (36) state the
domain of decision variables.

4. Solution approach

The mixed truck and robot for last-mile delivery problem with
single objective is an NP-hard optimization problem and exact solving
of even small instances is hard and not promising Boysen et al.
(2018), Heimfarth et al. (2022). Therefore, the MOVRP_DR, that is
a generalized form of the truck and robot routing problem which
considers a mixture of truck, drones and robots for last-mile delivery
aiming to optimize two objectives (TRC and TCS) simultaneously is also
an NP-hard optimization problem. In this research, an adaptation of the
MOGA algorithm proposed by Mokhtari-Moghadam, Pourhejazy, and
DeepakGupta (2023) is used to solve the MOVRP_DR model. However,
to assign fitness to the individuals, we use the fitness assignment
method of Strength Pareto Evolutionary Algorithm 2 (SPEA2) proposed
by Zitzler, Laumanns, and Thiele (2001) , which incorporate both
dominance-based fitness and density estimation to ensure a balance
between convergence to the Pareto front and solution diversity. In
addition, a local search algorithm (LSA) is designed to select the best
nodes among the truck-visited nodes for launching and collecting of
drones and robots.

In this section, first our approach for presenting a chromosome is
discussed, then the method for decoding the chromosome will be ex-
plain. Finally, having found a mechanism to encode a chromosome and
decode it into a solution of the LMD problem with drone-robot assisted
delivery, then, the detailed description of AMOGA as an evolutionary
algorithm is explained and applied to the problem for improving the
quality of solutions according to Algorithm 1.



A. Mokhtari-Moghadam et al.

(a)
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(b)

Fig. 3. An instance of randomly generated location and solution.

Algorithm 1 Pseudo-code of AMOGA

Require: An instance of MOVRP_DR, AMOGA parameters
Ensure: A near optimal Truck-Drone-Robot Route
Initialization
Initialize parameters ( nPop, MaxIt, P,, P, Ppa. Tize);
Initialize population with the size of nPop;
« Generate random permutation of nodes;
« Apply assignment algorithm;
« Apply drone and robot drop-collection algorithm;
Calculate population objective functions values;
Assign fitness to the population using SPEA2, balancing dominance-based fitness with
density estimation to ensure convergence and diversity;
Sort the initial generated population in ascending order with considering their ranks;

while not termination condition do

Crossover

Apply on the nodes sequencing vector

if p < Pc then

« Choose two parent individuals through the Tournament selection technique;

« Select one crossover operator randomly among PMX and POX with equal
probability;

« Apply crossover operator on the nodes sequencing part;

« Apply assignment algorithm;

« Apply drone and robot drop-collection algorithm;

« Calculate values of offsprings objective functions ;

end if

Mutation

Apply on the truck rout of nodes sequencing vector

if p < Pm then

« Select one individual as parent by Tournament selection method;

« Select one mutation operator among Swapping, Insertion and Reversion
mutation operators randomly;

« Apply mutation on the truck route part of the first vector

« Apply drone and robot drop-collection algorithm;

« Calculate value of offsprings objective function;

end if

Apply on the assignment vector

if p < P,, then

« Select one individual as parent by Tournament selection method;

« Select one mutation operator among Swapping, Insertion and Reversion
mutation operators randomly ;

« Apply mutation on the assignment vector

« Apply drone and robot drop-collection algorithm;

« Calculate value of offsprings objective function;

end if

Combine all solutions (initial, recombination and mutation solutions);

Eliminate solutions with identical fitness values (objective functions);

Evaluate the remaining individuals by assigning fitness value to the population using
SPEA2, balancing dominance-based fitness with density estimation to ensure convergence
and diversity;

Apply LSA to refine some offspring solutions.

Arrange the individuals in ascending order based on their ranks;

Select best-ranked solutions with the size of nPop for the next generation from the
pool using Truncation selection;

Calculate fitness values of individuals using SPEA2 algorithm;

Sort population in ascending order according to their ranks.;

Save the Pareto-front solution;
end while

4.1. Chromosome representation

A new method is developed to utilize a multi-layer chromosome
for encoding each solution of MOVRP_DR. It consists of two vectors
that are (1) nodes sequencing vector (2) truck-drone-robot assignment
vector and one cell array that is drone-robot drop-collect cell array.
The length of each vector and cell array is equal to the total number of
non-assigned orders (customers who choose door-delivery) and selected
local depots (for customers who collect their order from local depots).
To represent a chromosome explicitly and simplifying the description of
different steps of encoding and decoding the instance number 3, P_03,
from the test instances is selected. Fig. 3(a) shows the instance with one
main depot (red star, index 1), two selected local depots (red square,
indices 2 and 3), and 10 customers (dark blue circle point, indices 4
to 13), amongst which, customers within the covering areas of depots
(large circle), nodes 9 and 10, have chosen local depots 3 and 2 for
collecting their orders, respectively. The remaining customers opt for
door-delivery that are shown with small orange circle around those
nodes.

First vector of the chromosome shows the sequence by which cus-
tomers and local depots are visited by truck, drone or robot. Because
the main depot (node 1) is the start and finish node that is always
assigned to the truck, in the chromosome representation it is ignored
for simplicity of coding. To generate a random solution, the order by
which nodes will be visited by truck, drones or robots are permuted, as
depicted in Fig. 2 (first vector).

The second vector of the chromosome represents the assignment of
truck, drones and robots. In this example, the number 1 in the Truck-
Drone-Robot assignment vector shows the truck, which means truck
1 is assigned to nodes 13, 12, 3, 6, 4, 2 and 11. The numbers 2 and
3 are for robots and finally, number 4 shows the drone. It is clear
that robot 1 and robot 2 (indices 2 and 3) are allocated to nodes 7
and 8 respectively, while drone 1 (index 4) is allocated to the node 5.
There are some assumptions and constraints that need to be considered
while assigning the truck, drones and robots. It is assumed that the
first and last nodes must be visited by truck. Also, the local depot
must be visited by truck only. Regarding the constraints, robots can
carry at most two orders (Q,) and drones are allowed to serve only one
customer due to current technology limitations. Algorithm 3 shows the
Truck-Drone-Robot assignment algorithm.

The third part of the chromosome is devoted to the drop and
collection nodes of drones and robots. Algorithm 4 shows the algorithm
for drone and robot drop-collection nodes. The combination of the two
vectors and one cell array of encoding chromosome is shown at Fig. 2,
which shows that robot 1 (index=2) is dropped at node 13 and collected
at node 2, robot 2 (index=3) is dropped at node 3 and collected at
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node 6, and drone 1 (index=4) is dropped at node 12 and collected at
node 4.

4.2. Assign customers to local depots

The algorithm for selecting the local depot is demonstrated in
Algorithm 2. In fact, for convenience to the customers, it is assumed
that there are some local depots where customers have an option to
collect their order such as Amazon locker. Therefore, those customers
who prefer to pick their orders through the nearest local depot could
select the local depot considering the local depots capacity and vicinity
(within 4 km radius). In this case, there are three states for local
depots:

» Local depot is not selected by any customer, and all customers
within the vicinity of a local depot prefer to received their order
at home.

+ Local depot is selected by one or more customers.

» Local depot is chosen by all customers within the vicinity for
collecting their orders.

Algorithm 2 Local depot selection algorithm

Require: d;; , Q,, q;, 4;;, and Preference rate (Pr)
Ensure: list of selected local depots P and the non-assigned customers

NI
SLD = {} > Selected local depots
AC; = {} > Assigned customers to the local depot i

for each local depot i in P do
Sort all customers distance from local depot i in ascending order
for each customer j in C do
if j ¢ AC & Remaining capacity of local depot i < ¢; & 4;; = 1
then
Generate a random number r € [0, 1]
if r > Pr then
AC; <
SLD < i
end if
end if
end for
end for
N’ =SLD|J(C - AC)

Algorithm 3 Truck-Drone-Robot Assignment Algorithm

Require: nodes sequencing vector , R, Cy
Ensure: Truck-drone-robot assignment;
Create an empty vector with the length of nodes sequencing vector;
Assign the first node, the last node and the local depots nodes to
truck;
Assign the remaining nodes to the truck, drones, and robots
randomly.
for each robot r do
if number of assigned nodes > Q, +1 then
Select two nodes randomly and assign to the robot;
Assign the remaining nodes to the truck.
end if
end for
for each Drone d do
if number of assigned nodes > O, +1 then
Select one node randomly and assign it to the drone;
Assign the remaining nodes to the truck.
end if
end for

Expert Systems With Applications 269 (2025) 126434

Algorithm 4 Drone-robot drop-collection algorithm

Require: Node sequencing and truck-drone-robot assignment vectors
Ensure: Drone-robots drop-collection nodes
Create an empty cell array with the length of nodes sequencing vector
for each drone d # {} do
Select two nodes from the assignment vector (= 1) randomly
Assign index of drone to the first selected node for dropping
Assign index of drone to the second selected node for collecting
end for
for each robot r # {} do
Select two nodes from the assignment vector (= 1) randomly
Assign index of robot to the first selected node for dropping
Assign index of robot to the second selected node for collecting
end for

4.3. Solution decoding

The algorithm for decoding of the chromosome is presented in Al-
gorithm 5. The algorithm decodes the randomly generated chromosome
into a feasible or non-feasible but may not optimal solution for the LMD
using the drones and robots assisted truck ( Fig. 3(b)). For instance,
starting reading the chromosome from left to right, the first element in
the second vector is equal to 2, which means the first node which is
13 should be visited by truck. Therefore, truck start its journey from
the main depot to visit node 13. Arriving at first node, then the first
element of the third vector is checked. If it is not empty, the truck
needs to drop the robot or drone or both (according to the assigned
index) and then do services to the customer. In this example the first
element of the third vector is equal to 2, so truck drop robot (robot
index 2: R2) then do service the customer and continue its journey to
the next assigned node, which is 12. At node (13), R2 starts its journey
and visits and services the only assigned node 7, then according to
the third vector, R2 needs to be collected at node 2, therefore, after
servicing the last assigned nodes (here only node 7), it continues its
journey to the collected node 2. At this node, if truck arrives earlier
than robot, it needs to wait until the robot arrives and collects it and
vice versa.

Arriving truck at node 12, it drops drone (index 4 : D4) and then
do services to the customer. At node 12, D4 starts its journey to visit
assigned node 5 (according to the second vector), then to be collected
continue its journey to node 4. This process continue until truck visit
the last node 11, before returning to the main depot.

4.4. Population initialization

In the context of heuristic approaches for solving real-world prob-
lems, generating initial populations randomly can lead the diversity
and quality solution. Therefore, here, to provide such features in the
initial population, the sequence of nodes in the first chromosome vector
are simply permuted that followed by the random assignment of truck,
robots and drones to each node using Algorithm 3 which shaped the
second chromosome vector. Finally, the dropping and collecting nodes
of drones and robots are randomly selected from the truck route using
Algorithm 4.

4.5. Fitness value calculation and pareto front generation

In multi-objective optimization, solutions with higher fitness values
have a greater likelihood of being selected for survival and reproduc-
tion in subsequent generations. In this study, two objective functions
are used to evaluate and assign fitness to solutions: total route costs
(TRC) and total customer satisfaction (TCS). To calculate fitness, we
adopt the Strength Pareto Evolutionary Algorithm 2 (SPEA2) fitness
assignment approach as proposed by Zitzler et al. (2001). This method
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Algorithm 5 Chromosome decoding

Require: d;j , DB, RB, 0, vy, Ug, Up, By 1 and cost variables.
Ensure: Total Route Costs (TRC)and Total Customer Satisfaction (TCS)
Initialize vectors for recording Truck Arrival Time (TAT), Truck Setup Time (TDT), Truck
Service Time (TST), Truck Collection Time (TCT), Truck Waiting Time (TWT), Drone and
Robot Release Time (DRT and RRT), Drone and Robot Collection Time (DCT and RCT),
Drone and Robot Travel Times (DTT and RTT), and Drone and Robot Violation Battery
Times (DVB and RVB).
Initialize table for drone and robot arriving time (DAT and RAT), drone and robot finish
service time (DFST and RFST),and customer’s time window.
for each node on the truck route do
TAT =d /v > truck travelling time from main depot to the first node
DN = find indices of drone(s) and robot(s) need drop at current node from drone-robot
drop-collection array
if DN # {} then
for each robot r in DN do
TDT =TAT +h
RRT =TDT
RAT = RRT +d /v,
RFST = RAT + 0[(
end for
for each drone d in DN do
TDT =TAT +1
DRT =TDT
DAT = DRT +d /vy
DFST = DAT +of
end for
else
TDT =TAT
end if
TST =TDT + o
CN = find indices of drone(s) and robot(s) need collection from drone-robot
drop-collection array
if CN # {} then
for each drone d in CN do
DCT = DFST (last visited node) + drone travelling time to the collection node
DTT = DCT — DRT
DV B = max{0,(DCT/DB - 1)}
TWT = max{0,(DCT — TST)}
DWT = max{0,(TST — DCT)}
end for
for each robot r do
RCT = RFST (last visited node) + robot travelling time to the collection node
RTT = RCT — RRT
RV B = max{0, (RCT/RB — 1)}
TWT = max{0, (RCT — TST)}
RWT = max{0,(T'ST — RCT)}

> Travelling time to the assigned node(s)

> Travelling time to the assigned node(s)

end for
TCT =TST + max(TWT)
else
TCT = TST
end if
end for

TAT =TCT +d /vy > Return time at main depot
calculate TRC and TCS according to the equation (1) and (2), respectively.

incorporates both dominance-based fitness and density estimation, en-
suring a balance between convergence towards the Pareto front and
maintaining diversity among solutions. First, raw fitness is calculated
using dominance count techniques, followed by density estimation
based on the kth nearest neighbor distance in the objective space. The
final fitness value of each individual is obtained by combining the
raw fitness and the density measure, effectively promoting a diverse
and high-quality solution set while mitigating computational overhead.
By comparing pairs of individuals in the population, non-dominated
individuals that contribute to constructing the (near-) Pareto front
are identified, which guide the search process. Through successive
generations, the proposed algorithm iteratively refines the population,
aiming to discover solutions closer to the true Pareto-optimal front.

4.6. Selection methods

To select parents from the pool for the reproduction phase, the
Tournament Selection technique is used here. The size of a tournament
must be chosen precisely as the larger tournament size gives more
weight to the elite-selection policy and hence the fastest convergence of

Expert Systems With Applications 269 (2025) 126434

the algorithm and on the other hands, choosing small tournament size
improves diversity and slow algorithm convergence. After extensive
computational experimenting, the tournament size in this research is
set to 3, i.e. (T;,, = 3).

After each generation, the truncation selection method is utilized
to pick the best-ranked individuals from the pool for the subsequent
generation. Initially, the old population, pop,,, is combined with the
newly generated population from recombination and mutation, pop,,,,,-
Then, to enhance efficiency, individuals with identical objective func-
tions (TRT and TCS) are eliminated. Lastly, the truncation selection
process is carried out to select the top-ranked solutions with a size of
nPop for the next generation.

4.7. Crossover operators

Crossover, also known as recombination, is an evolutionary algo-
rithm operator that utilizes the genetic information from two selected
parents to generate offspring. In the proposed AMOGA algorithm,
two types of crossovers, namely partial mapping crossover (PMX)
(Goldberg & Lingle, 1985) and preserving order-based crossover (POX)
(Kacem, Hammadi, & Borne, 2002) are employed on the node se-
quencing vector of selected parents. Following the creation of the
first offspring vector, Algorithm 3 and Algorithm 4 are utilized
to finalize the truck-drone-robot assignment vector and drone-robot
drop-collection cell array of the new chromosomes.

To implement PMX crossover on the chromosome’s node sequencing
vector, a process is followed where two parents (P1 and P2) are chosen
from the current population using the tournament selection method.
Subsequently, two empty offspring (referred to as Offl and Off2) are
created, each with the same length as the chromosome. Then, two
random cut points (cl and c2) are selected. After that, having formed
the mapping relationship of genes between the c1 and c2, they then are
exchanged and transferred into Offl and Off2 in order to create partial
offspring. Finally, the empty positions of offspring Offl and off2 are
filled with P2 and P1 respectively. In case of any repeated gene in the
offspring while filling the empty positions, the genes from the mapping
relationship will be used. To clarify the procedure of PMX crossover, an
illustration is depicted in Fig. 4.

The POX crossover involves creating two offspring (Off1 and Off2)
from two selected parents (P1 and P2) by applying it to the node
sequencing vector of chromosome. In this process, two sub-nodes (snl
and sn2) are randomly generated from all nodes in the first vector,
and two empty vectors with the same length as Off1 and Off2 are also
created. Genes from P1 and P2 that match snl and sn2 are transferred
to the corresponding positions in Offl and Off2. Subsequently, genes
belonging to snl and sn2 are removed from parents P2 and P1, re-
spectively. The remaining genes of P2 and P1 are then transferred to
Offl and Off2 in the same order as they appear in the parents. The
application of POX crossover is depicted in Fig. 5.

It is notable that, to make it simple to understand, in this example,
selected nodes are between 1 and 10 for a graphic representation of
how PMX and POX crossovers are applied in the proposed AMOGA.

4.8. Mutation operators

To improve search diversity and avoid premature convergence, the
mutation operator is employed. In this study, to produce an offspring,
three mutation operators named swap, insertion and reversion, are
employed.

4.8.1. Apply mutation operators on the truck route of node sequencing
vector

A parent is chosen from the current population through the tour-
nament selection method, followed by the random selection of one
of the mutation operators with an equal probability. This selected
mutation operator is then applied to the chosen parent to generate
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Offspring 1 6’1'9‘4‘7‘2'10‘3’8‘5‘
cl c2 I I I
Parent 1| 6 i} 5 9 10 3 il 2 8 4
Parent 2| 6 8 9 4 7 2 3 5 1 10
Offspring26’8'5‘9‘10‘3'2‘4’1‘7‘
Mapping relationship 54— 9 +—1 y 10¢+—7 g 3«2
Fig. 4. PMX crossover operator.
Offspring 2| 6 ‘ 8 ‘ 9 ‘ 4 ‘ il ‘ 10‘ 3 ‘ 5 ‘ {7 ‘ 2 ‘

Parent 1 M 1

T

~ || ~

snl = {2, 7,1, 10}
Offspring 1 1 10
Offspring 2| 6 8 9 4 5
A A
n2 = {6, 8. 0. 4, 3, 5} T T T
Parent 2‘ 6 ‘ 8 ‘ 9 ‘ 4 W 3 ‘ 5 W
Offspring 1| 6 ‘ 1 ‘ 8 ’ 9 ‘ 10 ‘ 4 ‘ i ‘ 2 ‘ 3 ’ 5 ‘
Fig. 5. POX crossover operator.
Node sequencing vector 13 7 8 12 3 6 4 2 5 11
Parent | Truck-drone-robot assignment
1 2 3 1 1 1 1 2 4 1
vector (Truck = 1)
a) Offspring ’ 4 | i | 8 | i ’ 3 ‘ 6 ‘ 13 | 2 | 5 ‘ 11 ‘
Node sequencing vector 13 7 8 12 3 6 4 % 5 11
Parent | Truck-drone-robot assignment
1 2 3 1 1 1 1 1 4 1
vector (Truck = 1)
b) Offspring | 6 | 7 | ) | 3 | 12 ‘ 13 ‘ 4 | 2 | 5 ‘ 11 ‘
Node sequencing vector 13 7 8 12 3 6 4 % 5 11
Parent | Truck-drone-robot assignment
1 2 3 1 1 1 1 1 4 1
vector (Truck =1)
¢) Offspring [ 13 | 7 | ) | 3 | 6 ] 12 ] 4 | 2 | 5 ] 11 ‘

Fig. 6. Illustration of the mutation operators: (a) swap, (b) reversion, and (c) insertion on the truck route of first vector of chromosome.

a new offspring. Fig. 6 shows the procedure of applying mutation
operators on the first vector of chromosome of the sample instance
of Fig. 2 . After generating the first vector of offspring, the truck-
drone-robot assignment vector of parent is not changed. Therefore,
this vector is copied completely to the offspring. However, drone-robot
drop-collection cell array of the new chromosome needs to be updated
using Algorithm 4.

10

4.8.2. Apply mutation operators on the truck-drone-robot assignment vector

To apply mutation operators on the truck-drone-robot assignment
vector, a parent is selected from the population using tournament
selection method and then one of the mutation operators with an
equal probability is chosen randomly. It is worth noting that accord-
ing to the assumptions described earlier, in the problem description
and mathematical modeling section, the first and last nodes of each
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Node sequencing vector (First
and last nodes = {13, 11}, 13 7 s 12 3 6 4 2 5 11
local depots = {2, 3
Parent i {28}
Truck-drone-robot assignment
vector (Truck = 1 1 2 3 1 Al 1 1 1 4 1
Robot={2,3} and Drone=4)
Truck-drone-robot assignment
a) Offspring 1 il 3 2 1 1 1 4 1
vector
Node sequencing vector (First
and last nodes = {13, 11}, 13 7 8 12 3 6 1 2 5 11
local depots = {2. 3
Parent @2
Truck-drone-robot assignment
vector (Truck = 1 1 2 3 il 1 il 1 it 4 it
Robot={2.3} and Drone=4)
b) Offspring |Truck-drone-robot assignment | 1 1 1l 3 1 2 1 1 4 1
vector
Node sequencing vector (First
and lnst nodes = {13, 11}, 13 7 8 12 g 6 4 2 5 11
local depots = {2, 3
Parent 2.8}
Truck-drone-robot assignment
vector (Truck =1 | 2 3 1 1 1 1 ! 4 1
Robot={2.3} and Drone=1)
c) Offspring |Truck-drone-robot assignment | 1 3 1 1 1 2 1 1 4 1
vector

Fig. 7. Illustration of the mutation operators: (a) swap, (b) reversion, and (c) insertion on the assignment vector of chromosome.

route, including the local depot(s), must be served by truck. Therefore,
mutation operators are respecting these assumptions while they are
implemented on the second vector, which means the assigned truck to
those nodes will not change. Fig. 7 shows the procedure of applying
mutation operators to the second vector of chromosome. Having mu-
tated the assignment vector, the sequencing vector remains unchanged
in the offspring, but the drone-robot drop-collection cell array require
updating using Algorithm 4.

5. Experimentation and computational results
5.1. Description on test algorithms and comparison metrics

To validate the effectiveness and efficiency of the proposed AMOGA
for solving various models of MOVRP, we compare it with a well-
known multi-objective evolutionary algorithms, NSGA-II proposed by
Deb, Pratap, Agarwal, and Meyarivan (2002) on various scales of
MOVRP_DR model. The algorithms are coded and compiled on MATLAB
R2020a and run on a personal computer with AMD Rayzen 3, 2.60 GHz
CPU, and 12 GB of RAM.

To evaluate the performance of multi-objective algorithms, several
metrics are commonly employed. A detailed explanation of each metric
can be found in Mokhtari-Moghadam et al. (2023). A brief overview
of these metrics is provided below:

Spacing Metric (SM): Assesses the uniformity of non-dominated
solutions. Lower values indicate better spread uniformity.
Diversification Metric (DM): Evaluates the heterogeneity of non-
dominated solutions. Higher values signify better diversity.
Mean Ideal Distance (MID): Measures the proximity of solutions
to the ideal point. Smaller values reflect better performance.
Quality Metric (QM): Represents the percentage of unique solu-
tions contributed by each algorithm. Higher values indicate more
distinctive solutions.
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+ Inverted Generational Distance (IGD): Combines convergence and
diversity by measuring the distance from the obtained solutions
to a reference Pareto-front. Lower values are preferred.

5.2. Test instances

Test data are randomly generated, but in such a way that they
are representative of real world drone-robot-assisted delivery problems.
Table 3 shows the levels and ranges of the factors determining the
configuration of the test instances. The test problems are denoted by
(the number of the main depot).(the number of orders).(the number of
the local depots).(the number of trucks).(the number of drones).(the
number of robots). For example, a problem with 1 main depot, 10
customers, 2 local depots, 1 truck, 1 drone and 2 robots can be denoted
by MOVRP DR 1 -10 -2 -1 -1 -2.

The main depot, local depots, and customer locations are randomly
distributed within an area measuring 40 km in length and 20 km
in width. The velocities of the truck and robot, as well as the drop-
off and collection times for the robot, and the delivery service times
for both the truck and robot, are detailed in Simoni et al. (2020).
The drone’s speed information is sourced from Kitjacharoenchai et al.
(2019). Furthermore, the expenses associated with the truck and robot
are determined based on the findings of Ostermeier et al. (2023), with
the currency being converted from € to £.

5.3. Parameter settings and stopping criterion

Upon delineating the test problems, the calibration of parameters
in any evolutionary algorithm is crucial, as it directly impacts the
algorithm’s performance. Consequently, a series of extensive trial-and-
error experimental tests were carried out to fine-tune the parameters
of the AMOGA and NSGA-II algorithms. These parameters include the
population size, tournament selection size, as well as the crossover



A. Mokhtari-Moghadam et al.

Table 3
Summary of test data.
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Factors

Levels Number of levels

Number of order

Demand’s quantity

Number of truck

Number of robot

Number of drone

Number of main depot

Number of local depot

Truck speed ( m/sec)

Robot speed ( m/sec)

Drone speed ( m/sec)

Truck delivery time (minute)

Robot delivery time (minute)

Drone delivery time (minute)

Average drone/robot drop-off time (minute)
Customer desired time window (minute)
Customer tolerable time window (minute)
Truck cost (£/hr)

Robot cost (£/hr)

Drone cost (£/hr)

Local depot fixed cost (£/selected depot)

Ranges from 8 to 120
Discrete uniform [5, 10]
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Fig. 8. Non-dominated solutions of various test instances achieved by AMOGA and NSGA-IL

and mutation probabilities, with values set at 50, 3, 0.4, and 0.3,

respectively.

The termination criterion is established based on the maximum
number of iterations for each test problem. Should the algorithm meet
this condition, the process will cease, and the Pareto front solutions
will be presented as the final outcome. Given the varying scales of
problems, larger-sized instances may require additional iterations or

12

extended run-time for effective resolution. Consequently, the maximum
number of iterations for the test cases is set between 200 and 3000,
depending on the problem size.

5.4. Computational results and discussion

In this section, the performance of the proposed AMOGA in solving
various MOVRP models is evaluated. Initially, AMOGA is benchmarked
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Computational results of AMOGA and NSGA-II based on performance metrics (best in bold).

Instances name Size SM DM MID oM 1GD Run time (sec)
AMOGA NSGA-1I1 AMOGA NSGA-1II AMOGA NSGA-1I1 AMOGA NSGA-1I1 AMOGA NSGA-1II AMOGA NSGA-1II
P01 MOVRP DR 1.8.1.1.1.1.  0.73 1.78 37241 1015.86 142.84  345.24 0.50 0.50 15.96 18.54 2536  23.07
P02 MOVRP_DR_1.10.2.1.2.1 0.83 1.43 1692.29 2594.10 713.39 852.92 0.24 0.76 24.21 46.73 50.75 37.66
P03 MOVRP_DR_1.10.2.1.2.2 1.12 0.00 3506.31 0.00 1018.16 681.47 0.75 0.25 32.59 1036.34 56.16 45.90
P04 MOVRP DR 1.12.2.1.1.2  0.43 1.42 1261.97 10876.03 750.67  1716.36 0.44 0.56 61.51 69.17 5423 4571
P05 MOVRP DR 1.12.21.21  0.86 1.69 2785.98 2399070 1091.94  3479.48 0.50 0.50 87.26  159.79 6057 4874
P06 MOVRP DR 1.12.2.1.2.2  1.32 0.84 11501.07  3388.90 2253.48  2691.37 0.83 0.17 5.96  1029.56 7214  51.83
P07 MOVRP DR 1.15.3.1.21  0.95 1.21 3979.75  5287.85 2483.26  3589.50 0.92 0.08 0.00  459.50 76.03 6374
P08 MOVRPDR 1.153.1.2.2 1.19 0.85 8418.86  4539.76 1790.50  2109.33 0.95 0.05 0.00  350.97 7663 62.65
P_09 MOVRP DR 1.153.1.2.3  1.01 0.97 6087.36  8510.34 1825.69  2297.65 0.84 0.16 26.07  983.88 8173 67.08
P10 MOVRP DR 1.18.3.1.23  0.86 074 10889.86 10250.47 3763.23  4476.52 0.64 0.36 107.53  379.36 149.08  124.13
P11 MOVRP DR 1.18.3.1.3.2  0.88 0.66 4672.07  7592.52 261871  1820.44 0.83 0.17 3520  728.28 146.88  131.05
P12 MOVRP DR 1.18.3.1.3.3  0.57 0.37 422171 7922.20 2172.05  3050.17 0.86 0.14 0.00 1221.28 15229  135.07
P13 MOVRP DR 1.20.3.1.23  0.45 111 11634.29  30898.30 6983.81  6069.32 0.43 0.57 258.82 633.10 22711 189.34
P14 MOVRP_DR_1.20.3.1.3.2 1.09 0.63 17846.89 20658.03 5073.85 12052.67 0.83 0.17 167.41 1516.18 212.89 183.09
P15 MOVRP DR 1.20.3.1.3.3  0.81 1.07 13166.13 17616.40 5086.70  8059.82 0.82 0.18 398.29  963.26 22871  191.34
P16 MOVRP DR 1.25.3.1.23  0.56 0.32 3936.13 15450.26 1796.19 12153.66 0.96 0.04 0.00  6247.43 305.94  242.41
P17 MOVRP DR 1.25.3.1.3.2  0.89 0.96 5846.86 17224.91 1667.52 12141.41 0.91 0.09 1218.04  7283.06 301.56  232.31
P18 MOVRP DR 1.25.3.1.33  0.82 112 421495  5035.18 905.50  1038.01 0.79 0.21 3171  288.65 19572 174.82
P19 MOVRP DR 1.30.3.1.2.3  1.09 0.96 3021.90  5115.11 2056.58  2794.56 0.92 0.08 37.42 72671 21536 184.73
P_20 MOVRP DR 1.30.3.1.3.2  1.00 072 3296.94  5092.08 1329.44  1825.32 0.77 0.23 49.99 89.47 215.64  196.27
P21 MOVRP DR 1.30.3.1.3.3  1.22 1.00 36405.45 22476.28 7226.40 23383.35 0.97 0.03 0.00 10852.33 40299  324.12
P22 MOVRP DR 1.40.4.1.3.3  0.66 0.76 8593.66 12234.12 1806.44  2039.78 0.92 0.08 16.89 40.71 10629  88.22
P23 MOVRP DR 1.50.4.1.4.4  0.51 1.38 447160  9194.52 1856.62  3054.32 0.80 0.20 12.11 56.29 10351  84.09
P24 MOVRP DR 1.60.4.1.4.4  0.93 079 10984.12  13456.92 2132.81  3124.56 0.69 0.31 37.67 13250 187.32  161.23
P25 MOVRP DR 1.70.4.1.4.4 074 112 8241.09 17159.85 2785.64  4919.76 0.81 0.19 51.45  153.12 220.08  176.72
P26 MOVRP DR 1.80.5.1.5.5  1.02 0.95 7356.19 13867.24 3282.11  4562.37 0.85 0.15 6274  187.81 303.33 25271
P27 MOVRP DR 1.90.5.1.5.5  0.93 0.66 6232.55 1284170 2461.55  3199.25 0.94 0.06 28.17  145.80 27118 230.23
P28 MOVRP DR 1.100.5.1.5.5 0.52 1.03 12115.23  21850.90 2583.76  4175.83 0.93 0.07 45.96 12972 310.85  259.48
P29 MOVRPDR 1.110.6.1.5.5 1.07 0.95 5680.81 14825.33 3182.45  4126.15 0.91 0.09 77.94 22012 362.77  307.71
P_30 MOVRPDR_1.120.6.1.5.5 0.77 1.22 5400.64 11673.46 1960.59  3275.52 0.88 0.12 64.72 98.53 32374  286.18
against NSGA-II across 30 test instances of the MOVRP_DR model Table 5
using five performance metrics. Subsequently, the proposed algorithm Number of assisted drone(s) and/or robot(s) for different models.
is applied to other variants of the MOVRP model for further analysis. Instance no. ~ MOVRPDR MOVRPD MOVRP R
D R D R D
5.4.1. Compare AMOGA and NSGA-II P01 o1 2 0 0o 2
. . P02 1 2 3 0 0 3
The comparison between AMOGA and NSGA-II is based on 30 test P03 5 > 4 0 o 4
instances of the MOVRP_DR model, analyzed using five key perfor- P04 9 1 3 0 0 3
mance metrics. The detailed results are provided in Table 4. The P05 1 2 3 0 0 3
best-obtained solutions are highlighted in bold. When evaluating the P_06 2 2 4 0 0 4
first criterion, SM, it is evident that both algorithms achieve a uniform P07 2 2 4 0 0 4
. . . . P08 1 2 3 0 0 3
spread of non-dominated solutions in nearly half of the test instances. P09 3 5 5 0 0 5
For the second metric, DM, NSGA-II demonstrates superior diversity P10 3 2 5 0 0 5
in the Pareto-front solutions across the majority of test instances. P_11 2 3 5 0 0 5
However, in terms of proximity and quality of the non-dominated P12 3 3 6 0 0o 6
- - P13 3 2 5 0 0 5
solutions, as assessed by the MID and QM metrics, AMOGA outperforms P 5 3 s 0 o <
NSGA-II, achieving solutions closer to the ideal point. Lastly, for the P15 3 3 6 0 o 6
IGD metric, the results indicate that AMOGA consistently outperforms P_16 3 2 5 0 0 5
NSGA-II across all test instances, demonstrating superior convergence P17 2 3 5 0 0 5
and diversity of solutions. In terms of runtime, AMOGA lags behind 1’; 712 2 2 g g g g
NSGA-II, likely due to the additional computational demands of the Py 5 3 5 0 0 5
local search algorithm and the potentially time-intensive process of P21 3 3 6 0 0 6
assigning specific fitness values. P22 3 3 6 0 0 6
To visually compare the Pareto-front solutions generated by the P23 4 4 8 0 0 8
- . - P24 4 4 8 0 0 8
benchmark algorithms, four test instances of varying scales — P_01, P os 4 4 s 0 o s
P 08, P21, and P_30 — are presented in Fig. 8. For clarity, the P26 5 5 0 o 0 10
values of customer satisfaction have been converted to their negative P27 5 5 10 0 0 10
counterparts. P28 5 5 10 0 0 10
. . . . P29 1 1
Overall, the majority of the non-dominated solutions obtained by P30 : g 13 g g 13

AMOGA surpass those of NSGA-II in terms of total delivery cost and
customer satisfaction. This performance advantage can be attributed
to AMOGA’s integration of a local search algorithm and advanced
fitness value assignment methods, which effectively determine the
optimal launching and collecting nodes for drones and robots. These
optimizations reduce truck waiting times and minimize travel distances
for autonomous vehicles, leading to lower overall delivery costs and im-
proved customer satisfaction. These results indicate that the proposed
AMOGA is a more robust and effective approach for addressing the
studied problem across varying scales.

5.4.2. Compare delivery modes

Building on the promising performance of our proposed algorithm
co mpared to NSGA-II, we apply it in this section to 30 test instances of
varying scales for the MOVRP_DR model. To benchmark the outcomes
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of our MOVRP_DR model against relevant studies in the literature,
which focus exclusively on drone-assisted (MOVRP_D) or robot-assisted
(MOVRP_R) last-mile delivery, we conduct extensive computational
experiments. The primary goal of this research is to compare different
models and their objective function values, specifically Total Routing
Cost (TRC) and Total Customer Satisfaction (TCS). To facilitate this,
we opted to use the TRC and TCS directly for comparison. A challenge
arises when comparing objective values due to the presence of multiple
non-dominated solutions in most test problems. These solutions are
distributed across multi-dimensional spaces based on the number of
objective functions, complicating direct comparisons. To address this,
we focus on boundary solutions in cases where multiple non-dominated
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Table 6
Computational Results of AMOGA for MOVRP_DR, MOVRP_D, and MOVRP_R.
Instances no. Size MOVRP_DR MOVRP_D MOVRP_R
TCS(b) TCS(w) TRC(b) TRC(w) TCS(b) TCS(w) TRC(b) TRC(w) TTCS(b) TCS(w) TRC(b) TRC(w)

P01 MOVRP_1.8.1.D.R 0.96 0.75 7787.32 7916.62 0.91 0.85 7855.30 8384.22 0.84 0.70 8231.52 9171.41
P02 MOVRP_1.10.2.D.R 0.97 0.63 8243.64 9762.58 0.99 0.92 7165.56 9542.92 0.90 0.71 9277.80 20924.48
P03 MOVRP_1.10.2.D.R  0.95 0.85 7115.66 10621.97 1.00 0.85 7115.66 9843.41 0.84 0.70 9391.95  22737.56
P_04 MOVRP_1.12.2.D.R  0.97 0.76 7932.17 16620.58 0.95 0.90 8279.27  10143.25 0.97 0.51 8259.99  17256.84
P05 MOVRP_1.12.2.D.R 0.82 0.76 11084.28 18085.44 0.83 0.42 10313.46 15226.63 0.78 0.36 9872.41 19737.44
P06 MOVRP_1.12.2.D.R  0.88 0.60 9972.69  16333.09 0.89 0.60 8824.48  13190.22 0.81 0.52 10208.42  13927.28
P07 MOVRP_1.15.3.D.R  0.92 0.75 10112.88  17944.24 0.86 0.67 9384.71 15280.88 0.89 0.61 10954.67  20489.15
P08 MOVRP_1.15.3.D.R 1 0.91 0.47 11993.10 20334.62 0.77 0.43 10393.55 15425.85 0.84 0.39 14214.40 21944.57
P_09 MOVRP_1.15.3.D.R  0.96 0.49 10135.39  17804.08 0.95 0.43 11458.30  14223.20 0.91 0.42 13243.89  21751.16
P_10 MOVRP_1.18.3.D.R  0.94 0.44 14165.63  25225.86 0.85 0.50 11790.10  19460.82 0.76 0.56 14171.47  42035.17
P_11 MOVRP_1.18.3.D.R  0.92 0.46 11568.78  18454.83 0.73 0.39 11560.79 20154.74 0.89 0.43 13898.12  19226.00
P_12 MOVRP_1.18.3.D.R 0.87 0.54 16147.92 21483.93 0.81 0.33 15023.81 20329.40 0.81 0.63 16595.50 30015.79
P13 MOVRP_1.20.3.D.R  0.84 0.62 14616.62  23733.48 0.86 0.57 16985.77  26582.92 0.79 0.46 16896.10  25328.62
P_14 MOVRP_1.20.3.D.R  0.90 0.31 16107.89 36483.43 0.86 0.26 16179.58  25944.23 0.72 0.18 17905.59  29514.94
P_15 MOVRP_1.20.3.D.R 0.83 0.42 16764.18 30024.11 0.66 0.33 16373.21 25866.00 0.79 0.35 20452.28 48163.47
P_16 MOVRP_1.25.3.D.R  0.84 0.47 17546.66  27284.48 0.67 0.28 16914.23  28139.93 0.81 0.49 21076.82  28628.47
P_17 MOVRP_1.25.3.D.R  0.74 0.28 18711.75  48247.02 0.65 0.31 23311.52  42833.56 0.71 0.39 23758.24  31811.29
P_18 MOVRP_1.25.3.D.R  0.85 0.30 18435.09  34171.27 0.82 0.48 18100.60  39604.55 0.70 0.48 17800.12  26675.44
P_19 MOVRP_1.30.3.D.R  0.78 0.19 19395.92  43893.75 0.77 0.23 22241.33  42965.39 0.70 0.36 22823.04  29317.30
P20 MOVRP_1.30.3.D.R  0.75 0.47 24874.19  35554.15 0.74 0.22 21439.85  40186.98 0.66 0.33 20702.97 34877.51
P21 MOVRP_1.30.3.D.R  0.81 0.21 19304.05 40123.28 0.67 0.32 20729.47  43768.33 0.59 0.31 22684.04  32877.01
P22 MOVRP_1.40.4.D.R 0.48 0.15 24947.80 52176.71 0.44 0.13 28699.50 45812.55 0.42 0.15 30453.40 41692.97
P23 MOVRP_1.50.4.D.R  0.50 0.17 32832.27 49551.23 0.41 0.22 47801.66  85077.46 0.38 0.23 36392.28  51689.37
P24 MOVRP_1.60.4.D.R  0.56 0.32 38664.95 99910.06 0.54 0.23 43634.19  96341.48 0.42 0.28 42016.45  53633.76
P25 MOVRP_1.70.4.D.R 0.29 0.12 70625.63 84919.56 0.29 0.13 73030.75 171055.81 0.22 0.12 56767.95 78115.03
P26 MOVRP_1.80.5.D.R  0.44 0.36 90300.17 123166.32 0.45 0.25 93308.30 149388.46 0.40 0.33 69190.33 95954.28
P27 MOVRP_1.90.5.D.R  0.27 0.18 82034.19 101822.77 0.31 0.09 106511.38 212266.49 0.23 0.13 73930.08 82100.15
P28 MOVRP_1.100.5.D.R  0.22 0.08 104925.46 176272.50 0.27 0.11 137719.11 240616.59 0.18 0.10 84106.71 113974.35
P29 MOVRP_1.110.5.D.R  0.36 0.24 120944.26  204092.88 0.33 0.22 173151.68 224855.73 0.35 0.24 88473.73 157495.27
P30 MOVRP_1.120.5.D.R  0.29 0.23 148558.46 182380.20 0.32 0.22 182677.99 222725.23 0.28 0.24 118532.28 128555.65

solutions exist. This approach is justified, as any additional solutions
are encompassed within these boundaries.

To make a fair comparison between various models, we assume
the number(s) of assistants (drones and/or robots) for each assisted
model is(are) equal. For example, in instance 1 (P_01), the MOVRP_DR
model uses one drone and one robot, so the assigned assistants for
its counterpart, MOVRP_R, should be equal to 2 robots instead of 1.
Table 5 shows the number of assistants in terms of drone(s) and/or
robot(s) in each test instance for different models. It is worth noting
that the numbers of main depots, demand nodes, customer’s local
depot, and truck are presented in Table 6 for each testing example.
Therefore, in the following sections, to avoid duplication, the numbers
of drones and robots in the configuration (size) column are denoted
as D and R, that need to be replaced with the appropriate number of
drones and robots according to Table 5 for each model.

Table 6 presents a summary and comparison of the computational
findings of AMOGA across various models. The first two columns show
the test problem number and the model’s configuration size. Columns
3 to 6 display the results of the MOVRP_DR model solved by our
algorithm. Columns 7 to 10 present the outcomes of the MOVRP_D
model, while columns 11 to 14 show the results of the MOVRP_R model.
The abbreviations TCS(b) and TCS(w) denote the best and worst overall
customer satisfaction in percentage, respectively. TRC(b) and TRC(w)
represent the best and worst total route costs in British Pound Sterling
(£). The best-obtained solutions are highlighted in bold.

In general, the findings indicate that in cases where there is a lim-
ited number of demand points distributed across various coordinates,
the superiority of the MOVRP_D model emerges owing to the benefits
associated with drones as previously discussed. Nevertheless, with an
escalation in the number of clients and encountering moderate density
in specific areas along with distant demand nodes, the performance
of the MOVRP_DR model surpasses that of its counterparts as it inte-
grates both drones and robots. Lastly, in densely populated regions, the
MOVRP_R model proves to be more economically efficient. In addition,
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as the number of demand nodes increase, the total customer satisfaction
will decrease.

Examining the intricacies of the outcomes reveals that the perfor-
mance of the MOVRP_D model surpasses the other three models in
majority of instances P_01 to P_06 in terms of both TCS and TRC
objective functions, due to the longer distance between nodes in a fixed
area. Because a drone is 1.5 times faster than a truck and its cost is
only 1/6 of that of the truck, it, obviously, serves the assigned nodes in
less time and lower cost. Despite the higher cost of employing drones
compared to robots, drones can efficiently serve distant customers,
thereby saving time and cost for trucks, which are more expensive.
Comparing the results of MOVRP_R from applying AMOGA to the afore-
mentioned instances indicate that the MOVRP_DR model outperforms
due to its ability to maximize customer satisfaction and also reduce
total route costs by utilizing drones. For instance, in Fig. 10(a), it is
evident that drone services demand point 12, which is distant from
other nodes, leading to improvement in both objective values. To
visualize and compare the non-dominated solutions obtained for each
model, Fig. 9 presents the outcomes yielded by AMOGA for all four
models across various test instances. For clarity, the values of customer
satisfaction have been converted to their negative counterparts. For
example, Fig. 9(a) corresponding to instance P_03, illustrate that the
solutions of the MOVRP_D model (yellow square) dominate those of its
counterparts when there are few dispersed demand points.

With a slight increase in the density of demand points, from 12
to 18, the outcomes achieved by solving the MOVRP_DR model for
test problems P_07 to P_12 surpass those of the MOVRP_D model and
other counterparts, particularly in terms of customer satisfaction (TCS).
However, due to the inherent trade-off between objective functions,
the MOVRP_D model demonstrates superior performance over the other
two approaches in minimizing total route cost (TRC). In essence, the
MOVRP_DR model prioritizes maximizing customer satisfaction, which
comes at the expense of higher costs compared to the MOVRP_D model.
The latter leverages a greater number of drones to reduce truck waiting
times, thereby minimizing route costs.
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Fig. 9. Non-dominated solutions of various test instances using AMOGA.
Table 7
Sensitivity analysis of customer time window for the MOVRP_DR model on test instance P_30.
Scenario No Desired time Tolerable time TCS_best TCS_worst TRC_best TRC_worst TCS_best TRC_best
window (hour) window (hour) (%) (%) change (%) change (%)
1 2 3 28.58% 23.13% 148,558.46 182,380.20 0.00% 0.00%
2 3 4.5 29.02% 10.44% 119,701.19 211,344.21 1.55% 19.42%
3 4.5 6.5 36.19% 12.38% 114,245.39 127,930.70 24.69% 4.56%
4 6 8 37.64% 15.72% 121,873.85 218,630.99 4.01% —6.68%
5 8 10 51.17% 16.41% 115,677.56 260,207.49 35.93% 5.08%

Fig. 9(b), corresponding to instance P_08, illustrates this dynamic:
the solutions of the MOVRP_DR model (blue pentagrams) dominate

those of its counterparts in terms of TCS, while the MOVRP_D model

dominates in terms of TRC.

With a moderate increase in customer nodes, the outcomes achieved
by solving the MOVRP_DR model for most test problems (P_13toP_24)
surpass those of the MOVRP_D and MOVRP_R models. By effectively
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utilizing both drones and robots, the MOVRP_DR model achieves higher
customer satisfaction while reducing total costs.

Fig. 9(c-e) compares the non-dominated solutions obtained for each
model, highlighting the superior performance of the MOVRP_DR model

(blue pentagrams). These solutions trend closer to the lower-left corner
of the plots, indicating better trade-offs between customer satisfaction
and total route costs (TRC). In contrast, the solutions of the MOVRP_D
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(a) Test instance P_09 with
TRC: 10135.39 (£) and TCS: 0.48
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TRC: 14616.62 (£) and TCS: 0.62

Fig. 10. Routes of truck, robots, and drones for the MOVRP-DR model.
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Fig. 11. Sensitivity analysis of customer time window for the MOVRP_DR model on
test instance P_30.

model (yellow squares) deviate further from this region, particularly
in terms of TRC. An interesting observation is the shift in the Pareto
front of the MOVRP_R model towards the lower region, narrowing the
gap with the MOVRP_DR solutions in terms of the total cost objective
function.

As the density of customers within a specific area increases further
(test instances P_25—P_30), it becomes evident that the cost objective of
the MOVRP_R model outperforms the total route cost (TRC) objective
of the other models. In densely populated areas, the MOVRP_R model
capitalizes on the advantages of robots, which can serve nearby demand
nodes at a lower cost. Additionally, due to their slower speed compared
to trucks and drones, robots experience reduced waiting times when
synchronizing with trucks, further enhancing efficiency. Interestingly,
the customer satisfaction scores (TCS) for both the MOV RP_D and
MOV RP_DR models tend to converge in these scenarios. As described
in the test instances section, the demand nodes are randomly dis-
tributed within a fixed area of 40 x 20 across all test cases. This setup
inherently results in higher node density as the number of demand
points increases, making the use of robots particularly advantageous
in such settings.

It is also important to note that the number of assistive units (robots
and drones) remains consistent across all models. In the proposed
MOVRP_DR model, this predetermined allocation of robots and drones
limits flexibility. However, if additional robots or drones were avail-
able, the model could potentially further optimize assistance levels to
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achieve reductions in both objective functions, enhancing performance
across all metrics.

Fig. 10 illustrates the routes of the truck, drones, and robots for
test instances P_09 and P_13 in the MOVRP_DR model. For example, in
Fig. 10(b), the bold red line represents the truck’s route. Starting from
the main depot (blue square: node 1), the truck travels to node 2 (local
depot), where it launches three drones and one robot. After serving its
assigned customers, the truck proceeds to node 21 to collect the drones.

Meanwhile, Robot 1 (depicted by a green dashed line) departs from
the local depot to serve customers at nodes 10 and 23. It then moves
to node 24, where it is later retrieved by the truck. After completing
its tasks at node 21, the truck visits node 9, where Robot 2 (dark red
dashed line) is deployed to serve nodes 22 and 7. The truck serves node
9, then continues its route, visiting nodes 2, 11, 6, 3, 13, 12, 18, 4, 24,
and 8, where it collects Robot 2 and serves the final node. Finally, the
truck returns to the main depot.

It is worth noting that nodes 15, 19, 17, and 20 represent customers
who opted to pick up their orders directly from the local depot.

5.4.3. Sensitivity analysis

As the concluding phase of the numerical assessments, a sensitivity
analysis is performed to evaluate how the objective functions — de-
livery cost and customer satisfaction — respond to variations in the
length of the customer time window. Specifically, as the number of
customers increases, companies often extend the delivery time slots due
to resource limitations, which helps to reduce overall logistics costs. To
examine this relationship, we analyze the impact of the time window
length in a large-scale scenario consisting of 120 customer nodes within
a high-population-density area, as summarized in Table 7. When the
duration of the time window increases, a higher number of orders can
be delivered on time, leading to an increase in customer satisfaction.
This added flexibility in the time window also contributes to a reduc-
tion in total delivery costs. For example, doubling the time window
length can lead to an approximate 25 percent improvement in the val-
ues of both objective functions. Fig. 11 illustrates how both objectives
respond to variations in the time window length, demonstrating notable
improvements in their respective values.

6. Conclusion

Autonomous technologies have shown great promise to improve
supply chain cost-effectiveness and responsiveness. The transition to
drone and robot-assisted truck delivery calls for improved operations
management know-how and decision support. This study is one of the
first attempts at the integrated planning of DART operations for last-
mile parcel delivery. A new multi-objective optimization problem and
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a solution algorithm are developed, and the DART delivery scheme is
compared with two baselines.

The numerical experiments showed that DART delivery is beneficial
when the demand network comprises both densely populated areas and
distant nodes. Drone-assisted truck delivery performed best for small
cases with a dispersed demand population. Addressing the limitations
of drones, especially the load capacity and endurance may make this
mode prevalent in the future of last-mile parcel delivery. Robot-assisted
delivery is more competitive in highly dense urban areas where the
company should extend customer reach. Although improving robots’
load capacity is comparatively easier than in drones, addressing the
travel speed limitations may worsen robots’ endurance and face chal-
lenges over the pedestrian safety concerns. Overall, drone and robot
integration seem needed where LMD demands are highly volatile. This
integration adds a high level of flexibility to planning the delivery
operations.

This study used random test instances to test the developed op-
timization method for planning LMD operations. Further analysis is
required to compare AMOGA'’s performance with other multi-objective
solution algorithms considering very large instances and a case study.
Besides, the optimization problem can be extended by considering
heterogeneous trucks, drones, and robots. Finally, decomposition-based
and set partitioning methods can be used to improve the efficiency of
the optimization method for commercial purposes.
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